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ON ANALYTIC T{ALGEBRAS

J. Neggers and Hee Sik Kim

Abstract. In this paper we give an analytic method for constructing proper examples of

a great variety of non-associative algebras of the BCK-type and generalizations of these. It

should be noted that good examples of some of theses types have not been well-known until

now.

1. Introduction.

Y. Imai and K. Is�eki introduced two classes of abstract algebras: BCK-algebras and

BCI-algebras ([1, 2]). It is known that the class of BCK-algebras is a proper subclass

of the class of BCI-algebras. In [3, 4] Q. P. Hu and X. Li introduced a wide class of

abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a

proper subclass of the class of BCH-algebras. The present authors ([7]) introduced the

notion of d-algebras which is another useful generalization of BCK-algebras, and then

they investigated several relations between d-algebras and BCK-algebras as well as some

other interesting relations between d-algebras and oriented digraphs. Recently, Y. B. Jun,

E. H. Roh and H. S. Kim ([5]) introduced a new notion, called an BH-algebra, which is

also a generalization of BCH=BCI=BCK-algebras, and de�ned the notions of ideals and

boundedness in BH-algebras, showing that there is always a maximal ideal in bounded

BH-algebras. Furthermore, they constructed quotient BH-algebras via translation ideals

and they obtained the fundamental theorem of homomorphisms for BH-algebras as a con-

sequence. In this paper we give an analytic method for constructing proper examples of a

great variety of non-associative algebras of the BCK-type and generalizations of these. It

should be noted that good examples of some of theses types have not been well-known until

now.

2. Preliminaries.

A d-algebra ([7]) is a non-empty set X with a constant 0 and a binary operation \�"

satisfying the following axioms:

(I) x � x = 0,

(II) 0 � x = 0,

(III) x � y = 0 and y � x = 0 imply x = y

for all x; y in X .

A d-algebra (X ; �; 0) is a BCK-algebra if it satis�es the following axioms:

(IV) ((x � y) � (x � z)) � (z � y) = 0,

(V) (x � (x � y)) � y = 0

for all x; y; z in X .
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Example 2.1 ([7]). Let R be the set of all real numbers and de�ne x � y := x � (x � y),

x; y 2 R, where \ �" and \�" are ordinary product and substraction of real numbers. Then

x � x = 0; 0 � x = 0; x � 0 = x2. If x � y = y � x = 0, then x(x � y) = 0 and x2 = xy,

y(y � x) = 0, y2 = xy. Thus if x = 0, y2 = 0, y = 0; if y = 0, x2 = 0, x = 0 and if xy 6= 0,

then x = y. Hence (R; �; 0) is a d-algebra, but not BCK-algebra, since (2 � 0) � 2 6= 0.

Let (X ; �; 0) be a BCK-algebra. Then the following hold for any x; y and z in X ,

(VI) x � 0 = x,

(VII) (x � y) � x = 0,

(VIII) (x � y) � z = (x � z) � y.

An algebra (X ; �; 0) is a BCH-algebra if it satis�es the axioms (I), (III) and (VIII). It

is well known that for any BCH-algebra X the axiom (VI) holds. An algebra (X ; �; 0) is a

BH-algebra ([5]) if it satis�es the axioms (I), (III) and (VI).

Example 2.2 ([5]). (a) Let X = f0; 1; 2; 3g be a set with the following Cayley table:

�

0

1

2

3

0 1 2 3

0 3 0 2

1 0 0 0

2 2 0 3

3 3 1 0

It is easy to verify that (X ; �; 0) is a BH-algebra, but not a BCH-algebra, since (2�3)�2 =

1 6= 2 = (2 � 2) � 3.

(b) Let R be the set of all real numbers and de�ne

x � y :=

(
0 if x = 0,

(x�y)2

x
otherwise,

for all x; y 2 R, where \�" is the usual subtraction of real numbers. Then it is easy to

check that (R; �; 0) is a BH-algebra, but not a BCH-algebra.

We have seen that depending on our choice of proper axioms described above or otherwise

there are a great variety of algebras which have proven interesting. In order to discuss

them simultaneoulsy and via systematic manner we call such algebras T -algebras. Thus,

for example, T means BH if we select the axioms (I), (III) and (VI). We list some other

axioms which prove to be of interest as well:

(IX) (x � y) � x = 0 � y,

(X) 0 � (x � y) = (0 � x) � (0 � y).

In particular, we call a T -algebra (X ; �; 0) a BHN -algebra if it satis�es the axioms (I), (III),

(V), (VI), (IX) and (X). A BHN -algebra X is called a BHK-algebra if it does not satisfy

(VIII).

3. Analytic construction.

Let X := [0;1) be the set of all non-negative real numbers unless otherwise speci�ed.

We de�ne a general binary operation \�" on X as follows:

x � y = maxf0; f(x; y)(x� y)g = maxf0; �(x; y)xg;
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where f(x; y) and �(x; y) are non-negative real valued functions on X �X with

(a) �(0; y) = 0

By manipulation of the functions f(x; y) and �(x; y) we will seek to control the axiom

set satis�ed by the corresponding \analytic T -algebras" in order to produce interesting

and unusual examples of classes which have been studied but whose membership sets have

not always seen to be non-empty or if so, particularly large. Beginning with some basic

information the following proposition is useful though elementary.

Proposition 3.1. If x; y 2 X with x > 0, then

x � y = 0() x � y () �(x; y) = 0:

Proof. If x � y then x � y � 0 and x � y = maxf0; (x � y)f(x; y)g = 0, since f(x; y) � 0.

Conversely, if x � y = 0, then (x� y)f(x; y) � 0 and hence x� y � 0.

If x � y = 0 then �(x; y)x � 0 and hence �(x; y) � 0, since x > 0. Thus �(x; y) = 0.

Conversely, if �(x; y) = 0, then x � y = maxf0; �(x; y)xg = 0. �

For the case: x = 0, we know that 0 � y = 0; 0 � y holds always, but we have no

information on the case of �(0; y), and so we assume that �(0; y) = 0. Along the same lines

as Proposition 3.1 we �nd the next proposition of use also.

Proposition 3.2. The function �(x; y) can be described as follows:

�(x; y) :=

�
0 if x � y;
x�y

x
f(x; y) > 0 otherwise:

Proof. If x > y, then by Proposition 3.1 �(x; y) > 0. Since x > 0, we have f(x; y)(x�y) � 0

and �(x; y)x � 0. Hence x � y = f(x; y)(x � y) = �(x; y)x, and so we obtain �(x; y) =
x�y

x
f(x; y).

If x � y and x > 0, then by Proposition 3.1 �(x; y) = 0. If x � y and x = 0, then

�(x; y) = 0 by assumption. �

Similarly the following propositions are easily checked but necessary for the development

of the theory.

Proposition 3.3. If the function �(x; y) satis�es the conditon

(b) �(x; x) = 0

then axiom (I) holds.

Proposition 3.4. Axiom (II) holds for any function �(x; y).

Proposition 3.5. Axiom (III) holds for any function �(x; y).

Proof. Assume that there are x; y 2 X such that x 6= y and x�y = 0 = y�x. We may assume

that y < x. Then by Proposition 3.2 we have x � y = maxf0; �(x; y)xg = �(x; y)x > 0, a

contradiction. �
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Proposition 3.6. If the function �(x; y) satis�es the condition

(c) �(x; 0) = 1

then axiom (VI) holds.

Proof. x � 0 = maxf0; �(x; 0)xg = �(x; 0)x = x. �

Proposition 3.7. If the function �(x; y) satis�es the condition

(d) 0 < �(x; y) � 1 when x > y

then axiom (VII) holds.

Proof. If x � y, then x � y = maxf0; (x� y)f(x; y)g = 0, and hence (x � y) � x = 0 � x = 0.

Let x > y. If q := x � y then q = �(x; y)x and (x � y) � x = q � x = maxf0; �(q; x)qg. In

order to satisfy the axiom (VII), �(q; x)q should be zero. Hence either q = 0 or �(q; x) = 0.

If q = 0, then �(x; y) = 0 and hence x � y, a contradiction. Thus 0 = �(q; x) = �(x � y; x)

and x � y � x. This means that �(x; y)x � x. Since 0 < x, we obtain the condition

0 < �(x; y) � 1. �

Proposition 3.8. If the function �(x; y) satis�es the conditions (a) � (d) and

(e) �(x; �(x; y)x) �
y

x
< 1 when x > y

then axiom (V) holds.

Proof. If x � y then, by Proposition 3.1 and the conditon (c), we obtain (x � (x � y)) � y =

(x � 0) � y = x � y = 0.

If x > y then 0 < �(x; y) � 1 by the condition (d). If �(x; y) = 1, then x�y = x and hence

(x � (x � y)) � y = 0 � y = 0: If 0 < �(x; y) < 1, then x � y = maxf0; �(x; y)xg = �(x; y)x < x,

since x > 0. If we take q := x � (x � y), then q > 0 by Proposition 3.1 and the axiom (III).

Hence we obtain

(x � (x � y)) � y = 0() x � (x � y) � y

() �(x; �(x; y)x) � y

() �(x; �(x; y)x) �
y

x
< 1

when y < x. �

We summarize the results described above as follows:

Theorem 3.9. If we de�ne non-negative real valued functions f(x; y) and �(x; y) satisfying

the conditions (a) � (e), then (X ; �; 0) is a BHN -algebra.
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Example 3.10. De�ne a binary operation \�" on X as follows:

x � y :=

8>>><
>>>:

x (y = 0)

0 (x � y)

x� 1 (0 < y < x; y > 1; x� y > 1)

x� y (0 < y < x; notfy > 1; x� y > 1g)

Then (X ; �; 0) is a BHK-algebra.

Proof. If we de�ne a non-negative real valued function �(x; y) on X as follows:

�(x; y) :=

8>>><
>>>:

1 (y = 0)

0 (x � y)
x�1
x

(0 < y < x; y > 1; x� y > 1)

x�y

x
(0 < y < x; notfy > 1; x� y > 1g)

then the associated binary operation � as de�ned above is precisely the operation in the

example. To complete the argument we need to check the condition (e), i.e., �(x; �(x; y)x) �
y

x
< 1 when 0 < y < x.

If 1 < y; 1 < x � y, then �(x; y)x = x � 1 and hence �(x; �(x; y)x) = �(x; x � 1) =
x�(x�1)

x
= 1

x
< y

x
< 1.

If 1 � y or x� y � 1, then �(x; y)x = x�y

x
= x� y. Hence �(x; �(x; y)x) = �(x; x� y) =

x�(x�y)

x
= y

x
< 1. Hence (X ; �; 0) is a BHN -algebra.

We can easily see that (x � y) � z 6= (x � z) � y. If we take x := 2:2; y := 1:1 and z := 1,

then (x � y) � z = 0:2, while (x � z) � y = 0:1. Moreover, if we take x := 9:8; y := 3:5 and

z := 8:5, then (x � y) � z = 7:8, while (x � z) � y = 0:3. This means that (X ; �; 0) is a

BHK-algebra. �

We know that a T -algebra can be de�ned according to our selection of axioms. If we

select fewer axioms for constructing a T -algebra, then we give fewer restrictions on the

conditions for �(x; y), and hence we may considerably enlarge the class of functions which

satisfy the given axioms.

To illustrate, de�ne a binary operation \�" on X by

x � y; = maxf0; �(x; y)xg

where �(x; y) is a non-negative real valued function on X such that �(x; y) > 0 if x > y

and �(x; y) = 0 otherwise. Then it is easy to demonstrate that (X ; �; 0) is a d-algebra.

Using the approach developed above which led to some important examples of certain

algebras, we show here how certain axioms sets are independent and how the corresponding

classes are distinct in a manner which obviates the need for Cayley tables whose properties

may be diÆcult to verify in any case.

Example 3.11. De�ne a binary operation \�" on X by

x � y := maxf0; �(x; y)xg

where �(x; y) is a non-negative real valued function on X such that

�(x; y) :=

(
0 if x � y

(x�y)2

x
otherwise

Then (X ; �; 0) is a d-algebra, but not a BH-algebra, since 2 � 0 = 4 6= 0. �

A d-algebra (X ; �; 0) is called a d�BH-algebra if it satis�es axiom (VI).
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Example 3.12. If we de�ne x � y := maxf0;
x(x�y)

x+y
g on X , then (X ; �; 0) is a d � BH-

algebra.

Example 3.13. If we de�ne x � y := j
x�y

1+y
j on X , then (X ; �; 0) is a BH-algebra, but not

a d-algebra, since 0 � 3 = 3
4
6= 0.

As another illustration of our technique, leading to a very large class of BCK-algebras

whose special properties may themselves be quite interesting in view of the way they have

been de�ned, consider the following. We know that a BHN -algebra will be a BCK-algebra

if it satis�es the axiom (IV). Thus it becomes necessary that we investigate equivalent

conditions on �(x; y) to the axiom (IV).

Assume (X ; �; 0) is a d-algebra. Consider ((x � y) � (x � z)) � (z � y): If x � y, then by

Proposition 3.1 x�y = 0, and hence ((x�y)�(x�z))�(z�y) = (0�(x�z))�(z�y) = 0�(z�y) = 0

by (II).

Let z � y < x. Then ((x � y) � (x � z)) � (z � y) = (x � y) � (x � z). Now

(x � y) � (x � z) = 0() x � y � x � z

() �(x; y) � �(x; z)x

() �(x; y) � �(x; z)

It follows that if we take the function �(x; u) as a non-increasing function for 0 � u � x,

then the axiom (IV) holds.

Let y < z � x. Since we already take the function �(x; y) to be a non-increasing function,

�(x; z) � �(x; y) and thus x � z � x � y. Hence

(x � y) � (x � z) = �(x � y; x � z)(x � y)

= �(x � y; x � z)�(x; y)x;

since x � y = �(x; y)x � 0. It follows that:

(IV )() (x � y) � (x � z) � z � y

() �(x � y; x � z)�(x; y)x � �(z; y)z

()
�(x � y; x � z)�(x; y)

�(z; y)
�

z

x
� � � (f)

Let y < x < z. Then ((x � y) � (x � z)) � (z � y) = (x � y) � (z � y). It follows that:

(IV )() (x � y) � (z � y) = 0

() x � y � z � y

() �(x; y)x � �(z; y)z

()
x

z
�

�(z; y)

�(x; y)
� � � (g)

We summarize:

Theorem 3.14. If we de�ne x�y := maxf0; �(x; y)xg onX , where �(x; y) is a non-negative

real valued function on X � X , and �(x; u) is a non-increasing function for 0 � u � x

satisfying the conditions (a) � (g), then (X ; �; 0) is a BCK-algebra.

Example 3.15. If we de�ne a binary operation \�" on X by x � y := maxf0; �(x; y)xg,

where �(x; y) = x�y

x
if x > y, and �(x; y) = 0 otherwise, then (X ; �; 0) is a BCK-algebra.

Obviously this is only a simplest example where others may be constructed.
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