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ABSTRACT. Let R, a™'] be an extension of a Noetherian integral domain R where
« is an element of an algebraic field extension over the quotient field of R. In the case
« is an anti-integral element over R we will give a condition for a prime ideal p of R
to be pR[a, a™'] = R[a, a™']. By making use of this we will proceed mainly with the

study of flatness and faithful flatness of the extension R[o, a™']/R. Let i, ---, na
be the coefficients of the minimal polynomial of a over the quotient field of R. Then
we will also investigate the extension R[ni, ---, na]/R.

§1. Laurent extensions and ideals Jy,, ;-

Let R be a Noetherian integral domain with the quotient field K. Let a be an element
which is algebraic over K and set d = [K () : K]. We denote the minimal polynomial of «
over K by

Pa(X) = X4+ m X+ g,
m, =+, ndEK

Set I, = R:g mifor1 <i <dand I = N, I,,. We call I1,) the generalized denominator
ideal of a. Furthermore we will set

o, 0 = I) (01, -+, Ma)
where (11, ---, nq)is a fractional ideal of R generated by the elements 1y, ---, 94—1, 74 and
Jiag, i = L (L, M1y w005 Mim1, Migr, o005 Ma)

for 1 < i < d. Sometimes we will use the notation j[:] instead of Jig), 4o Set Jjo) =
I[a] + J[oz], 0= I[oz](]-> My M2, -0y nd)

We call Rla, a~!] the Laurent extension of a over R.

Let R[X] be a polynomial ring over R in an indeterminate X and 7 : R[X] — R[q] the
R—algebra homomorphism defined by 7(X) = a. We say that « is an anti-integral element
over R of degree d if Ker(m) = Ij4)¢a(X)R[X]. Set

Lya)={p€Spec(R) | p+Jo =R}
and

V(Jia)) = {p € Spec(R) | pD Jio }-
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Our notation is standard and our general reference for unexplained technical terms is
H.Matsumura: [2].
We will list the following results for later use.

Lemma 1.1 (M. Kanemitsu and K. Yoshida [1, Theorem 7 (2)]). Assume that o is an
anti-integral element over R of degree d. Then

{ p € Spec(R) | pRla] = Rla] } = V(Jja)) N Ty,

An element 7y in R[«] is said to be an ezcellent element if there exist elements cg, ¢1, -, ¢ €
R such that

y=co+cra+--+c,a™ and (co, ¢1, -+, ¢n)R=R.

Lemma 1.2 (J. Sato, S. Oda and K. Yoshida [5, Corollary 5]). Assume that o is an
anti-integral element over R of degree d. Then the following statements are equivalent.

(i) R[a]/R is a flat extension.

(ii) Rla, o ]/R is a flat extension.

(iii) o € rad(Jj R[a]).

(iV) J[a] =R.

(iv) Every excellent element belongs to rad(Jj.R[a]).

Our key result is the following.

Theorem 1.3. Let R be a Noetherian integral domain and o an anti-integral element
over R of degree d > 2. For a prime ideal p of R the following are equivalent to each other.

(i) pRla, a~'] = R[a, a™1].

(ii) p+ Jja) = R and there exists an integer i (1 < i < d) such that p D Ja, -

Proof. Set A = Rla, a™1].

(i) = (ii). First we will prove that p+.Jj,) = R. The condition pA = A implies that « is
in rad(pR[a]). Then there exists a natural number n such that a™ = ap+ a1+ - -+ ana™
and ag, a1, -+, G, € p for some m. Let

fX)=X"—(ap+ a1 X + -+ anX™).

Then f(X) is in Ker(w). This shows that there exist elements by, ---, bg € Jio and
9(X) € R[X] satisfying

f(X) = (bo+b1X + -+ +bsX")g(X).

Hence 1 is in p + Jj,), and so p + Jiq) = R.

Secondly we will show that there exists an integer i (1 <i < d) with p D Ji,), ;. Suppose
that p 2 Jja), i for every i with 1 <i < d. We will prove that pR[a] # R[a]. If pR[a] = R[a],
then by Lemma 1.1, we get p D j[\;] = Jlqa), a- This is a contradiction.

We know that

ad +matt 4. 4n,=0.
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We will prove that there exists an element ¢ of I[,) such that cn; and cn; are not in p for
some i # j (1 <4, j <d). Note that Jio), 1 = Ijo)(1, 12, --+, na). Since Jio, ; ¢ p, there
exists an integer i (2 < ¢ < d) such that a € I, and an; € p. If we can take an integer
Jj (j #iand 1 < j <d) satisfying an; € p, then the assertion is proved. So we may assume
that

a(m, -+, i1, Nit1, -+, Na) C P

Furthermore, there exsits an integer j (j # 4 and 1 < j < d) such that b € I[o) and bn; & p.
Similarly as above we may assume that

b(mi, ==y Mie1s Mit1, === Nd) C D.

Set ¢ =a+b. Then cn; & p and cn; € p.

From the argument above we see that there are at least two non-zero terms in cg, (@)
modulo pRyla]. Since JjoR, = R, the ideal I, R, is invertible, so IR, is principal.
Hence we may assume that cis a generator of Ij,). Let 7 be the R—algebra homomorphosm
of R,[X] into R,[a] defined by ' (X) = a. Then Ker(r') = Ijajda(X)Rp[X] = (cga(X)).
Hence Rpla] = R,[X]/(cpo(X)). On the other hand

Rpla]/pRy[a] = k(p)[a] = k(p)[X]/(cda(x))

where k(p) is the residue field of p. Let @ be the prime ideal of R,[a] which corresponds
to the irreducible factor of cg,(X) different from X. Then @ does not contain a and
Q@ D pRyla]. Set P = QN R[a]. Then P D pR[a] and P ¥ «. This is absurd from the fact
P D rad(pR[a]) 3 a.

(i) = (i). Assume that pA # A. Then there exists a prime ideal P of A such that
P D pA. By the condition p + Jj4) = R, there exists elements b of p and ¢ of Jy, such
that b+ c = 1. Since cis in Jiq) = Jio1(1, m, ---, 14), We can write

c=co+cim +--+cang and ¢, c1, -+, cd € I[o-

By the condition (ii), there exists an integer i (1 < i < d) such that p D Ji,), ;. Multiplying
the equality

al +mat=t+ . +ny=0.
by c;, we have
cia® +ema?™t + - 4 ey = 0.
We know that c¢;, cimi, ---, cina other than ¢;n; are in Ji,), ;, and so in P. Hence cimiad?

is in P. Then in the equation

ca®™" = cpa® +eimatT 4 o+ g

Co, C1M1, -*-, cana other than ¢;n; are in Jyy) 4, and so in P. Therefore ca® % is in P.
Using ¢ = 1 — b, we get a’* € P. If p D Jia), ¢ = Jja], then by Lemma 1.1, we know
pR[a] = R|a]. This claims that pA = A. This is absurd. Hence i # d. This shows that «

is in P. This contardicts to the fact a is a unit of A.

Remark 1.4. (1) By Theorem 1.3, we obtain:
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{ p € Spec(R) | pRla, a™'] =R, a™'] } = (UL, V(Jja), i) N Ty
If Jja) = R, then we have
{p €Spec(R) | pRla, a™']=Rla, a™'] } = UL, V(Jay, ).

It is a closed set.
(2) In the case d = 1, we have the following Theorem 1.3

Theorem 1.3'. Let R be a Noetherian integral domain and o an anti-integral element
over R of degree 1. For a prime ideal p of R, the following are equivalent to each other:

(i) pRlo, o] = Rla, a1,

(ii) p+ Jia) = R and there exists an integer i (i =0, 1) such that p D Jjq, ;-

Proof. We will prove that p D Ji,, ; for some i (i = 0, 1) in the proof (i) =
(ii) because the rest of the proof is the same argument as in Theorem 1.3. Assume that
P 2 Ijqym N ;o). Then there exists an element c of Ij,) such that cm € p and ey € Iy
The fact c¢m € Ijo) implies ¢ni € R. Since ¢ cnf = (em1)? is not in p, we see that ¢ is not
in p. Hence o = —cmy /e is in R,. Furthermore, a~! = —c/em is in R, because cny & p.
Therefore R, D Rla, a~!] = A. Thus pR, D pA = A. This is a contradiction. 0

(3) For another characterization of pR[a, a™'] = R[a, a~!] in the case d = 1, see [1,
p. 55, Remark].

(4) From now on we will assume d > 2.

Proposition 1.5. Let R be a Noetherian integral domain and o an anti-integral element
over R of degree d. Let A = R[a, a~!'] and ¢ the contraction mapping of Spec(A) into
Spec(R). Then the following are equivalent.

(i) The contraction mapping ¢ is surjective.

(ii) For every i with 1 <i < d, the equality rad(Jio)) = rad(J}a), ;) holds.

Proof. (i) = (ii). Suppose that there exists an integer ¢ (1 < i < d) such that
rad(Jjq)) # rad(Jia, ;). By the definitions of Ji4) and Jiq), i, we have Jio, ; C Jiq). Hence
rad(Jqy, ) ;rad(J[a]). Then there exists a prime ideal p of R such that Ji, ; C p and

Jia) € p. This implies that pR, D J,), iR, and pR, + JioyR, = R,. Applying Theorem
1.3 to A, = Rpla, a™'], we obtain pA, = A,. This shows that p ¢ Im(¢). This is a
contradiction.

(i) = (i). We have only to prove that pA, # A, for arbitrary prime ideal p of R.
Assume that pA, = A,. Then Theorem 1.3 asserts that pR, + J, R, = R,. Hence
JiqR, = R,. Besides, there exists an integer i (1 < i < d) such that pR, D Jj,, ;R, by
Theorem 1.3. Hence we see that rad(JjR,) grad(J[a], iRy), hence rad(Jjy)) irad(J[a]’ i)-

This is absurd.

Corollary 1.6. Let R be a Noetherian integral domain and o an anti-integral element
over R of degree d. Set A = Rla, a~']. Then A/R is a faithfully flat extension if and only
of Jia), i = R for every i (1 <i < d).

Proof. Let ¢ the contraction mapping of Spec(A) into Spec(R).



THE LAURENT EXTENSION OF A NOETHERIAN INTEGRAL DOMAIN 153

(=>). Since A/R is faithfully flat, the homomorphism ¢ is surjective by H. Matsumura
[2, (4D) Theorem 3]. Then Proposition 1.5 implies that rad(Jj4)) = rad(.Jy, ;) for every
integer ¢ (1 <4 < d). Furthermore, by Lemma 1.2, .Jj,j = R because A/R is a flat extension.
Hence Jjo), ; = R for every i (1 <i < d).

(=). It is easily verified that Jj4) = R because Jiq) D Jiq, i» Then A/R is a flat exten-
sion by Lemma 1.2. Moreover, we know that rad(Jjq)) = R = rad(J}4), ;). By Proposition
1.5, the contraction mapping ¢ is surjective. Hence A/R is a faithfully flat extension by H.
Matsumura [2, (4D) Theorem 3].

The following holds about R[a].

Theorem 1.7. Let R be a Noetherian integral domain and a an anti-integral element
over R of degree d. Set B = R[a]. Then the following are equivalent.

(i) Jiu = R.
(ii) JiB = B.
(i) Jiq)B = B.

Proof. (i) = (ii) is obvious.

(ii) = (i). Since JijB = B, we know that « is in rad(Jj4)B) by Lemma 1.2, we have
Jio) = R.

(iii) = (ii) is clear from the fact Jj4) D /JI;]

(ii) = (iii). Let p be a prime divisor of j[:] By (ii) = (i), we get Jjo) = R. Therefore
Lemma 1.1 implies that pB = B. Hence rad(:IE;]B) = B, and so :IE;]B =B. O

An analogous result to Theorem 1.7 holds in the case R[a, a™!].

Theorem 1.8. Let R be a Noetherian integral domain and o an anti-integral element
over R of degree d. Set A = Rla, a~!]. Then the following are equivalent.

(i) Jia) = R, i.e., the extension A/R is a flat extension.

(ii) JqA = A.

(iii) JrugA = A.

Proof. (i) = (ii) is immediate.

(ii) = (i). We will prove that A/R is a flat extension. Let P be a prime ideal of A and
set p= PN R. Then p 2 Ji, because Ji,jA = A. Hence Ji R, = R,. By Lemma 1.2 we
see that 4, = Rp[a,a™']/R, is a flat extension. Moreover, Ap/A, is also a flat extension.
Therefore Ap/R, is a flat extension. So is A/R.

(iii) = (ii) is clear from :f?;] C Jia

(ii) = (iii). Let p be a prime divisor of Ji. Then Jio) = R by (ii) = (i). Hence

Lemma 1.1 shows that aR[a] = R[a]. This means that pA = A. Therefore rad(J4))A4 = 4,
and so JA[;]A =A O

Remark 1.9. ﬁ;] = R does not hold necessarily even if Jj,) = R.

Corollary 1.10. Let R be a Noetherian integral domain and a an anti-integral element
over R of degree d. Set A = R[a,a 1]. Then the following are equivalent to the conditions
in Theorem 1.8.

(iv) There exists an integer i (1 <i < d) such that Jio), ;A = A.
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(v) i, iA = A for every i (1 <i <d).

Proof. (iv) = (ii) is clear from Ji, ; C Jiq-

(iii) = (iv) is immediate from !/IE;] = Ja], a-

(v) = (iv) is obvious.

(i) = (v). Let p be a prime divisor of Ji,), ;- By the condition (i) we know that
Jia) = R. Hence by Lemma 1.1, we get pR[a] = R[a]. Hence pA = A. This implies that
Ja), iA=A O

§ 2. Shifting a generator by an element of A.

We denote by U(A) the unit group of A. We will find a condition for A to coincide with
Rlaa, (ac) .

Lemma 2.1. Let R be a Noetherian integral domain with the quotient field K. Let o
be an element of an algebraic field extension over K and set A = Rla, a~t]. If a is an
element of A and A = Rlaa, aa™!], then a is in U(A).

Proof. Since a= ' = a(a) ! is in A, we know that a is in U(A). o

Proposition 2.2. Let R be a Noetherian domain and o an anti-integral element over
R of degree d. Set A = Rlo, a™']. If grade(Jja), ;) > 1 for every i (1 < i < d), then
U(4A)N R =U(R).

Proof. It is clear that U(A) N R D U(R). Assume that
UA)NR 2 U(R).

Then there exists an element a of U(A4) N R such that a € U(R). Since a is in U(A4), we
have aA = A. Hence there exists a prime divisor p of rad(aR) such that pA = A. Then
by Theorem 1.3, we see that p D Ji,, ; for some ¢ with 1 <4 < d. By K.Yoshida [6,
Proposition 1.10], we obtain depth(R,) = 1 because p is a prime divisor of rad(aR). On
the other hand grade(Jjy, ;) > 1 and p D Ji4, ;- This shows that depth(R,) > 1, and we
reach a contradiction.

Theorem 2.3. Let R be a Noetherian domain and « an anti-integral element over R of
degree d. Let a be an element of R. Set A = R[a, o] and assume that grade (Jia), ; ) > 1
for every i with 1 <i < d. Then A = Rlaa, (aa™ )] if and only if a is in U(R).

Proof. (=) Lemma 2.1 implies that @ is in U(A). Hence a is in U(A) N R. By
Proposition 2.2, we know that U(A) N R = U(R). Therefore a is in U(R).
(<=) Since a is in U(R), we see that (aa)~! is in A. Hence

Rlac, (aa™1)] C A.

Note that a = (aa)a™ and a=! = (aa)"'a. Then we get A C Rlaa, (aa~')]. Therefore
A = Rlaa, (aa™)].
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§3. Generalized denominator ideals.

We will consider the ring R[n1, - -+, n4]- We can refer to S.Oda and K.Yoshida [3, Corol-
lary 15.2] and S.Oda and K.Yoshida [4, Corollary 1.2] for the condition I R[a] = R[a] and
the ring R[n1,---,nq]. In this section we will study the ring R[n,---,n4] in the case the
condition I, R[e,a '] = R[a, a™'] holds.

Lemma 3.1. SetC = R[n1,---,na]. If Ijo)Rla, «™'] = Rla, o™ '], then C C R[a, a™'].

Proof. By definition of Iy}, it is easily seen that ny,---,nq are in I[;]I We know that
I} C i Rle, oY = I g Rla, o~'] C Rla, a7,

Hence C C Rla, a™'].

Proposition 3.2. Let R be a Noetherian integral domain and o an anti-integral element
over R of degree d. If I, R|a, a~ !l = Rla, a™!], then Jia) = R and R[a, a~'/R is a flat
extension.

Proof. We will show that R[a, a™']/R is a flat extension. Let P be a prime ideal of
Rla, a~'] and set p = P N R. By the condition I;oR[e, a '] = R[a, a™'], we know that
Ito) & p. So Jjo) € p because I, C Ji)- Hence Jo R, = R,. Then Lemma 1.2 shows that
Ry[a, a7']/R, is a flat extension. Hence R[o, a~']/R is also a flat extension. By Lemma
1.2, we get J[a] = R. 0

The following is an analogous result to S. Oda and K. Yoshida [3, Theorem 11].

Theorem 3.3. Let R be a Noetherian integral domain and o an anti-integral element
over R of degree d. Set C = Ry, ---, na). If IlyRla, o '] = Rla, a '], then the
following conditions hold.

(1) C C R[e, a71].

(2) I[C = C.

(3) C/R is a birational and flat extension.

Proof. We have already proved (1) in Lemma 3.1.

(2) Proposition 3.2 says that Jj,) = R.

Moreover, Jjo) = o) (1,71, +,14). Then we get I;,;C = C.

(3) It is clear that C/R is a birational extension. Let p be a prime ideal p of R. Then
we will show that pC' = C or C C R,. From this fact it is easily seen that C'/R is a flat
extension. If p D I[,), then Ij,)C = C means that pC' = C. If p 2 I, then ny, ---, nq are
in R, because o = N, I,. Hence C' C R,.

Theorem 3.4. Let R be a Noetherian integral domain and o an anti-integral element
over R of degree d. Assume that Jio) = R. Then the following two statements hold.

(1) IiR[a] = Rla] if and only if rad(Ijo)) = rad(J}a], 4)-

(2) IiqRle, @' = Rle, '] if and only if rad(Ij,)) = rad( N, Jia), 5)-

Proof. (1) (=) It is immediate from rad(/jo)) C rad(Ja), ¢) that o) C Jiop,a- Let p
be a prime divisor of Ij,. Then we have pR[a] = R[a] because I R[a] = R[a]. By Lemma
1.1, we get p D Jq), ¢, hence p D rad(Jp), 4). Therefore rad(Jjy, ) C rad(ljy)), and so
rad(I[a]) = (‘][0‘]7 d)-

(=) Let p be a prime divisor of I|,). Then
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p> rad(I[a]) = rad(J[a], 4) D J[a]’ d-

Hence by Lemma 1.1, we obtain pR[a] = R[a]. Therefore rad(Ijo)) R[a] = R[a]. This means
that IjR[a] = R[a].

(2) Since Jio) = R, by Lemma 1.3, the following holds.

pRla, a~ '] = R[a, a~1] if and only if there exists an integer i (1 < i < d) such that
P D Jqy, i

Note that p D N{,Jja), ; if and only if there exists an integer i (1 < i < d) satisfying
P D Jiq), ;- By making use of these facts we can prove the assertion (2) in a similar way to
the proof of (1).

Remark 3.5. In the case d = 1, Proposition 1.5, Corollary 1.6, 1.10, Proposition 2.2
and Theorem 2.3 hold by rewriting i = 0,1 instead of i = 1,---,d. Theorem 3.4 (2) does
not hold even if we rewrite i = 0,1 because I[o] Z I[a)71-
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