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Abstract. Let R[�; ��1] be an extension of a Noetherian integral domain R where

� is an element of an algebraic �eld extension over the quotient �eld of R. In the case

� is an anti-integral element over R we will give a condition for a prime ideal p of R

to be pR[�; ��1] = R[�; ��1]. By making use of this we will proceed mainly with the

study of 
atness and faithful 
atness of the extension R[�; ��1]=R. Let �1; � � � ; �d
be the coeÆcients of the minimal polynomial of � over the quotient �eld of R. Then

we will also investigate the extension R[�1; � � � ; �d]=R.

x1. Laurent extensions and ideals J[�]; i.

Let R be a Noetherian integral domain with the quotient �eld K. Let � be an element

which is algebraic over K and set d = [K(�) : K]. We denote the minimal polynomial of �

over K by

��(X) = Xd + �1X
d�1 + � � �+ �d;

�1; � � � ; �d 2 K.

Set I�i = R :R �i for 1 � i � d and I[�] = \d
i=1I�i . We call I[�] the generalized denominator

ideal of �. Furthermore we will set

J[�]; 0 = I[�](�1; � � � ; �d)

where (�1; � � � ; �d) is a fractional ideal ofR generated by the elements �1; � � � ; �d�1; �d and

J[�]; i = I[�](1; �1; � � � ; �i�1; �i+1; � � � ; �d)

for 1 � i � d: Sometimes we will use the notation gJ[�] instead of J[�]; d. Set J[�] =

I[�] + J[�]; 0 = I[�](1; �1; �2; � � � ; �d).

We call R[�; ��1] the Laurent extension of � over R.

Let R[X ] be a polynomial ring over R in an indeterminate X and � : R[X ] �! R[�] the

R�algebra homomorphism de�ned by �(X) = �. We say that � is an anti-integral element

over R of degree d if Ker(�) = I[�]��(X)R[X ]. Set

�J[�] = f p 2 Spec(R) j p+ J[�] = R g

and

V(gJ[�]) = f p 2 Spec(R) j p �gJ[�] g.
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Our notation is standard and our general reference for unexplained technical terms is

H.Matsumura: [2].

We will list the following results for later use.

Lemma 1.1 (M. Kanemitsu and K. Yoshida [1, Theorem 7 (2)]). Assume that � is an

anti-integral element over R of degree d. Then

f p 2 Spec(R) j pR[�] = R[�] g = V(gJ[�]) \ �J[�]
.

An element 
 inR[�] is said to be an excellent element if there exist elements c0; c1; � � � ; cn 2
R such that


 = c0 + c1�+ � � �+ cn�
n and (c0; c1; � � � ; cn)R = R.

Lemma 1.2 (J. Sato, S. Oda and K. Yoshida [5, Corollary 5]). Assume that � is an

anti-integral element over R of degree d. Then the following statements are equivalent.

(i) R[�]=R is a 
at extension.

(ii) R[�; ��1]=R is a 
at extension.

(iii) � 2 rad(J[�]R[�]).

(iv) J[�] = R.

(iv) Every excellent element belongs to rad(J[�]R[�]).

Our key result is the following.

Theorem 1.3. Let R be a Noetherian integral domain and � an anti-integral element

over R of degree d � 2. For a prime ideal p of R the following are equivalent to each other.

(i) pR[�; ��1] = R[�; ��1].

(ii) p+ J[�] = R and there exists an integer i (1 � i � d) such that p � J[�]; i.

Proof. Set A = R[�; ��1].

(i) =) (ii). First we will prove that p+J[�] = R. The condition pA = A implies that � is

in rad(pR[�]). Then there exists a natural number n such that �n = a0+a1�+ � � �+am�
m

and a0; a1; � � � ; am 2 p for some m. Let

f(X) = Xn � (a0 + a1X + � � �+ amX
m).

Then f(X) is in Ker(�). This shows that there exist elements b0; � � � ; bd 2 J[�] and

g(X) 2 R[X ] satisfying

f(X) = (b0 + b1X + � � �+ bdX
d)g(X).

Hence 1 is in p+ J[�], and so p+ J[�] = R.

Secondly we will show that there exists an integer i (1 � i � d) with p � J[�]; i. Suppose

that p 6� J[�]; i for every i with 1 � i � d. We will prove that pR[�] 6= R[�]. If pR[�] = R[�],

then by Lemma 1.1, we get p �gJ[�] = J[�]; d. This is a contradiction.

We know that

�d + �1�
d�1 + � � �+ �d = 0:
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We will prove that there exists an element c of I[�] such that c�i and c�j are not in p for

some i 6= j (1 � i; j � d): Note that J[�]; 1 = I[�](1; �2; � � � ; �d). Since J[�]; i 6� p, there

exists an integer i (2 � i � d) such that a 2 I[�] and a�i 62 p. If we can take an integer

j (j 6= i and 1 � j � d) satisfying a�j 62 p, then the assertion is proved. So we may assume

that

a(�1; � � � ; �i�1; �i+1; � � � ; �d) � p.

Furthermore, there exsits an integer j (j 6= i and 1 � j � d) such that b 2 I[�] and b�j 62 p.

Similarly as above we may assume that

b(�1; � � � ; �i�1; �i+1; � � � ; �d) � p.

Set c = a+ b. Then c�i 62 p and c�j 62 p.

From the argument above we see that there are at least two non-zero terms in c��(�)

modulo pRp[�]. Since J[�]Rp = Rp, the ideal I[�]Rp is invertible, so I[�]Rp is principal.

Hence we may assume that c is a generator of I[�]. Let �
0

be the R�algebra homomorphosm

of Rp[X ] into Rp[�] de�ned by �
0

(X) = �. Then Ker(�
0

) = I[�]��(X)Rp[X ] = (c��(X)).

Hence Rp[�] �= Rp[X ]=(c��(X)). On the other hand

Rp[�]=pRp[�] �= k(p)[�] �= k(p)[X ]=(c��(X))

where k(p) is the residue �eld of p. Let Q be the prime ideal of Rp[�] which corresponds

to the irreducible factor of c��(X) di�erent from X. Then Q does not contain � and

Q � pRp[�]. Set P = Q \ R[�]. Then P � pR[�] and P 63 �. This is absurd from the fact

P � rad(pR[�]) 3 �.

(ii) =) (i). Assume that pA 6= A. Then there exists a prime ideal P of A such that

P � pA. By the condition p+ J[�] = R, there exists elements b of p and c of J[�] such

that b+ c = 1. Since c is in J[�] = J[�](1; �1; � � � ; �d), we can write

c = c0 + c1�1 + � � �+ cd�d and c0; c1; � � � ; cd 2 I[�].

By the condition (ii), there exists an integer i (1 � i � d) such that p � J[�]; i. Multiplying

the equality

�d + �1�
d�1 + � � �+ �d = 0:

by ci, we have

ci�
d + ci�1�

d�1 + � � �+ ci�d = 0:

We know that ci; ci�1; � � � ; ci�d other than ci�i are in J[�]; i, and so in P . Hence ci�i�
d�i

is in P . Then in the equation

c�d�i = c0�
d�i + c1�1�

d�i + � � �+ cd�d�
d�i;

c0; c1�1; � � � ; cd�d other than ci�i are in J[�]; i, and so in P . Therefore c�d�i is in P .

Using c = 1 � b, we get �d�i 2 P . If p � J[�]; d = eJ[�], then by Lemma 1.1, we know

pR[�] = R[�]. This claims that pA = A. This is absurd. Hence i 6= d. This shows that �

is in P . This contardicts to the fact � is a unit of A.

Remark 1.4. (1) By Theorem 1.3, we obtain:
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f p 2 Spec(R) j pR[�; ��1] = R[�; ��1] g = ([d
i=1V(J[�]; i)) \ �J[�]

.

If J[�] = R, then we have

f p 2 Spec(R) j pR[�; ��1] = R[�; ��1] g = [d
i=1V(J[�]; i).

It is a closed set.

(2) In the case d = 1, we have the following Theorem 1:3
0

.

Theorem 1:3
0

. Let R be a Noetherian integral domain and � an anti-integral element

over R of degree 1. For a prime ideal p of R, the following are equivalent to each other:

(i) pR[�; ��1] = R[�; ��1],

(ii) p+ J[�] = R and there exists an integer i (i = 0; 1) such that p � J[�]; i.

Proof. We will prove that p � J[�]; i for some i (i = 0; 1) in the proof (i) =)
(ii) because the rest of the proof is the same argument as in Theorem 1.3. Assume that

p 6� I[�]�1 \ I[�]. Then there exists an element c of I[�] such that c�1 62 p and c�1 2 I[�].

The fact c�1 2 I[�] implies c�21 2 R. Since c � c�21 = (c�1)
2 is not in p, we see that c is not

in p. Hence � = �c�1=c is in Rp. Furthermore, ��1 = �c=c�1 is in Rp because c�1 62 p.

Therefore Rp � R[�; ��1] = A. Thus pRp � pA = A. This is a contradiction.

(3) For another characterization of pR[�; ��1] = R[�; ��1] in the case d = 1, see [1,

p. 55, Remark].

(4) From now on we will assume d � 2.

Proposition 1.5. Let R be a Noetherian integral domain and � an anti-integral element

over R of degree d. Let A = R[�; ��1] and � the contraction mapping of Spec(A) into

Spec(R). Then the following are equivalent.

(i) The contraction mapping � is surjective.

(ii) For every i with 1 � i � d, the equality rad(J[�]) = rad(J[�]; i) holds.

Proof. (i) =) (ii). Suppose that there exists an integer i (1 � i � d) such that

rad(J[�]) 6= rad(J[�]; i). By the de�nitions of J[�] and J[�]; i, we have J[�]; i � J[�]. Hence

rad(J[�]; i)�
6=
rad(J[�]). Then there exists a prime ideal p of R such that J[�]; i � p and

J[�] 6� p. This implies that pRp � J[�]; iRp and pRp + J[�]Rp = Rp. Applying Theorem

1.3 to Ap = Rp[�; ��1], we obtain pAp = Ap. This shows that p 62 Im(�). This is a

contradiction.

(ii) =) (i). We have only to prove that pAp 6= Ap for arbitrary prime ideal p of R.

Assume that pAp = Ap. Then Theorem 1.3 asserts that pRp + J[�]Rp = Rp. Hence

J[�]Rp = Rp. Besides, there exists an integer i (1 � i � d) such that pRp � J[�]; iRp by

Theorem 1.3. Hence we see that rad(J[�]Rp)�
6=
rad(J[�]; iRp), hence rad(J[�])�

6=
rad(J[�]; i).

This is absurd.

Corollary 1.6. Let R be a Noetherian integral domain and � an anti-integral element

over R of degree d. Set A = R[�; ��1]. Then A=R is a faithfully 
at extension if and only

of J[�]; i = R for every i (1 � i � d).

Proof. Let � the contraction mapping of Spec(A) into Spec(R).
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(=)). Since A=R is faithfully 
at, the homomorphism � is surjective by H. Matsumura

[2, (4D) Theorem 3]. Then Proposition 1.5 implies that rad(J[�]) = rad(J[�]; i) for every

integer i (1 � i � d). Furthermore, by Lemma 1.2, J[�] = R because A=R is a 
at extension.

Hence J[�]; i = R for every i (1 � i � d).

((=). It is easily veri�ed that J[�] = R because J[�] � J[�]; i. Then A=R is a 
at exten-

sion by Lemma 1.2. Moreover, we know that rad(J[�]) = R = rad(J[�]; i). By Proposition

1.5, the contraction mapping � is surjective. Hence A=R is a faithfully 
at extension by H.

Matsumura [2, (4D) Theorem 3].

The following holds about R[�].

Theorem 1.7. Let R be a Noetherian integral domain and � an anti-integral element

over R of degree d. Set B = R[�]. Then the following are equivalent.

(i) J[�] = R.

(ii) J[�]B = B.

(iii) gJ[�]B = B.

Proof. (i) =) (ii) is obvious.

(ii) =) (i). Since J[�]B = B, we know that � is in rad(J[�]B) by Lemma 1.2, we have

J[�] = R.

(iii) =) (ii) is clear from the fact J[�] �gJ[�].

(ii) =) (iii). Let p be a prime divisor ofgJ[�]. By (ii) =) (i), we get J[�] = R. Therefore

Lemma 1.1 implies that pB = B. Hence rad(gJ[�]B) = B, and so gJ[�]B = B.

An analogous result to Theorem 1.7 holds in the case R[�; ��1].

Theorem 1.8. Let R be a Noetherian integral domain and � an anti-integral element

over R of degree d. Set A = R[�; ��1]. Then the following are equivalent.

(i) J[�] = R, i.e., the extension A=R is a 
at extension.

(ii) J[�]A = A.

(iii) gJ[�]A = A.

Proof. (i) =) (ii) is immediate.

(ii) =) (i). We will prove that A=R is a 
at extension. Let P be a prime ideal of A and

set p = P \ R. Then p 6� J[�] because J[�]A = A. Hence J[�]Rp = Rp. By Lemma 1.2 we

see that Ap = Rp[�; �
�1]=Rp is a 
at extension. Moreover, AP =Ap is also a 
at extension.

Therefore AP =Rp is a 
at extension. So is A=R.

(iii) =) (ii) is clear from gJ[�] � J[�].

(ii) =) (iii). Let p be a prime divisor of gJ[�]. Then J[�] = R by (ii) =) (i). Hence

Lemma 1.1 shows that �R[�] = R[�]. This means that pA = A. Therefore rad(gJ[�])A = A,

and sogJ[�]A = A.

Remark 1.9. gJ[�] = R does not hold necessarily even if J[�] = R.

Corollary 1.10. Let R be a Noetherian integral domain and � an anti-integral element

over R of degree d. Set A = R[�; ��1]. Then the following are equivalent to the conditions

in Theorem 1.8.

(iv) There exists an integer i (1 � i � d) such that J[�]; iA = A.
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(v) J[�]; iA = A for every i (1 � i � d).

Proof. (iv) =) (ii) is clear from J[�]; i � J[�].

(iii) =) (iv) is immediate fromgJ[�] = J[�]; d.

(v) =) (iv) is obvious.

(i) =) (v). Let p be a prime divisor of J[�]; i. By the condition (i) we know that

J[�] = R. Hence by Lemma 1.1, we get pR[�] = R[�]. Hence pA = A. This implies that

J[�]; iA = A.

x 2. Shifting a generator by an element of A.

We denote by U(A) the unit group of A. We will �nd a condition for A to coincide with

R[a�; (a�)�1].

Lemma 2.1. Let R be a Noetherian integral domain with the quotient �eld K. Let �

be an element of an algebraic �eld extension over K and set A = R[�; ��1]. If a is an

element of A and A = R[a�; a��1], then a is in U(A).

Proof. Since a�1 = �(a�)�1 is in A, we know that a is in U(A).

Proposition 2.2. Let R be a Noetherian domain and � an anti-integral element over

R of degree d. Set A = R[�; ��1]. If grade(J[�]; i) > 1 for every i (1 � i � d), then

U(A) \ R = U(R).

Proof. It is clear that U(A) \ R � U(R). Assume that

U(A) \ R�
6=
U(R).

Then there exists an element a of U(A) \ R such that a 62 U(R). Since a is in U(A), we

have aA = A. Hence there exists a prime divisor p of rad(aR) such that pA = A. Then

by Theorem 1.3, we see that p � J[�]; i for some i with 1 � i � d. By K.Yoshida [6,

Proposition 1.10], we obtain depth(Rp) = 1 because p is a prime divisor of rad(aR). On

the other hand grade(J[�]; i) > 1 and p � J[�]; i. This shows that depth(Rp) > 1, and we

reach a contradiction.

Theorem 2.3. Let R be a Noetherian domain and � an anti-integral element over R of

degree d. Let a be an element of R. Set A = R[�; ��1] and assume that grade (J[�]; i ) > 1

for every i with 1 � i � d. Then A = R[a�; (a��1)] if and only if a is in U(R).

Proof. (=)) Lemma 2.1 implies that a is in U(A). Hence a is in U(A) \ R. By

Proposition 2.2, we know that U(A) \ R = U(R). Therefore a is in U(R).

((=) Since a is in U(R), we see that (a�)�1 is in A. Hence

R[a�; (a��1)] � A.

Note that � = (a�)a�1 and ��1 = (a�)�1a. Then we get A � R[a�; (a��1)]. Therefore

A = R[a�; (a��1)].
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x3. Generalized denominator ideals.

We will consider the ring R[�1; � � � ; �d]. We can refer to S.Oda and K.Yoshida [3, Corol-

lary 15.2] and S.Oda and K.Yoshida [4, Corollary 1.2] for the condition I[�]R[�] = R[�] and

the ring R[�1; � � � ; �d]. In this section we will study the ring R[�1; � � � ; �d] in the case the

condition I[�]R[�; �
�1] = R[�; ��1] holds.

Lemma 3.1. Set C = R[�1; � � � ; �d]. If I[�]R[�; �
�1] = R[�; ��1], then C � R[�; ��1].

Proof. By de�nition of I[�], it is easily seen that �1; � � � ; �d are in I�1[�] . We know that

I�1[�] � I�1[�]R[�; �
�1] = I�1[�] I[�]R[�; �

�1] � R[�; ��1].

Hence C � R[�; ��1].

Proposition 3.2. Let R be a Noetherian integral domain and � an anti-integral element

over R of degree d. If I[�]R[�; �
�1] = R[�; ��1], then J[�] = R and R[�; ��1]=R is a 
at

extension.

Proof. We will show that R[�; ��1]=R is a 
at extension. Let P be a prime ideal of

R[�; ��1] and set p = P \ R. By the condition I[�]R[�; �
�1] = R[�; ��1], we know that

I[�] 6� p. So J[�] 6� p because I[�] � J[�]. Hence J[�]Rp = Rp. Then Lemma 1.2 shows that

Rp[�; �
�1]=Rp is a 
at extension. Hence R[�; ��1]=R is also a 
at extension. By Lemma

1.2, we get J[�] = R.

The following is an analogous result to S. Oda and K. Yoshida [3, Theorem 11].

Theorem 3.3. Let R be a Noetherian integral domain and � an anti-integral element

over R of degree d. Set C = R[�1; � � � ; �d]. If I[�]R[�; ��1] = R[�; ��1], then the

following conditions hold.

(1) C � R[�; ��1].

(2) I[�]C = C:

(3) C=R is a birational and 
at extension.

Proof. We have already proved (1) in Lemma 3.1.

(2) Proposition 3.2 says that J[�] = R.

Moreover, J[�] = I[�](1; �1; � � � ; �d). Then we get I[�]C = C.

(3) It is clear that C=R is a birational extension. Let p be a prime ideal p of R. Then

we will show that pC = C or C � Rp. From this fact it is easily seen that C=R is a 
at

extension. If p � I[�], then I[�]C = C means that pC = C. If p 6� I[�], then �1; � � � ; �d are

in Rp because I[�] = \d
i=1I�i . Hence C � Rp.

Theorem 3.4. Let R be a Noetherian integral domain and � an anti-integral element

over R of degree d. Assume that J[�] = R. Then the following two statements hold.

(1) I[�]R[�] = R[�] if and only if rad(I[�]) = rad(J[�]; d).

(2) I[�]R[�; �
�1] = R[�; ��1] if and only if rad(I[�]) = rad( \d

i=1 J[�]; i).

Proof. (1) (=)) It is immediate from rad(I[�]) � rad(J[�]; d) that I[�] � J[�];d. Let p

be a prime divisor of I[�]. Then we have pR[�] = R[�] because I[�]R[�] = R[�]. By Lemma

1.1, we get p � J[�]; d, hence p � rad(J[�]; d). Therefore rad(J[�]; d) � rad(I[�]), and so

rad(I[�]) = (J[�]; d).

((=) Let p be a prime divisor of I[�]. Then
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p � rad(I[�]) = rad(J[�]; d) � J[�]; d.

Hence by Lemma 1.1, we obtain pR[�] = R[�]. Therefore rad(I[�])R[�] = R[�]. This means

that I[�]R[�] = R[�].

(2) Since J[�] = R, by Lemma 1.3, the following holds.

pR[�; ��1] = R[�; ��1] if and only if there exists an integer i (1 � i � d) such that

p � J[�]; i.

Note that p � \d
i=1J[�]; i if and only if there exists an integer i (1 � i � d) satisfying

p � J[�]; i. By making use of these facts we can prove the assertion (2) in a similar way to

the proof of (1).

Remark 3.5. In the case d = 1, Proposition 1.5, Corollary 1.6, 1.10, Proposition 2.2

and Theorem 2.3 hold by rewriting i = 0; 1 instead of i = 1; � � � ; d. Theorem 3.4 (2) does

not hold even if we rewrite i = 0; 1 because I[�] 6� I[�]�1.
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