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SAMPLE SIZE

MACIEJ WILCZYNSKI*

Received May 31, 2000

ABSTRACT. Let Up be a random vector taking its values in a measurable space and
having an unknown distribution P. Let Uy,Us,... ,Uy and Vi, Va,...,V;, be indepen-
dent simple random samples from P of a random size N and a fixed size m, respec-
tively. Further, let 21, 22,... ,2; be real valued bounded functions defined on the same
space. Assuming that only the first sample is observed, we find a minimax predictor
d%(N,Uy,... ,Uy) of the vector Y™ = o1 (z1(V5), 22(Vj), ,2e(V;))T with respect
to a quadratic error loss function.

1. INTRODUCTION

Let Up be a random vector taking its values in a measurable space (Y, B) whose unknown
distribution P is assumed to be an element of the set

P = { all probability measures on (), B) }.

Let Uy,Us,... ,Un and Vi, V5,...,V,, be independent, simple random samples from P
of a random size N and a fixed size m, respectively. We assume that N is an ancillary
statistics, i.e. a random variable, which takes values in a set {0, 1,2, ...}, and whose known
distribution does not depend on P. Further, let z = (21,22,...,2;)7 be a measurable,
bounded function on the space (), B) with values in (R, Bgr). In the paper we consider
the problem of predicting the value of a k-dimensional random vector Y™ = 377" | 2(V;)

from the data UYN = (Uy,...,Uy). Assuming that the loss function has the form
(1) L(d,Y™) = (d—Y™)TC(d—Y™),

where C' = [¢;;] is nonnegative definite, symmetric &k x k matrix, we find a minimax solution
of the above problem of prediction. As we show, the minimax predictor d°(N,UN) of Y™
is an affine (inhomogeneous linear) function of the random vector X~ = Z;VZI z(U;).

Using this result we find, for each n > 1, the predictor d*(n, U™) which is minimax when
the value of Y™ is predicted from the sample Uy, Us,...,U, of a fixed size n. Then we
show that the decision rule d*(N,U™) is not minimax when the sample size N is random
and takes at least two different values with positive probabilities. This is an ancillarity
paradox, because d'(N,U") seems to be the best candidate for a minimax predictor of
Y™ when the sample size N is random.

The first example of such an ancillarity paradox was given by Brown [3]. He showed that
in the multiple linear regression the admissibility of the ordinary estimator of the constant

1991 Mathematics Subject Classification. 62C20; Secondary 62G05.

Key words and phrases. Minimax prediction, Dirichlet process, nonparametric prediction, ancillarity
paradox.

Research supported by the grant KBN 341459.

This paper is in final form and no version of it will be submitted for publication elsewhere.



140 MACIEJ WILCZYNSKI*

term depends on the distribution of the design matrix, which is an ancillary statistics. Next
example of this paradox was presented by Kun He [6] who considered estimation of the
multinomial probabilities p = (p1,p1,... ,pr)” with respect to the loss (1), in which C was
the identity matrix. He proved that the estimator of p, which is minimax when the sample
size is fixed, is neither minimax nor admissible when the sample size is random. Analogous
results were presented by Amrhein [1] who studied minimax estimation of the multivariate
hypergeometric proportion p; = M;/M,i =1,... ,r with respect to the same loss as in Kun
He.

In the last part of the paper we find minimax predictor of Y™ when the distribution of
the size IV of the observed sample is unknown.

2. MINIMAX ESTIMATE.

Before stating the main result we will introduce the following notation: We denote by
Z, p and R;(P) the random vector z(Up), its expected value and the sum of the variances
of its components weighted by the matrix C, i.e. we put

Z = 2z(Uo)

(2) p = EpZ,
Ri(P) = Ep(Z—p)" C(Z—p).
Now, let (P;) be any sequence of probability measures on (), B) such that
(3) lim R;(P;) = sup Ri(P)
j—oo PeP
and let (p;), where
(4) p; = Ep, Z,
be the corresponding sequence of points from the convex k—dimensional cube
M =[-M, M,

where

T

def
M? "= sup z(y)" 2(y).

yey
Because of the boundedness of z, the number M is finite and M is compact in R*. Therefore,
the sequence (p;) has a cluster point, which will be denoted throughout by pg.
Suppose now that the following condition is satisfied

— f(n)
5) mlf(0) - Y S <1,
n=1
where f(n), n > 0, denotes the probability that the random variable N takes the value
n. Then, by the same arguments as in Kun He [6], there exists a positive real number A,

which satisfies the following equation

X (n+ A)? +nm — mA? B
(6) ; A f(n) =0.

Since the above series is a decreasing function of the variable A > 0 this number is unique.
Moreover, A; < 0o <= m > 1.
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Now, let the number Ay be defined by

A, if mip) - Iy <,

() 4o = S
0, if m[f(o)—ZT] >1

Then the following theorem, which is the main result of the paper, holds.

Theorem 1. If m > 1, then

N

(®) oo™y = | IR i N

mpo, if N=0
is the minimax predictor of the unobservable vector Y™ and its minimazx risk equals

=4z f(
s ) = 500+ 32 G e )

If m =1, then
(9) d°(N,UN) = po

is the minimaz predictor of Y and

sup R(d°, P) = sup R;(P).
PeP PeP

3. PROOF OF THE MAIN RESULT

Let D stand for the class of all predictors d of the unobservable vector Y™. For a
predictor d = d(N,UN) € D we denote by R(d, P) the risk function for d, i.e. we put

R(d, P) = EpL(d,Y™) = Ep (d(N,UN) —=Y™)" C (d(N,UN) - Y™).

Since the vectors UYN and Y™ are independent and since 2(V}), ..., 2(V,,) areii.d. random
vectors with the expected values equal to p,

(10) EpY™ =Ep Y 2(V;) =mp
7j=1
and
R(d,P) = Ep(d —mp)'C(d — mp) + Ep(Y™ —mp)' C(Y™ — mp).
Moreover,

(1) Ep(Y™ —mp)'C(Y™ —mp) =mEp(Z —p)" C(Z —p) = mR:(P),
which implies that the risk for any predictor d(N,UN) € D can be rewritten as
(12) R(d, P) = Ep(d — mp)" C(d — mp) + mR, (P).
According to the definition of minimaxity, to prove that the predictor d°(N, U™Y) defined
in Theorem 1 is minimax it is necessary to show that

(13) sup R(d°, P) = inf sup R(d, P).
PeP deD pep
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To prove this result for m > 1 we use the method which is analogous to that proposed in
Wilczynski [7]. First we show that d® is minimax if the class of predictors is restricted to
a subset Dy C D which consists of all predictors d*, with a € M, of the form

XN+A00,
a 77 ) N b
(14) d*(N,UN)={ "N A4, if N>0
ma, if N=0.

Next we calculate the upper bound for the risk R(d°, P) of d® = dP° and then, via nonpara-
metric Bayes approach, we construct a sequence of priors on P for which the corresponding
sequence of Bayes risks converges to this upper bound. From this we deduce minimaxity of
d® when m > 1. Then, using a different approach, we prove minimaxity of d° for m = 1.

We begin the whole proof from the first case in which m > 1 and the condition (5) holds,
which implies that Ay € (0,00). For simplicity we denote the risk function of a predictor
d* € Dy by R(a,P). Since the number Ay satisfies the equation (6), we obtain, by (12)
and (14),

R(a,P) = mR,(P +m?ZnR1 +An(i;10)) ce=ny fn)
_ — [(n + A0)* + mn]R, (P )+mA2(a—p)TC(a—P)
- mnz::() (TL+A0) ( )
2 = _A3f(n)
(15) = m’[Ri(P)+ (a —p)TC(a — TLX% n+A0

= m?[Ry(P) + (a — p)TC(a — p)]

= A2f(n
0+ Z: (n +f1510))2

00 A2f
Z nf)l-Ao

= m? [EpZTCZ —2a"CEpZ + aTCal]

This results from the equalities (cf. (10) and (11))
EpX™ =np and Ep(X™ —np)'C(X™ —np)=nR,(P), n>1

and from the boundedness of the random vector Z, which implies that the function Ry (P)
can be rewritten as

Ri(P) = Ep(Z —p)" C(Z — p) = EpZTCZ — pTCp.

Obviously, to prove that the decision rule d®(N,UN), defined by (8), is minimax in Dy
it suffices to show that

sup R(po, P) = inf sup R(a, P).
Pep aEM pep

This can easily be deduced from the paper of Wilczyniski [7] in which it is proved, using
minmax Nikaido Theorem (cf. Aubin [2]), that the function R(a,P) ( multiplied by some
constant ) satisfies the following condition

16 sup R(pg,P)= inf sup R(a,P)= sup inf R(a,P).

(16) sup (Po, P) = inf sup (a, P) sup  inf, (a, P)

This implies that the predictor d°(N,U¥) is minimax in Dy and its minimax risk equals
o Af(n)

17 inf sup R(a,P 0)+ » —2 | sup Ry(P

(17) inf, s Rla,P)=m? | £(0)+ Y CEEEG | sup B (P)
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because, for a fixed distribution P € P, the convex function R(a, P) of the variable a
attains its global minimum over M at the point a(P) = p.

To show that d°(N,U™) is minimax in D we make use of the nonparametric Bayes
approach proposed in Ferguson [5]. The structure of the arguments will be analogous to
those appearing in Wilczyniski [7].

Let II;, j > 1, be a Dirichlet prior process on (Y, B) with a parameter 8; = Ao P;, where
(P;) is a sequence defined by (3). Note first that, by (12), the Bayes predictor of Y™ is
equal to the Bayes estimator of the parameter mp. Therefore, by Ferguson [5] example b,
the II; Bayes predictor of Y™ is given by

[AOEPJ.Z no 1g ] X™ + Aop,

. =—m—" = (dP; U
m[n+A0 +TL+A0n2;z(UJ)J m TL+A0 (n7 ))

whenever N = n > 0. This implies that dPi (N,UY) is the II; Bayes predictor of Y™.
Moreover, the Bayes risk p(j) for this decision rule is given by

+Zn—|—A0 Ry (P )

because, by (15), the risk R(p;, P) of the predictor dPi (N,U™N) equals

+Z A%f

p(j) & En,R(dPi, P) = En,R(p;, P) =

R(p;, P) = [EpZTCZ - 2p] CEpZ + p] Cpj]

and ( cf. Ferguson [5] Theorem 3 )
(18) EH]. [EPZTCZ] = E'P].ZTCZ and EH]. [E'PZ] = Ep].Z = Pj-

Since lim; o R1(P;) =suppep Ri(P), the Bayes risk p(j) converges to

+Z n+A0

which, by (17), is the upper bound for the risk of d°(N,U®). This implies that d°(N,U™Y)
is minimax ( see Ferguson [4], Theorem 2, p.91 ), when (5) holds and m > 1.

sup Iy (P)

Now we consider the second case in which m > 1 and the condition (5) is not satisfied.
Then Ay = 0 and, as it is easy to calculate, the risk function for the predictor d° is given
by

R(d®, P) = mBs(P) + m? | (o — )T C(po — p) f(0) + Ru(P) Y T
n=1
Since m[f(0) — i @] > 1, this risk satisfies the inequality
n=1

R(d°, P) < m*[(po — p)"C(po — p) + R:(P)]f(0),
which immediately implies that the upper bound for the risk of d° is given by

(19) sup R(d°, P) < m*f(0) sup R(P),
PeP PeP
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because, by (16) and (15),
sup [(po — p)TC(po — p) + Ri(P)] =
PeP

(20) = alenL sup [(a —p)TC(a — p) + Ri(P)]
= sup inf [(a —p)TC(a — p) + Ri(P)] = sup R(P).
pep a€M PeP

As before, to prove minimaxity of d® we construct a sequence of priors on P for which

the corresponding sequence of Bayes risk converges to this upper bound. From this we
deduce minimaxity of d®(N,Y ).
Let II;, j > 1, be a Dirichlet prior process on (), B) with a parameter a; = A;P;, where
(A;) is a sequence of positive real numbers, which converges to 0 and (P;) is a sequence of
probability measures on (), B) defined by (3) Then, as in the previous case, the II; Bayes
predictor of Y™ is given by

XN-{—Ajpj 3
mpyj, if N=0,

where p; is defined by (4). Furthermore, the risk function R(d?, P) equals, by (15),

. nRy(P)+ A¥(p; — p)TC(p; — p
R(d,P) = mR\(P 22 1 J((njrA.)g (p; —P)

To calculate the Bayes risk p(j) for thls dec1s1on rule we note that, by Theorem 4 of Ferguson

[5],

fn).

Ep,Z¥CZ + A;(Ep, Z)TC(Ep, Z)

E'H].pTCp = EH]. (EPZ)TC(EPZ) =
Aj +1
T T
_ E'P].Z CZ+Ajpj ij _ Rl(PJ) +pTij‘
A;j+1 A1 5
From this and (18) we conclude that
A
EH].Rl(P) = EH]. (EPZTCZ —pTCp) = A j_ 1R1(PJ),
j
and
T T T Rl(Pj)
En,(p; —p)" C(pj — p) = En,p" Cp—p; Cp; = 111
j
Therefore,
, A; — f(n)
= R !_R\(P;
and

lim p(j) =m?f(0) sup Ry(P),
peP

j—o0
because A; — 0 and Ry (P;) — suppep Ri(P). Since m?f(0) suppep Ri(P) is, by (19),
the upper bound for the risk of d°(N,UN), this implies that d°(N,U?) is minimax when
m > 1 and the condition (5) is not satisfied.
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Now we consider the last case in which m = 1 and thus the predictor d®(N,UN) is
defined by (9). Then, for any d € D, we obtain, by (12) and (20),

sup R(d,P) > msup R;(P) = sup Ry(P)
PEP PEP PEP

= sup [Ri(P) + (po — p)TC(po — p)] = sup R(d°, P),
pPeP PeP

which implies minimaxity of d°(N,U™Y) in that case. The proof of Theorem 1 is complete.

4. THE FAILURE OF THE MINIMAX PREDICTOR FOR A FIXED SAMPLE SIZE

Suppose now that we want to predict Y™, m > 1, from the sample Uy,Us,... ,U, of a
fixed size n. Then, from Theorem 1, the minimax predictor has the form
X"+ A(n)po

n+ A(n)
where the positive real number A(n) solves the equation (6) with f(n) = 1 and f(j) =
0, j #n,ie.

(22) A(n) =

(21) d'(n,U™) =m

n+/nm(n+m—1)
m—1 '
It seems that the predictor d*(N,U™) should be minimax when the sample size is
random. Obviously, if NV is not random and takes only one value, say n, then Ay = A(n)
and d'(N,U™N) has this optimal property. Otherwise, the following theorem holds:

Theorem 2. If an ancillary statistics N is not concentrated on one point, then d*(N,UN)
s mot minimaz.

Proof. Assume that d® is minimax, i.e. sup R(d', P) = sup R(d?, P), and, for fixed 0 <

PepP PeP
a < 1, consider the predictor d? = ad® + (1 — a)d!. Then, as it is easy to calculate,
R(d?,P) = aR(d° P)+ (1—a)R(d', P)—a(l —a)Ep(d* —d°)TC(d* — d°)

= aR(d° P)+ (1 -a)R(d*, P)
o (Ao — A(n))*[nR1(P) +n*(Po — P)"C(Po — p)]
— ol -«
(=2 (n-+ A@)?(n + 4o)? Jo-
Since the ancillary statistics IV is not concentrated on one point, the real number max,>1 (Ao—

A(n))? f(n) is greater than zero. Therefore, there must exist a sequence (P;) of probability
measures for which the following two conditions are satisfied

lim R(d° P;) = lim R(d', P;) = sup R(d°,P)
j—oo j—oo Pep

n=1

and
Jlim Ry (Pj) = lim (po = ;)" Clpo = pj) =0, with p; = Ep, 2.

Otherwise, minimaxity of d® and d* implies that

sup R(d?, P) < sup R(d°, P),
Pep PeP

which is impossible. However, such a sequence (P;) does not exist, because the risk function
R(d®, P) equals, by (15),

R(d®, P) =m? [Ri(P) + (po — P)TC(po — p)] | F(0) + > —2——%5 n+A0
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and the above two conditions immediately imply that
sup R(d° P) = lim R(d°, P;) =
PeP J—oo
o~ _Asf(n)

= lim m” [Ri(P}) + (po — p;)"C(po — pj)] +Z n+A0 =0,

j—o0
which is impossible. Therefore, d* can’t be minimax, which completes the proof of the
theorem. 0

5. THE MINIMAX PREDICTOR WHEN THE DISTRIBUTION OF N IS UNKNOWN.

We have derived minimax predictor of Y™ assuming that the distribution of the ancillary
statistics IV is known. Now we drop this assumption and prove the following theorem.

Theorem 3. Suppose that the distribution of the ancillary statistics N is unknown. Then,
form > 1,

xN
(23) a*(N,UN) = N N0

po if N=0

is the minimax predictor of the unobservable vector Y™ and its minimazx risk equals

sup R(d*, P) = m? sup R, (P).
PeP PeP

Proof. Obviously, the decision rule d* coincide with the minimax predictor of Y™ derived
under the assumptions that the distribution of N is known and the inequality (5) is not
satisfied. Therefore, from (19), the risk of d* is bounded from above by m? sup pcp Ri(P),
because f(0) < 1. Moreover, this upper bound is the minimax risk of d° when the ancillary
statistic N is concentrated on the point zero. Therefore, this bound must be attained by
any decision rule used to predict Y™ under the unknown distribution of V. This completes
the proof. O

6. EXAMPLES

As an application of the results obtained in the paper we consider the following three ex-
amples in which we assume that m > 1. In each of them the minimax predictor d°(N,U™Y)
is given by (8). The number Ay is defined by (7), if the distribution of the ancillary statistics
N is known, and is equal to zero otherwise. The form of the vector pg will be found below.

Example 1. Suppose that the set ) is centrosymmetric about 0 and that, for each y € ),
z(y) = —z(-y). Let (P;) be a sequence for which (3) holds and let P; denotes the
distribution of the random vector —Up, whenever Uy is distributed according to P;. Then
the sequence (P ), with P (1/2)(P; + P;"), satisfies (3), because
Ry( j) = EnZ'CZ - (Ep Z)TC(EP( Z)=Ep,ZTCZ -0
> Ep,ZTCZ - (Ep,Z)'C(Ep, Z) = R, (F)).

Therefore, we may assume that p; = Ep Z = 0, which implies that po = 0.
2

Example 2. Suppose that C = [¢;;] is a diagonal matrix and that there exist two sequences
{y,} and {,} of points from Y such that, for each 1 <i <k,

lim z(y;) = inf zi(y), lm z(7;) = sup zi(y).
j—>o0 yey j—o0 yeY
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Let the distribution P; of Uy, j > 1, be defined by:
P;j(Uy =75;) = P;(Uo =7;) = 0.5.
Then, as it is easy to verify, for each 1 < i < k,

sup[Ep(zi(UO))Z—(Epzi(Uo))z —  lim [Ep]. (zi(Ug))2—(Epjzi(U0))2]
PeP j—ro0
— lim |Zi@j)_2i@j)|2
j—00 4 )

This implies that (P;) is a sequence of distributions defined in (3), because C' is assumed
to be a diagonal matrix and thus

k
RBi(P) =Y ci | Ep (s(U0))° = (Epz(U0))’

Therefore, the coordinates of the point po = (po1,Po2, .- ,Por)’ are given by
2:(U.) + z:(y - inf,cy z;(y) + su 2
o = lim (¥;) +2:(;) _ infyeyzi(y) +supyey (y), l<i<k.
Example 3. Let {4;} | be a measurable partition of ), i.e. let Aj,..., A, be measur-

able, pairwise disjoint, subsets of ) whose union equals V. Furthermore, let z;(y) = 14, (y),
1 <i <k, be the indicator function of the set 4;. Then the random vectors Z = z(Up), X™
and Y™ have (1,p), (n,p) and (m, p) multinomial distributions in which the parameter p =

EpZ takesits values in a simplex S = {(31,32, oo Sk)  Ni<icr 56 >0 and s14+s2+ ..
Furthermore, as it is easy to calculate, R, (P) = ¢Tp — pTCp, where ¢ = (c11,¢22, - .. , crr) T
stands for the diagonal of the matrix C = [¢;;]. Therefore, the vector pg satisfies the equa-
tion

cTpo — pf Cpo = max [¢Tp—pTCp].
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