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Abstract. In this paper, we investigate several conditions pertaining to closed range

multipliers on topological algebras. We �rst obtain some general results which give

several equivalent conditions for a continuous linear operator T on a Fr�echet locally

convex space to have a closed range. In particular, when we assume T to be a multiplier

on a topological algebra without order, a number of other conditions also appear. For

instance, if T is a multiplier on a semiprime Fr�echet locally convex algebra A such that

T 2A = TA; then the range TA is closed. Finally, as a converse result, it is shown that

if A is a Fr�echet locally C�-algebra and T a multiplier on A; then TA is closed, if, and

only if, T 2A = TA:

1. Introduction

The class of multipliers with closed range, in the context of semisimple commutative

Banach algebras, has been studied by several authors (see e.g. [1], [6], [8], [13]). The

most signi�cant applications of such multipliers are to group algebras L1(G) and measure

algebras M(G): Host and Parreau [8,Th�eor�em 1] gave a complete description of closed

range multipliers on L1(G) and established that a multiplier T on L1(G) has closed range

if and only if there exists a factorization T = PB; where P is an idempotent and B an

invertible multiplier. This partially resolved a question raised by Glicksberg [6] whether

the factorization T = PB is necessary and suÆcient to ensure the closedness of TA for

any multiplier T on a semisimple Banach algebra A. Various equivalent conditions have

been determined in [1] and [13] under which a multiplier T has closed range. The aim

of this paper is to consider this problem for a more general situation in (non-normed)

topological algebras. We �rst establish that for an arbitrary continuous linear operator T

on a complete metrizable locally convex spaceX , the decompositionX = TX�KerT ensures

a factorization T = PB, where B is invertible, P is an idempotent, and P;B commute. We

also show that the decomposition X = TX �KerT implies that TX is necessarily closed,

and this happens if and only if there exists a commuting generalized inverse S of T . When

thses equivalent conditions are considered for multipliers on Fr�echet locally convex algebras,

a number of other conditions also appear. Moreover, it is proved (Corollary 3.4) that if A is

a semiprime Fr�echet locally convex algebra and T 2 M(A) such that T 2A = TA; then TA

is closed; also, in this case, T is injective if and only if it is surjective. Finally, as a converse

result, it is shown (Theorem 3.6) that if A is a Fr�echet locally C�-algebra and T 2 M(A);

then TA is closed, if, and only if, T 2A = TA:

The concepts are introduced as needed. We refer to [14] for the general theory of topo-

logical algebras (see also [4, 5, 9]); [9, 10] for multipliers on topological algebras; and [12]

for multipliers on Banach algebras.
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2. Closed Range Operators

Let X denote a complete metrizable locally convex space with a family fpngn2N of

seminorms, usually called a Fr�echet locally convex space, and let B(X) be the algebra of

all continuous linear operators of X into itself. For T 2 B(X); TX and KerT will denote

the range and kernel of T , respectively.

First we discuss the problem in somewhat greater generality and establish that for an

operator T 2 B(X); there exists a factorization T = PB if and only if the decomposition

X = TX � KerT holds, where P is an idempotent, B an invertible operator and P;B

commute. Moreover, when X decomposes in this way, TX is necessarily closed.

We begin with the following result which is essentially a consequence of the open mapping

theorem.

Theorem 2.1. Assume that TX \ KerT = f0g and that TX + KerT is closed, for any
T 2 B(X): Then TnX is closed for every n 2 N:

Proof. First we show that TX is closed with respect to the given Fr�echet topology. By

hypothesis, X0 = TX � KerT is closed, therefore it is a Fr�echet locally convex space.

Moreover, it is easy to verify that TX is a Fr�echet locally convex space when equipped with

the family fqngn2Nof seminorms given by

qn(y) = pn(y) + inf
x2X;y=Tx

Pn(x);

for every n 2 N: Further, since pn(y) � qn(y) for every y 2 TX and every n 2 N; the

injection TX ! X0 is continuous.

De�ne  : TX�KerT ! X0 by  (y; x) = y+x: Then  is a continuous bijection. There-

fore, by virtue of the open mapping theorem [10, Corollary 3.4, p. 30],  is bicontinuous.

Thus TX =  (TX �f0g) is closed in X0, and hence closed in X: Thus T has closed range.

Since TX\KerT = f0g; KerT 2 = KerT; and also KerTn = KerT for every n 2 N; we can

accomplish the proof by an inductive argument. To do this, assume that Tn has closed range

for some n 2 N: Since TX �KerT = TX �KerTn is closed, Tn+1X = Tn(TX �KerT ) =

Tn(TX �KerTn) is closed.

The preceding result has the following converse.

Theorem 2.2. Let T 2 B(X): If T 2X is closed, then TX + KerT is closed (without an
assumption of direct sum).

Proof. Suppose that T 2X is closed, and let Tan+ bn ! c; where bn 2 KerT: Then T 2an !

Tc, so by assumption Tc 2 T 2X; i.e., there exists an element x 2 X for which Tc = T 2x:

Since z = c � Tx 2 KerT; it follows that c = Tx + z 2 TX + KerT: Thus TX + KerT is

closed.

Now we collect this information to get the following result:

Corollary 2.3 Let T 2 B(X) satisfy the property TX \ KerT = f0g: Then the following
conditions are equivalent:

(1) TX +KerT is closed.

(2) TnX is closed for all n 2 N:
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(3) TnX is closed.

(4) The induced map ~T : X=KerT ! X=KerT; de�ned by ~T (x+KerT ) = Tx+KerT;

has closed range.

Proof. By Theorem 2.1 together with Theorem 2.2, it remains only to show the equivalence

(1), (4): Let � : X ! X=KerT be the quotient map. Then ~T (X=KerT ) = �(TX +KerT )

and hence ��1( ~T (X=KerT )) = TX + KerT: Therefore ~T (X=KerT ) is closed if and only if

TX +KerT is closed. This completes the proof.

We say that an operator T 2 B(X) has a generalized inverse, and write that T has a

g�inverse, or that T is g�invertible, if there is an operator S 2 B(X) such that T = TST

and S = STS: The operator T is also called relatively regular[7]. We make a few observations

about these operators for our subsequent discussion.

Remark 1. (i) There is no gain of generality in requiring only that T = TST: In fact, if

T = TST; then S0 = STS will satisfy T = TS0T; as well as S0 = S0TS0:

(ii) If T = TST and S = STS; then TS and ST are idempotents and hence projections

for which TS(X) = T (X) and KerT = KerST: Indeed, (TS)2 = TSTS = TS and (ST )2 =

STST = ST: Moreover, from T (X) = TST (X) � TS(X) � T (X); KerT � Ker(ST ) �

Ker(TST ) = KerT; we obtain TS(X) = T (X) and Ker(ST ) = (I � ST )X = KerT; where

I denotes the identity element in B(X):

(iii) Generally speaking, a generalized inverse of T is rarely uniquely determined. For

instance, if T = TST; then S can be anything on KerT: But there is at most one generalized

inverse which commutes with the given T 2 B(X): In fact, if S and S0 are g�inverses of

T; both commuting with T; then TS0 = TSTS0 = ST; and hence S0 = S0TS0 = S0TS =

STS = S:

There is an intimate relationship between commuting g�invertible operators T and the

factorization problem as given below:

Theorem 2.4. For any T 2 B(X) the following conditions are equivalent:

(1) T has a generalized inverse S 2 B(X) such that ST = TS

(2) TX �KerT = X:

(3) T = PB; where B 2 B(X) is invertible and P 2 B(X) is an idempotent.

(4) T = TCT; where C 2 B(X) is invertible and TC = CT:

Proof. Assume that (1) holds, and let S be a g�inverse of T such that ST = TS: Then the

identity I = ST+(I�ST ) = TS+(I�ST ); together with Remark 1(ii) yields (2). Suppose

that (2) holds. Then by Theorem 2.1, TX is closed. Moreover, since T 2X = T (TX) =

T (TX � KerT ) = TX and TX \ KerT = f0g; it follows that T jTX is invertible. Now

de�ne B = T jTX � IKerT : Then clearly B is invertible. Let P : X ! X be the projection

of X onto TX with KerP = KerT; then T = PB = BP; and hence (3) is established. The

implication (3)) (4) follows immediately by choosing C = B�1: Finally, if (4) holds, then

S = C2T is g�inverse of T satisfying ST = TS: This completes the proof.

Remark 2. Condition (2) of Theorem 2.4 is equivalent to the condition

T 2X = TX and KerT 2 = KerT [7;Proposition 38:4]:
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This last condition is also described by saying that T has descent and ascent both equal to

1.

We recall that T is said to have descent (ascent) n if n is the smallest positive integer

such that TnX = Tn+1X(KerTn = KerTn+1):

3. Closed Range Multipliers

Before proceeding to the particular situation of multipliers on topological algebras, we

recall some fundamental concepts for the sake of development of the results.

An algebra A is said to be without order, or proper, if zero is the only element that

annihilates the whole algebra, i.e., if aA = f0g or Aa = f0g; then a = 0: By a Fr�echet locally
convex algebra A, we mean a complete metrizable locally convex algebra A whose topology

is generated by a family fpngn2Nof seminorms. In what follows, A denotes a Fr�echet locally

convex algebra without order, unless speci�ed otherwise explicitly. Following [9], a mapping

T : A ! A is said to be a multiplier if x(Ty) = (Tx)y for all x; y 2 A: We denote the set

of all multipliers on A by M(A): Because A is without order, any multiplier T 2 M(A)

turns out to be linear; the identities x(Ty) = T (xy) and (Ty)x = T (yx) hold for any

x; y 2 A: Using the closed graph theorem, the de�nition of multiplier and the properness

of A one can show that all multipliers are necessarily continuous and hence bounded (see

e.g. [9], Corollary 2.3). An application of the above identities implies that M(A) may be

described as the commutant in B(A) of all operators of multiplication (on the right or on

the left) by the elements of the algebra A: It is well known that M(A) is a commutative

closed subalgebra of B(A) with respect to the strong operator topology ([9], Theorem 2.4).

The commutativity of M(A) is purely algebraic and can be proved as in ([12], Theorem

1.1.1). Since x(Ty) = T (xy) and (Ty)x = T (yx) for any x; y 2 A; both TA; and KerT are

two-sided ideals of A:

Since M(A) is commutative, it follows from Remark 1 (iii) that for any T 2M(A) there

is at most one g�inverse in M(A): We shall see in Theorem 3.1 that if T 2 M(A) has a

commuting g�inverse at all, then this will necessarily be a multiplier. This corresponds

to the fact that if a multiplier has an inverse (as a linear operator), then this inverse is

necessarily a multiplier ([12], Theorem 1.1.3).

The following result is an extension of ([13], Theorem 5) to the general framework of

Fr�echet locally convex algebras.

Theorem 3.1. Let A be a Fr�echet locally convex algebra without order and T 2 M(A):

Then the following statements are equivalent.

(1) T has a g�inverse S such that ST = TS:

(2) T has a g�inverse S 2 B(A) such that TS 2M(A):

(3) T has a g�inverse S 2 B(A) such that TS commutes with T:

(4) T has a g�inverse S 2M(A):

(5) TA�KerT = A:

(6) T 2A = TA and KerT 2 = KerT:

(7) T = PB = BP; where B 2M(A) is invertible and P 2M(A) is an idempotent.

(8) T is decomposably regular in M(A); i.e., T = TCT; where C is an invertible
multiplier.
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Proof. (1) ) (2): Let S be a g�inverse of T such that ST = TS: Then by Remark 1(ii),

P = TS is an idempotent for which PA = TA andKerT = KerP; i.e., both kernel and range

of P are two-sided ideals. This implies that P is a multiplier. In fact, x = Px + (I � P )x

implies xPy = PxPy + (I � P )xPy; and since (I � P )xPy 2 KerP \ PA = f0g; it follows

that xPy = PxPy: Similarly, (Px)y = PxPy; hence (Px)y = xPy for all x; y 2 A:

The implication (2)) (3) is trivial since M(A) is commutative algebra.

(3) ) (5): We have already seen that if P = TS then PA = TA: Therefore, if x 2 A;

then Tx = Pz for some z 2 A: Hence, if Px = 0; then Tx = P 2z = PTx = TPx = 0;

so KerP � KerT: Thus it follows that A = TA + KerT: It only remains to show that

TA\KerT = f0g: Let x 2 TA\KerT; then x = 0 provided we show that xTA = xKerT =

f0g: But xTA = TxA = f0g; so only xKerT = f0g remains to be veri�ed. If x = Tz 2 TA;

while y 2 KerT; then xy = (Tz)y = z(Ty) = 0: Thus TA \ KerT = f0g; and hence

TA�KerT = A:

By virtue of Theorem 2.4, we have thus established the equivalence of (1); (2); (3); (5)

and (6):

(5) ) (7): Assume that condition (5) holds (and hence also (6)), then the projection

P : A! A with PA = TA and KerP = KerT is a multiplier, by condition (2): Consequently,

B = T + (I � P ) 2 M(A): Note that B is the same operator as the operator B described

in the proof of Theorem 2.4, and hence it is invertible. Since T = BP = PB we get (7):

The implication (7)) (6) follows immediately by taking S = PB�1:

(4) ) (5): Since M(A) is commutative, this follows from the implication (1) ) (2) of

Theorem 2.4.

(7)) (8): If T = PB = BP; where B 2M(A) is invertible and P 2M(A) is idempotent,

then TB�1T = PBB�1T = PT = T:

(8)) (1): If T = TCT; where C is an invertible multiplier, then S = CTC 2M(A) is a

g�inverse of T satisfying ST = TS: This complete the proof.

We recall that an algebra A is said to be semiprime if f0g is the only two-sided ideal J

such that J2 = f0g ([2], De�nition IV. 30.3). In other words, A is semiprime if and only if

aAa = f0g implies a = 0: Clearly, a semiprime algebra is without order.

One fact about multipliers on semiprime algebras that we shall use below is that they

have ascent � 1; i.e., KerT 2 = KerT: In fact, if T 2x = 0; then (Tx)a(Tx) = T (xT (ax)) =

T 2(xax) = (T 2x)ax = 0 for any a 2 A: Hence Tx = 0; and so KerT 2 � KerT: Since the

reverse inclusion is trivial, it follows that KerT 2 = KerT for any T 2 M(A); when A is a

semiprime algebra.

Theorem 3.2. Let A be a semiprime Fr�echet locally convex algebra and T 2M(A): Then
the following conditions are equivalent to those speci�ed in Theorem 3.1:

(9) T 2A = TA; i.e., T has descent � 1:

(10) T has �nite descent.
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Proof. We have already seen that T has ascent � 1; and so the equivalence of these two

conditions is a general fact (see for instance [7], x38).

(5)) (9): This follows immediately from Remark 2.

(9) ) (5): Assume that T 2A = TA: Since KerT 2 = KerT; it follows from ([7], Proposi-

tion 38.4) that A = TA�KerT:

Corollary 3.3. Let A be a semiprime Fr�echet locally convex algebra and T 2M(A): Then
any one of the conditions of Theorem 3.1 implies that dist(0; �(T )nf0g) > 0:

Proof. Clearly only the case 0 2 �(T ) concerns us. For the sake of de�niteness, assume

that condition (5) of Theorem 3.1 holds, i.e., A = TA�KerT: Since the operator (T � �I)

is invertible if and only if (T � �I)jTA and (T � �I)jKerT both are invertible, the result

then follows because T jTA is invertible, while �(T jKerT ) = f0g:

Corollary 3.4. Let A be a semiprime Fr'echet locally convex algebra and T 2 M(A): If
T 2A = TA; then TA is closed.

Proof. Assume that T 2A = TA: Since KerT 2 = KerT; as we have already seen, it follows

from condition (5) of Theorem 3.1 that A = TA � KerT: Hence by Theorem 2.1, TA is

closed.

Corollary 3.5. Let A be a semiprime Fr�echet locally convex algebra and T 2 M(A): If
T 2A = TA; then T is injective if and only if it is surjective.

Proof. Let T be surjective. Since TA \ KerT = f0g implies KerT = f0g; we see that T is

injective. Conversely, suppose that KerT = f0g: Since T 2A = TA by assumption, it follows

from Theorem 3,2 that A = TA�KerT; and so TA = A; i.e., T is surjective.

Remark 3. The converse of Corollary 3.4 need not be in the case of general Banach

algebras as shown in [13]. For instance, if A = A(D)� the disc algebra of complex-valued

continuous functions on the closed unit disc D which are analytic in the interior of D,

and Tg is the multiplication operator, corresponding to the function g(z) = z for every

z 2 D; de�ned by (Tgf)(z) = zf(z) for every f 2 A(D); then Tg 2 M(A): Moreover,

TgA = ff 2 A : f(0) = 0g and T 2
g
A = ff 2 A : f(0) = f 0(0) = 0g: Both TgA and T 2

g
A are

closed, but clearly TgA 6= T 2
g
A: This also shows that condition (5) of Theorem 3.1 cannot

be relaxed to that of Theorem 2.1, i.e., to the requirement that TA�KerT be closed; since

KerTg = f0g; TgA �KerTg is closed, but none of the conditions of Theorem 3.1 holds for

Tg:

It is, however, shown in ([13], Theorem 13) that the converse of Corollary 3.4 dose hold

if A is C�� algebra and T 2 M(A): But, we observe below (Theorem 3.6) that it is true

even when A is a Fr�echet locally C��algebra. This provides a positive answer to a question

raised by the referee. To do this, we recall some de�nitions.

Let A be a complete Hausdor� locally m-convex algebra whose topology is generated

by a family fp :  2 Jg of submultiplicative seminorms. Following Inoue [11], A is called

a locally C� � algebra if it has an involution � and p(x
�x) = (p(x))

2 for all  2 J and

x 2 A: A net fe� : � 2 Ig in A is called a bounded approximate identity (abbreviated bai)

if p(e�) � 1 for all  2 J; � 2 I and lim
�

e�x = lim
�

xe� = x for all x 2 A: Every locally

C�-algebra has a bai (([11], Theorem 2.6),([4], Theorem 4.5)) and hence is also without
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order. Besides, Craw ([3], p. 610) has constructed a subalgebra of L1(R) which is a Fr�echet

locally m- convex algebra with bai.

Theorem 3.6. Let A be Fr�echet locally C�-algebra and T 2 M(A): Then TA is closed if,
and only if, T 2A = TA:

Proof. Suppose that TA is closed. Then it is a closed two-sided ideal in a locally C�-

algebra and so has a bai. Since TA is also Fr�echet, by a generalized version of the Cohen's

factorizatiopn theorem ([3], p. 610), for each x 2 TA; there exist y; z 2 TA such that x = yz;

i.e., TA = (TA)2: Clearly, T 2A � TA = (TA)2: On the other hand, for any x; y 2 A;

TxTy = T (xTy) = T 2(xy) 2 T 2A;

and so (TA)2 � T 2A: Thus TA = T 2A: Conversely, suppose that T 2A = TA: In view

of Corollary 3.4, it suÆces to show that A is semiprime. Using the terminology of M:

Fragoulopoulou [4, 5], A is ��semisimple([4], Corollary 5.6), and hence semisimple([5],

Lemma 8.14(ii)). Consequently, by ([2], p. 155, Proposition 30.5), A is semiprime.
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