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RELATIONS BETWEEN SOME CLASSES OF FUNCTIONS

U. GOGINAVA
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Abstract. In this paper the necessary and suÆcient conditions for the inclusion of classes

H! and V [�(n)] in the class BV (p(n) " 1) is found.

It is well-known that the notion of variation of a function was introduced by C. Jordan in 1881 in

the paper [6], devoted to the convergence of Fourier series. In 1924 N. Wiener [11] generalized this

notion and introduced the notion of p-variation. L. Young [12] introduced the notion of �-variation

of a function.

De�nition 1 (see [12]) Let � be a strictly increasing continuous function on [0;+1) and � (0) =

0. f will be said to have bounded �-variation on [0; 1], or f 2 V� if

�� (f) = sup
�

nX
k=1

� (jf (xk)� f (xk�1)j) <1;

where � = f0 � x0 < x1 < � � � < xn � 1g is an arbitrary partition.

If � (u) = u the V� coincides with the Jordan class V and when � (u) = u
p, p > 1 it coincides

with the Wiener class Vp.

C (0; 1) and B (0; 1) are, respectively, spaces of continuous and bounded functions given on

[0; 1].

In 1974 Z.A. Chanturia [3] introduced the notion of the modulus of variation of a function.

De�nition 2 (see [3]) The modulus of variation of function f 2 B (0; 1) is said to be the function

� (n; f) de�ned as: � (0; f) = 0 and for n � 1

� (n; f) = sup
�n

n�1X
k=0

jf (t2k+1)� f (t2k)j ;

where �n is an arbitrary partition of [0; 1] into n disjoint intervals (t2k; t2k+1), k = 0; 1; :::; n� 1.

If � (n) is a non-decreasing and convex upwards function and � (0) = 0 then � (n) will be called

the modulus of variation [3].

Let the modulus of variation � (n) is given, then the class of functions f , given on [0; 1], for

which � (n; f) = O (� (n)) when n!1, will be denoted by V [� (n)] [3].

In 1990 H. Kita and K. Yoneda [7] introduced the notion of the generalized Wiener's class

BV (p (n) " p).

2000 Mathematics Subject Classi�cation. 26A45.

Key words and phrases. Modulus of variations, generalized Wiener's class.



106 U. GOGINAVA

Let f be a function de�ned on (�1;+1) with period 1. � is said to be a partition with period

1, if

� : � � � < t�1 < t0 < t1 < t2 < � � � < tm < tm+1 < � � �(1)

satis�es tk+m = tk + 1 for k = 0;�1;�2; :::, where m is a positive integer.

De�nition 3 (see [7]) When 1 � p (n) " p as n ! +1, where 1 � p � +1, f is said be a

function of BV (p (n) " p) if and only if

V (f ; p (n) " p) =

= sup
n�1

sup
�

8<
:
 

mX
k=1

jf (tk)� f (tk�1)j
p(n)

!1=p(n)

: � (�) �
1

2n

9=
; < +1;

where � (�) = inf
k

jtk � tk�1j.

When p (n) = p for all n, BV (p (n) " p) coincides with Vp which is the Wiener's classes of

bounded p-variation.

If f 2 C (0; 1), then the function

! (Æ; f) = max fjf (x)� f (y)j : jx� yj � Æ; x; y 2 [0; 1]g

is called the modulus of continuity of the function f .

The modulus of continuity of an arbitrary function f 2 C (0; 1) has the following properties:

1. ! (0) = 0;

2. ! (Æ) is nondecreasing;

3. ! (Æ) is continuous on [0; 1];

4. ! (Æ1 + Æ2) � ! (Æ1) + ! (Æ2) for 0 � Æ1 � Æ2 � Æ1 + Æ2 � 1:

An arbitrary function ! (Æ) which is de�ned on [0; 1] and has the properties 1-4 is called the

modulus of continuity.

If the modulus of continuity ! (Æ) is given then H
! denoted the class of function f 2 C (0; 1)

for which ! (Æ; f) = O (! (Æ)) as Æ ! 0.

The relation between di�erent classes of generalized bounded variation was taken into account

in the works of Avdaspahic [1],Kovocik [8], Belov [2], Chanturia [4] and Medvedieva [9].

H.Kita and K.Yoneda [7] proved some suÆcient conditions for the inclusion of classes H! and

V [� (n)] in the class BV (p (n) " 1) : In this paper the necessary and suÆcient conditions for this

inclusion is found.In particular,we prove the followings

Theorem 1 H
!
� BV (p (n) " 1) if and only if

! (t) = O

�
t
1=p([log2 1=t])

�
as t! 0 + :(2)

Theorem 2 V [� (n)] � BV (p (n) " 1) if and only if

lim
n!1

 
2nX
k=1

(� (k)� � (k � 1))
p(n)

!1=p(n)

< +1:(3)
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For the proof of this theorems two lemmas are needed:

Lemma 1 (Oskolkov [10]) Let there be given disjoint intervals �k � [0; 1], k = 1; 2; :::, and

fgk : k � 1g be a sequence of periodic functions with period 1 such that gk (x) = 0 for x 2 [0; 1] n�k,

if ! (Æ; gk) � ! (Æ) and the functions g is de�ned by

g (x) =

1X
k=1

gk (x)

then

! (Æ; g) � 2! (Æ) :

Lemma 2 (see [5], p. 111) Let 0 � an #, 0 � bn #, and let the relations

kX
i=1

ai �

kX
i=1

bi

be true for k = 1; 2; :::;m. Then for convex functions � the inequality

mX
i=1

� (ai) �

mX
i=1

� (bi)

holds.

Proof of Theorem 1. Let f 2 H
! and �be a partition de�ned by (1) such that � (�) � 1

2n
.

Then from the condition of the theorem we get

0
@ mX

j=1

jf (tj)� f (tj�1)j
p(n)

1
A

1=p(n)

�

0
@ mX

j=1

(! (tj � tj�1; f))
p(n)

1
A

1=p(n)

= O

0
B@
0
@ mX

j=1

(! (tj � tj�1))
p(n)

1
A

1=p(n)
1
CA

= O

0
B@
0
@ mX

j=1

(tj � tj�1)

p(n)

p

��
log 1

tj�tj�1

��1A
1=p(n)

1
CA

= O

0
B@
0
@ mX

j=1

(tj � tj�1)

p(n)

p

��
log 1

�(�)

��1A
1=p(n)

1
CA
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= O

0
B@
0
@ mX

j=1

(tj � tj�1)

1
A

1=p(n)
1
CA = O (1) as n!1:

Therefore f 2 BV (p (n) " 1) holds.

Next we suppose that fp (n) : n � 1g and ! (Æ) does not satisfy (2). As an example we construct

function from H
! which is not in BV (p (n) " 1).

Since ! (t)
�
t
1=p([log2 1=t])

��1
is not bounded by hypothesis, there exists a sequence of positive

numbers fu0
k
# 0 : k � 1g such that

! (u0
k
) (u0

k
)
�1=p([log2 1=u

0

k]) !1 as k !1:

Then it is evident that there exists a sequence fuk : k � 1g � fu
0

k
: k � 1g such that

4

s
uk

! (uk)
p([log 1=uk ])

+ 5uk � uk�1:(4)

Consider the function fk de�ned by

fk (x) =

8>><
>>:

! (uk) ; if x = (4j + 3)uk; j = 0; 1; 2; :::;mk;

0 if x 2 [0; uk] [ [(4mk + 5)uk; 1] ; x = (4j + 1)uk;

j = 1; 2; :::;mk;

is linear and continuous for other x 2 [0; 1] ;

where

mk =

"s
1

! (uk)
p([log 1=uk ])

uk

#
:

Let

f0 (x) =

1X
k=1

fk (x) ; f0 (0) = 0

and

f0 (x+ l) = f0 (x) ; l 2 Z:

First we prove that f0 2 H
!. Let Æ � uk. Since

!(Æ1)

Æ1
� 2

!(Æ2)

Æ2
, 0 < Æ2 < Æ1, it follows that

! (Æ; fk) = O

�
Æ
! (uk)

uk

�
= O (! (Æ)) :(5)

Let Æ > uk. Since ! (Æ) is non-decreasing function we get

! (Æ; fk) � 2 kfkkC = 2! (uk) � 2! (Æ) :(6)

From (5)and (6) we have

! (Æ; fk) = O (! (Æ)) :(7)

From Lemma 1 and by (4), (7) we obtain

f0 2 H
!
:
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Next we shall prove that f0 =2 BV (p (n) " 1). From the construction of the function we get

0
@mkX

j=1

jf0 ((4j + 3)uk)� f0 ((4j + 1)uk)j
p([log 1=uk])

1
A

1=p([log 1=uk ])

=

0
@mkX

j=1

jfk ((4j + 3)uk)� fk ((4j + 1)uk)j
p([log 1=uk ])

1
A

1=p([log 1=uk])

=

0
@mkX

j=1

jfk ((4j + 3)uk)j
p([log 1=uk ])

1
A

1=p([log 1=uk ])

=

0
@mkX

j=1

! (uk)
p([log 1=uk ])

1
A

1=p([log 1=uk ])

= ! (uk)m
1=p([log 1=uk ])
k

� c! (uk)

 s
1

! (uk)
p([log 1=uk ])

uk

!1=p([log 1=uk])

= c

q
! (uk)u

�1=p([log 1=uk])
k

!1 as k !1:

Therefore we get f0 =2 BV (p (n) " 1) and the proof is complete.

Proof of Theorem 2. Let f 2 V [� (n)] and � : � � � < t�1 < t0 < t1 < � � � < tm < tm+1 < � � �

be any partition with period 1 and � (�) � 1
2n
. Without loss of generality it may be assumed that

jf (tj)� f (tj�1)j � jf (tj+1)� f (tj)j ; j = 1; :::;m� 1:

It is evident that

mX
j=1

jf (tj)� f (tj�1)j � � (m) =

mX
j=1

(� (j)� � (j � 1)) :

Since� (n) is upwards convex,for any n � 1

� (n+ 1)� � (n) � � (n)� � (n� 1) ;(8)

if we takeak = jf (tk)� f (tk�1)j, bk = � (k) � � (k � 1) and � (u) = u
p(n), and apply Lemma 2,

from the condition of the theorem we get

mX
j=1

jf (tj)� f (tj�1)j
p(n)

�

mX
j=1

(� (j)� � (j � 1))
p(n)
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�

2nX
j=1

(� (j)� � (j � 1))
p(n)

;

0
@ mX

j=1

jf (tj)� f (tj�1)j
p(n)

1
A

1=p(n)

�

0
@ 2nX

j=1

(� (j)� � (j � 1))
p(n)

1
A

1=p(n)

� c <1; for n = 1; 2; :::

Therefore we proved that f 2 BV (p (n) " 1).

Next we suppose that the condition (3) does not satisfy. As an example we construct function

from V [� (n)] which is not in BV (p (n) " 1).

Since

lim
n!1

0
@ 2nX

j=1

(� (j)� � (j � 1))
p(n)

1
A

1=p(n)

=1;

there exists a sequence of integers fmk : k � 1g such that

lim
k!1

0
@2mkX

j=1

(� (j)� � (j � 1))
p(mk)

1
A

1=p(mk)

=1:(9)

We choose a monotone increasing sequence of positive integers fnk : k � 1g � fmk : k � 1g

such that

p (nk) � nk�1:(10)

nk � 2nk�1(11)

From (10) it is evident that

0
@2

n
k�1�nk�2�1X

j=1

(� (j)� � (j � 1))
p(nk)

1
A

1=p(nk)

(12)

� c2

n
k�1

p(nk) � c <1:

Applying the inequality 
1X
k=0

ak

!p

�

1X
k=0

a
p

k
(0 < p � 1; ak � 0; k = 1; 2; :::) ;(13)

by (9) and (12) we get

0
@ 2nkX

j=2
n
k�1�nk�2�1

+1

(� (j)� � (j � 1))
p(nk)

1
A

1=p(nk)

!1 as k !1:(14)
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From (13) we have

0
@ 2nkX

j=2
n
k�1�nk�2�1

+1

(� (j)� � (j � 1))
p(nk)

1
A

1=p(nk)

(15)

�

0
@ 2nk�nk�1�1X

j=2
n
k�1�nk�2�1

+1

(� (j)� � (j � 1))
p(nk)

1
A

1=p(nk)

+

0
@ 2nkX

j=2
n
k
�n

k�1�1
+1

(� (j)� � (j � 1))
p(nk)

1
A

1=p(nk)

:

First we prove that

0
@ 2

n
k
�n

k�1�1X
j=2nk�1�nk�2�1+1

(� (j)� � (j � 1))
p(nk)

1
A

1=p(nk)

! +1 as k !1:(16)

We suppose that fnk : k � 1g does not satisfy (16).

From (8),(10) and (11) we obtain

0
@ 2nk�nk�1�1X

j=2
n
k�1�nk�2�1

+1

(� (j)� � (j � 1))
p(nk)

1
A

1=p(nk)

�

h�
�
�
2nk�nk�1�1

�
� �

�
2nk�nk�1�1 � 1

��p(nk)
�
�
2nk�nk�1�1 � 2nk�1�nk�2�1

��1=p(nk)
� c

�
�
�
2nk�nk�1�1

�
� �

�
2nk�nk�1�1 � 1

�� 2nk=p(nk)

2nk�1=p(nk)

� c
�
�
�
2nk�nk�1�1

�
� �

�
2nk�nk�1�1 � 1

��
2nk=p(nk);

then by hypothesis we get

�
�
2nk�nk�1�1

�
� �

�
2nk�nk�1�1 � 1

�
= O

�
2�nk=p(nk)

�
:(17)

By (8) and (17) we get

0
@ 2nkX

j=2
n
k
�n

k�1�1
+1

(� (j)� � (j � 1))
p(nk)

1
A

1=p(nk)

(18)

�
�
�
�
2nk�nk�1�1

�
� �

�
2nk�nk�1�1 � 1

��
2

n
k

p(nk)

= O (1) as k !1:
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From (15),(18) and by hypothesiswe obtain

0
@ 2nkX

j=2nk�1�nk�2�1+1

(� (j)� � (j � 1))
p(nk)

1
A

1=p(nk)

(19)

� c <1 as k !1:

We arrive at a contradiction (see (14)).

Therefore we get

0
@ 2

n
k
�n

k�1�1X
j=2

n
k�1�nk�2�1

+1

(� (j)� � (j � 1))
p(nk)

1
A

1=p(nk)

(20)

=

0
@2

n
k
�n

k�1�1
�2

n
k�1�nk�2�1X

j=1

�
�
�
j + 2nk�1�nk�2�1

�

� �
�
j + 2nk�1�nk�2�1 � 1

��p(nk)�1=p(nk)

! +1 as k !1:

Consider the function gk (x) de�ned by

gk (x) =

8>>>>><
>>>>>:

�
�
2nk�1�nk�2�1 + j

�
� �

�
2nk�1�nk�2�1 + j � 1

�
; if x = 2j

2nk
;

j = 1; 2; :::; 2nk�nk�1�1 � 2nk�1�nk�2�1 � 1;

0; if x 2
�
0; 1

2nk

�
[

h
2
n
k
�n

k�1�1
�2

n
k�1�nk�2�1

�1
2nk

; 1
i
;

x = 2j+1
2nk

; ; j = 0; 1; 2; :::; 2nk�nk�1�1 � 2nk�1�nk�2�1 � 1;

is linear and continuous for other x 2 [0; 1] :

Let

g (x) =

1X
k=3

gk (x) ; g (0) = 0

and

g (x+ l) = g (x) ; l 2 Z:

First we prove that g 2 V [� (n)]. For any positive integer n � 2n2�n1�1 we choose an integer

k (n) such that

2nk(n)�1�nk(n)�2�1 � n < 2nk(n)�nk(n)�1�1:

Denote

m (n) = 2nk(n)�1�nk(n)�2�1:

It is evident that

� (n; g) �(21)

� c

0
@k(n)�1X

k=3

�
�
2nk�nk�1�1 � 2nk�1�nk�2�1; gk

�
+ �

�
n�m (n) ; gk(n)

�1A :
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From the construction of the function we obtain

k(n)�1X
k=3

�
�
2nk�nk�1�1 � 2nk�1�nk�2�1; gk

�
(22)

�

k(n)�1X
k=3

2
n
k
�n

k�1�1
�2

n
k�1�nk�2�1

�1X
j=1

�
�
�
2nk�1�nk�2�1 + j

�

��
�
2nk�1�nk�2�1 + j � 1

��

�

k(n)�1X
k=3

�
�
�
2nk�nk�1�1

�
� �

�
2nk�1�nk�2�1

��
� c�

�
2nk(n)�1�nk(n)�2�1

�
� c� (n) :

Analogously,we get

�
�
n�m (n) ; gk(n)

�
(23)

�

n�m(n)X
j=1

�
�
�
2nk(n)�1�nk(n)�2�1 + j

�
� �

�
2nk(n)�1�nk(n)�2�1 + j � 1

��

= �
�
n�m (n) + 2nk(n)�1�nk(n)�2�1

�
� �

�
2nk(n)�1�nk(n)�2�1

�
� � (n) :

Owing to (21), (22) and (23) we get g 2 V [� (n)] :

Finally we prove that g =2 BV (p (n) " 1) :By (20) and from the construction of the function

we get 0
@2nk�nk�1�1

�2nk�1�nk�2�1
�1X

j=1

����g
�
2j � 1

2nk

�
� g

�
2j

2nk

�����
p(nk)

1
A

1=p(nk)

=

0
@2nk�nk�1�1

�2nk�1�nk�2�1
�1X

j=1

����gk
�
2j � 1

2nk

�
� gk

�
2j

2nk

�����
p(nk)

1
A

1=p(nk)

=

0
@2nk�nk�1�1

�2nk�1�nk�2�1
�1X

j=1

����gk
�

2j

2nk

�����
p(nk)

1
A

1=p(nk)

=

0
@2nk�nk�1�1

�2nk�1�nk�2�1
�1X

j=1

�
�
�
2nk�1�nk�2�1 + j

�

��
�
2nk�1�nk�2�1 + j � 1

��p(nk)�1=p(nk)
!1 as k !1:

Therefore we get g =2 BV (p (n) " 1) and the proof of Theorem 2 is complete.
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