REMARKS ON THE SPACES OF RIEMANNIAN METRICS ASSOCIATED WITH CONTACT FORMS ON 3-MANIFOLDS

Atsuhide Mori

Received November 28, 2000; revised March 26, 2001

ABSTRACT. We recall and improve the correspondence theorem of Etnyre-Ghrist [1] between a positively rescaled Reeb field for a contact 1-form and a rotational Beltrami field for a Riemannian metric on a closed oriented 3-manifold. Given a contact form, we associate it with the space of Riemannian metrics for which the Reeb field is a Beltrami field with certain additional properties. We obtain a product structure on this space of metrics and then, by applying it, we characterize certain geometric structures on 3-manifolds.

1 Introduction. Recently, J.Etnyre and R.Ghrist [1] found a correspondence between a Reeb-like field in contact topology and a rotational Beltrami field in topological hydrodynamics. Let M^3 be a closed oriented 3-manifold. A *Reeb-like field* on M^3 is a positively rescaled Reeb field for a given positive contact form on M^3 . On the other hand, a *rotational Beltrami field* on M^3 is a non-singular vector field X satisfying $\nabla \times X = fX$ for some function f > 0. Here $\nabla \times X$ denotes the curl of X with respect to a given Riemannian metric g and a fixed positive volume form ν on M^3 . It is easy to see that the definition of a rotational Beltrami field is independent of the choice of ν . The correspondence theorem says that the set of all Reeb-like fields on M^3 can be regarded as the set of all rotational Beltrami fields on M^3 if we don't fix a contact form nor a metric.

We consider the case where the above f can be taken as $f \equiv 1$ with respect to g and the g-induced volume form ν_g . Then we call X a normal Beltrami field for g if moreover $g(X, X) \equiv 1$ holds. Fix a positive volume form ν on M^3 . Then we can improve the above correspondence theorem as follows.

(1) A Reeb field X_{α} for some contact form α with $\alpha \wedge d\alpha = \nu$ corresponds to a normal Beltrami field for some ν -inducing metric g (Theorem 5).

(2) A rotational Beltrami field for a Riemannian metric g is a positively rescaled normal Beltrami field for some Riemannian metric g' (Remark 6).

Every positive contact form α on M^3 , therefore, can be associated with the subspace \mathcal{F}_{α} of the space $\mathcal{R}(M^3)$ of all Riemannian metrics on M^3 , where \mathcal{F}_{α} consists of any element g inducing the volume form $\alpha \wedge d\alpha$ and satisfying $g(X_{\alpha}, \cdot) = \alpha$. Set $\mathcal{B}_{\alpha} = \{\beta \mid X_{\beta} = X_{\alpha}\} (\subset \Gamma T^*M^3)$ and $\mathcal{C}_{\alpha} = \bigcup_{\beta \in \mathcal{B}_{\alpha}} \mathcal{F}_{\beta} (\subset \mathcal{R}(M^3))$. In this paper, we study these spaces. Our results are the following theorems.

Theorem A(Theorem 10). For any positive contact form α on a closed oriented 3manifold M^3 , the above C_{α} , \mathcal{F}_{α} and \mathcal{B}_{α} are connected and contractible. Moreover, C_{α} is fibred trivially by $\{\mathcal{F}_{\beta}\}_{\beta \in \mathcal{B}_{\alpha}}$ over \mathcal{B}_{α} .

We obtain the following theorem by using Theorem A and a result of Geiges and Gonzalo [2] on the characterization of closed 3-manifolds admitting Cartan structures.

²⁰⁰⁰ Mathematics Subject Classification. 57M50.

A. Mori

Theorem B(Theorem 15). Let M^3 be a closed orientable 3-manifold. Then there are two contact forms α and β on M^3 satisfying

- 1) $\alpha \wedge d\alpha = h\beta \wedge d\beta$ for some function h > 0 and
- 2) $X_{\alpha} \perp X_{\beta}$ with respect to some $g \in \mathcal{C}_{\alpha} \cap \mathcal{C}_{\beta}$

if and only if M^3 is diffeomorphic to a SU(2)-, $\widetilde{SL_2}$ - or $\widetilde{E_2}$ -manifold.

The class of closed oriented 3-manifolds admitting positive contact forms α and β with $X_{\beta} \neq \pm X_{\alpha}$ and $C_{\alpha} \cap C_{\beta} \neq \emptyset$ seems very small since such a manifold has to admit another normal Beltrami field than $\pm X_{\alpha}$ for the same metric in C_{α} . It is even likely that this class coincides with one stated in Theorem B.

2 The correspondence theorem. We will work in the smooth category throughout this paper. First we prepare some definitions.

Definition 1. A vector field X on a Riemannian 3-manifold (M^3, g) is called a *Beltrami* field if it is everywhere colinear with its curl, that is, $\nabla \times X = fX$ for some function fon M^3 . Here the curl $\nabla \times X$ is the vector field determined by $\iota_{\nabla \times X} \nu = d(g(X, \cdot))$ for a fixed volume form ν (ι denotes the interior product). A non-singular Beltrami field is called a *rotational Beltrami* field if the above f satisfies f > 0. A rotational Beltrami field for the particularly g-induced volume form ν_g is called a *normal Beltrami* field if $f \equiv 1$ and $g(X, X) \equiv 1$ hold.

Remark 2. Beltrami fields form an important and still mysterious class of steady (i.e., time-independent) solutions of the following Euler's equation for a perfect incompressible fluid with a volume form ν (see [1]).

Let $\{X_t\}_{t \in \mathbf{R}}$ be a family of vector fields. X_t can be considered as the velocity field of an perfect incompressible fluid if it satisfies the Euler's equation

$$\dot{X}_t + \nabla_{X_t} X_t = -\nabla p_t, \quad \mathcal{L}_{X_t} \nu = 0$$

for some family p_t of functions, called the pressure term. Here ∇_{X_t} denotes the covariant derivative with respect to g along X_t . Then the curl of X_t with respect to ν and g satisfies

$$\begin{aligned} (\iota_{X_t}\iota_{\nabla\times X_t}\mu)(Y) &= \iota_{X_t}d(g(X_t,\cdot))(Y) \\ &= X_tg(X_t,Y) - Yg(X_t,X_t) - g(X_t,\nabla_{X_t}Y - \nabla_YX_t) \\ &= g(\nabla_{X_t}X_t,Y) - g(\nabla_YX_t,X_t) \\ &= g(\nabla_{X_t}X_t,Y) - \frac{1}{2}Yg(X_t,X_t). \end{aligned}$$

From now on, we assume that X_t is time-independent, that is, $X_t = X$ holds for any $t \in \mathbf{R}$. Put $p = p_t$ and $P = p + \frac{1}{2}g(X, X)$. Then the first portion of the Euler's equation yields

$$\iota_X \iota_{\nabla \times X} \mu = -dP.$$

Then we see that a Beltrami field corresponds to a P-free steady fluid while a normal Beltrami field corresponds to a special kind of pressure-free fluid. Note also that a normal Beltrami field generates a divergence-free geodesical flow.

Definition 3. A 1-form α on an oriented 3-manifold M^3 is called a *positive contact form* if $\alpha \wedge d\alpha$ is a positive volume form. Then a vector field X on M^3 is called a *Reeb field* for α if $\iota_X d\alpha = 0$ and $\iota_X \alpha = 1$ hold. Such an X always exists and is determined uniquely by α , so we denote it by X_{α} . A *Reeb-like field* Y is a positively rescaled Reeb-field, that is, $Y = fX_{\alpha}$ for some function f > 0.

The following is the Etnyre-Ghrist's correspondence theorem.

Theorem 4 ([1]). Let M^3 be an oriented 3-manifold. Given a Riemannian metric g on M^3 , any rotational Beltrami field for g, if it exists, is a Reeb-like field for some positive contact form on M^3 . Conversely, given a positive contact form α on M^3 , any Reeb-like field for α is a rotational Beltrami field for some Riemannian metric on M^3 .

Note that the definition of rotational Beltrami fields are independent of the choice of the fixed volume form ν in Definition 1. The above theorem says that a vector field X is a Reeb-like field for some positive contact form if and only if X is a rotational Beltrami field for some Riemannian metric. It may be difficult, however, to associate the set of all such contact forms with the set of all such metrics in a general way. So we state a more detailed correspondence theorem as follows.

Theorem 5. Let M^3 be an oriented 3-manifold equipped with a positive volume form ν . Given a ν -inducing Riemannian metric g, any normal Beltrami field with respect to g, if it exists, is a Reeb field for some contact form α with $\alpha \wedge d\alpha = \nu$ on M^3 . Conversely, for any contact form α on M^3 with $\alpha \wedge d\alpha = \nu$, the Reeb field X_{α} is a normal Beltrami field for some ν -inducing metric. Thus a vector field X is a Reeb field X_{α} for some contact form α with $\alpha \wedge d\alpha = \nu$ if and only if X is a normal Beltrami field for some ν -inducing metric.

Proof. Suppose that $\nabla \times X = X$ with respect to ν and a ν -inducing metric g and g(X, X) = 1 hold. Putting $\alpha = g(X, \cdot)$, we have

$$\alpha \wedge d\alpha = g(X, \cdot) \wedge \iota_{\nabla \times X} \nu.$$

Since g is ν -inducing, we have

$$\nu = g(X, \cdot) \land g(e_2, \cdot) \land g(e_3, \cdot) = g(X, \cdot) \land \iota_X \nu$$

for a local orthonormal framing (X, e_2, e_3) . Thus the condition $\nabla \times X = X$ implies $\alpha \wedge d\alpha = \nu$. Then $X = X_{\alpha}$ holds since $\iota_X d\alpha = \iota_X \iota_X \nu = 0$ and $\iota_X \alpha = g(X, X) = 1$.

Conversely, suppose that $X = X_{\alpha}$ for α with $\alpha \wedge d\alpha = \nu$. Then choose a local frame (X, e_2, e_3) such that (e_2, e_3) forms a symplectic basis for $d\alpha$ on ker α . Since there is a global complex structure J on ker α compatible with $d\alpha$, we may assume $e_3 = Je_2$. Let g be the metric for which (X, e_2, e_3) is orthonormal. Note that g is globally defined since each transformation map between charts preserves the orthonormality of (e_2, e_3) as an element of SU(1) with respect to J. Then X is a normal Beltrami field for g since g(X, X) = 1 and $d(g(X, \cdot)) = d\alpha = \iota_X \nu$. This completes the proof.

Remark 6. Our normal condition may seem much too strong at a glance. Note that, however, a given rotational Beltrami field for a metric g can be rescaled to be a normal Beltrami field for another metric g'. This fact follows immediately from the theorems 4 and 5. Moreover we can see, from Moser's theorem, that even when we fix arbitrary volume form ν the Weinstein conjecture translates to whether any normal Beltrami field for any ν -inducing Riemannian metric generates a flow with a closed orbit.

3 The Spaces of metrics. Given a positive volume form ν on a closed oriented 3manifold M^3 , we set $Cont(M^3) = \{\text{all positive contact forms on } M\}(\subset \Gamma T^*M^3)$ and $Cont(M^3, \nu) = \{\alpha \mid \alpha \land d\alpha = \nu\}(\subset Cont(M^3))$. Let $\mathcal{R}(M^3)$ be the space of all Riemannian

A. Mori

metrics on M^3 and $\mathcal{R}(M^3, \nu)$ its subset consisting of all ν -inducing metrics. For any $\alpha \in Cont(M^3)$, put

$$\mathcal{F}_{\alpha} = \{ g \in \mathcal{R}(M^{3}, \alpha \wedge d\alpha) | g(X_{\alpha}, \cdot) = \alpha \},$$
$$\widetilde{\mathcal{F}}_{\alpha} = \{ g \in \mathcal{R}(M^{3}) | g(X_{\alpha}, \cdot) = \alpha \},$$
$$\mathcal{B}_{\alpha} = \{ \beta \in Cont(M^{3}) | X_{\beta} = X_{\alpha} \}$$

 and

$$\mathcal{C}_{\alpha} = \bigcup_{\beta \in \mathcal{B}_{\alpha}} \mathcal{F}_{\beta} \ (\subset \mathcal{R}(M^3)).$$

Note that we can also define the above \mathcal{C}_{α} by $\mathcal{C}_{\alpha} = \{g \in \mathcal{R}(M^3) | \beta := g(X_{\alpha}, \cdot) \in \mathcal{B}_{\alpha} \text{ and } g \in \mathcal{R}(M^3, \beta \wedge d\beta)\}$. Then the following lemmas hold.

Lemma 7. $\mathcal{R}(M^3)$ and $\widetilde{\mathcal{F}}_{\alpha}$ are connected and contractible.

Proof. For fixed $g_0 \in \mathcal{R}(M^3)$ and any $g \in \mathcal{R}(M^3)$, the family $\{tg_0 + (1-t)g\}_{t \in [0,1]}$ defines a contraction from $\mathcal{R}(M^3)$ to $\{g_0\}$. If g and g_0 are in $\widetilde{\mathcal{F}}_{\alpha}$ then so are $tg_0 + (1-t)g$ since $(tg_0 + (1-t)g)(X_{\alpha}, \cdot) = t\alpha + (1-t)\alpha = \alpha$. This ends the proof.

Lemma 8. \mathcal{F}_{α} is connected and contractible.

Proof. Any metric $g \in \mathcal{F}_{\alpha}$ has the following form on each Darboux coordinate (x, y, z) with $\alpha = x dy + dz$.

$$g = \begin{pmatrix} a & b & 0 \\ b & c + x^2 & x \\ 0 & x & 1 \end{pmatrix} \quad (a > 0, b > 0, ac - b^2 \equiv 1)$$

where a, b and c are some local functions. Fix the orthonormal framing

$$(X_{\alpha}, e_2, e_3) = \left(\frac{\partial}{\partial z}, \quad \frac{1}{\sqrt{a}}\frac{\partial}{\partial x}, \quad \frac{1}{\sqrt{a}}\left(-b\frac{\partial}{\partial x} + a\frac{\partial}{\partial y} - ax\frac{\partial}{\partial z}\right)\right)$$

on each Darboux coordinate, whose dual is

$$\left(\alpha(=xdy+dz), \quad \sqrt{a}dx + \frac{b}{\sqrt{a}}dy, \quad \frac{1}{\sqrt{a}}dy \right).$$

Put $h_{\alpha} = \alpha \otimes \alpha$. Then we have

$$h_{\alpha} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & x^2 & x \\ 0 & x & 1 \end{array} \right)$$

on each Darboux coordinate. Note that h_{α} satisfies $h_{\alpha}(X_{\alpha}, \cdot) = \alpha$ and $h_{\alpha}(e, \cdot) = 0$ for any $e \in \ker \alpha$. Then for any $g \in \widetilde{\mathcal{F}}_{\alpha}$ inducing a volume form $f\nu$ (f > 0), the family

$$\left((1-t)+t\frac{1}{f}\right)(g-h_{\alpha})+h_{\alpha}\quad(t\in[0,1])$$

defines a retraction from $\widetilde{\mathcal{F}}_{\alpha}$ to \mathcal{F}_{α} . Note that this retraction fixes any element of \mathcal{F}_{α} since $f \equiv 1$ holds in this case. Thus the lemma follows from Lemma 7.

Lemma 9. Put $\alpha_t = (1-t)\alpha + t\beta$ for $\beta \in \mathcal{B}_{\alpha}$. Let $\{Y_t\}_{t \in [0,1]}$ be the family of vector fields determined by $\alpha \wedge \beta = \iota_{Y_t}(\alpha_t \wedge d\alpha_t)$ and $\{\phi_t\}_{t \in [0,1]}$ the family of diffeomorphisms on M^3 obtained by integrating Y_t under the initial condition $\phi_0 = Id_{M^3}$. Then $\mathcal{F}_{\alpha_t} = (\phi_t)_*(\mathcal{F}_{\alpha})$ $(t \in [0,1])$ holds.

Proof. On each Darboux coordinate (x, y, z) for α with $\alpha = xdy + dz$, we have

$$\beta - \alpha = pdx + qdy$$

for some functions p and q with $p_z = q_z = 0$ and $q_x - p_y > -1$. This yields

$$Y_t = \frac{1}{1 + t(q_x - p_y)} \left(-q \frac{\partial}{\partial x} + p \frac{\partial}{\partial y} - x p \frac{\partial}{\partial z} \right).$$

Then we have

$$\mathcal{L}_{Y_t}\alpha_t + \frac{d}{dt}\alpha_t = -pdx - qdy + pdx + qdy = 0.$$

Thus $\mathcal{F}_{\alpha_t} = (\phi_t)_*(\mathcal{F}_{\alpha})$ holds for M is closed. This ends the proof.

These lemmas imply the following theorem.

Theorem 10. For any contact form α on a closed oriented 3-manifold M^3 , the above C_{α} , \mathcal{F}_{α} and \mathcal{B}_{α} are connected and contractible. Moreover, \mathcal{C}_{α} is fibred trivially by $\{\mathcal{F}_{\beta}\}_{\beta \in \mathcal{B}_{\alpha}}$ over the space \mathcal{B}_{α} with projection $g \mapsto g(X_{\alpha}, \cdot)$.

Remark 11. We see that $\beta \in \mathcal{B}_{\alpha}$ satisfies $\int_{M^3} \beta \wedge d\beta = \int_{M^3} \alpha \wedge d\alpha$ from Lemma 9. Note that, however, this does not mean $\beta \wedge d\beta = \alpha \wedge d\alpha$ in general. It may be interesting to compare Lemma 9 and Theorem 10 with the Gray's stability theorem [3]. Note also that if $\pm \beta$ is in \mathcal{B}_{α} then $\mathcal{B}_{\beta} = \mathcal{B}_{\alpha}$ holds.

 $\mathcal{C}_{\alpha} \cap \mathcal{C}_{\beta}$ may be non-empty even when $\pm \beta \notin \mathcal{B}_{\alpha}$. Here is an example.

Example 12. Put $M^3 = T^3 = \mathbf{R}^3 / (2\pi \mathbf{Z})^3$, $\nu = dx \wedge dy \wedge dz$, $\alpha = \sin z dx + \cos z dy$, $\beta = -\cos z dx + \sin z dy$ and $\gamma = \sin x dy + \cos x dz$. Then we can easily see that the Eucridean metric $dx^2 + dy^2 + dz^2$ is in the intersection $\mathcal{C}_{\alpha} \cap \mathcal{C}_{\beta} \cap \mathcal{C}_{\gamma}$. Note that all these contact forms are, then, equivalent up to isometries.

4 Cartan structures. We recall a definition and one of the results in Geiges and Gonzalo [2].

Definition 13. We say that a pair (α, β) of contact forms on a closed oriented 3-manifold M^3 is a *Cartan structure* on M^3 if $\alpha \wedge d\alpha = \beta \wedge d\beta$ and $\alpha \wedge d\beta = \beta \wedge d\alpha = 0$ hold.

Theorem 14 ([2]). Let M^3 be a closed orientable 3-manifold. Then M^3 admits a Cartan structure if and only if M^3 is diffeomorphic to a quotient of the Lie group G under a discrete and cocompact subgroup Γ acting from the left, where G is one of the following:

1) SU(2),

2) SL_2 , the universal cover of $PSL(2; \mathbf{R})$ or

3) $\widetilde{E_2}$, the universal cover of the orientation-preserving isometry group of the Euclidean \mathbf{R}^2 .

The manifolds satisfying the above condition are called SU(2)-manifolds, \widetilde{SL}_2 -manifolds or \widetilde{E}_2 -manifolds respectively. As an application of Theorem 10 and this characterization theorem, we can prove the following theorem.

A. Mori

Theorem 15. Let M^3 be a closed orientable 3-manifold. Then there are two contact forms α and β on M^3 satisfying

- 1) $\alpha \wedge d\alpha = h\beta \wedge d\beta$ for some function h > 0 and
- 2) $X_{\alpha} \perp X_{\beta}$ with respect to some $g \in \mathcal{C}_{\alpha} \cap \mathcal{C}_{\beta}$

if and only if M^3 is diffeomorphic to a SU(2)-, $\widetilde{SL_2}$ - or $\widetilde{E_2}$ -manifold.

Proof. First, we prove the 'if' part. The Lie algebra of $G = SU(2), \widetilde{SL}_2$ or \widetilde{E}_2 admits a basis (e_1, e_2, e_3) with

$$[e_1, e_2] = \delta e_3, \quad [e_2, e_3] = e_1, \quad [e_3, e_1] = e_2$$

where $\delta = +1, -1$ or 0 respectively (see [2]). We regard these as left-invariant vector fields on G. Then take the dual frame $(\theta^1, \theta^2, \theta^3)$ and set $\alpha = \theta^1$ and $\beta = \theta^2$. Then the pair (α, β) is a Cartan structure. Take the metric g and the orientation of M by means of the oriented orthonormal basis (e_1, e_3, e_2) . Then we have for example $d\alpha(e_3, e_2) = \alpha([e_2, e_3]) =$ $1 = \theta^3 \wedge \theta^2(e_3, e_2)$ and conclude the 'if' part.

Next, we prove the 'only if' part. Theorem 10 implies that there is the (unique) fibre $\mathcal{F}_{\alpha'}(\alpha' \in \mathcal{B}_{\alpha})$ containing the metric g. Thus by changing α and β if necessary, we may assume $g \in \mathcal{F}_{\alpha} \cap \mathcal{F}_{\beta}$. Then we have ker $\alpha \perp X_{\alpha}$ and ker $\beta \perp X_{\beta}$. Thus $d\alpha|_{\ker\beta} = d\beta|_{\ker\alpha} = 0$ holds. This yields $\beta \wedge d\alpha = \alpha \wedge d\beta = 0$. The pair (α, β) , therefore, forms a Cartan structure on M^3 . Thus the theorem follows from Theorem 14.

References

[1] J.Etnyre and R.Ghrist: Contact topology and hydrodynamics I: Beltrami fields and the Seifert conjecture, Nonlinearity 13 (2000), 441-458.

[2] H.Geiges and J.Gonzalo: Contact geometry and complex surfaces, Invent. Math. **121**(1995),147-209.

[3] J.W.Gray: Some global properties of contact structures, Ann. of Math. 69(1959) 421-450.

> Department of Mathematics, Kyoto Sangyo University, 603-8555 Kyoto, JAPAN. *e-mail: rimo@cc.kyoto-su.ac.jp*