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ABSTRACT. Let (X, 6, u) be a normal space of homogeneous type of order v. Gatto and
Vagi [7] showed that, if f and I, f are in LP(X) (0 < & < min(y, 1/p)), then I, f is in
CP*(X), where I, is the Riesz potential of order @ and CP'® is the space of smooth
functions of Calderdén-Scott [1]. In this paper, we introduce a generalized Riesz potential
T4 and extend the result above. With this aim, we extend the Hardy-Littlewood-Sobolev
inequality to the Orlicz space.

1. INTRODUCTION

Let X = (X, d, 1) be a space of homogeneous type, i.e. X is a topological space endowed
with a quasi-distance d and a positive measure 1 such that
d(z,y) >0 and d(z,y)=0if and only if z =y,
d(z,y) = d(y, ).
d(w,y) < Ky (d(x, 2) + d(z,y)),

the balls B(z,r) ={y € X : d(z,y) <7}, r > 0, form a basis of neighborhoods of the point
x, p is defined on a o-algebra of subsets of X which contains the balls, and

0 < u(B(z,2r)) < Kq u(B(z,7)) < o0,

where K; > 1 (¢ = 1,2) are constants independent of z,y,z € X and r > 0. Following [5],
we assume that the space of compactly supported continuous functions is dense in L (X, u).
We assume that X = (X,d, ;1) is of order v (0 < v < 1) and @-homogeneous (Q > 0),

(1.1) jd(2,2) — d(y,2)| < Kad(w,y)"(d(z,2) + d(y, )" 7,
(1.2) Ky ' < pu(B(a,r)) < Kar?,

where K; > 1 (i = 3,4) are constants independent of z,y,z € X and r > 0. From (1.2) it
follows that p({z}) =0 for all x € X.

The n-dimensional Euclidean space R™ is of order 1 and n-homogeneous.

For an increasing function ¢ : (0,00) — (0, c0), let

Tefte) = [ et auty)

If ¢(r) =7, 0 < a < @, then Iy is the Riesz potential of order «.
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For f € L?(X), 1 < p < o0, we consider the sharp functions

1
flo)= sw o [ 0) = Fatan| duty)
¢ zE€B(a,r) @(T‘)/,l(B(Cl7T‘)) J B(a,r) (e.r)
where fp(.,) = u(Bla fB(a " f(y)du(y) and the supremum is taken over all balls
B(a,r) containing z. The space OP?(X ) is the set of all functions f € LP(X) with fi €

L?(X) equipped with the norm || f||cr.s = ||f§)|\p + || fllp, where || ||, denotes the LP-norm.
Our main results are as follows:

Theorem 1.1. Let 1 < p < co. Assume that ¢ is increasing, ¢(r)/r@/P=2) is decreasing
for some € > 0, and fol(gb(t)/t) dt + [T(S(t) /1) dt < co. Let

, " p(t  B(t
(1.3) w(r):/o ¥dt+r7 : i(—l—}/dt’ 0<r <o

If f and F = I4f are in LP(X), then F is in CP¥(X) and ||F||cr.e < C(|F|lp+ | fllp) with
a constant C' independent of F and f.

Remark 1.1. If ¢ is increasing and ¢(r)/r? is decreasing, then ¢ is continuous and

(1.4) ¢(r) < ¢(2r) <299(r),
" ¢( Vgr oo [ 20)
p(r) < ( . dt +r .t dt) ’

Corollary 1.2. Let 1 < p < co. Assume that ¢ is increasing, ¢(r)/r(@/P=2) s decreasing
for some € > 0, and there exists a constant Co > 0 such that

(1.5) /@dtﬂv ?Q{dt<0é() 0<r < oco.
0 g r

If f and F = I4f are in LP(X), then F is in CP%(X) and ||F||crs < C(||F|l, + || f]lp) with
a constant C independent of F and f.

Remark 1.2. If ¢(r) =r%, 0 < a < min(y, @/p), then ¢ satisfies (1.5). Therefore the result
of [7, Theorem 2.1] is contained in this corollary.

To prove the results above, we extend the Hardy-Littlewood-Sobolev inequality to the
Orlicz space L®. The definitions of the N-function ® and the Orlicz space L® are in next
section.

Theorem 1.3. Let 1 < s < oco. Assume that ¢ is increasing, ¢(r )/T‘(Q/S_E) 18 decreasing
for some £ >0, and fo (t)/t)dt < co. Then there exists an N-function ® such that

1 1 [ (1) /1
) 1 < / < C 1 ;
(1.6) cCT o~ (rQ) rQ/“”/O — dt <C® <—TQ>, 0<r<oo,

and I is bounded from L*(X) to L*(X).

Section 3 is for preliminalies. In Section 4 we give proofs of the theorems. In Section 5
we give examples.
The letter C' will denote a constant, not neccessarily the same indifferent occurrences.
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2. ORLICZ SPACES

In this section, we recall the definition of Orlicz spaces.
A function @ : [0,00) — [0, 00) is called an N-function if it can be represented as

O(r) = /O Ca(t)dt,

where a : [0,00) — [0,00) is a right continuous nondecreasing function such that «(0) = 0,
a(t) >0ift >0, and, a(t) — oo as t — co. Let

b(r) = sup{s : a(s) <r}.
Then ‘
U(r) = / b(t) dt

is also an N-function, and (®, ¥) is called a complementary pair.
Let (X, ;1) be a measure space. For an N-function @, let

LX) = {f : /th(a\f(x)\)du(:c) < oo for some = > o},

I#le =int {3 > 00 [ & (L) duey <1,

Let (@, %) be a complementary pair of N-functions. We note that

(2.1) / [f(x)g () dp(z) < 2| fllellgllw,
X

and that

(2.2) r< @ )T (r), >0,

where ® ! and ¥! are inverse functions of ® and U, respectively. Let (X, d, 1) be a space
of homogeneous type, and x p(4,,) be the characteristic function of a ball B(a,r). Then

23) Tl =it {20 [ o (122200 g0 <1}
X

_inf{/\ >0:0 <i) p(B(a,r)) < 1}

1 _1 1
= S (Lp(Bla,ry) =B (mB(a,r») '

3. PRELIMINALIES
In this section, we show lemmas to prove theorems.

Lemma 3.1. Let a >0, >0, >0, ¢: (0,00) = (0,00) be increasing and ¢(r)/r® be
decreasing. Then, for 0 < r < oo,

(i) s (/OO (1) ‘“) " ()"
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Proof. By the increasingness of ¢ we have

o 5 o
= o(t) 1, L b a—1—(a+pB)8

5(r)9 - —1—(a+p)d 72 _ 1 (#)(ﬂ)é
> (r) / f = et By (7‘“"’5 '

we have

«

By the decreasingness of ¢(r)/r

[y e (e

< (@)J/Tmtlﬂ‘sdt: % (f{f_t;)é O

Lemma 3.2, Let o > 0, 8 > 0, a+ 8 < Q, h : (0,00) = (0,00) be increasing and
differentiable, and h(r)/r® be decreasing. Then there exists an N-function ® such that

e 1 h(r) _ 1
—1g—1 1 ‘
(3.1) C® (rQ> Sra+ﬁ <Ce® <rQ)’ 0<r<oo,

where C' > 0 s independent of r.
Proof. Let

H(r) = /OC Mt_l dt.

tots
Then H is decreasing, differentiable and H'(r) < 0 for all r > 0. Applying Lemma 3.1 with
§ = 1, we have that H(r) is comparable to h(r)/r®T# and so

lim H(r) =occ and lim H(r) =0.
00

r——+40

Hence H is bijective from (0, 00) to itself. Let

u =

07
2(u) = {1/(H—1(u,))Q w0,

(1 * n(t)
1 1
® <TQ) - / et L

and we have (3.1). Next we show that ® is an N-function, i.e., limy—10®'(u) = 0,
limy 00 ®'(u) = oo and ®'(u) > 0. Let

_ 1 1
u=H(r)=2> 1<T‘_Q>7 V=g

Then

Then v = ®(u) and

. dv dU du Q h(r) Q
P (u) = o = alar = <_ T’Q+1> /<_ roz+ﬂ+1) = erozfﬁh(r).

If w — +0, then r = oo and ®'(u) — 0. If u — oo, then r — 40 and ®'(u) = oo. Since
du/dv is decreasing with respect to r, we have d(du/dv)/dr < 0. Hence

d?v B d dv du >0 O
du? ~ \dr du dr — 7
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Remark 3.1. If ¢ is increasing, ¢(r)/r® is decreasing, and f01(¢(t)/l‘) dt < oo, then h(r) =
Jo (é(t)/t) dt is increasing and differentiable, and h(r)/r® is decreasing. Actually,

- (h() ) - e 1 (¢(r) - “./0 Ao dt)

Vofoy o) [T e )\
Srd+1 (q)(r{)a s /Ot dt] =0

Lemma 3.3. Let ¢ be increasing and ¢(r)/r@ be decreasing. If 2K d(x,2') < d(x,y), then

dd(.y) _ $ld',y)) 2ld(z.y)
dey)? daty) Al )T

where C' > 0 is independent of z, 2",y € X.

(3.2)

< Cd(z,z")”

Proof. By mean value theorem we have that, for u < v, there exists r¢ such that

1 I v—u
U_Q_U_Q_TOQ—H U <<rg<<w.

Hence
" 1 1 )
02 820 <o (- 75 ) = QU0 g <@ -0 S
Let v = min(d(x,y),d(2',y)) and v = max(d(z,y), d(z',y)). Then
vmu < K, (d(r,y) + dy)

1—7
< K3 (Kl + 5) d(x,2")d(x, y) 77,

and day)

T,y

<u<

2K, — u < d(z,y)

e (u) Sdz. )
olu / T,y
(0 =) g = Gl a0~ o

Therefore we have (3.2). O

The following is used in the proof of Theorem 1.1. For all balls B and for all integrable

functions f on B,
1 1

(3.3 —/fy—f du(y) < 2inf /fy—cd Y).

3.3) 57, 1F0) = Fuldnty) < 2int s | 15(0) — el duty)

4. PROOFS OF THEOREMS

Proof of Theorem 1.3. By Lemma 3.2 and Remark 3.1 we have an N-function ® with
the property (1.6). For r > 0, let

o(d(x,y
Jo= / fly)———==*dp(y) and
! Jd(z,y)<r ( ) d(r7y)Q #( )
Yy

B /d(m,y)z,«f(y) d(z,y)@ dp(y).

Since ¢(r)/r? is decreasing,

(41) 1] SMf(fv)/d( - %du(m
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where M is the Hardy-Littlewood maximal function (see Stein[10, p.57]). By (1.2) and (1.4)
we have

a2 | e A ) < 2o 2n)

< Coh(rj) < C’/zrj @dt, rp =270 j=1,2,....
From (4.1) and (4.2) it follows that
(4.3) || < CMf(x) /0 @ dt.

Next we estimate |Jz|. Let 1/s 4 1/s" = 1. Let Xp(q,n)° be the characteristic function of
B(z,r). By Holder’s inequality we have

, l/s‘
) s\
i ( /MW( ) dum) .

1

ws) | e (i;g’(y%)) duly) < (Q) W(Br.2r))

J

(@4) 1h) < ], | A

WXB@,M(‘)

By (1.2) and (1.4) we have

By Lemma 3.1 we have

1) (] () )" <t

From (4.4), (4.5) and (4.6) it follows that

(r)

(4.7) 72| < ClIflls -

By (4.3) and (4.7) we have

1 " o(t)
Tef(ol <€ (M7 + Wlgry ) [ 2
We note that there exists a constant C; > 0 such that
[MFflls < Csllflls,  for  f e L¥(X).
Set r = (1/0)%/? and o = M f(x)/(Cs||f||s). Then
1 1
M) + g = (14 &) Moo

and

/r o0 g < or@lag (i) _ 2
J0 t Q

r g

sl < x5 ™7 ot ((ZH) Vi,

Therefore
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I¢f(x)> (Mf(ﬂf)>s
d < (=L
(C|f|s G| flls
This shows
[¢f($)> *
[ (&) e <
and

s f(x)lle < ClIflls-

Proof of Theorem 1.1. Fix = € X; we will estimate Fi(:r) Let B = B(a,r) be a
ball containing x and B = B(a,2Kyr). Let y be the characteristic function of B. Set
F=F + F, with Fy = I4(fx) and F, = I(f(1 — x)).

To estimate (Fl)zb(:t), let 1 < s < p. By Theorem 1.3 we have an N-function ® with the
property (1.6) and

(4.8) o flle < Cllf]s-

Let ¥ be the complement of ®. From (2.1), (2.3), (1.6), (1.4) and (4.8), it follows that

) J, ) < sl ol
5> /1 .
< rQ’(l/)(r)/’l’(B)q) (m) HI¢(7CX)H4> < m”f\“&

=C <7~1Q /B 17(2)]° du(z)> ” < C'M,(f)(x),

where M,(f) = [M(|f]*)]'/*. By (3.3) we have
(4.9) (F1)%(2) < OM(f)(2).

Second we estimate (Fz)i(l) Observe that

I (1= )(2) = L(f(1 = )@ = /@c s (Gt - 2D ),

(z,9)9

then by Lemma 3.3 we have

(4.10) /B Lo (F(1 = ))(=) = Lo(F(1 = x))(@)] dpu(2)

< C/Bd(aﬁ)“” (/(B)C W@@)) dp(z).
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To estimate the inner integral we write

p(d(a, y))|f(y)] - ¢(2*r)1f(y)
/(B)C d(a,y)9t ) = ;/2 r<d(ag) <y (20T (o)

e k.
r)k+1 Q @ 2 ) 1 / ‘f

. y)ldu(y

<2 SErareercl RNEIL L)

<c (; f’éff;j) Mf(a) < C’ (kzi / Z_ oo dt) Mf(z)

_C’< T :ﬁ(ﬂ dt> M) <c'”( )Mf( ).

Using the estimate (4.10) and (3.3) we get
(4.11) (F2)%(x) < CMf(x) < CML(f)(x).

(4.9), (4.11) and the fact that the sharp function operator is subadditive, we have

Fi(x) < CML(f)(x).
Finally, using the strong type p/s of M we have

IFE 1, < ClIfllp-
This concludes the proof of Theorem 1.1

5. EXAMPLES
For functions 6,x : (0,00) —

(0, 00), we denote 8(r) ~ r(r), u < r < v, if there exists a
constant C' > 0 such that

C1O(r) < r(r) <CH(r), u<r<u.
First we give examples of ¢ in (1.3). Let 0 < a; < oo and —oo < §3; < oo (1 = 1,2). For
constants r; and r2 (0 <7y < 1/e,e <rg), let
kiret(1/log(1/r)P, 0 <r <y,
(5.1) @(r) 1, r1 <1 <rg,
korez(log )Pz ro < 1 < 00,
where ky = (r; ™ (l/log(l/rl))ﬁ1 )71 and kg = (r2*2(log ‘rz)ﬂg)_l
If @1, ag > 0, then
"t
/ 9(t) dt ~ &(r).
Jo t
If a1, as < v, then
= o(t)

i dt ~ ¢(r).

Ifag =0and By > 1, le., ¢(r) = kl(l/log(l/r))ﬂl, 0 <r<ry, then
T o) g o(t)
qu <C/ dt =

C'(1/log(1/r)) 7,

0<r<r,

w(r) ~ (1/log(1/r)) 7!

5 0<T‘<T‘1.
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If ay = 7, B2 < —1, i.e., &(r) = kar?(logr)?2, r > 1y, then

/ qﬁ dt ~ ¢(r) < Cr” gi(Jr)/ dt = C'rV(logr)P2 T r > ry,

ie.,
b(r) ~ r¥(logr)? 2T r >,

The following example shows that we cannot replace [ (¢(t)/t) dt by ¢(r) in Theorem 1.3.
Let X =R", 1 < s < oo and ¢ is as in (5.1) with ay =0, #1 > 1 and 0 < a2 < n/s.
Let 0 < € < n/s — ay. Choose r; and ry so that ¢ is increasing and that ¢(r)/r"/*~¢ are
decreasing. For 1 < 4§ < s, let

o) - {<1/|x|>"/s<1/1og<1/x)WS, bl <r e
07 |:E| 2 1,

Then f € L*(R™). From Theorem 1.3 it follows that there exists an N-function @ such that

o (L) [
re refs Joo ¢

and that Iy f € L®(R™). However, if there exists an N-function @; such that

- 1 1
o (r_”> ~ s o),

then Iof ¢ L1 (R"). Actually, if |2 < r1/2 and |y| < |z]/2, then |2[/2 < |z — y| < 3|z|/2
and f(x) ~ f(z —y). Hence,

s
I,f(x) > /|y|< e

, $(ls))
> Cf(a) /qurw Ly > €)1 Tog(2/Je))*

1
> Ol o1l ~ 07 () el <
Since ®41(r) < &¢(2r) < C®y(r), for any A > 0, there exists a constant A" > 0 such that

(1)1( h\ ZA’| |n’ |l’|<§

Therefore I, f ¢ L®1(R™).
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