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Abstract. Let (X; Æ; �) be a normal space of homogeneous type of order 
. Gatto and

V�agi [7] showed that, if f and I�f are in Lp(X) (0 < � < min(
; 1=p)), then I�f is in

Cp;�(X), where I� is the Riesz potential of order � and Cp;� is the space of smooth

functions of Calder�on-Scott [1]. In this paper, we introduce a generalized Riesz potential

I� and extend the result above. With this aim, we extend the Hardy-Littlewood-Sobolev

inequality to the Orlicz space.

1. Introduction

Let X = (X;d; �) be a space of homogeneous type, i.e. X is a topological space endowed

with a quasi-distance d and a positive measure � such that

d(x; y) � 0 and d(x; y) = 0 if and only if x = y;

d(x; y) = d(y; x);

d(x; y) � K1 (d(x; z) + d(z; y));

the balls B(x; r) = fy 2 X : d(x; y) < rg, r > 0, form a basis of neighborhoods of the point

x, � is de�ned on a �-algebra of subsets of X which contains the balls, and

0 < �(B(x; 2r)) � K2 �(B(x; r)) <1;

where Ki � 1 (i = 1; 2) are constants independent of x; y; z 2 X and r > 0. Following [5],

we assume that the space of compactly supported continuous functions is dense in L1(X;�).

We assume that X = (X;d; �) is of order 
 (0 < 
 � 1) and Q-homogeneous (Q > 0),

i.e.

jd(x; z) � d(y; z)j � K3d(x; y)

 (d(x; z) + d(y; z))1�
 ;(1.1)

K4
�1rQ � �(B(x; r)) � K4r

Q;(1.2)

where Ki � 1 (i = 3; 4) are constants independent of x; y; z 2 X and r > 0. From (1.2) it

follows that �(fxg) = 0 for all x 2 X.

The n-dimensional Euclidean space Rn is of order 1 and n-homogeneous.

For an increasing function � : (0;1)! (0;1), let

I�f(x) =

Z
X

f(y)
�(d(x; y))

d(x; y)Q
d�(y):

If �(r) = r�, 0 < � < Q, then I� is the Riesz potential of order �.
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For f 2 Lp(X), 1 < p <1, we consider the sharp functions

f
]
�(x) = sup

x2B(a;r)

1

�(r)�(B(a; r))

Z
B(a;r)

jf(y) � fB(a;r)j d�(y)

where fB(a;r) = �(B(a; r))�1
R
B(a;r)

f(y) d�(y) and the supremum is taken over all balls

B(a; r) containing x. The space Cp;�(X) is the set of all functions f 2 Lp(X) with f
]
� 2

Lp(X) equipped with the norm kfkCp;� = kf
]
�kp + kfkp, where k kp denotes the Lp-norm.

Our main results are as follows:

Theorem 1.1. Let 1 < p < 1. Assume that � is increasing, �(r)=r(Q=p�") is decreasing

for some " > 0, and
R 1
0
(�(t)=t) dt +

R
1

1
(�(t)=t1+
) dt <1. Let

 (r) =

Z r

0

�(t)

t
dt+ r


Z
1

r

�(t)

t1+

dt; 0 < r <1:(1.3)

If f and F = I�f are in Lp(X), then F is in Cp; (X) and kFkCp; � C(kFkp+kfkp) with

a constant C independent of F and f .

Remark 1.1. If � is increasing and �(r)=rQ is decreasing, then � is continuous and

�(r) � �(2r) � 2Q�(r);(1.4)

�(r) �

�Z r

0

�(t)

t
dt+ r


Z
1

r

�(t)

t1+

dt

�
:

Corollary 1.2. Let 1 < p <1. Assume that � is increasing, �(r)=r(Q=p�") is decreasing

for some " > 0, and there exists a constant C0 > 0 such thatZ r

0

�(t)

t
dt+ r


Z
1

r

�(t)

t1+

dt � C0�(r); 0 < r <1:(1.5)

If f and F = I�f are in Lp(X), then F is in Cp;�(X) and kFkCp;� � C(kFkp+ kfkp) with

a constant C independent of F and f .

Remark 1.2. If �(r) = r�, 0 < � < min(
;Q=p), then � satis�es (1.5). Therefore the result

of [7, Theorem 2.1] is contained in this corollary.

To prove the results above, we extend the Hardy-Littlewood-Sobolev inequality to the

Orlicz space L�. The de�nitions of the N-function � and the Orlicz space L� are in next

section.

Theorem 1.3. Let 1 < s < 1. Assume that � is increasing, �(r)=r(Q=s�") is decreasing

for some " > 0, and
R 1
0
(�(t)=t) dt <1. Then there exists an N-function � such that

C�1��1
�

1

rQ

�
�

1

rQ=s

Z r

0

�(t)

t
dt � C��1

�
1

rQ

�
; 0 < r <1;(1.6)

and I� is bounded from Ls(X) to L�(X).

Section 3 is for preliminalies. In Section 4 we give proofs of the theorems. In Section 5

we give examples.

The letter C will denote a constant, not neccessarily the same indi�erent occurrences.
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2. Orlicz spaces

In this section, we recall the de�nition of Orlicz spaces.

A function � : [0;1)! [0;1) is called an N-function if it can be represented as

�(r) =

Z r

0

a(t) dt;

where a : [0;1) ! [0;1) is a right continuous nondecreasing function such that a(0) = 0,

a(t) > 0 if t > 0, and, a(t) !1 as t!1. Let

b(r) = supfs : a(s) � rg:

Then

	(r) =

Z r

0

b(t) dt

is also an N-function, and (�;	) is called a complementary pair.

Let (X;�) be a measure space. For an N-function �, let

L�(X) =

�
f :

Z
X

�("jf(x)j) d�(x) <1 for some " > 0

�
;

kfk� = inf

�
� > 0 :

Z
X

�

�
jf(x)j

�

�
d�(x) � 1

�
:

Let (�;	) be a complementary pair of N-functions. We note thatZ
X

jf(x)g(x)j d�(x) � 2kfk�kgk	;(2.1)

and that

r � ��1(r)	�1(r); r � 0;(2.2)

where ��1 and 	�1 are inverse functions of � and 	, respectively. Let (X;d; �) be a space

of homogeneous type, and �B(a;r) be the characteristic function of a ball B(a; r). Then

(2.3) k�B(a;r)k	 = inf

�
� > 0 :

Z
X

	

�
�B(a;r)(x)

�

�
d�(x) � 1

�

= inf

�
� > 0 : 	

�
1

�

�
�(B(a; r)) � 1

�

=
1

	�1(1=�(B(a; r)))
� �(B(a; r))��1

�
1

�(B(a; r))

�
:

3. Preliminalies

In this section, we show lemmas to prove theorems.

Lemma 3.1. Let � > 0, � > 0, Æ > 0, � : (0;1) ! (0;1) be increasing and �(r)=r� be

decreasing. Then, for 0 < r <1,

�
1

(�+ �)Æ

�1=Æ
�(r)

r�+�
�

 Z
1

r

�
�(t)

t�+�

�Æ
t�1 dt

!1=Æ
�

�
1

�Æ

�1=Æ
�(r)

r�+�
:
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Proof. By the increasingness of � we have

Z
1

r

�
�(t)

t�+�

�Æ
t�1 dt =

Z
1

r

�(t)Æt�1�(�+�)Æ dt

� �(r)Æ
Z
1

r

t�1�(�+�)Æ dt =
1

(�+ �)Æ

�
�(r)

r�+�

�Æ
:

By the decreasingness of �(r)=r� we have

Z
1

r

�
�(t)

t�+�

�Æ
t�1 dt =

Z
1

r

�
�(t)

t�

�Æ
t�1��Æ dt

�

�
�(r)

r�

�Æ Z 1

r

t�1��Æ dt =
1

�Æ

�
�(r)

r�+�

�Æ
:

Lemma 3.2. Let � > 0, � > 0, � + � < Q, h : (0;1) ! (0;1) be increasing and

di�erentiable, and h(r)=r� be decreasing. Then there exists an N-function � such that

C�1��1
�

1

rQ

�
�

h(r)

r�+�
� C��1

�
1

rQ

�
; 0 < r <1;(3.1)

where C > 0 is independent of r.

Proof. Let

H(r) =

Z
1

r

h(t)

t�+�
t�1 dt:

Then H is decreasing, di�erentiable and H 0(r) < 0 for all r > 0. Applying Lemma 3.1 with

Æ = 1, we have that H(r) is comparable to h(r)=r�+� , and so

lim
r!+0

H(r) =1 and lim
r!1

H(r) = 0:

Hence H is bijective from (0;1) to itself. Let

�(u) =

(
0; u = 0

1=(H�1(u))Q u > 0:

Then

��1
�

1

rQ

�
=

Z
1

r

h(t)

t�+�
t�1 dt;

and we have (3.1). Next we show that � is an N-function, i.e., limu!+0�
0(u) = 0,

limu!1�0(u) =1 and �00(u) � 0. Let

u = H(r) = ��1
�

1

rQ

�
; v =

1

rQ
:

Then v = �(u) and

�0(u) =
dv

du
=
dv

dr

�
du

dr
=

�
�

Q

rQ+1

���
�

h(r)

r�+�+1

�
=

Q

rQ����h(r)
:

If u ! +0, then r ! 1 and �0(u) ! 0. If u ! 1, then r ! +0 and �0(u) ! 1. Since

du=dv is decreasing with respect to r, we have d(du=dv)=dr � 0. Hence

d2v

du2
=

�
d

dr

dv

du

��
du

dr
� 0:
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Remark 3.1. If � is increasing, �(r)=r� is decreasing, and
R 1
0
(�(t)=t) dt < 1, then h(r) =R r

0
(�(t)=t) dt is increasing and di�erentiable, and h(r)=r� is decreasing. Actually,

d

dr

�
h(r)

r�

�
=
rh0(r) � �h(r)

r�+1
=

1

r�+1

�
�(r) � �

Z r

0

�(t)

t�
t��1 dt

�

�
1

r�+1

�
�(r) � �

�(r)

r�

Z r

0

t��1 dt

�
= 0:

Lemma 3.3. Let � be increasing and �(r)=rQ be decreasing. If 2K1d(x; x
0) � d(x; y), then�����(d(x; y))d(x; y)Q

�
�(d(x0; y))

d(x0; y)Q

���� � Cd(x; x0)

�(d(x; y))

d(x; y)Q+

;(3.2)

where C > 0 is independent of x; x0; y 2 X.

Proof. By mean value theorem we have that, for u < v, there exists r0 such that

1

uQ
�

1

vQ
=

v � u

r0Q+1
; u < r0 < v:

Hence

0 �
�(u)

uQ
�
�(v)

vQ
� �(u)

�
1

uQ
�

1

vQ

�
= Q�(u)

v � u

r0Q+1
� Q(v � u)

�(u)

uQ+1
:

Let u = min(d(x; y); d(x0 ; y)) and v = max(d(x; y); d(x0 ; y)). Then

v � u � K3d(x; x
0)
(d(x; y) + d(x0; y))1�


� K3

�
K1 +

3

2

�1�

d(x; x0)
d(x; y)1�
 ;

and
d(x; y)

2K1

� u � d(x; y):

Hence

(v � u)
�(u)

uQ+1
� Cd(x; x0)


�(d(x; y))

d(x; y)Q+

:

Therefore we have (3.2).

The following is used in the proof of Theorem 1.1. For all balls B and for all integrable

functions f on B,

1

�(B)

Z
B

jf(y) � fB j d�(y) � 2 inf
c

1

�(B)

Z
B

jf(y) � cj d�(y):(3.3)

4. Proofs of Theorems

Proof of Theorem 1.3. By Lemma 3.2 and Remark 3.1 we have an N-function � with

the property (1.6). For r > 0, let

J1 =

Z
d(x;y)<r

f(y)
�(d(x; y))

d(x; y)Q
d�(y) and

J2 =

Z
d(x;y)�r

f(y)
�(d(x; y))

d(x; y)Q
d�(y):

Since �(r)=rQ is decreasing,

jJ1j �Mf(x)

Z
d(x;y)<r

�(d(x; y))

d(x; y)Q
d�(y);(4.1)
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whereM is the Hardy-Littlewood maximal function (see Stein[10, p.57]). By (1.2) and (1.4)

we have

(4.2)

Z
rj�d(x;y)<2rj

�(d(x; y))

d(x; y)Q
d�(y) �

�(rj)

rjQ
�(B(x; 2rj ))

� C�(rj) � C 0
Z 2rj

rj

�(t)

t
dt; rj = 2�jr; j = 1; 2; : : : :

From (4.1) and (4.2) it follows that

jJ1j � CMf(x)

Z r

0

�(t)

t
dt:(4.3)

Next we estimate jJ2j. Let 1=s + 1=s0 = 1. Let �B(x;r)c be the characteristic function of

B(x; r)
c
. By H�older's inequality we have

jJ2j � kfks





�(d(x; �))d(x; �)Q
�B(x;r)c(�)






s0
= kfks

 Z
d(x;y)�r

�
�(d(x; y))

d(x; y)Q

�s0
d�(y)

!1=s0
:(4.4)

By (1.2) and (1.4) we have

(4.5)

Z
rj�d(x;y)<2rj

�
�(d(x; y))

d(x; y)Q

�s0
d�(y) �

�
�(rj)

rjQ

�s0
�(B(x; 2rj ))

� C

�
�(rj )

rjQ=s

�s0
� C 0

Z 2rj

rj

�
�(t)

tQ=s

�s0
t�1 dt; rj = 2jr; j = 0; 1; 2; : : : :

By Lemma 3.1 we have  Z
1

r

�
�(t)

tQ=s

�s0
t�1 dt

!1=s0
� C

�(r)

rQ=s
:(4.6)

From (4.4), (4.5) and (4.6) it follows that

jJ2j � Ckfks
�(r)

rQ=s
:(4.7)

By (4.3) and (4.7) we have

jI�f(x)j � C

�
Mf(x) + kfks

1

rQ=s

�Z r

0

�(t)

t
dt:

We note that there exists a constant Cs > 0 such that

kMfks � Cskfks; for f 2 Ls(X):

Set r = (1=�)s=Q and � =Mf(x)=(Cskfks). Then

Mf(x) + kfks
1

rQ=s
=

�
1 +

1

Cs

�
Mf(x);

and Z r

0

�(t)

t
dt � CrQ=s��1

�
1

rQ

�
= C

��1(�s)

�
:

Therefore

jI�f(x)j � CMf(x)
��1(�s)

�
= C��1

��
Mf(x)

Cskfks

�s�
kfks;
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i.e.

�

�
I�f(x)

Ckfks

�
�

�
Mf(x)

Cskfks

�s
:

This shows Z
X

�

�
I�f(x)

Ckfks

�
d�(x) � 1;

and

kI�f(x)k� � Ckfks:

Proof of Theorem 1.1. Fix x 2 X; we will estimate F
]
 (x). Let B = B(a; r) be a

ball containing x and ~B = B(a; 2K1r). Let � be the characteristic function of ~B. Set

F = F1 + F2 with F1 = I�(f�) and F2 = I�(f(1 � �)).

To estimate (F1)
]
 (x), let 1 < s < p. By Theorem 1.3 we have an N-function � with the

property (1.6) and

kI�fk� � Ckfks:(4.8)

Let 	 be the complement of �. From (2.1), (2.3), (1.6), (1.4) and (4.8), it follows that

1

rQ (r)

Z
B

jI�(f�)(z)j d�(z) �
2

rQ (r)
k�Bk	kI�(f�)k�

�
2

rQ (r)
�(B)��1

�
1

�(B)

�
kI�(f�)k� �

C

rQ=s
kf�ks

= C

�
1

rQ

Z
~B

jf(z)js d�(z)

�1=s
� C 0Ms(f)(x);

where Ms(f) = [M(jf js)]1=s. By (3.3) we have

(F1)
]
 (x) � CMs(f)(x):(4.9)

Second we estimate (F2)
]
 (x). Observe that

I�(f(1 � �))(z) � I�(f(1 � �))(a) =

Z
( ~B)

c

f(y)

�
�(d(z; y))

d(z; y)Q
�
�(d(a; y))

d(a; y)Q

�
d�(y);

then by Lemma 3.3 we have

(4.10)

Z
B

jI�(f(1 � �))(z) � I�(f(1 � �))(a)j d�(z)

� C

Z
B

d(a; z)


 Z
( ~B)

c

�(d(a; y))jf(y)j

d(a; y)Q+

d�(y)

!
d�(z):
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To estimate the inner integral we write

Z
( ~B)

c

�(d(a; y))jf(y)j

d(a; y)Q+

d�(y) �

1X
k=1

Z
2kr�d(a;y)<2k+1r

�(2kr)jf(y)j

(2kr)Q+

d�(y)

�

1X
k=1

(2k+1r)Q
�(2kr)

(2kr)Q+

1

(2k+1r)Q

Z
B(a;2k+1r)

jf(y)j d�(y)

� C

 
1X
k=1

�(2kr)

(2kr)


!
Mf(x) � C 0

 
1X
k=1

Z 2kr

2k�1r

�(t)

t1+

dt

!
Mf(x)

= C 0
�Z

1

r

�(t)

t1+

dt

�
Mf(x) � C 0

 (r)

r

Mf(x):

Using the estimate (4.10) and (3.3) we get

(F2)
]
 (x) � CMf(x) � CMs(f)(x):(4.11)

By (4.9), (4.11) and the fact that the sharp function operator is subadditive, we have

F
]
 (x) � CMs(f)(x):

Finally, using the strong type p=s of M we have

kF
]
 kp � Ckfkp:

This concludes the proof of Theorem 1.1.

5. Examples

For functions �; � : (0;1) ! (0;1), we denote �(r) � �(r), u < r < v, if there exists a

constant C > 0 such that

C�1�(r) � �(r) � C�(r); u < r < v:

First we give examples of  in (1.3). Let 0 � �i <1 and �1 < �i <1 (i = 1; 2). For

constants r1 and r2 (0 < r1 < 1=e; e < r2), let

�(r) =

8><
>:
k1r

�1 (1= log(1=r))�1 ; 0 < r < r1;

1; r1 � r � r2;

k2r
�2 (log r)�2 ; r2 < r <1;

(5.1)

where k1 = (r1
�1(1= log(1=r1))

�1)�1 and k2 = (r2
�2(log r2)

�2)�1.

If �1; �2 > 0, then Z r

0

�(t)

t
dt � �(r):

If �1; �2 < 
, then

r

Z
1

r

�(t)

t1+

dt � �(r):

If �1 = 0 and �1 > 1, i.e., �(r) = k1(1= log(1=r))
�1 , 0 < r < r1, then

r

Z
1

r

�(t)

t1+

dt � �(r) � C

Z r

0

�(t)

t
dt = C 0(1= log(1=r))�1�1; 0 < r < r1;

i.e.,

 (r) � (1= log(1=r))�1�1; 0 < r < r1:
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If �2 = 
, �2 < �1, i.e., �(r) = k2r

(log r)�2 , r > r2, thenZ r

0

�(t)

t
dt � �(r) � Cr


Z
1

r

�(t)

t1+

dt = C 0r
(log r)�2+1; r > r2;

i.e.,

 (r) � r
(log r)�2+1; r > r2:

The following example shows that we cannot replace
R r
0
(�(t)=t) dt by �(r) in Theorem 1.3.

Let X = R
n, 1 < s < 1 and � is as in (5.1) with �1 = 0, �1 > 1 and 0 < �2 < n=s.

Let 0 < � < n=s � �2. Choose r1 and r2 so that � is increasing and that �(r)=rn=s�� are

decreasing. For 1 < Æ < s, let

f(x) =

(
(1=jxj)n=s(1= log(1=jxj))Æ=s; jxj < r1;

0; jxj � r1;
x 2 Rn:

Then f 2 Ls(Rn). From Theorem 1.3 it follows that there exists an N-function � such that

��1
�

1

rn

�
�

1

rn=s

Z r

0

�(t)

t
dt;

and that I�f 2 L
�(Rn). However, if there exists an N-function �1 such that

��11

�
1

rn

�
�

1

rn=s
�(r);

then I�f =2 L�1(Rn). Actually, if jxj < r1=2 and jyj < jxj=2, then jxj=2 � jx � yj � 3jxj=2

and f(x) � f(x � y). Hence,

I�f(x) �

Z
jyj�jxj=2

f(x � y)
�(jyj)

jyjn
dy

� Cf(x)

Z
jyj�jxj=2

�(jyj)

jyjn
dy � C 0f(x)(1= log(2=jxj))�1�1

� C 00(1=jxj)n=s(1= log(1=jxj))�1 � ��11

�
1

jxjn

�
; jxj < r1=2:

Since �1(r) � �1(2r) � C�1(r), for any � > 0, there exists a constant �0 > 0 such that

�1

�
I�f(x)

�

�
�

1

�0
1

jxjn
; jxj <

r1

2
:

Therefore I�f =2 L�1(Rn).

6. Acknowledgement

The authors would like to thank the referee for his helpful suggestions.

References

[1] A. P. Calder�on and R. Scott, Sobolev type inequalities for p > 0, Studia Math. 62 (1978),75{92.

[2] P. Cifuentes, J. R. Dorronsoro and J. Sueiro, Boundary tangential convergence on spaces of homoge-

neous type, Trans. Amer. Math. Soc. 332 (1992), 331{350

[3] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes,

Lecture Notes in Math., vol.242, Springer-Verlag, Berlin and New York, 1971.

[4] Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569{

645.

[5] I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight theory for integral transforms

on spaces of homogeneous type, Longman, Harlow, 1998.

[6] A. E. Gatto and S. V�agi, Fractional integrals on spaces of homogeneous type, in Analysis and Partial

Di�erential Equations, edited by Cora Sadosky, Marcel Dekker, New York, 1990, 171{216.



900 EIICHI NAKAI AND HIRONORI SUMITOMO

[7] A. E. Gatto and S. V�agi, On functions arising as potentials on spaces of homogeneous type, Proc.

Amer. Math. Soc. 125 (1997), 1149{1152.

[8] R. A. Mac��as and C. Segovia Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33

(1979), 257{270.

[9] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, Basel and Hong

Kong, 1991.

[10] E. M. Stein, Harmonic Analysis, real-variable methods, orthogonality, and oscillatory integrals, Prince-

ton University Press, Princeton, NJ, 1993.

Eiichi NAKAI: Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582-

8582, Japan

E-mail address: enakai@cc.osaka-kyoiku.ac.jp

Hironori SUMITOMO: Department of Mathematics, Osaka Kyoiku University, Kashiwara,

Osaka 582-8582, Japan; Current Address: Takatsuki Laboratory, Minolta Co., Ltd., Takatsuki,

Osaka 569-8503, Japan


