ON A CLASS OF ULTRAMETRIC MEASURES

Angel Popescu

Received December 8, 2000

ABSTRACT. In this note we associate to any compact C in an ultrametric space (X, d) a real valued and a p-adic valued measure μ_C . We prove that any p-adic valued continuous function $f: C \to \mathbf{C}_p$ is μ_C -integrable. Using this measure we extend the definition of the trace function [2] to any $T \in \mathbf{C}_p$.

Let (X,d) be an ultrametric space and C be an infinite compact set in X. By $B[x,r] = \{y \in X \mid d(x,y) \leq r\}$ we denote the "closed" ball with centre in x and with radius r. From the topological point of view, this last one is a closed and an open (clopen) set in X. If $x \in C$, we denote by $D[x,r] = B[x,r] \cap C$. Moreover, if $B[x,r] \cap C \neq \emptyset$ we can choose x to be in C too. Let $\varepsilon_1 > 0$ be the diameter of C, i.e. the smallest $\varepsilon > 0$ such that $C \subset B[x,\varepsilon]$, for an $x \in C$. This means that $C = D[x,\varepsilon_1]$. For any $0 < \varepsilon < \varepsilon_1$, C can be covered with at least two balls. Let $\varepsilon_2 < \varepsilon_1$, be the smallest $\varepsilon < \varepsilon_1$ such that we can cover C with the smallest number of balls, $n_2 > 1$. By definition we put $n_1 = 1$. Suppose we have constructed ε_i and n_i . For any $0 < \varepsilon < \varepsilon_i$ let us denote by $n(\varepsilon)$ the number of distinct balls (they are uniquely determined by C and ε !) of radius $\varepsilon > 0$ which cover effectively the compact C. By the construction of ε_i and n_i we have that $n(\varepsilon) > n_i$. We choose now n_{i+1} to be the smallest $n(\varepsilon) > n_i$. Let $M_{i+1} = \{\varepsilon' \in \mathbf{R} \mid 0 < \varepsilon' < \varepsilon_i, n(\varepsilon') = n_{i+1}\}$ and denote by $\varepsilon_{i+1} = \inf M_{i+1}$. Since C is infinite $1 = n_1, n_2, \ldots$ is a strictly increasing sequence of natural numbers and $\varepsilon_1 > \varepsilon_2 > \cdots$ is a strictly decreasing sequence of positive numbers.

In the following, by a ball of C, we mean an intersection of the type $D[x,\varepsilon] = B[x,\varepsilon] \cap C = \{y \in C \mid d(x,y) \leq \varepsilon\}$, where $x \in C$. Let us denote by S_i the (finite) set of all distinct balls $D[x_j^{(i)},\varepsilon_i], j = 1, 2, ..., n_i$, which cover the compact C. For any i = 1, 2, ... let k_{ij} be the number of balls $D[x_t^{(i)},\varepsilon_i] \in S_i$ which are contained in the fixed ball $D[x_j^{(i-1)},\varepsilon_{i-1}]$ from S_{i-1} . For instance, $k_{11} = 1$ and $k_{i1} + k_{i2} + \cdots + k_{in_i} = n_i$, for every i = 2, 3, ... The sequence $\{\varepsilon_1 > \varepsilon_2 > \cdots\}$ and the infinite matrix $(k_{ij}), i = 1, 2, ..., j = 1, 2, ..., n_i$ are called the configuration of C.

It is not difficult to see that any sequence of positive real numbers $\{\varepsilon_1 > \varepsilon_2 > \cdots\}$ and any infinite matrix of positive integers (k_{ij}) , where i = 1, 2, ..., and $j = 1, 2, ..., n_i$, are the configuration of an infinite number of distinct compacts in \mathbf{C}_p , the complex *p*-adic numbers, i.e. the completion of an algebraic closure of the field of *p*-adic numbers \mathbf{Q}_p relative to the usual *p*-adic distance.

Definition 0.1 Let C be an infinite compact set in an ultrametric space (X, d). For any ball $D[x_{j_i}^{(i)}, \varepsilon_i] \in S_i, j_i \in \{1, 2, ..., n_i\}$, let

 $\begin{array}{l} D[x_{j_{i}}^{(i)},\varepsilon_{i}] \subset D[x_{j_{i-1}}^{(i-1)},\varepsilon_{i-1}] \subset \cdots \subset D[x_{j_{1}}^{(1)},\varepsilon_{1}] \ be \ its \ saturated \ tower \ of \ balls \ (i.e. \ D[x_{j_{k}}^{(k)},\varepsilon_{k}] \in D[x_{j_{k-1}}^{(i)},\varepsilon_{i-1}] \subset \cdots \subset D[x_{j_{1}}^{(1)},\varepsilon_{1}] \ be \ its \ saturated \ tower \ of \ balls \ (i.e. \ D[x_{j_{k}}^{(k)},\varepsilon_{k}] \in D[x_{j_{k}}^{(i)},\varepsilon_{i-1}] \subset \cdots \subset D[x_{j_{1}}^{(1)},\varepsilon_{1}] \ be \ its \ saturated \ tower \ of \ balls \ (i.e. \ D[x_{j_{k}}^{(k)},\varepsilon_{k}] \in D[x_{j_{k}}^{(i)},\varepsilon_{i-1}] \subset \cdots \subset D[x_{j_{1}}^{(1)},\varepsilon_{i-1}] \ be \ its \ saturated \ tower \ of \ balls \ of \ radius \ \varepsilon_{l} \ which \ are \ contained \ in \ the \ ball \ D[x_{j_{l-1}}^{(l-1)},\varepsilon_{l-1}]. \ By \ definition, \ the \ measure \ of \ D[x_{j_{i}}^{(i)},\varepsilon_{i}], \ \mu_{C}(D[x_{j_{i}}^{(i)},\varepsilon_{i}]) = \frac{1}{N_{ij_{i}}}, \ where \ N_{ij_{i}} = k_{1j_{1}} \cdot k_{2j_{2}} \cdot \cdots \cdot k_{ij_{i}}. \ We \ call \ this \ last \ number \ the \ (standard) \ ultrametric \ measure \ of \ D[x_{j_{i}}^{(i)},\varepsilon_{i}]. \end{array}$

It is easy to prove the following result.

Lemma 0.1 The real valued function μ_C can be uniquely extended to a σ -additive measure (also denoted by μ_C) on the Borel field of all the closed subset of C.

For any i = 1, 2, ... we consider the canonical covering of C with all the disjoint balls from S_i . In any ball $D[x_j^{(i)}, \varepsilon_i]$ we choose an element $x_j^{(i)}, j \in \{1, 2, ..., n_i\}$ (it can be thought to be the "centre" of the ball). Let now $f: C \to \mathbf{C}$ be a function defined on C with complex values.

Definition 0.2 A function $f: C \to \mathbf{C}$ is said to be integrable on C if the set of complex numbers $S_i[f; (x_j^{(i)})_j] = \sum_{j=1}^{n_i} f(x_j^{(i)}) \mu_C(D[x_j^{(i)}, \varepsilon_i])$ has a unique limit point in \mathbf{C} .

Remark 0.1 It is not difficult to see that any integrable function on C is a bounded function on C. Moreover, all the classical theory of the Riemann's and Darboux's sums (including Darboux's criteria) works well in this situation.

Let
$$\omega(f; D[x_j^{(i)}, \varepsilon_i]) = \sup\left\{ \left| f(x) - f(y) \right|, x, y \in D[x_j^{(i)}, \varepsilon_i] \right\}$$

and $\omega(f; i) = \max\left\{ \omega(f; D[x_j^{(i)}, \varepsilon_i]) \mid j = 1, 2, ..., n_i \right\}.$

Theorem 0.2 Let C be an infinite compact in the ultrametric space (X, d) and $f : C \to \mathbf{C}$, be a continuous complex valued function defined on C, such that the series $\sum_{i=1}^{\infty} \omega(f; i)$ is convergent in **C**. Then f is integrable on C.

Proof. Let us remark that if one of the sequence of sums (for a fixed $(x_j^{(i)})_j$), $\left\{S_i[f; (x_j^{(i)})_j\right\}_i$ is convergent to a complex number I, then any other sequence of sums tends to the same number I. Hence, in the following we shall fix, for any i = 1, 2, ..., the set of elements $(x_j^{(i)})_j$, $j = 1, 2, ..., n_i$ and consider them to be the centers of their corresponding balls. We want now to estimate the difference $S_i - S_{i-1}$ (here $S_i = S_i[f; (x_j^{(i)})_j]$). Let us fix a term $f(x_{j_0}^{(i-1)})\mu_C(D[x_{j_0}^{(i-1)}, \varepsilon_{i-1}])$ from the sum S_{i-1} and denote by $D[x_{j_1}^{(i)}, \varepsilon_i], ..., D[x_{j_t}^{(i)}, \varepsilon_i]$, $t = k_{ij_0}$, all the balls from S_i which are contained in $D[x_{j_0}^{(i-1)}, \varepsilon_{i-1}]$. Using Definitions 1 and 2, $S_i - S_{i-1}$ can be grouped into sums of the following type: $\frac{1}{N_{ij_0}} \sum_{u=1}^{t} \left[f(x_{j_u}^{(i)}) - f(x_{j_0}^{(i-1)}) \right]$. But $|S_i - S_{i-1}| \le \omega(f; i-1)$, because $\sum_{j_0=1}^{n_{i-1}} \mu_C(D[x_{j_0}^{(i-1)}, \varepsilon_{i-1}]) = 1$. Therefore $|S_{m+n} - S_n| \le \sum_{i=n}^{m+n-1} \omega(f; i)$ and, using the covergence of the series $\sum_{i=1}^{\infty} \omega(f; i)$, we obtain that the sequence $\{S_n\}_n$ is uniformly convergent relative to the choice of $\{x_j^{(i)}\}_{i,j}$, $i = 1, 2, ..., n_i$.

Remark 0.2 If $f : C \to \mathbf{C}$ is a continuous function then there exists subsequences $\{S_{i_n}\}_n$ of $\{S_n\}_n$ such that the series $\sum_{n=1}^{\infty} \omega(f; i_n)$ is convergent. In this case we say that the function f is integrable relative to the subsequence $\{i_n\}_n$ of $\{1, 2, 3, ...\}$. Even in the particular case f(x) = x and $\omega(f; i) = \varepsilon_i$ the series $\sum_{i=1}^{\infty} \varepsilon_i$ may be divergent. So that, generally speaking, we can say nothing about the set of limit points of the sums $\{S_i\}_i$.

Let us now suppose that the measure μ_C has values in the *p*-adic complex number field \mathbf{C}_p . A function $f: C \to \mathbf{C}_p$ is called *p*-adic integrable if it is integrable (Definition 0.2 with \mathbf{C}_p instead of **C**!) relative to this *p*-adic valued measure μ_C . We denote by $\int f d\mu_C$ its *p*-adic measure.

Theorem 0.3 Let C be an infinite compact in the ultrametric space (X, d) and $f : C \to \mathbf{C}_p$ be a continuous function defined on C with p-adic values. Then f is p-adic integrable on C.

Proof. We follow the same reasoning as in the proof of Theorem 0.2. Since f is continuous the sequence $\omega(f; n) \to 0$ when $n \to \infty$. Hence $|S_{n+1} - S_n|_p \to 0$, when $n \to \infty$ and this one is enough to assure the uniform convergence of $\{S_n\}_n$ in \mathbf{C}_p .

Remark 0.3 Let T be a transcendental element in \mathbf{C}_p (relative to \mathbf{Q}_p) and C(T) be the orbit of T with respect to the Galois group $G = Gal_{cont}(\mathbf{C}_p/\mathbf{Q}_p) \simeq Gal(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$. We know [1], [2], [5] that C(T) is an infinite compact set in \mathbf{C}_p . For any k = 0, 1, 2, ... we define the k-th moment of T (it depends only of C(T)!) by $M_k^{(T)} = \int x^k d\mu_{C(T)}$. For instance, M_1 is the trace of T. The generating series (the trace function in [2]) $F(T, X) = 1 + M_1(T)X + M_2(T)X^2 + \cdots$ can now be defined for every $T \in \mathbf{C}_p$, not only for (*)-elements [2]. All the properties of the trace function on \mathbf{C}_p [2] can be extended for every $T \in \mathbf{C}_p$ with our definition. These series and the above integral are fundamental tools for studing arithmetical properties of different infinite towers of algebraic extensions of \mathbf{Q}_p ([2], Section 9).

ACKNOWLED GEMENTS

The author is very grateful to Prof. Dr. doc. Nicolae Popescu (Institute of Mathematics of the Romanian Academy), to Prof. A. Zaharescu (IAS-Princeton) and to Prof. V. Alexandru (Univ. of Bucharest) for the long interesting conversations on the above subjects.

REFERENCES

1. V. Alexandru, N. Popescu, A. Zaharescu, On the closed subfields of C_p , J. of Number Theory **68**, no. 2 (1998), 131-150.

2. V. Alexandru, N. Popescu, A. Zaharescu, *Trace on* \mathbf{C}_p , to be published in J. of Number Theory.

3. N. Koblitz, p-adic numbers, p-adic analysis, and zeta functions, Springer-Verlag, 1977.

4. B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil Curves, Inv. Math., 25 (1974), 1-61.

5. A. Popescu, Galois Ultrametric Spaces, unpublished.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY OF CIVIL ENGINEERING OF BUCHAREST, B-UL LACUL TEI 124, RO-72302, BUCHAREST 38, ROMANIA E-mail: apopescu@hidro.utcb.ro