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Abstract. We characterize a Banach algebra A, semiprime or not, in terms

of (the generalized) Le Page condition xAx = x
2
Ax

2 for every x 2 A.

1. Introduction Let A be a complex Banach algebra. If A is unital and satis�es

condition

(I) \Ax = Ax2 for every x 2 A";

then A is semisimple commutative (Le Page [8]), and �nite dimensional (Duncan

and Tullo [3], hence isomorphic to Cn for some n 2 N). Besides, B. Aupetit [1] com-

pleted the last result showing that a unital Banach algebra E is �nite dimensional,

commutative and semisimple if and only if, for every x 2 E, there exists y 2 E with

x = x2y.

For the non-unital case, Esterle and Oudadess in [4] showed that A satis�es the

condition (I) above if and only if A = B�R; where B is a subalgebra of A isomorphic

to Cn, for some n � 0 and R the (Jacobson) radical of A; while AR = (0).

A. Fernadez Lopez and E. Garcia Rus in [9] considered on A the condition

(II) \xAx = x2Ax2 for every x 2 A";

and proved that, if a complex Banach algebra A is semiprime and satis�es condition

(II), then A is a (�nite) diret sum A = M1 � � � � �Mn of ideals each one of which

is isomorphic to C.

In this article we give a characterization of (complex) Banach algebras, semiprime

or not, satisfying condition (II). We also prove that conditions (I) and (II) are equiv-

alent when A has no non-zero nilpotents and that condition (I) always implies con-

dition (II) for Banach algebras. Finally, we give examples of (unital and non-unital)

Banach algebras satisfying condition (II) but not condition (I).

In the sequel, all vector spaces and algebras will be taken over the complex �eld

C. For the standard normed algebra terms employed here we refer the reader to

Bonsall and Duncan [2]. We write SocA for the socle of an algebra A;R for the

(Jacobson) radical of the algebra and r(x) for the spectral radius of x 2 A:
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2. The Semiprime case

Lemma 2.1. Let A be an algebra satisfying condition (II). Then the statements

(i)-(iv) are equivalent: (i) A is semisimple, (ii) A is semiprime, (iii) A has no non-

zero nilpotents, (iv) if x 2 A with x2 = 0, then x = 0.

Proof. (i) ) (ii) is well known. (ii) ) (iii) Suppose xn = 0 for some x 2 A,

n � 2. Then xAx = xnAxn = 0, which implies (Ax)2 = (0). So, since A is

semiprime, Ax = (0) and thus x = 0. (iii) , (iv) is obvious. (iii) ) (i) If

x 2 R, then by (II), there exists some y 2 A such that x3 = x3yx3. But, x3y is an

idempotent element in R; therefore x3y = 0 and hence x = 0.

Lemma 2.2. Let A be an algebra with no non-zero nilpotents. Then the follow-

ing are equivalent:

(i) A satis�es condition (I),

(ii) A satis�es condition (II).

Proof. (i)) (ii): If x 2 A then there exists y 2 A with x = yx2 = x2y.

In fact, x2 = yx3 for some y 2 A. Since x2�xyx2 and x2�x2yx are nilpotents,

we obtain x2 = xyx2 = x2yx. Hence x�yx2 and x�x2y are nilpotents and therefore

x = yx2 = x2y.

>From the claim above, we have xAx = x2yAyx2 � x2Ax2 � xAx, the desired.

(ii) ) (i) If x 2 A, then there exists some y 2 A with x3 = x2yx2. Thus,

(x � yx2)4 = 0 and hence, x = yx2. Therefore, Ax = Ayx2 � Ax2 � Ax and this

completes the proof.

By Lemmas 2.1, 2.2, [7: p. 267, Proposition 2.1] and [11: p.361, Proposition

3.2] we get the next.

Proposition 2.3. Let A be a Banach algebra satisfying condition (II). Then

(i) A=R is commutative.

(ii) R = fx 2 A : r(x) = 0g = fx 2 A : x3 = 0g

= fx 2 A : xax = 0 for every a 2 Ag.

Remark 2.4. - 1) From Proposition 2.3, ii) above it follows that, if A is a

Banach algebra, then the assertions (i)-(iv) in Lemma 2.1 are equivalent to: (v) A

has no non-zero quasi-nilpotents.

2) If A is a Banach algebra satisfying condition (I), then semisimplicity of A is

equivalent for A to be unital (see [4: p. 93, Theorem 3.2]).

3) From Lemma 2.1 and Remark 2.4, 1) it follows that, if A satis�es condition (II),

then semisimplicity of A implies that A is unital. Besides, Example 2.5 below shows

that there is a unital Banach algebra, which satis�es condition (II) without being

semiprime.

Examples 2.5. Suppose e = e2 and 0 6= x = ex = xe with x2 = 0. Set

A = f�e+�x : �; � 2 Cg. Then A is a Banach algebra under the norm k�e+�xk =

j�j + j�j with unit e. Moreover, A satis�es condition (II). Of course, A does not

satisfy condition (I), since Ax 6= (0) while Ax2 = (0): Cf. also Lemma 2.2.
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Theorem 2.6. Let A be a semiprime Banach algebra. Then the following state-

ments are equivalent:

(i) For every x 2 A there exists n = n(x), n � 2, with xAx = xn(x)Axn(x) ;

(ii) A satis�es condition (II);

(iii) A satis�es condition (I);

(iv) A is unital with no non-zero nilpotent elements and A = SocA;

(v) A is a direct sum A = M1�� � ��Mn of ideals each one of which is isomorphic

to C;

(vi) A ' Cn.

Proof. (i) ) (ii) It is clear that xAx = xn(x)Axn(x) � x2Ax2 � xAx. (ii) )

(iii) Lemma 2.2. (iii) ) (iv) By Lemmas 2.1, 2.2, A has no non-zero nilpotent

elements. Moreover, for every x 2 A, x 6= 0 there exists e = e2 2 A, such that

x = ex = xe. We prove that e 2 SocA or equivalently (see Corollary 6 in [6])

that eAe(= Ae) is �nite dimensional. Otherwise, Ae contains an in�nite sequence

of pairwise orthogonal idempotents, say feng. For x =
P

1

n=1
en

2nkenk
there exists

some y 2 A, such that x = yx2 and therefore en = 1
2nkenk

yen for every n. Hence

1 = r(en) = 1
2nkenk

r(y) �! 0, as n ! +1, which is impossible. By a similar

argument we obtain in A that every set of orthogonal idempotents is �nite and

therefore e1 + � � � + en is the unit of A, where fe1; � � � ; eng is a maximal set of

pairwise orthogonal minimal idempotents of A. (iv) ) (ii) Since A is semiprime

with A = SocA, we have that dim(xAx) < +1 for every x 2 A (see [6: p. 362,

Corollary 6]). Therefore, x is an algebraic element of A. Hence, there exists a

polynomial p(t) = �01 + �1t+ � � �+ �nt
n with p(x) = 0. Claim that j�0j+ j�1j 6= 0,

otherwise, A contains non-zero nilpotents, a contradiction. If �0 6= 0, then 1 =

���10 (�1x + � � � + �nx
n) � q(x). Hence xax = x1a1x = xq(x)aq(x)x 2 x2Ax2.

By a similar argument xAx � x2Ax2, if �0 = 0 and �1 6= 0. The implications:

(iii))(vi), (iv),(v))(vi) and (iv),(vi) are now clear. (See also Theorem 3.2 in

[4] and Theorem in [9]).

Remark.- Notice that, if any of (i)-(vi) in Theorem 2.6 holds true, then A is

an annihilator algebra (see [12: p. 38, Lemma 3.3]).

3. The general case (the main theorem)

Lemma 3.1. Let A be an algebra, which satis�es condition (II). Then, for every

a; b 2 A and for every x; y 2 R, we have: (i) xay + yax = 0. (ii) x2ay = xay2 =

x2ya = yax2 = ayx2 = yx2a = 0. (iii) yx2 + x2y = 0. (iv) axby = xaby = bxay =

xbya = xayb.

Proof. It is enough to prove (i). All the other equalities stem from it, after an

appropriate choice of elements. So, if x; y 2 R, then x + y 2 R. By Proposition

2.3, R = fx 2 xAx = 0 for every a 2 Ag (the proof here is purely algebraic) hence

xax = 0 = yay and (x+ y)a(x+ y) = 0 for every a 2 A. Thus (i) follows.
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Theorem 3.2. (The main theorem). Let A be a Banach algebra. Then the

following assertions are equivalent:

(i) A satis�es condition (II);

(ii) A = B�R, where B is a subalgebra of A isomorphic to Cn for some n � 0,

xAx = (0) for every x 2 R and ayx = yxa for every a 2 B and x; y 2 R.

Proof. (i))(ii) The Banach algebra E = A=R is commutative semisimple

and uEu = u2Eu2 for every u 2 E: Hence E = C
n for some n � 0 (cf. [9:

p.144, Theorem]). We ommit the trivial case, when E = (0). We can �nd a

family ff1; � � � ; fng of pairwise orthogonal idempotents in E (viz. fifj = 0; if

i 6= j, i; j = 1; � � � ; n and 0 6= fi = f2
i
for any i = 1; � � � ; n), such that E =

Cf1 � Cf2 � � � � � Cfn. Denote by � : A �! A=R the natural surjection. Then,

there exist a1; a2; � � � ; an 2 A such that �(ai) = fi, 1 � i � n. So, �(a2
i
�ai) = 0 and

therefore a2
i
� ai 2 R. Notice that ai =2 R and hence, by Proposition 2.3, r(ai) 6= 0.

Claim: There exist e1; e2; � � � ; en pairwise orthogonal idempotents in A such

that �(ei) = fi, i = 1; � � � ; n.

In fact, if a2
i
� ai = r1 2 R, we put e1 = a1(1 � 2r1 + 6r21) + (r1 � 3r21) (see

also [5: p.772, the proof of Lemma 1]). Then e1 = e21 and �(e1) = �(a1) = f1.

Assume that e1; e2; � � � ; em, 1 � m < j � n have been de�ned, such that �(ei) = fi,

eiek = 0 = ekei, i 6= k, 1 � i; k � m < j � n and e2
m = em. Put h = e1 + � � � + em.

Then h2 = h and eih = hei, i = 1; 2; � � � ;m. Put wm+1 = (1 � h)am+1(1 � h).

Then eiwm+1 = wm+1ei = 0 for 1 � i � m and �(wm+1) = fm+1. Hence w2
m+1 =

(1 � h)am+1(1 � h)am+1(1 � h) = (1 � h)a2
m+1(1 � h) � (1 � h)am+1ham+1(1 �

h) = (1 � h)am+1(1 � h) + (1 � h)r0
m+1(1 � h) � (1 � h)am+1ham+1(1 � h), where

a2
m+1 � am+1 = r0

m+1 2 R and therefore w2
m+1 � wm+1 = rm+1 2 R. Denote

em+1 = wm+1(1 � 2rm+1) + (rm+1 � 3r2
m+1). Then eiem+1 = 0 = em+1ei for

1 � i < m, �(em+1) = �(wm+1) = fm+1 and e2
m+1 = em+1. We continue this way

inductively up to n.

Now, de�ne B = [e1; � � � ; en], the linear span of fe1; � � � ; eng. Then B ' C
n.

We also have B \ R = (0). In fact, if there exists 0 6= b 2 B \ R; then b =

�1e1 + � � � + �nen, �i 2 C, i = 1; � � � ; n and �k 6= 0 for some 1 � k � n. Hence

bek = �kek 2 B \ R. Therefore ek 2 B \R, which implies ek = 0, a contradiction.

Now, if x 2 A, there exist �1; � � � ; �n 2 C, such that �(x) = �1f1+ � � �+�nfn. Thus

x � �1e1 � � � � � �nen 2 R and hence A = B � R. By Proposition 2.3, xAx = (0)

for every x 2 R. To prove that ayx = yxa for a 2 B and y; x 2 R it is enough to

show that

eyx = yxe for every e = e2 2 B:(3.1)

Claim: ex2 = x2e for e = e2 2 B and x 2 R.

In fact, by condition (II), there exist c 2 B and z 2 R such that

(e+ x)e(e + x) = (e+ x)2(c+ z)(e + x)2:(3.2)
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Since xAx = (0), (3.2) implies e+ ex+xe = e+ ex+xe+2exe+ ex2+x2e+ ezxe+

exze+ eze and hence ex2 = ex2e = x2e.

Now, for e = e2 2 B and x; y 2 R, there exist c 2 B and z 2 R with

(e+ x)(e+ y)(e+ x) = (e+ x)2(c+ z)(e+ x)2:(3.3)

By (3.3), Proposition 2.3 and Lemma 3.1 we obtain

eyx+ xye+ eye = 2exe+ eze+ ex2 + x2e+ ezxe+ exze:(3.4)

>From (3.4) and the fact that ex2 = x2e we get eyx = eyxe and xye = exye for

every e2 = e 2 B and x; y 2 R: Hence eyx = eyxe = yxe and (3.1) follows.

(ii))(i) It is enough to show that xAx � x2Ax2 for every x 2 A. If a; b 2 B

and x; y 2 R, then there exist idempotents e; e0 2 B with a = ea = ae and b =

e0b = be0 (e.g., if a = �k1ek1 + �k2ek2 + � � � + �kmekm , �ki 6= 0, 1 � i � m � n

and b = �l1el1 + � � � + �lsels , �lj 6= 0, 1 � j � s � n, put e = ek1 + � � � + ekm and

e0 = el1+� � �+els . Then for d = ��1
k1
ek1+� � �+�

�1
km
ekm and h = ��2

k1
ek1+� � �+�

�2
km
ekm ,

we have ad = e, a2d = a and a2h = e. Similarly, for e0). Now, for c = hb and z 2 R

with z = dyd� cxd� dxc� 2d2cx2 + dyxd+ hxyd, we get (a+ x)(b+ y)(a+ x) =

(a+ x)2(c+ z)(a+ x)2.

In fact, J1 � (a + x)(b + y)(a + x) = a2b + abx + xab + ayx + xya + aya and

J2 � (a+x)2(c+z)(a+x)2 = a4c+a2za2+a3cx+a2cxa+a2cx2+a2zax+a2zxa+

axa2c+ xa3c+ x2a2c+ axza2 + xaza2. By Lemma 3.1, a2zax+ xaza2 = 0 and for

c = hb, we get a2b = a4c. Therefore J2 � a2b+ a2za2 + abx+ xab+ ebxa+ axeb+

ebx2 + x2eb+ axza2 and for z = dyd� cxd� dxc� 2d2cx2 + dyxd+ hxyd we have

J2 = a2b+ abx+ xab+ aya+ ayx+ xya = J1 and the proof is complete.

>From Theorem 3.2 above and Theorem 3.2 in [4] we have the following.

Corollary 3.3. Let A be a Banach algebra. If A satis�es condition (I), then A

satis�es condition (II), as well.

Examples 3.4. We give an example of a non-unital Banach algebra, which

satis�es condition (II), but not condition (I): Let H be a separable Hilbert space

and (en)n�1 an orthonormal basis of H. We de�ne A = ff 
 e1 : f 2 Hg, where

f 
 e1 is the rank one operator on H given by (f 
 e1)(h) =< h; f > e1 for

every h 2 H. Then xAx = x2Ax2 for every x = f 
 e1 2 A and Ax 6= Ax2 for

x = f 
 e1 with f?e1. We can easily check that A = B � R where B ' [e1 
 e1]

and R = ff 
 e1 : f 2 H; f?e1g.

4. Condition (II) in Topological Algebras A topological algebra is a linear

associative algebra over the complex �eld C, which moreover, is a topological vector

space and the ring multiplication is separately continuous (see [10]). A locally m-

convex algebra is a topological algebra whose topology is de�ned by a family (p�)�2�
(where � is a directed index set) of submultiplicative seminorms (ibid.).

The following example yields a particular instance of a unital commutative

semisimple (non-normed) topological algebra satisfying condition (II).
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Examples 4.1. Consider the set CN of all complex sequences. CN becomes a

commutative unital complex algebra under the coordinatewise operations. For each

n 2 N, pn := j � jn Æ prn, (where j � jn is the usual algebra norm on Cn � C; n 2 N

and prn : CN �! Cn is the canonical projection) de�nes on CN a multiplicative

seminorm. Equip CNwith the cartesian product topology, say � . Then (CN; �) is a

complete non-normed algebra. Moreover, the cartesian product topology is de�ned

by the family (pn)n2N and (CN; �) is a Fr�echet locally m-convex algebra [10: p.

82, Lemma 1.1]. Besides, since CN has an orthogonal basis, it satis�es condition

(II). Finally, if a 2 CN with a2 = 0, then a = 0 and hence, by Lemma 2.1, CN is

semisimple.

On the other hand, one has the following topological algebra-theoretic proof

(referee's remark). That is, one has CN= Cc(N), within a topological algebra iso-

morphism; hence, the assertion, since the latter algebra is \functionally semisimple"

(viz. Gel'fand map one-to-one [10]).
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