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THE STRUCTURE OF BANACH ALGEBRAS A, SATISFYING
Az = 22Az2 FOR EVERY z € A

GIOTOPOULOS STAVROS AND HARALAMPIDOU MARINA

Received July 16, 1999; revised February 19, 2000

ABSTRACT. We characterize a Banach algebra A, semiprime or not, in terms
of (the generalized) Le Page condition xAz = 2% Ax? for every x € A.

1. Introduction Let A be a complex Banach algebra. If A is unital and satisfies
condition

(I) “Ar = Ax? for every x € A7,

then A is semisimple commutative (Le Page [8]), and finite dimensional (Duncan
and Tullo [3], hence isomorphic to C" for some n € N). Besides, B. Aupetit [1] com-
pleted the last result showing that a unital Banach algebra F is finite dimensional,
commutative and semisimple if and only if, for every x € F, there exists y € E with
r = 2%y.

For the non-unital case, Esterle and Oudadess in [4] showed that A satisfies the
condition (I) above if and only if A = B® R, where B is a subalgebra of A isomorphic
to C™, for some n > 0 and R the (Jacobson) radical of A, while AR = (0).

A. Fernadez Lopez and E. Garcia Rus in [9] considered on A the condition

(II) “rAr = 22 Axz? for every z € A”,

and proved that, if a complex Banach algebra A is semiprime and satisfies condition
(II), then A is a (finite) diret sum A = M; @ - - - @ M,, of ideals each one of which
is isomorphic to C.

In this article we give a characterization of (complex) Banach algebras, semiprime
or not, satisfying condition (IT). We also prove that conditions (I) and (IT) are equiv-
alent when A has no non-zero nilpotents and that condition (I) always implies con-
dition (IT) for Banach algebras. Finally, we give examples of (unital and non-unital)
Banach algebras satisfying condition (II) but not condition (I).

In the sequel, all vector spaces and algebras will be taken over the complex field
C. For the standard normed algebra terms employed here we refer the reader to
Bonsall and Duncan [2]. We write SocA for the socle of an algebra A, R for the
(Jacobson) radical of the algebra and r(z) for the spectral radius of x € A.
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2. The Semiprime case

Lemma 2.1. Let A be an algebra satisfying condition (II). Then the statements
(i)-(iv) are equivalent: (i) A is semisimple, (ii) A is semiprime, (iii) A has no non-
zero nilpotents, (i) if x € A with 22 =0, then = 0.

Proof. (i) = (ii) is well known. (ii) = (ii7) Suppose 2z = 0 for some z € A,
n > 2. Then vAx = 2" Az" = 0, which implies (Az)? = (0). So, since A is
semiprime, Ar = (0) and thus =z = 0. (i) < (iv) is obvious. (iii) = (i) If
r € R, then by (II), there exists some y € A such that 2® = z3yx3. But, 23y is an
idempotent element in R, therefore 2y = 0 and hence z =0. M

Lemma 2.2. Let A be an algebra with no non-zero nilpotents. Then the follow-
ing are equivalent:

(i) A satisfies condition (I),

(ii) A satisfies condition (II).

Proof. (i) = (ii): If x € A then there ewists y € A with x = yx? = 2%y.
In fact, 22 = ya? for some y € A. Since 2 — xys? and 2% — x?yx are nilpotents,
2 = gyx? = 2?yx. Hence z—yz? and x —z%y are nilpotents and therefore
r = yx? = 2?y.

;From the claim above, we have v Azx = x?yAyz? C 22A2? C xAx, the desired.

(ii) = (i) If x € A, then there exists some y € A with 23 = x?y22. Thus,
(z — y2?)* = 0 and hence, = yx?. Therefore, Az = Ayx? C Az? C Az and this
completes the proof. M

By Lemmas 2.1, 2.2, [7: p. 267, Proposition 2.1] and [11: p.361, Proposition
3.2] we get the next.

we obtain z

Proposition 2.3. Let A be a Banach algebra satisfying condition (II). Then
(i) A/R is commutative.
(ii)) R={z € A:r(zx) =0} ={xr € A: 2> =0}

={x € A:zax =0 for every a € A}.

Remark 2.4. - 1) From Proposition 2.3, ii) above it follows that, if A is a
Banach algebra, then the assertions (i)-(iv) in Lemma 2.1 are equivalent to: (v) A
has no non-zero quasi-nilpotents.

2) If A is a Banach algebra satisfying condition (I), then semisimplicity of A is
equivalent for A to be unital (see [4: p. 93, Theorem 3.2]).

3) From Lemma 2.1 and Remark 2.4, 1) it follows that, if A satisfies condition (II),
then semisimplicity of A implies that A is unital. Besides, Example 2.5 below shows
that there is a unital Banach algebra, which satisfies condition (II) without being
semiprime.

Examples 2.5. Suppose e = ¢? and 0 # = = er = we with 22 = 0. Set
A ={Xe+pux: A\ p€ C} Then A is a Banach algebra under the norm ||[\e + pz|| =
|A| + |p| with unit e. Moreover, A satisfies condition (II). Of course, A does not
satisfy condition (I), since Az # (0) while Az? = (0). Cf. also Lemma 2.2.
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Theorem 2.6. Let A be a semiprime Banach algebra. Then the following state-
ments are equivalent:

(i) For every x € A there exists n = n(x), n > 2, with Az = z™(*) Az™(®) ;

(ii) A satisfies condition (II);

(iii) A satisfies condition (I);

(iv) A is unital with no non-zero nilpotent elements and A = SocA;

(v) A is a direct sum A = My ®---® M, of ideals each one of which is isomorphic
to C;
(vi) A~ C™.

Proof. (i) = (ii) It is clear that zAz = 2™®) A2x™®) C 22Ax? C zAx. (id) =
(74¢) Lemma 2.2. (4i7) = (iv) By Lemmas 2.1, 2.2, A has no non-zero nilpotent
elements. Moreover, for every x € A, = # 0 there exists e = e? € A, such that
x = exr = ze. We prove that e € SocA or equivalently (see Corollary 6 in [6])
that eAe(= Ae) is finite dimensional. Otherwise, Ae contgins an infinite sequence

of pairwise orthogonal idempotents, say {e,}. For z = 2, m there exists
some y € A, such that + = yz? and therefore e, = s==—ye, for every n. Hence

2" [lenl|

1 =r(e,) = mmy) — 0, as n — +o00, which is impossible. By a similar
argument we obtain in A that every set of orthogonal idempotents is finite and
therefore e; + --- + e, is the unit of A, where {ej,--- ,e,} is a maximal set of
pairwise orthogonal minimal idempotents of A. (iv) = (i7) Since A is semiprime
with A = SocA, we have that dim(zAx) < 400 for every zz € A (see [6: p. 362,
Corollary 6]). Therefore, x is an algebraic element of A. Hence, there exists a
polynomial p(t) = X\l + A1t + - - - + \pt™ with p(z) = 0. Claim that |\o| 4+ |A1] # 0,
otherwise, A contains non-zero nilpotents, a contradiction. If Ag # 0, then 1 =
Ntz 4 -+ Apa") = g(x). Hence zar = rlale = zq(z)ag(r)r € x2Ax?
By a similar argument zAxz C z?Az?, if \g = 0 and \; # 0. The implications:
(iii)=(vi), (iv)<(v)=(vi) and (iv)<(vi) are now clear. (See also Theorem 3.2 in
[4] and Theorem in [9]). N

Remark.- Notice that, if any of (i)-(vi) in Theorem 2.6 holds true, then A is
an annihilator algebra (see [12: p. 38, Lemma 3.3]).

3. The general case (the main theorem)

Lemma 3.1. Let A be an algebra, which satisfies condition (II). Then, for every
a,b € A and for every z,y € R, we have: (i) ray + yax = 0. (ii) 2%ay = zray? =
r?ya = yar? = ayr® = yr?a = 0. (iii) yz? + 2%y = 0. (iv) axby = xaby = bray =
rbya = xayb.

Proof. It is enough to prove (i). All the other equalities stem from it, after an
appropriate choice of elements. So, if z,y € R, then x +y € R. By Proposition
2.3, R={z € xAz = 0 for every a € A} (the proof here is purely algebraic) hence
zaxr =0 = yay and (z + y)a(r +y) =0 for every a € A. Thus (i) follows. MW
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Theorem 3.2. (The main theorem). Let A be a Banach algebra. Then the
following assertions are equivalent:

(i) A satisfies condition (II);

(ii) A = B® R, where B is a subalgebra of A isomorphic to C"™ for some n > 0,
xAx = (0) for every x € R and ayx = yxa for every a € B and =,y € R.

Proof. (i)=-(ii) The Banach algebra £ = A/R is commutative semisimple
and uBu = u?Eu? for every u € E. Hence E = C" for some n > 0 (cf. [9:
p.144, Theorem|). We ommit the trivial case, when E = (0). We can find a
family {fi,---, fn} of pairwise orthogonal idempotents in E (viz. fif; = 0, if
i # j, 4,7 =1--,mnand 0 # f; = f? for any i = 1,--- ,n), such that E =
CfidCfa®---®Cfy. Denote by m: A — A/R the natural surjection. Then,
there exist a1, as, - ,a, € A such that w(a;) = fi, 1 <i <n. So, m(a?—a;) = 0 and
therefore a? — a; € R. Notice that a; ¢ R and hence, by Proposition 2.3, r(a;) # 0.

Claim: There exist e1,es, - , e, pairwise orthogonal idempotents in A such
that 7r(ei) :fi, 1= 1,--- , .

In fact, if a? —a; = r1 € R, we put e = a1(1 — 2ry + 6r}) + (r1 — 3r}) (see
also [5: p.772, the proof of Lemma 1]). Then e; = e} and 7(e;) = 7(a1) = fi.
Assume that ey, eg, -+ ,em, 1 < m < j <n have been defined, such that w(e;) = f;,
cier =0=cepe;, i #k, 1 <ik<m<j<nande2 =en. Puth=-e; + -+ en.
Then h? = h and e;h = he;, i = 1,2,--- ,m. Put w1 = (1 — h)amer(1 — h).
Then e;wp,+1 = wpy1e; = 0 for 1 < i < m and m(wy,41) = fmy1. Hence wfnﬂ =
(1 = h)am41(1 = h)ams1 (1 — h) = (1 = h)a2, (1 — h) — (1 = R)amy1hamy1(1 —
h) = (1 = h)ams1 (1 —h) + (1 = h)r), . (1 = h) = (1 = h)ams1hami1 (1 — h), where
a%n_i_l — Gmy1 = Ty, € R and therefore w?n_H — Wyl = rma1 € R. Denote
emt1 = Wimi1(1 = 2rmy1) + (Pmg1 — 3r2,1). Then ejepp1 = 0 = emyie; for
1 <i<m,m(emt1) = m(Wmt1) = fms+1 and efn_H = ema1. We continue this way
inductively up to n.

Now, define B = [e1,--- ,eyp], the linear span of {ej,--- ,e,}. Then B ~ C".
We also have BN R = (0). In fact, if there exists 0 # b € BN R, then b =
Aer+ -+ Apep, A € Coi=1,--- ,n and A\ # 0 for some 1 < k < n. Hence
ber = Aper € BN R. Therefore e, € B N R, which implies e, = 0, a contradiction.
Now, if z € A, there exist puq,- -+ , pn € C, such that 7(z) = pyf1+-- -+ pnfn. Thus
x — prey — -+ — ppen, € R and hence A = B @ R. By Proposition 2.3, x Az = (0)
for every z € R. To prove that ayx = yza for ¢ € B and y,z € R it is enough to
show that

(3.1) eyxr = yze for every e =e? € B.

Claim: ex? = 2%¢ fore = e? € B and x € R.
In fact, by condition (II), there exist ¢ € B and z € R such that

(3.2) (e +z)e(e + ) = (e +x)*(c+ 2)(e + 2)%
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Since zAz = (0), (3.2) implies e+ ex + ze = e +ex + xe + 2exe + ex? + x2e + ezve +
exze + eze and hence er? = ezx2e = z2e.

Now, for e = €2 € B and z,y € R, there exist ¢ € B and z € R with
(3.3) (e+z)(e+y)(edz)=(e+z)*(c+2)(e+ )2
By (3.3), Proposition 2.3 and Lemma 3.1 we obtain
(3.4) eyr + zye + eye = 2exe + eze + ex? + x’e + ezxe + exze.

;From (3.4) and the fact that ex? = x%e we get eyr = eyre and zye = exye for
every e2 = e € B and 2,y € R. Hence eyr = eyze = yxe and (3.1) follows.

(ii)=(i) It is enough to show that zAx C x?Ax? for every x € A. If a,b € B
and z,y € R, then there exist idempotents e,e¢’ € B with a = ea = ae and b =
e'b = be' (e.g., if a = Ngyep, + Applhy + -+ + M€y My 70,1 < i <m<mn
and b = pp e + - +pe, p; 70,1 <5 <s<n,pute=eg + -+ e, and
¢/ =€, + --+e,. Thenford= A,;llekﬁ- . -+>\,;iekm and h = A,;Zekﬁ- . -+>\,;jekm,
we have ad = e, a’d = a and a’h = e. Similarly, for ¢’). Now, for c = hb and z € R
with z = dyd — cxd — dxc — 2d*cx® + dyzd + hxyd, we get (a + z)(b+ y)(a + x) =
(a+z)%(c+ 2)(a+z)2

In fact, J; = (a + z)(b +y)(a + x) = a®b + abx + zab + ayr + zya + aya and
Jo = (a+2)%(c+2)(a+2)? = atc+a®za® + aPcx + a’cva + a’ex? + a’zax + a’zwa +
axa’c + radc + v?a’c + arza® + raza®. By Lemma 3.1, a®zax + zaza® = 0 and for
¢ = hb, we get a’b = a*c. Therefore Jy = a’b + a’za® + abx + xab + ebxra + axeb +
ebx? 4+ x%eb + axza® and for z = dyd — cxd — dxc — 2d*cax? + dyxd + haxyd we have
Jo = a®b + abx + xab + aya + ayx + rya = J; and the proof is complete. M

;From Theorem 3.2 above and Theorem 3.2 in [4] we have the following.

Corollary 3.3. Let A be a Banach algebra. If A satisfies condition (I), then A
satisfies condition (II), as well.

Examples 3.4. We give an example of a non-unital Banach algebra, which
satisfies condition (II), but not condition (I): Let H be a separable Hilbert space
and (ep)p>1 an orthonormal basis of H. We define A = {f ® e, : f € H}, where
f ® ey is the rank one operator on H given by (f ® e1)(h) =< h,f > e for
every h € H. Then zAx = 2?Az? for every x = f ® e; € A and Az # Az? for
r = f ®e; with fle;. We can easily check that A = B @ R where B ~ [e; ® €]
and R={f®e;:f€H, fle}

4. Condition (II) in Topological Algebras A topological algebra is a linear
associative algebra over the complex field C, which moreover, is a topological vector
space and the ring multiplication is separately continuous (see [10]). A locally m-
convex algebra is a topological algebra whose topology is defined by a family (pa)aca
(where A is a directed index set) of submultiplicative seminorms (ibid.).

The following example yields a particular instance of a unital commutative
semisimple (non-normed) topological algebra satisfying condition (II).
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Examples 4.1. Consider the set CN of all complex sequences. CN becomes a
commutative unital complex algebra under the coordinatewise operations. For each
n € N, pp := | |n o pry, (where |- |, is the usual algebra norm on C,, = C,n € N
and pr, : C® — C, is the canonical projection) defines on cNa multiplicative
seminorm. Equip CN with the cartesian product topology, say 7. Then (CN, T) is a
complete non-normed algebra. Moreover, the cartesian product topology is defined
by the family (p,)neN and (CN, 7) is a Fréchet locally m-convex algebra [10: p.
82, Lemma 1.1]. Besides, since CN has an orthogonal basis, it satisfies condition
(IT). Finally, if a € CN with o2 = 0, then ¢ = 0 and hence, by Lemma 2.1, cNis
semisimple.

On the other hand, one has the following topological algebra-theoretic proof
(referee’s remark). That is, one has CN = C,(N), within a topological algebra. iso-
morphism; hence, the assertion, since the latter algebra is “functionally semisimple”
(viz. Gel’fand map one-to-one [10]).

Acknowledgement. We are indebted to the referee for careful reading of the
paper and his instructions.
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