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ON LOEB AND WEAKLY LOEB HAUSDORFF SPACES
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It is shown that the statements:Compact T2 spaces are weakly Loeb and

the product of weakly Loeb T2 spaces is weakly Loeb are not provable in ZF 0; Zermelo-

Fraenkel set theory without the axiom of regularity.

1. Introduction and definitions

Let (X;T ) be a topological space. Then X is a Loeb (weakly Loeb) space if there is a

choice (multiple choice) function on the family of its non-empty closed subsets. Examples

of Loeb spaces are:

1. Compact linearly ordered spaces,

2. spaces with a �nite number of open sets,

3. spaces (X;T ) with X a well ordered set.

Remark. For any set X , the Alexandro� one point compacti�cation, X(a); of the discrete

space X is an example of a weakly Loeb space. Indeed, for any non-empty closed set A of

X(a) either a 2 A and we may choose a from A, or A is a �nite set and we may choose A

itself.

P. Howard and J. Rubin ([5], p. 345) ask whether,

� Form 115 : The product of weakly Loeb T2 spaces is weakly Loeb

and,

� Form 116 : Compact T2 spaces are weakly Loeb

are provable in ZF0. In view of the remark above, it follows that showing Form 116 is not

provable in ZF0 is not easy. Without AC there are not many compact T2 topologies one

can de�ne on an in�nite set X . The interested reader is invited to de�ne such topologies

other than X(a).

The purpose of this paper is to show that neither Form 115 nor Form 116 are provable

in ZF0. Before we do this let us list some known results in this area and state the choice

principles we are going to use in the sequel.

Theorem 1.1. [1] In the basic Fraenkel permutation model (model N1 in [5]) the following

statements are valid.

(i) Form 115.

(ii) Form 116.

(iii) A compact T2 space (X;T ) is weakly Loeb if and only if X is expressible as a well

ordered union of compact sets.
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1. The axiom of choice AC, Form 1 in [5] : For every family A = fAi : i 2 kg of

disjoint non-empty sets there exists a set C = fci : i 2 kg such that ci 2 Ai for all

i 2 k.

2. The axiom of multiple choice MC, Form 67 in [5] : For every family A = fAi : i 2 kg

of disjoint non-empty sets there exists a set F = fFi : i 2 kg of �nite non-empty sets

such that Fi � Ai for all i 2 k.

3. AC�n; Form 62 in [5] : AC restricted to families of non-empty �nite sets.

4. LN, Form 118 in [5] : Every linearly orderable space is normal.

AC and MC are related to the notions of Loeb and weakly Loeb spaces respectively via

the following

Theorem 1.2. (i) AC if and only if every topological space is Loeb.

(ii) MC if and only if every topological space is weakly Loeb.

Proof. (i). It suÆces to show ( ) as the other direction is evident. Let A = fAi : i 2 kg

be a disjoint family of non-empty sets and let T be the discrete topology on X =
S
A. By

our hypothesis (X;T ) is a Loeb space, and so the family A of closed subsets of X has a

choice set.

(ii). This can be proved as in (i).

Remark. U. Felgner and T. Jech in their joint paper [3] proved that in ZF (Zermelo-

Fraenkel set theory minus AC), AC and MC are equivalent. Therefore, in conjuction with

the latter theorem we deduce that in ZF the notions of Loeb and weakly Loeb spaces

coincide. However, this is not the case in ZF0. In the Second Fraenkel Model, see [4] and

Model N2 of [5], MC is true ([6], p. 135), and so every topological space in N2 is a weakly

Loeb space. But, AC fails in N2. The family A = ffan; bng : n 2 !g, where A =
S
A is

the set of atoms, has no choice set in N2 (see [6] or [5]). Thus the space A(a) is not Loeb

since the family A of closed sets of A(a) has no choice set in N2. Hence, in ZF0 weakly

Loeb spaces need not be Loeb.

2. Main results

In what follows CL(T2) will denote the statement compact T 2 spaces are Loeb.

Proposition 1. [1]. (i) If (X;T ) is a Loeb (weakly Loeb) space and G a closed subset of

X, then G is a Loeb (weakly Loeb) space.

(ii) [1]. If (X;T ) is a Loeb (weakly Loeb) space, (Y;Q) a topological space and f : X ! Y

a continuous onto function, then Y is a Loeb (weakly Loeb) space.

(iii) [8]. A product of a well orderable family of compact spaces is compact if it is Loeb.

(iv) If (L;�) is a conditionally complete linear order (i.e. each non-empty subset with an

upper bound has a least upper bound), then L with the order topology is a Loeb space.

Proof. (iv). Fix ` 2 L: Let G 6= ; be a closed subset of L. If ` 2 G choose `.

If ` =2 G and G \ [`;1) 6= ; choose the inf of G \ [`;1):

If ` =2 G and G \ [`;1) = ; choose the sup of G \ (�1; `].

We would like to point out here that Proposition 1(i) is not provable in ZF if we require

G to be an open subset of X . Indeed we have:

Theorem 2.1. (i) MC if and only if open subspaces of weakly Loeb spaces are weakly Loeb.

(ii) AC if and only if open subspaces of weakly Loeb spaces are weakly Loeb + ACfin.

Proof. (i) (!). This is straightforward.
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( ). Fix A = fAi : i 2 kg a disjoint family of non-empty sets. As we have remarked in

the introduction X(a); X =
S
A, is a weakly Loeb T2 space. By our hypothesis the open

subspace
S
A of X(a) is weakly Loeb and consequently the family A of closed sets in

S
A

admits a multiple choice function f . This completes the proof ( ) and of (i).

(ii). This follows from (i) and the fact that AC = MC + ACfin.

Next we give some easy topological characterizations of AC and MC.

Theorem 2.2. (i) The following are equivalent:

(a) AC.

(b) Every compact T2 space has a well ordered dense set.

(c) Every compact T2 space has a well ordered base.

(ii) The following are equivalent:

(a) MC.

(b) Every compact T2 space has a dense set D which is the union of a well ordered set of

�nite sets.

(c) every compact T2 space has a base B which is the union of a well ordered set of �nite

sets.

(d) Every point in a compact T2 space has a well ordered neighborhood base.

Proof. (i), (ii). The conclusion follows from the fact that for any set X; X(a) is a compact

T2 space and the well known results:

(A) [11] AC if and only if every set can be well ordered, and

(B) Levy's Lemma [7], MC if and only if every set can be written as a well ordered union

of �nite sets.

Theorem 2.3. (i) CL(T2) implies ACfin.

(ii) AC if and only if MC+CL(T2).

(iii) CL(T2) if and only if every family of non-empty compact T2 spaces has a choice set.

(See [9] and Form 343 in [5]).

Proof. (i). Fix a family A = fAi : i 2 kg of disjoint non-empty �nite sets. Then A is a

family of closed sets in the compact T2 space X(a); X =
S
A: Let f be a choice function

for the family of all closed sets of X . Then the restriction of f to A is a choice function of

A.

(ii). This follows from (i) and the fact that AC = MC + ACfin.

(iii) (!). Let A = f(Xi; Ti) : i 2 kg be a family of non-empty compact T2 spaces.

Without loss of generality we may assume that A is pairwise disjoint. Let (X =
S
i2kXi; T )

be the disjoint topological union of the spaces Xi. That is, O 2 T if and only if O\Xi 2 Ti
for each i 2 k. Let Y = X [ f1g, 1 =2 X , be the one-point compacti�cation of X . Then

Y is a compact T2 space and we may �nish the proof as in (i).

( ). Assume 343 and let (X;T ) be a compact T2 space. As each closed subset of X is

a compact T2 space (with the subspace topology), 343 implies that the family fF : F is

closed in Xgnf;g has a choice set. This completes the proof of (iii) and of the theorem.

In [2] it has been established that:

Van Douwen's Lemma. LN if and only if every family A = fAi : i 2 kg of non-empty

conditionally complete linear orders has a choice set.

Theorem 2.4. Form 115 is not provable in ZF.

Proof. We show that Form 115 implies LN. As LN fails in the Pincus model II (see, [10]

and Model M29 of [5]) it will follow that Form 115 fails in M29 and consequently Form
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115 is not provable in ZF. To this end, it suÆces, in view of van Douwen's lemma, to show

that 115 implies every family A = fAi : i 2 kg of non-empty conditionally complete lin-

ear orders has a choice set. Fix such a family A = fAi : i 2 kg and let X =
Q

i2kXi;

where Xi = Ai [ f�g is the disjoint topological union of Ai taken with the order topology

and the discrete space f�g. By proposition 1(iv), it follows that each Xi is a Loeb (hence

weakly Loeb) space. Thus, by Form 115 X is weakly Loeb and consequently the family

f��1i (Ai) : i 2 kg of non-empty closed sets in X has a multiple choice set F = fFi : i 2 kg.

It can be readily veri�ed that

c = fci = max(�i(Fi)) : i 2 kg

is a choice set of the family A �nishing the proof of the theorem.

Theorem 2.5. Form 116 is not provable in ZF0.

Proof. We �rst give the description of a permutation model N . The set of atoms

A = [fAn : n 2 !+ = !n1g; where An = fanx : x 2 B(0; 1=n)g and B(0; 1=n) is the

set of points on the circle of radius 1=n centered at 0. The group of permutations G is the

group of all permutations on A which rotate the An's by an angle �n 2 R and supports are

�nite.

Claim 1. The family fAn : n 2 !+g does not have a multiple choice function in N .

Proof of claim 1. Assume the contrary. Let f be a multiple choice function for the

family fAn : n 2 !+g and let E be a support of f . Since E is a �nite set there are only

�nitely many n 2 !+ such that An \E 6= ;. Fix an n such that E \Am = ; for all m > n.

Let m > n and let � be a permutation on A such that � is the identity map on each Ak,

k 6= m and �jAm is a rotation of Am by an angle � 6= 0 such that �(f(Am)) 6= f(Am):

Clearly � �xes E pointwise, therefore �(f) = f . Thus, �(f(Am)) = f(Am), a contradiction

�nishing the proof of claim 1. (Claim 1)

Let d : A�A! R be the function given by:

d(anx; amy) =

�
1 if n 6= m

�(x; y) if n = m
;

where � is the Euclidean metric.

Claim 2. d is a metric on A and for every n 2 !+; (An; d) is compact.

Proof of claim 2. It can be readily veri�ed that d is a metric on A:

To see that An is compact �x n 2 !+ and let U be an open cover of An in N . As each

U 2 U is expressible as a union of open discs we may assume without loss of generality that

each member of U is an open disc. Let f be the bijection anx 7! x used to de�ne An. f is

in N since every singleton of An supports f . Then f(U) is an open cover of B(0; 1=n) and

since B(0; 1=n) is compact, f(U) has a �nite subcover V . Clearly f�1(V) is an open cover

of An and f�1(V) 2 N (every singleton of An is a support for f�1(V)). (Claim 2)

Let A(�) be the Alexandro� one point compacti�cation of A. Clearly A(�) is a compact

T2 space. We claim that A(�) is not weakly Loeb. Assume the contrary and let f be a
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multiple choice function on the set of all closed subsets of A(�). Since each An is clearly

a closed set, it follows that the restriction of f to the family fAn : n 2 !+g is a multiple

choice function. This contradicts claim 1 and completes the proof of the theorem.

3. Summary

The following diagram summarizes some of the results of the paper.

AC ! CL(T2) � 343 ! ACfin

# #

MC ! 116

#

115

#

LN
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