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ON A LINEARITY THEOREM FOR MEASURES

Anna Avallone and Achille Basile
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��������� We prove a linearity theorem for modular measures on D-lattices (= lattice ordered
effect algebras) and study the consequences for the core of measure games.

Introduction. Let Σ be an algebra of subsets of a given set Ω. Assume λ1, · · · , λn, µ are
(finitely additive) real-valued measures over Σ. By “linearity theorems”we mean theorems
which, under suitable conditions, ensure that µ is a linear combination of the measures λi.

In [M-M, Theorem 20], the authors, among many other interesting results, proved such
a linearity theorem for σ-additive measures on a σ-algebra. The linearity theorem is then
applied [M-M, Theorem 21] to characterize those measure games for which the core is made
of measures which can be written as µ =

∑
i αiλi. We recall that measure games, which

play an important role in economic theory (see [A-S], [H-N]), are cooperative games ν of
the special form ν = g(λ1, · · · , λn).

Let us observe that [M-M, Theorem 20], in its turn, generalizes the uniqueness theorem
of [M] to a multivariate setting. In [A-B] we proved that the uniqueness theorem above cited
holds true more generally for measures defined on a very general structure, known under
the names of effect algebra ([B-F]) or D-poset ([D-P]). It has been, therefore, natural for us
to investigate to what extent the linearity theorem [M-M, Theorem 20] can be generalized
allowing the consideration of measures on structures weaker than σ-algebras of sets.

The present paper is devoted to the mentioned investigation and we are able to obtain
the linearity theorem for a class of measures on D-posets, namely for modular measures on
D-lattices. ([C-K]). This is the content of Theorem 2.1. We also give a finitely additive
version (Corollary 2.5) of the linearity theorem.

In Section 3, we consider functions on D-lattices which quite naturally correspond to
standard measure games in the sense that they are of the form ν = g(λ1, · · · , λn), with the
λi being modular measures. The core and the σ-core of these functions are investigated in
order to obtain linearity results (Theorem 3.4, Proposition 3.6, Proposition 3.8 and Theo-
rem 3.9) generalizing those in [M-M]. Our results also imply new results for measures on
other structures like orthomodular lattices and MV-algebras, which are of the interest in
quantum physics ([B-C]) and cooperative game theory ([B-K]). The final Section 4 dis-
cusses a different representation of the elements of the core of measure games, namely an
integral representation ([M-M, Theorem 14]) of which the previous linearity theorems can
be considered special cases. Naturally, we cannot expect in our general setting any integral
representation. However, if the measure game ν = g(λ1, · · · , λn) is defined on a σ-complete
D-lattice and the λi are σ-additive, then every µ in the core of ν can be written as a finite
sum whose n terms are series of simple λi-continuous modular measures. If, in particular,
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L is a clan of fuzzy sets (also σ-complete), then we can present an integral representation
of µ.

1. Preliminaries. To introduce the basic structure to be used as the domain of measures,
one can follow two different approaches. One is based on the notion of effect algebra and the
other on the notion of D-poset. The two approaches are known to be equivalent, according
to theorem 1.3.4 of the book [D-P], which will be our source of information concerning the
domain of measures. We shall use the concept of D-poset just for continuity with respect
to our previous paper [A-B].

It is worth mentioning that D-posets (or effect algebras) can be used for modelling both
unsharp measurement in a quantum mechanic system ([B-F]) and the class of unambiguous
events in a decision theoretical framework ([E-Z]).

A poset (L,≤) with greatest element 1 and smallest element 0 is said to be a D-poset
if a partial binary operation �, to be called difference, can be defined on it in such a way
that the following conditions hold true (a, b, c ∈ L) :

(1) b � a is defined iff a ≤ b.
(2) If a ≤ b, then b � a ≤ b and b � (b � a) = a.
(3) If a ≤ b ≤ c, then c � b ≤ c � a and (c � a) � (c � b) = b � a.

If L is a D-poset and a, b ∈ L, we set a⊥ = 1� a and say that a, b are orthogonal if a ≤ b⊥.
When a and b are orthogonal, we write a ⊥ b. Naturally, (a⊥)⊥ = a and a ≤ b implies
a⊥ ≥ b⊥. For orthogonal elements a, b of L it is possible to define a commutative and
associative operation ⊕ given by a ⊕ b = (a⊥ � b)⊥. By [D-P], if a, b ∈ L and a ≤ b, then
b = a ⊕ (b � a).

Let L be a D-poset. If a, b ∈ L and a ≤ b, we set [a, b] = {c ∈ L : a ≤ c ≤ b}. If
a1, ..., an ∈ L, we inductively define a1 ⊕ ...⊕ an = (a1 ⊕ ...⊕ an−1)⊕ an provided that the
right hand side exists. The definition is independent of permutations of the elements. We
say that a finite subset {a1, ..., an} of L is orthogonal if a1 ⊕ ... ⊕ an exists. We say that
a sequence {an} is orthogonal if, for every n,

⊕
i≤n ai exists. If, moreover, supn

⊕
i≤n ai

exists, we set
⊕

n∈N an = supn

⊕
i≤n ai.

If G is a topological Abelian group, a function µ : L → G is said to be a measure if,
for every orthogonal a, b ∈ L, µ(a ⊕ b) = µ(a) + µ(b). It is easy to see that µ is a measure
if and only if, for every a, b ∈ L, with a ≤ b, µ(b � a) = µ(b) − µ(a). A measure µ is
said to be σ-additive if, for every orthogonal sequence {an} in L such that

⊕
n an exists,

µ(
⊕

n an) =
∞∑

n=1

µ(an). If G = Rn, we say that a measure µ is strongly continuous if, for

every ε > 0 and a ∈ L, there exists an orthogonal family {a1, · · · , ar} in L such that⊕
i≤r ai = a and ‖µ(b)‖ ≤ ε whenever b ∈ L and b ≤ ai for some i ≤ n. By [A-B, 4.4], µ is

strongly continuous if and only if the previous condition is satisfied with a = 1.
Let L be a poset. L is said to be σ-complete if every countable set in L has a supremum

and an infimum. We say that L has the interpolation property if, for all sequences {an}, {bn}
in L with an ≤ an+1 ≤ bn+1 ≤ bn for each n ∈ N, there exists a ∈ L such that an ≤ a ≤ bn

for each n ∈ N. Trivially every σ-complete lattice has the interpolation property. We write
an ↑ a if {an} is increasing and a = supn an. L is said to be σ-continuous if an ↑ a in L
implies an ∧ b ↑ a ∧ b for every b ∈ L.

If L is a lattice, a function µ : L → G is said to be modular if, for every a, b ∈ L,
µ(a ∨ b) + µ(a ∧ b) = µ(a) + µ(b).

Definition (1.1). A D-poset that is also a lattice is said to be a D-lattice.
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Examples
• Orthomodular lattices are D-lattices.

An orthomodular lattice (OML) is a lattice (L,≤) with 0, 1, and an order reversing
function ′ : L → L having the following properties:

(1) (a′)′ = a and a ∧ a′ = 0.
(2) If a ≤ b, then b = a ∨ (b ∧ a′).
Every OML is a D-lattice if we define a� b = a ∧ b′ for b ≤ a. In this case, a⊥ = a′ and,

if a ⊥ b, then a ⊕ b = a ∨ b.

• MV-algebras, and therefore in particular clans of fuzzy sets ([B-K]), are D-
lattices.

We recall that an MV-algebra is a commutative semigroup (L, +) endowed with a neutral
element 0, a special element 1 and an operation ∗ : L → L such that:

(1) x + 1 = 1.
(2) (x∗)∗ = x.
(3) x + x∗ = 1.
(4) 0∗ = 1.
(5) (x∗ + y)∗ + y = (x + y∗)∗ + x.

If we set a ∨ b = (a
⊙

b∗) + b and a ∧ b = (a + b∗)
⊙

b, where a
⊙

b = (a∗ + b∗)∗, then L
becomes a distributive lattice if we define a ≤ b if and only if a ∧ b = a.

Every MV-algebra is a D-lattice if we define a � b = (b + a∗)∗ for b ≤ a. In this case,
a⊥ = a∗ and a ⊕ b = (a∗ � b)∗ if b ≤ a∗.

If X is a non-empty set, a clan of fuzzy sets, according to [B-K], is a family A of [0, 1]-
valued functions on X such that:

(1) 1 ∈ A.
(2) If f, g ∈ A, then max{f − g, 0} ∈ A.

Every clan of fuzzy sets is a D-lattice if we define f � g = f − g for g ≤ f. In this case,
f⊥ = 1 − f and, if f + g ≤ 1, then f ⊕ g = f + g.

On the other hand, every clan of fuzzy sets is an MV-algebra by defining f∗ = 1− f and
f + g = min{f + g, 1}.

Remark. In a D-lattice the concepts of modular function and of measure are indepen-
dent. On the other hand, we have that on an orthomodular lattice every modular function
is a measure, and on an MV-algebra every measure is a modular function.

2. The linearity theorem.

Throughout the paper L is a D-lattice. Denote by µ : L → R a bounded modular measure
and by λ : L → Rn

+ a strongly continuous modular measure (λ = (λ1, · · ·λn)).
An element a ∈ L is said to be λ-radial if there exist b ∈ L and t ∈ [0, 1] such that

λ(a) = tλ(b) + (1 − t)λ(b⊥).

The aim is to prove the following result.

Theorem (2.1). Suppose that one of the following conditions is satisfied:
(1) L has the interpolation property and µ is strongly continuous.
(2) L is σ-complete and µ is σ-additive.
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Moreover suppose that there exist a λ-radial element a∗ ∈ L which satisfies the following
condition (where a ∈ L) :

(*) λ(a) = λ(a∗) ⇒ µ(a) = µ(a∗).
Then there exist real numbers α1, · · · , αn such that, for every a ∈ L,

µ(a) =
n∑

i=1

αiλi(a).

If λ(L) has full dimension, then the αi’s are unique. Moreover the coefficients αi can be
chosen nonnegative if and only if the following condition is satisfied (where a ∈ L) :

(**) λi(a) ≥ λi(a∗) for every i ≤ n ⇒ µ(a) ≥ µ(a∗).

The proof of (2.1) is based on the following result of [M-M] (see the proof of Theorem
20).

Lemma (2.2). Let S be any set, and f, g be functions from S to Rn
+ and R, respectively.

Assume what follows:
(1) The ranges of f and of (f, g) are convex and contain 0.
(2) There is a point a∗ ∈ S such that:

(a) f(a∗) belongs to the relative interior of f(S).
(b) For every s ∈ S, f(s) = f(a∗) implies g(s) = g(a∗).

Then the function g is a linear combination of the components of f ; f(S) is full dimensional
if and only if the components of f are linearly independent. Moreover, if f(s) ≥ f(a∗) ⇒
g(s) ≥ g(a∗), then the coefficients of the linear combination are nonnegative.

It is also helpful to recall the following results from [B1, 3.12 and 3.15].

Theorem (2.3). If L has the interpolation property and m : L → Rn is a strongly contin-
uous modular measure, then m(L) is convex.

Proposition (2.4). If L is σ-complete and m : L → Rn is a σ-additive modular measure,
then m is atomless if and only if it is strongly continuous.

We recall that a measure m : L → G is said to be atomless if, for every a ∈ L with
m(a) �= 0, there exists b ≤ a such that m(b) �= 0 and m(a � b) �= 0.

Proof of Theorem (2.1).

As in [M-M, Proposition 19], we can prove that an element a ∈ L is λ-radial if and only
if λ(a) belongs to the relative interior of λ(L). Then, by (2.2), we have only to prove that λ
and (λ, µ) have convex range. This follows immediately by (2.3) if (1) holds. If (2) holds,
by (2.3) we have only to prove that µ is again strongly continuous. By (2.4), it is sufficient
to prove that µ is atomless.

(i) First we prove that, for every b ∈ L, λ(b) = 0 implies µ(b) = 0.
Let b ∈ L be such that λ(b) = 0. Since λi ≥ 0 for each i ≤ n, we get λ(b ∧ a∗) = 0,

from which we have λ(a∗ � (b∧ a∗)) = λ(a∗). By (*), we get µ(a∗ � (b∧ a∗)) = µ(a∗), from
which we have µ(b ∧ a∗) = 0. On the other hand, since λ is modular, we have also that
0 = λ(b� (b∧ a∗)) = λ(b)− λ(a∗ ∧ b) = λ(a∗ ∨ b)−λ(a∗). By (*), we get µ(a∗ ∨ b) = µ(a∗).
Since µ is modular, we have µ(b) = µ(a∗ ∧ b) + µ(a∗ ∨ b) − µ(a∗) = 0.

(ii) Now we prove that µ is atomless.
Let µ(b) �= 0. By (i), we have λ(b) �= 0. Suppose that, for every c ≤ b, either µ(c) = 0

or µ(b � c) = 0. Set J = {i ∈ {1, · · · , n} : λi(b) > 0} and λ∗ = (λj)j∈J . By (2.8) of
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[A-B], λ∗ is strongly continuous and therefore by (2.3) λ∗([0, a]) is convex for every a ∈ L.
Then we can find b1 ≤ b such that λ∗(b1) = 1

2λ∗(b). By assumption, either µ(b1) = 0 or
µ(b � b1) = 0. Suppose for example µ(b1) = 0 and set c1 = b � b1. Then µ(c1) = µ(b) and
λ∗(c1) = λ∗(b) = λ∗(b1) = 1

2λ∗(b). In a similar way, if µ(b � b1) = 0, we set c1 = b1 and we
have again µ(c1) = µ(b) and λ∗(c1) = 1

2λ∗(b).
Now choose b2 ≤ c1 such that λ∗(b2) = 1

2λ∗(c1). We see that either µ(b2) = 0 or
µ(c1 � b2) = 0. In fact, suppose µ(c1 � b2) �= 0, i.e. µ(c1) �= µ(b2). Then, since µ(b) = µ(c1)
and b = b2 ⊕ (b � b2), we get µ(b � b2) �= 0 and therefore, by assumption, µ(b2) = 0.

Suppose for example that µ(b2) = 0 and set c2 = c1 � b2. Then µ(c2) = µ(c1) = µ(b) and
λ∗(c2) = λ∗(c1) − λ∗(b2) = 1

4λ∗(b).
In this way we obtain by induction a decreasing sequence {cn} in L such that, for each

positive integer n,
(1) cn ≤ b.
(2) µ(cn) = µ(b).
(3) λ∗(cn) = 1

2n λ∗(b).
Since L is σ-complete, there exists c = infn cn, and c ≤ b. Since 0 ≤ λ∗

i (cn) = 1
2n λ∗(b)

for each n, we get λ∗(c) = 0. Moreover, if there exists i /∈ J such that λ∗
i (c) �= 0, we would

have λi(b) �= 0 since b ≥ c, a contradiction to the definition of J. Hence λ(c) = 0. On the
other hand, by [A-B, 2.4], we have µ(c) = limn µ(cn) = µ(b) �= 0, a contradiction to (i).
Therefore µ is atomless. �

Now we see that the assumptions (1) and (2) in (2.1) can be removed if we replace the
condition (*) with a stronger condition.

Corollary (2.5). Suppose that there exists a λ-radial element a∗ ∈ L which satisfies the
following condition (where {an} is a sequence of elements of L) :

(∗)′ If limn λ(an) = λ(a∗) and {µ(an)} converges, then limn µ(an) = µ(a∗).
Then there exist real numbers α1, · · · , αn such that, for every a ∈ L,
µ(a) =

∑n
i=1 αiλi(a). If λ(L) has full dimension, then αi’s are unique. Moreover we can

choose αi ≥ 0 for each i ≤ n if and only if the following condition holds (where {an} is a
sequence of elements of L) :

(∗∗)′ If limn λ(an) ≥ λ(a∗) and {µ(an)} converges, then limn µ(an) ≥ µ(a∗).

To prove (2.5), it is helpful to recall that, by [A-B, 4.2], every modular measure on L
generates a uniformity on L - called D-uniformity - which makes the lattice operations, the
�,⊕-operations of L and the measure itself uniformly continuous. Moreover (see [A-B-V,
Section 2]) every D-uniformity on L generates a D-congruence, i.e. a lattice congruence
with the following property: if a ∼ b, c ∼ d, c ≤ a and d ≤ b, then a � c ∼ d � b, and the
quotient of a D-lattice with respect to a D-congruence is a D-lattice, too. Recall also that,
by [A, 3.8], a modular measure m : L → Rn is bounded if and only if it is exhaustive, i.e.
for every monotone sequence {an} in L, {m(an)} is a Cauchy sequence. By [W2, 3.2], a
modular function is exhaustive if and only if the uniformity it generates is exhaustive, i.e.
the latter makes Cauchy every monotone sequence in L.

Proof of (2.5).

Denote by U the supremum of the uniformities generated by λ and µ. Since λ and µ are
bounded, U is exhaustive.

Denote by
∧
L the quotient of L with respect to the D-congruence N(U) =

⋂{U : U ∈ U}
(see [A-V]) and by (L̃, Ũ) the uniform completion of

∧
L. Moreover set

∧
µ(

∧
a) = µ(a) and

∧
λ(

∧
a) = λ(a) for

∧
a ∈

∧
L and a in the congruence class

∧
a. Denote by λ̃, µ̃ the uniformly
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continuous extension of
∧
λ,

∧
µ to L̃. By [A-B, 4.3], L̃ is a σ-complete D-lattice and λ̃, µ̃ are

σ-additive modular measures. Moreover it is clear that λ̃ is strongly continuous, and
∧
a∗ is

a λ̃-radial set. We prove that λ̃ and ν̃ satisfy condition (*) of (2.1). Let b̃ ∈ L̃ be such that

λ̃(b̃) = λ̃(
∧
a∗). Choose a sequence {

∧
bn} in

∧
L such that limn

∧
bn = b̃ in (L̃, Ũ). Since λ̃ and µ̃ are

Ũ-continuous, we have limn λ̃(
∧
bn) = λ̃(b̃) and limn µ(bn) = limn µ̃(

∧
bn) = µ̃(b̃). Then we get

limn λ(bn) = limn

∧
λ(

∧
bn) = limn λ̃(

∧
bn) = λ̃(b̃) = λ̃(a∗) = λ(a∗). Because of the assumptions,

we get limn µ(bn) = µ(a∗). Therefore µ̃(b̃) = limn µ̃(
∧
bn) = limn µ(bn) = µ(a∗) = µ̃(

∧
a∗).

Now, using Theorem (2.1), we find real numbers α1, · · · , αn such that µ̃ =
∑n

i=1 αiλ̃i,
from which µ =

∑n
i=1 αiλi.

In a similar way, if (∗∗)′ is satisfied, we obtain that λ̃ and µ̃ satisfy the condition (**) of
(2.1) and therefore we can choose αi ≥ 0 for each i ≤ n. �

Theorems (2.1) and (2.5) allow us to obtain information on the structure of the core of
a measure game, as in [M-M].

3. The core of measure games.

First of all we extend, in a straightforward way, the classical terminology, and call a game
any function ν : L → R when ν(0) = 0. A game ν is then a measure game if there exist
a strongly continuous modular measure λ : L → Rn

+ and a function g : λ(L) → R, with
g(0) = 0, such that, for every a ∈ L, ν(a) = g(λ(a)). If n = 1, then ν is said to be a scalar
measure game.

In the following, ν = g(λ) denotes a measure game.

By adapting the terminology of [M-M], a measure game is said to be superdifferentiable
in an element a ∈ L if there exists a bounded modular measure µ : L → R such that, for
every b ∈ L,

(*) ν(b) − ν(a) ≤ µ(b) − µ(a).

The set (possibly empty) of all modular measures which satisfy (*) is called superdifferential
of ν in a and denoted by ∂ν(a).

It is easy to see ([M-M, Lemma 3]) that ∂ν(a) is related to the superdifferential of g by
the following result.

Lemma (3.1). A modular measure of the form α ·λ, with α ∈ Rn, belongs to ∂ν(a) if and
only if α ∈ ∂g(λ(a)).

The core and the σ-core of ν are the sets

C(ν) = {µ : L → R : µ a bounded modular measure, µ(1) = ν(1) and µ ≥ ν}

and
Cσ(ν) = {µ ∈ C(ν) : µ is σ-additive}.

An element a ∈ L is said to be ν-linear if ν(a) + ν(a⊥) = ν(1). Trivially, if C(ν) �= ∅, we
have ν(1) ≥ ν(a) + ν(a⊥) for every a ∈ L.
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Lemma (3.2). If c ∈ L is ν-linear and µ ∈ C(ν), then µ(c) = ν(c).

Proof. We have µ(c) + µ(c⊥) = µ(1) = ν(1) = ν(c) + ν(c⊥) and µ ≥ ν. �

As in [M-M, Theorem 10], the core of ν is related to ∂ν by the following result. We give
the proof here for completeness, although the arguments are basically in [M-M].

Proposition (3.3). Consider the following conditions:
(1) a is ν-linear.
(2) C(ν) = ∂ν(a) ∩ ∂ν(a⊥).
(3) ∂ν(a) ∩ ∂ν(a⊥) �= ∅.

Then, (1) implies (2). Moreover, if C(ν) �= ∅, conditions (1), (2) and (3) are equivalent.

Proof. (i) First we prove that, if µ ∈ ∂ν(a), then µ(a) ≤ ν(a) and ν(1) ≤ ν(a) + µ(a⊥).
In fact, we have ν(1) = ν(a ⊕ a⊥) ≤ ν(a) + µ(a ⊕ a⊥) − µ(a) = ν(a) + µ(a⊥) and

0 = ν(0) ≤ ν(a) + µ(0) − µ(a), from which we get ν(a) ≥ µ(a).
(ii) By (i), we obtain that, if µ ∈ ∂ν(a⊥), then µ(a⊥) ≤ ν(a⊥) and ν(1) ≤ ν(a⊥) + µ(a).
(1) ⇒ (2) Because of (3.2), it is clear that C(ν) ⊆ ∂ν(a) ∩ ∂ν(a⊥). Conversely, let

µ ∈ ∂ν(a)∩∂ν(a⊥). By (i) and (1), we get µ(a⊥) ≥ ν(1)−ν(a) = ν(a)+ν(a⊥)−ν(a) = ν(a⊥).
By (ii), we get µ(a⊥) = ν(a⊥). In similar way we obtain that µ(a) = ν(a). Then, if b ∈ L,
we have ν(b) ≤ ν(a) + µ(b) − µ(a) = µ(b). Moreover, since a is ν-linear, by (3.2) we have
ν(1) = ν(a) + ν(a⊥) = µ(a) + µ(a⊥) = µ(1). Then µ ∈ C(ν).

Now suppose C(ν) �= ∅.
(2) ⇒ (3) is trivial.
(3) ⇒ (1) Since C(ν) �= ∅, we have ν(a) + ν(a⊥) ≤ ν(1). On the other hand, if µ ∈

∂ν(a) ∩ ∂ν(a⊥), by (i) and (ii) we have ν(1) ≤ ν(a) + µ(a⊥) ≤ ν(a) + ν(a⊥). Then a is
ν-linear. �

By (2.1), we obtain the following result.

Theorem (3.4). Let L be σ-complete. Suppose that Cσ(ν) is a non-empty set and that
there exists a ν-linear and λ-radial element a∗ ∈ L. Then, if a is any ν-linear element of
L, we have Cσ(ν) = {α · λ : α ∈ ∂g(λ(a)) ∩ ∂g(λ(a⊥))}. The vectors α ∈ Rn are uniquely
determined if and only if λ(L) has full dimension. Moreover, if g is monotone increasing
on λ(L), then we can choose α ∈ Rn

+.

Proof. Let µ ∈ Cσ(ν). We prove that λ and µ satisfy the assumptions of (2.1). Since a∗ is
λ-radial, we have only to prove that, for every b ∈ L, λ(b) = λ(a∗) implies µ(b) = µ(a∗).

Let b ∈ L be such that λ(b) = λ(a∗). By (3.2), we have µ(b) ≥ ν(b) = g(λ(b)) =
g(λ(a∗)) = ν(a∗) = µ(a∗), and µ(b⊥) ≥ ν(b⊥) = g(λ(b⊥)) = g(λ(a⊥∗ )) = ν(a⊥∗ ) = µ(a⊥∗ ).
Since µ(b) + µ(b⊥) = µ(a∗) + µ(a⊥

∗ ) and µ ≥ ν, we get µ(b) = µ(a∗). Then the first part of
the assertion follows by (2.1), recalling (3.1) and (3.3)

Now suppose that g is monotone increasing. We see that λ and µ satisfy the condition
(**) of (2.1). Let b ∈ L be such that λ(b) ≥ λ(a∗). Then we have µ(b) ≥ ν(b) = g(λ(b)) ≥
g(λ(a∗)) = ν(a∗) = µ(a∗). Hence the second part of the assertion follows again by (2.1). �

Remark. Concerning the existence of linear and radial elements of L, the considerations
of [M-M, pages 20-21] apply. Indeed, for example, suppose that L has the interpolation
property, C(ν) �= ∅ and the game ν is radially concave, i.e. there exists a ν-linear element
a ∈ L such that, for every t ∈ [0, 1], g(tλ(a) + (1 − t)λ(a⊥)) ≥ tg(λ(a)) + (1 − t)g(λ(a⊥)).
Then there exists a ν-linear and λ-radial element in L.

In fact, if λ(a) = λ(a⊥), we have λ(a) = 1
2λ(1). Then λ(a) belongs to the relative interior

of λ(L) and therefore a is λ-radial. If λ(a) �= λ(a⊥) and t ∈]0, 1[, by Theorem (2.3) we can
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find b ∈ L such that λ(b) = tλ(a) + (1 − t)λ(a⊥). Then we have λ(b⊥) = λ(1) − λ(b) =
tλ(a⊥) + (1− t)λ(a). Therefore ν(b) + ν(b⊥) ≥ g(λ(b)) + g(λ(b⊥)) ≥ tν(a) + (1− t)ν(a⊥) +
tν(a⊥) + (1 − t)ν(a) = ν(a) + ν(a⊥) = 1. On the other hand, since C(ν) �= ∅, we have
ν(b) + ν(b⊥) ≤ ν(1). Hence b is ν-linear and λ-radial.

Now, to give a description of C(ν), we need some results, which allow us to extend [M-M,
Lemmas 34 and 35] to our setting.

Lemma (3.5). Suppose C(ν) �= ∅ and there exists a ν-linear element a ∈ L such that g is
lower semicontinuous in λ(a) and in λ(a⊥). Then g is continuous in λ(a) and in λ(a⊥).

Proof. Let {bn} be a sequence in L such that limn λ(bn) = λ(a)). We prove that
limn g(λ(bn)) = g(λ(a)). Recall that, since C(ν) �= ∅, we have ν(1) ≥ ν(bn) + ν(b⊥n ).

Then we obtain lim supn g(λ(bn)) + lim infn g(λ(b⊥n )) ≤ lim supn[g(λ(bn)) + g(λ(b⊥n ))] =
lim supn[ν(bn) + ν(b⊥n )] ≤ ν(1) = g(λ(1)). Since g is lower semicontinuous in λ(a) and
in λ(a⊥), we get lim supng(λ(bn)) ≤ g(λ(1)) − lim infn g(λ(b⊥n )) ≤ g(λ(1)) − g(λ(a⊥)) =
ν(1) − ν(a⊥) = ν(a) = g(λ(a)) ≤ lim infn g(λ(bn)).

In a similar way we prove that g is continuous in λ(a⊥). �
In the next result we use that, if c ≥ a, b, then (c�a)∨ (c� b) = c� (a∧ b) ([D-P, 1.8.2]).

Recall that L is said to be σ-continuous if an ↑ a in L implies an ∧ b ↑ a∧ b for every b ∈ L.

Proposition (3.6). Suppose that L is σ-continuous and λ is σ-additive. Let a ∈ L be
ν-linear such that g is lower semicontinuous in λ(a) and in λ(a⊥). Then C(ν) = Cσ(ν).

Proof. Let µ ∈ C(ν). We prove that µ is σ-additive. By [A-B, 2.4], it is sufficient to prove
that an ↑ 1 implies limn µ(an) = µ(1).

Let an ↑ 1. Since L is σ-continuous, we have an ∧ a ↑ a, an ∨ a ↑ 1 and a⊥
n ∨ a⊥ ↓ a⊥.

Since λ is σ-additive, by [A-B, 2.4] we get

lim
n

λ(an ∧ a) = λ(a), lim
n

(an ∨ a) = λ(1), lim
n

λ(a⊥
n ∨ a⊥) = λ(a⊥).

Now we prove that:
(1) limn µ(an ∧ a) = µ(a).
(2) limn µ(an ∨ a) = µ(1).
(1) Since by (3.5) g is continuous in λ(a) and in λ(a⊥), we have lim infn µ(a ∧ an) ≥

lim infn ν(a ∧ an) = lim infn g(λ(a ∧ an)) = g(λ(a)) = ν(a) = ν(1) − ν(a⊥) = g(λ(1)) −
limn g(λ(a⊥n ∨a⊥)) = ν(1)− limn ν(a⊥

n ∨a⊥) ≥ µ(1)− lim infn µ(a⊥
n ∨a⊥) = lim supn[µ(1)−

µ(a⊥
n ∨ a⊥)] = lim supn[µ(1)− µ(1� (an ∧ a))] = lim supn µ(an ∧ a). Then limn µ(an ∧ a) =

ν(a) = µ(a) by (3.2).
(2) We have lim infn µ(an ∨ a) ≥ lim infn ν(an ∨ a) = lim infn g(λ(an ∨ a)) = g(λ(1)) =

ν(1) = µ(1).
Since an = (an∧a)⊕(an�(an∧a)) and µ is modular, we have µ(an) = µ(an∧a)+µ(an�

(an ∧ a)) = µ(an ∧ a) + µ(an ∨ a)−µ(a). Then, by (1) and (2), we get limn µ(an) = µ(1). �
In the next results, we use the following notation: if µ : L → R is a modular measure,

we set, for a ∈ L,

µ+(a) = sup{µ(b) : b ≤ a}, µ−(a) = sup{−µ(b) : b ≤ a}.
Moreover we denote by |µ| the total variation of µ, i.e. for a ∈ L,

|µ|(a) = sup{
r∑

i=1

|µ(ai) − µ(ai−1)| : r ∈ N, 0 = a0 ≤ a1 ≤ · · · ≤ ar = a}.
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By [B1, 3.11], |µ| is a modular measure, |µ| is bounded if and only if µ is bounded and, for
a ∈ L,

|µ|(a) = sup{
r∑

i=1

|µ(ai)| : r ∈ N, {a1, · · · , ar} orthogonal family in L,

r⊕

i=1

ai = a}.

Moreover recall that, by [D-P, 1.1.6], if a ⊥ b, c ≤ a and d ≤ b, then a ≤ a ⊕ b,
(a ⊕ b) � a = b, c ⊕ d ≤ a ⊕ b and we have that e = a ⊕ b if and only if b = e � a.

Proposition (3.7). If µ is a bounded modular measure, then µ+ and µ− are modular
measures, µ = µ+ − µ− and |µ| = µ+ + µ−.

Proof. (i) First we prove that, for every a ∈ L,

(*) µ+(a) = sup{
r∑

i=1

[µ(ai) − µ(ai−1)]+ : r ∈ N, 0 = a0 ≤ a1 ≤ · · · ≤ ar = a}

and

(**) µ−(a) = sup{
r∑

i=1

[µ(ai) − µ(ai−1)]− : r ∈ N, 0 = a0 ≤ a1 ≤ · · · ≤ ar = a}

where naturally we mean, for x ∈ R, x+ = max{x, 0} and x− = max{−x, 0}.
Denote by µ(a) the right hand side of (*). The inequality µ+(a) ≤ µ(a) is trivial. Let

0 = a0 ≤ a1 ≤ · · · ≤ ar = a be a chain in L. For i ∈ {1, · · · , r}, set bi = ai � ai−1.
By [A-B, 2.1], {b1 · · · , br} is an orthogonal family and b1 ⊕ · · · ⊕ br = a. Moreover we have
µ(bi) = µ(ai)−µ(ai−1) for each i ∈ {1, · · · , r}. Set I = {i ∈ {1, · · · , r} : µ(bi) ≥ 0}. If I = ∅,
we have

∑r
i=1[µ(ai) − µ(ai−1]+ = 0 ≤ µ+(a). If I �= ∅, we have

∑r
i=1[µ(ai) − µ(ai−1]+ =∑

i∈I µ(bi) = µ(
⊕

i∈I bi) ≤ µ+(a), since
⊕

i∈I bi ≤
⊕r

i=1 µ(bi) = a. Taking the supremum,
we get µ(a) ≤ µ+(a).

In a similar way we can prove (**).
(ii) By (i) and [B2, X.6.10], we get that µ+ and µ− are modular functions, with µ =

µ+ − µ− and |µ| = µ+ + µ−. We have only to prove that µ+, µ− are measures. Since µ is a
measure and µ− = µ+ − µ, it is sufficient to prove that µ+ is a measure.

Let a, b ∈ L be such that a ⊥ b and 0 = b0 ≤ b1 ≤ · · · ≤ br = a ⊕ b. We have
0 = b0 ∧ a ≤ b1 ∧ a ≤ · · · ≤ bn ∧ a = (a⊕ b)∧ a = a. Moreover, if we set ci = (bi ∨ a)� a for
i ≤ r, we have c0 = (b0 ∨ a) � a = 0 ≤ c1 ≤ · · · ≤ cn = (bn ∨ a) � a = (a ⊕ b)� a = b. Since
µ is modular, we have µ(bi) − µ(bi−1) = µ(bi ∨ a) − µ(bi−1 ∨ a) + µ(bi ∧ a) − µ(bi−1 ∧ a) =
µ(ci) − µ(ci−1) + µ(bi ∧ a) − µ(bi−1 ∧ a). Then [µ(bi) − µ(bi−1)]+ ≤ µ+(b) + µ+(a). Taking
the supremum, we get µ+(a ⊕ b) ≤ µ+(a) + µ+(b).

Now let ε > 0 and choose c ≤ a, d ≤ b such that µ+(a) < µ(c) + ε and µ+(b) < µ(d) + ε.
Since a ⊥ b, we have also c ⊥ d. Then µ+(a) + µ+(b) < µ(c⊕ d) + 2ε ≤ µ(a⊕ b) + 2ε, since
c ⊕ d ≤ a ⊕ b. Since ε is arbitrary, we get µ+(a) + µ+(b) ≤ µ+(a ⊕ b). �

Recall that g is lower Lipschitzian in x0 if there exist ε, c > 0 such that ‖x − x0‖ ≤ ε
implies [g(x) − g(x0)]− ≤ c‖x − x0‖.
Proposition (3.8). Suppose that C(ν) �= ∅ and g is lower Lipschitzian in 0 and in λ(1).
Then every µ ∈ C(ν) is strongly continuous. Moreover, if λ is σ-additive, then C(ν) =
Cσ(ν).

Proof. We prove that there exists c > 0 such that, for every µ ∈ C(ν) and b ∈ L, |µ|(b) ≤
c
n

∑n
i=1 λi(b).
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Let µ ∈ C(ν). Since µ ≥ ν and µ(1) = ν(1), for a ∈ L we have ν(a) ≤ µ(a) = µ(a) +
ν(1) − µ(1), that is

(*) g(λ(a)) − g(λ(1)) ≤ −µ(a⊥) ∀ a ∈ L.

Since g is lower Lipschitzian in λ(1), we can find k, ε > 0 such that ‖λ(a)−λ(1)‖ ≤ ε implies

(**) [g(λ(a)) − g(λ(1))]− ≤ k‖λ(a) − λ(1)‖.
By (*) and (**), we obtain that, for every a ∈ L, ‖λ(a⊥)‖ ≤ ε implies µ(a⊥) ≤ k‖λ(a⊥)‖.
Then, if ‖λ(a)‖ ≤ ε, for every b ≤ a we have µ(b) ≤ k‖λ(b)‖ ≤ k‖λ(a)‖, from which
µ+(a) ≤ k‖λ(a)‖. In a similar way, using that g is lower Lipschitzian in 0, we can find
k′, ε′ > 0 such that, for every a ∈ L, ‖λ(a)‖ ≤ ε′ implies µ−(a) ≤ k′‖λ(a)‖. By (3.7), we
obtain ε, c, c′ ≥ 0 such that, for every a ∈ L, ‖λ(a)‖ ≤ ε implies |µ|(a) ≤ c′‖λ(a)‖ ≤ cλ∗(a),
where λ∗(a) = 1

n

∑n
i=1 λi(a). Since every λi is strongly continuous, it is easy to see that λ∗

is strongly continuous, too. Then, if a ∈ L, we can find an orthogonal family {a1, · · · , ar}
in L such that

⊕
i≤r ai = a and λ∗(ai) ≤ ε for each i ≤ r. Then, for every a ∈ L, we have

|µ|(a) =
∑r

i=1 |µ|(ai) ≤ c
∑r

i=1 λ∗(ai) = cλ∗(a). Hence µ is strongly continuous. Moreover,
if λ is σ-additive, recalling [A-B, 2.4], we obtain that µ is σ-additive, too. �

Now, as a consequence of (2.1) and (2.5), we can prove the following result (compare
with [M-M, Theorem 21]).

Theorem (3.9). Suppose that C(ν) is a non-empty set and there exists a ν-linear and
λ-radial element a∗ ∈ L. Moreover suppose that one of the following conditions is satisfied:

(1) g is lower semicontinuous in λ(a∗) and in λ(a⊥
∗ ).

(2) L is σ-complete and σ-continuous, λ is σ-additive and there exists a ν-linear element
a ∈ L such that g is lower semicontinuous in λ(a) and in λ(a⊥).

(3) L has the interpolation property and g is lower Lipschitzian in 0 and in λ(1).
Then, if a is any ν-linear element of L, we have C(ν) = {α · λ : α ∈ ∂g(λ(a)∩ ∂g(λ(a⊥))}.
The vectors α ∈ Rn are uniquely determined if and only if λ(L) has full dimension. More-
over, if g is monotone on λ(L), then we can choose α ∈ Rn

+.

Proof. As in (3.4), we obtain that every µ ∈ C(ν) satisfies the condition (*) of (2.1) and,
if g is monotone, also the condition (**) of (2.1) is satisfied. Moreover, if (2) is satisfied,
by (3.6) we have C(ν) = Cσ(ν). If (3) is satisfied, then by (3.8) every µ ∈ C(ν) is strongly
continuous. Then, in both the cases (2) and (3), the assertion follows from (2.1), recalling
(3.1) and (3.3).

Now suppose that (1) is satisfied and observe that, by (3.5), g is continuous in λ(a∗) and
in λ(a⊥

∗ ). Let µ ∈ C(ν). We prove that µ and λ satisfy the condition (∗)′ of (2.5). Let {bn}
be a sequence in L such that limn λ(bn) = λ(a∗) and {µ(bn)} converges. By (3.2), we have

lim
n

µ(bn) ≥ lim
n

ν(bn) = lim
n

g(λ(bn)) = g(λ(a∗)) = ν(a∗) = µ(a∗),

lim
n

µ(b⊥n ) ≥ lim
n

ν(b⊥n ) = lim
n

g(λ(b⊥n )) = g(λ(a⊥∗ )) = ν(a⊥
∗ ) = µ(a⊥

∗ ),

from which limn µ(bn) = µ(a∗).
In a similar way, we see that, if g is monotone, λ and ν satisfy also the condition (∗∗)′

of (2.5). Then the assertion follows from (2.5). �
Remark. Suppose that L is σ-complete, ν is exact (i.e. C(ν) �= ∅ and, for every a ∈ L,

ν(a) = min{µ(a) : µ ∈ Cσ(ν)}), and C(ν) ⊆ span{λ1, · · · , λn}. Then there exists a ν-linear
and λ-radial element in L.
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In fact, since by (2.2) λ(L) is convex, we can find a ∈ L such that λ(a) = 1
2λ(1). We

see that a is ν-linear. Observe that, if µ ∈ Cσ(ν), there exist α1, · · · , αn such that µ(a) =∑n
i=1 αiλi(a) = 1

2

∑n
i=1 αiλi(1) = 1

2µ(1) = 1
2ν(1). Since ν is exact, we get ν(a) = 1

2ν(1). In
a similar way we see that ν(a⊥) = 1

2ν(1). Then a is ν-linear.

We conclude with the scalar case.

Corollary (3.10). Suppose n = 1. Suppose that there exists a ν-linear and λ-radial element
a∗ in L, and one of the conditions of (3.9) is satisfied. Then, if C(ν) �= ∅, we have C(ν) =
{ g(λ(1))

λ(1) λ}. Moreover, if L has the interpolation property, then C(ν) �= ∅ if and only if, for

every x ∈ [0, λ(1)], g(x) ≤ g(λ(1))
λ(1) x.

Proof. Let µ ∈ C(ν). By (3.9), we can find a real number α such that, for every a ∈ L,

µ(a) = αλ(a). Then α = µ(1)
λ(1) = g(λ(1))

λ(1) , from which (2) holds.
Now suppose that L has the interpolation property and C(ν) �= ∅. By (2.2), if x ∈

[0, λ(1)], we can find a ∈ L such that λ(a) = x. Then g(x) = g(λ(a)) = ν(a) ≤ g(λ(1))
λ(1) λ(a) =

g(λ(1))
λ(1) x.

The converse is trivial since, if we set µ(a) = g(λ(1))λ(1)λ(a) for a ∈ L, then µ ∈ C(ν).
�

4. A representation of σ-core of measure games.

In this section, on the basis of a Radon-Nikodym type theorem for σ-additive modular
measures, we give a description of the σ-core of measure games on σ-complete D-lattices.

Recall that an element c ∈ L is said to be central if, for every a ∈ L, a = (a∧c)∨(a∧c⊥).
By [D-P, 1.9.14], the set C(L) of all central elements of L is a Boolean algebra.

Let µ, m : L → R be modular measures. We denote by U(µ) and U(m) the D-uniformities
generated by µ and m (see Section 3). We write U(µ) ≤ U(m) whenever U(µ) is coarser
than U(m), and U(µ) ∧ U(m) = 0 whenever the infimum of U(µ) and U(m) is the trivial
uniformity.

We say that µ << m if, for every ε > 0, there exists δ > 0 such that |µ|(a) < ε whenever
a ∈ L and |m|(a) < δ.

We say that µ ⊥ m if, for every ε > 0, there exists a ∈ L such that |µ|(a) < ε and
|m|(a⊥) < ε.

By [A-V, 3.3 and 3.4], µ << m if and only if U(µ) ≤ U(m) and µ ⊥ m if and only if
U(µ) ∧ U(m) = 0.

Proposition (4.1). Let µ, m : L → R be σ-additive modular measures and suppose L
σ-complete. Then µ << m if and only if µ(a) = 0 whenever a ∈ L and m(b) = 0 for each
b ≤ a.

Proof. ⇒ is trivial.
⇐ Set U = U(µ) ∨ U(m). Denote by L̂ the quotient of L with respect to U , and by

Û the quotient uniformity generated by U . By [A-B, 4.3], L̂ is a D-lattice. By [W1, 6.3,
7.1.9 and 8.1.4], (L̂, Û) is complete and Û is o.c. Set µ̂(â) = µ(a) and m̂(â) = m(a) for
a ∈ â ∈ L̂. By [A-B, 4.3], µ̂ and m̂ are well-defined modular measures on L̂. Denote by µ

and m, respectively, the restrictions of µ̂ and m̂ to C(L̂). By [W3, 3.4], µ and m are o.c.
measures on the complete Boolean algebra C(L̂). By [A-V, 4.1], µ̂(b̂) = 0 for every b̂ ∈ C(L̂)
with b̂ ≤ â, implies µ̂(b̂) = 0 for every b̂ ∈ L̂ with b̂ ≤ â. Then from the assumption we
derive that µ << m. By [A-B-V, 4.1], we obtain µ << m. �
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Proposition (4.2). (Riesz decomposition property). Let µ, m, τ : L → R be bounded
modular measures such that µ << m + τ. Then there exist bounded modular measures
µ1, µ2 : L → R such that µ = µ1 + µ2, µ1 << m and µ2 << τ.

Proof. By [A-V, 3.6], we can find bounded modular measures µ1, µ2 : L → R such that
µ = µ1 + µ2, µ1 << m, µ2 ⊥ m and U(µ) = U(µ1) ∨ U(µ2). Then we have

(*) U(µ2) ∧ U(m) = 0,

and

(**) U(µ2) ≤ U(µ1) ∨ U(µ2) = U(µ) ≤ U(m + τ) ≤ U(m) ∨ U(τ).

Since the exhaustive D-uniformities on L form a Boolean algebra (see [A-V, 2.9]) and the
uniformities generated by bounded modular measures are exhaustive by [W2, 3.8] and [A-
B-V, 2.6], by (*) and (**) we derive U(µ2) ≤ U(τ), i.e. µ2 << τ. �

In what follows, if c ∈ L, we denote by mc the function defined by mc(a) = m(c ∧ a) for
all a ∈ L. In general, mc is not a modular measure. Nevertheless, if c is central, then mc is
a modular measure by [A-B-V, 2.2].

A function f : L → R is said to be a simple m-continuous function if it belongs to
the linear space generated by {mc : c ∈ L}. We denote by Sm(L) the linear space of all
m-continuous simple functions on L which are modular measures.

We need the following result, which corresponds to the Radon-Nikodym type theorem in
the case of finite additivity ([B-B]).

Lemma (4.3)([A-B-V, 3.2]). Let m : L → [0, +∞[ and µ : C(L) → R be bounded
modular measures such that µ << m|C(L). Then there exists a sequence {mk} ⊆ Sm(C(L))
such that the function µ′ defined as µ′(a) =

∑∞
k=1 mk(a) for a ∈ L is a modular measure

which extends µ and the convergence is uniform with respect to a ∈ L.

Theorem (4.4). (Radon-Nikodym theorem). Suppose L is σ-complete and let m : L →
[0, +∞[ and µ : L → R be σ-additive modular measures such that µ << m. Then µ belongs
to the closure of Sm(L) with respect to the topology of the uniform convergence. Moreover,
if L is a clan of fuzzy sets on a set Ω, then there exists a function h : Ω → R which is
integrable with respect to the restriction m of m to the σ-algebra A of crisp sets in L such
that, for every f ∈ L, µ(f) =

∫
fh dm.

Proof. (i) First suppose L complete and m o.c.
Since µ << m, µ is o.c., too. Since µ|C(L) << m|C(L), by (4.3) we can find a sequence

{mk} ⊆ Sm(C(L)) such that the function µ′ : L → R defined as µ′(a) =
∑∞

k=1 mk(a) for
a ∈ L is a modular measure which extends µ|C(L), and the convergence is uniform with
respect to a ∈ L. Moreover, by [A-B-V, 3.1], every mk is o.c. and therefore µ′ is o.c., too.
Then µ and µ′ are o.c. modular measures on L which coincide on C(L). By [A-B-V, 2.7],
we obtain µ = µ′ on L.

(ii) Now we consider the general case.
Denote by L̂ the quotient of L with respect to U(m), and set µ̂(â) = µ(a) and m̂(â) =

m(a) for a ∈ â ∈ L̂. As in (4.1), we can see that L̂ is a complete D-lattice, and µ̂, m̂ are
well-defined o.c. modular measures. By (i), we can find a sequence {m̂k} ⊆ Sm̂(C(L̂)) such
that µ̂(â) =

∑∞
k=1 m̂k(â) for â ∈ L̂. Set mk(a) = m̂k(â) for a ∈ L. Then mk are modular

measures, mk ∈ Sm(L), and µ(a) =
∑∞

k=1 mk(a) for a ∈ L.
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(iii) Now suppose that L is a clan of fuzzy sets on a set Ω.
Since L is σ-complete, by [B-L-W, 3.1 and 3.2], for each f ∈ L we have µ(f) =

∫
f dµ,

where µ is the restriction of µ to A, and f is the uniform limit of a sequence of A-simple
functions. Since µ << m = m|A, by the Radon-Nikodym theorem we can find an m-
integrable function h : Ω → R such that µ(A) =

∫
A

h dm for each A ∈ A. Hence, for every
f ∈ L, we have µ(f) =

∫
fh dm. �

In the next result ν = g(λ) is a measure game as in Section 3.

Corollary (4.5). Suppose L σ-complete and λ σ-additive. Then, for every µ ∈ Cσ(ν),
there exist n sequences {λi

k} of simple λi-continuous modular measures on L such that µ =∑n
i=1

∑∞
k=1 λi

k. Moreover, if L is a clan of fuzzy sets on a set Ω, then for every µ ∈ Cσ(ν)
there exist n functions hi : Ω → R such that, for each i ≤ n, hi is integrable with respect
to the restriction λi of λi to the σ-algebra A of crisp sets in L, and ν(f) =

∑n
i=1

∫
fhi dλi

for every f ∈ L.

Proof. Let µ ∈ Cσ(ν), and set λ∗ = 1
n

∑n
i=1 λi. We prove that µ << λ∗, applying (4.1).

Indeed, if λ∗(b) = 0, we have λ(b) = 0 and then λ(b⊥) = λ(1). Since µ ≥ ν and µ(1) = ν(1),
we have µ(b) ≥ g(λ(b)) = g(0) = 0 and µ(b⊥) ≥ g(λ(b⊥)) = g(λ(1)) = ν(1) = µ(1), whence
µ(b) = µ(1) − µ(b⊥) ≤ 0. Hence µ(b) = 0. By (4.2), we can find n modular measures
µi : L → R such that µi << λi for each i ≤ n and µ =

∑n
i=1 µi. Applying (4.4) to each µi,

we obtain the assertion. �
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