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CCR C∗-ALGEBRAS AS INDUCTIVE LIMITS
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��������� As the main result we prove that CCR C∗-algebras are approximately subhomo-
geneous (ASH).

0. Introduction

Inductive limits of CCR (or liminary) C∗-algebras have been of great interest recently.
They include inductive limits of finite dimensional C∗-algebras, which are called AF-alge-
bras, and inductive limits of subhomogeneous (or homogeneous) C∗-algebras, which are
called ASH-algebras (or AH-algebras) (cf.[EE], [Ln], [RS]). On the other hand, in the papers
[Sd1] and [Sd2] we began to study the inductive limit structure of group C∗-algebras of Lie
groups. In detail, we proved there that the unitizations of the C∗-algebras of all simply
connected solvable Lie groups of non-type R are not ASH (approximately subhomogeneous),
and also obtained that the C∗-algebras of certain simply connected nilpotent Lie groups
(of type R in the sense of [AM, Chapter V] (cf. [OV, 6.5])) such as the real Heisenberg
Lie group are ASH and the C∗-algebras of certain simply connected solvable Lie groups (of
type R and non-type I) such as the Mautner group are AL (approximately liminary).

As the main result of this paper, it is shown that any CCR (or liminary) C∗-algebra
is ASH. Consequently, we obtain that the group C∗-algebras of all CCR locally compact
groups including all connected nilpotent Lie groups and connected semi-simple Lie groups
are ASH. Note that type I C∗-algebras are not always ASH. For example, the Toeplitz C∗-
algebra is of type I but not ASH since it contains a Fredholm operator with index nonzero
(cf. [Mp], [Sd1]). Also the unitizations of the C∗-algebras of all simply connected solvable
Lie groups of non-type R such as the real ax + b group are non-CCR and not ASH ([Sd1]).
Furthermore, it is deduced from our main result that AL-algebras are inductive limits of
ASH-algebras.

Notation. Let Â = A∧ denote the spectrum of a C∗-algebra A of its all irreducible repre-
sentations up to unitary equivalence. Let Γ0(X, {At}t∈X) be the C∗-algebra of a continuous
field on a locally compact Hausdorff space X with fibers At C∗-algebras ([Dx, Chapter 10]),
and Γb(X, {At}t∈X) be the C∗-algebra of a bounded continuous field on X . Let K be the
C∗-algebra of all compact operators on an infinite dimensional separable Hilbert space. Let
C∗(G) be the (full) group C∗-algebra of a Lie (or locally compact) group G (cf. [Dx]).

2000 Mathematics Subject Classification. Primary 46L05. Secondary 46L55, 22D25.

Key Words and Phrases. ASH-algebras, CCR C∗-algebras, Group C*-algebras.



466 TAKAHIRO SUDO

1. The main results

Recall that a C∗-algebra is subhomogeneous if its all irreducible representations are finite
dimensional and their dimensions are bounded (cf. [RS, 3.4]). Recall that a C∗-algebra is
CCR (or liminary) if the image under its any irreducible representation is either a matrix
algebra or the C∗-algebra of all compact operators on a separable infinite dimensional
Hilbert space.

Theorem 1. Let A be a CCR C∗-algebra. Then A is ASH.

Proof. By [Pd, Theorem 6.2.11], there exists a composition series {Iλ}λ∈Λ of ideals of A
such that Iλ/Iλ−1 are of continuous trace and Iλ−1 is an essential closed ideal of Iλ for each
λ. We may also assume that Λ = N countable if necessary by using transfinite induction.
Since I1, I2/I1 are of continuous trace, we have

I1
∼= Γ0(I∧

1 , {B1
π}π∈I∧

1
),

I2/I1
∼= Γ0((I2/I1)∧, {B2

π}π∈(I2/I1)∧),

where the fibers B1
π , B2

π are isomorphic to either Mn(C) or K (where n may vary). Consider
the following commutative diagram (cf. [Wo, 3.2]):

0 −−−−→ I1 −−−−→ I2 −−−−→ I2/I1 −−−−→ 0
∥
∥
∥

⏐
⏐
�τ

⏐
⏐
�σ

0 −−−−→ I1 −−−−→ M(I1)
q−−−−→ M(I1)/I1 −−−−→ 0

where M(I1) means the multiplier algebra of I1, τ is the canonical embedding, q is the
canonical quotient and σ is the Busby invariant associated with the extension I2 of I1 by
I2/I1. Note that the map τ is injective since I1 is essential in I2. Then it is well known
that the extension I2 is isomorphic to the pull-back algebra defined by

M(I1) ⊕(q,σ) I2/I1 = {(f, g) ∈ M(I1) ⊕ I2/I1 | q(f) = σ(g)},
which is a C∗-subalgebra of the direct sum M(I1) ⊕ I2/I1. Moreover, by [APT, Theorem
3.3], we have

M(I1) = M(Γ0(I∧
1 , {B1

π}π∈I∧
1
)) ∼= Γb(I∧

1 , {M (B1
π)}π∈I∧

1
).

However, since I2 is CCR, it is embedded in the C∗-subalgebra Γb(I∧
1 , {B1

π}π∈I∧
1
) of

Γb(I∧
1 , {M (B1

π)}π∈I∧
1
). Therefore, the above pull-back algebra is in fact isomorphic to

Γb(I∧
1 , {B1

π}π∈I∧
1
) ⊕(q,σ) Γ0((I2/I1)∧, {B2

π}π∈(I2/I1)∧).

Then the direct sum Γb(I∧
1 , {B1

π}π∈I∧
1
)⊕Γ0((I2/I1)∧, {B2

π}π∈(I2/I1)∧) is an inductive limit
of subhomogeneous algebras of the form:

Γb(I∧
1 , {Mnπ(C)}π∈I∧

1
) ⊕ Γ0((I2/I1)∧, {Mmπ(C)}π∈(I2/I1)∧),

where if B1
π, B2

π are unital, then B1
π = Mnπ(C) and B2

π = Mmπ(C), and if B1
π , B2

π are
nonunital, then B1

π = K ⊃ Mnπ(C) and B2
π = K ⊃ Mmπ(C). Note that the numbers nπ,

mπ can be bounded since

Γ0(I∧
1 , {B1

π}π∈I∧
1
) ⊂ Γb(I∧

1 , {B1
π}π∈I∧

1
),
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and Γ0(I∧
1 , {B1

π}π∈I∧
1
), Γ0((I2/I1)∧, {B2

π}π∈(I2/I1)∧) are of continuous trace so that there
exist their continuous operator fields of finite ranks (locally) and we can cut down their
general continuous operator fields by the multiplication by these operator fields of finite
ranks. Also note that

Γb(I∧
1 , {Mnπ(C)}π∈I∧

1
) ∼= M(Γ0(I∧

1 , {Mnπ(C)}π∈I∧
1
)),

which implies that Γb(I∧
1 , {Mnπ(C)}π∈I∧

1
) is subhomogeneous since subhomogeneous alge-

bras are closed under taking their multiplier algebras (cf. [RS, Proposition 3.4.3]). More-
over, it follows that the pull-back algebra I2 is an inductive limit of subhomogeneous alge-
bras of the form:

Γb(I∧
1 , {Mnπ(C)}π∈I∧

1
) ⊕(q,σ) Γ0((I2/I1)∧, {Mmπ(C)}π∈(I2/I1)∧)

(note that subhomogeneous algebras are closed under taking subalgebras (cf. [RS, Propo-
sition 3.4.3]), and if all the above subhomogeneous algebras of pull-back type are zero, the
pull-back algebra I2 must be zero).

For convenience, we consider the case n = 3. Then we have the following commutative
diagrams:

0 −−−−→ I1 −−−−→ I3 −−−−→ I3/I1 −−−−→ 0
∥
∥
∥

⏐
⏐
�τ1

⏐
⏐
�σ1

0 −−−−→ I1 −−−−→ M(I1)
q1−−−−→ M(I1)/I1 −−−−→ 0

and
0 −−−−→ I2/I1 −−−−→ I3/I1 −−−−→ I3/I2 −−−−→ 0

∥
∥
∥

⏐
⏐
�τ2

⏐
⏐
�σ2

0 −−−−→ I2/I1 −−−−→ M(I2/I1)
q2−−−−→ M(I2/I1)/(I2/I1) −−−−→ 0

Note that τ2 is injective since I2/I1 is essential in I3/I1. Let Ij/Ij−1 = Dj . Then the
quotient I3/I1 is isomorphic to the pull-back algebra:

Γb(D∧
2 , {Bπ2}π2∈D∧

2
) ⊕(q2,σ2) Γ0(D∧

3 , {Bπ3}π3∈D∧
3
),

which is ASH by using the same reasoning as above. Then the ideal I3 is isomorphic to the
following successive pull-back algebra:

Γb(I∧
1 , {Bπ1}π1∈I∧

1
) ⊕(q1,σ1) [Γb(D∧

2 , {Bπ2}π2∈D∧
2
) ⊕(q2,σ2) Γ0(D∧

3 , {Bπ3}π3∈D∧
3
)],

which is also ASH by using the same reasoning as above.
In general, we use the induction and consider the following diagrams:

0 −−−−→ Dj −−−−→ In/Ij−1 −−−−→ In/Ij −−−−→ 0
∥
∥
∥

⏐
⏐
�τj

⏐
⏐
�σj

0 −−−−→ Dj −−−−→ M(Dj)
qj−−−−→ M(Dj)/Dj −−−−→ 0

for 1 ≤ j ≤ n − 1, where Dj = Ij/Ij−1 and I0 = {0}. Then the ideal In is isomorphic to
the following successive pull-back algebra:

Γb(I∧
1 , {Bπ1}π1∈I∧

1
) ⊕(q1,σ1) [Γb(D∧

2 , {Bπ2}π2∈D∧
2
) ⊕(q2,σ2) [· · ·

[Γb(D∧
n−1, {Bπn−1}πn−1∈D∧

n−1
) ⊕(qn−1,σn−1) Γ0(D∧

n , {Bπn}πn∈D∧
n
)] · · · ]].
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Finally, as a composition series of A we choose certain subhomogeneous subalgebras
of In (n ≥ 1) constructed above inductively such that their union is dense in A. Note
that by the construction the subhomogeneous subalgebras of In can be embedded into the
subhomogeneous subalgebras of In+1 (see the case n = 2). �

Remark. If A is a unital CCR C∗-algebra, then π(A) for π ∈ Â is isomorphic to Mn(C)
for some n since π(A) is unital. Note that CCR C∗-algebras are not closed under taking
extensions by themselves and even taking unitizations. Indeed, the unitization of K by
adding the identity operator is not CCR (or liminary) (cf. [Mp, Section 5.6]). Also, ASH
algebras are not closed under taking extensions. For example, the Toeplitz algebra is an
extension of the C∗-algebra of all continuous functions on the torus by K but not ASH since
it is generated by the unilateral shift operator with Fredholm index −1 (cf. [Mp, Section
3.5] and [Sd1]).

Corollary 2. Let G be a CCR locally compact group. Then C∗(G) is ASH.

More specifically,

Corollary 3. Let G be either a connected nilpotent Lie group, a simply connected solvable
Lie group of type R and type I, or a connected semi-simple Lie group. Then C∗(G) is ASH.

Proof. Note that the C∗-algebras of connected nilpotent Lie groups, simply connected solv-
able Lie groups of type R and type I and connected semi-simple Lie groups are CCR (cf.
[Dx, 13.11.12], [AM, Chapter V]). �
Corollary 4. Let A be an inductive limit of CCR C∗-algebras. Then A is an inductive
limit of ASH-algebras.

Proof. Use Theorem 1. �
Remark. It is known that inductive limits of CCR C∗-algebras are nuclear and quasidi-
agonal, but quasidiagonal nuclear C∗-algebras are not always ASH (cf. [Sl]). Note also
that AH-algebras are not closed under taking their inductive limits (cf. [DE], [RS, Propo-
sition 3.1.9]). It might be true that ASH-algebras are closed under inductive limits. If so,
AL-algebras are in fact ASH.

Question. Is it true that the C∗-algebra of a simply connected solvable Lie group of type
R is ASH ?

Remark. In [Sd1] we obtained that the unitizations of the C∗-algebras of all simply con-
nected solvable Lie groups of non-type R are not ASH. Since ASH algebras are not closed
under taking extensions, it might be true that the C∗-algebras of all simply connected
solvable Lie groups are ASH.

However, it is obtained that

Proposition 5. Let A be a C∗-algebra of type I and non CCR. Then A is not ASH.

Proof. Since A is of type I and non CCR, there exists π ∈ Â such that π(A) strictly contains
the C∗-algebra Kπ of all compact operators on the representation space of π. Suppose that
A is ASH. Then A is an inductive limit of subhomogeneous algebras Bλ. Then π(Bλ) are
also subhomogeneous. Since Kπ is a closed ideal of π(A) and the union of π(Bλ) is dense in
π(A), it follows that the intersection Kπ ∩π(Bλ) for some λ must be non-empty and π(Bλ)
strictly contains Kπ ∩ π(Bλ) so that π(Bλ) contains an operator of infinite rank. Since the
representation of π(Bλ) corresponding to the closed ideal Kπ ∩ π(Bλ) (or its irreducible
representation) is irreducible, this contradicts to π(Bλ) being subhomogeneous. �
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Corollary 6. Let G be a simply connected solvable Lie group of non-type R and type I.
Then C∗(G) is not ASH.

Proof. By assumption, C∗(G) is non CCR and of type I (cf. [AM, Chapter V]). �
Remark. In [Sd2] we obtained that the C∗-algebras of the generalized Mautner groups of
type R and non-type I (cf. [AM, Chapter 3]) are inductive limits of CCR C∗-algebras. By
using the method for the proof of Theorem 1 and the inductive limit structure given in
[Sd2], we conclude that those algebras are in fact ASH. This supports our conjecture.

Finally, as one more remark,

Remark. By [Kt, Theorem 1], the C∗-algebra C∗(G) of a connected locally compact group
G has the real rank zero (cf. [BP]) if and only if G is compact. Hence, if G is non-compact,
C∗(G) is not AF. Note that AF-algebras have the real rank zero (that is, an approximation
property by projections with finite spectrums).
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