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ON GENERALIZED STRONG A-SUMMABILITY
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Abstract. In an unpublished paper A. Gülcü introduced a generalized notion of
strong summation termed ”strong A-summability in the wide sense”. We investigate
this notion and clarify some points left unclear by the initial paper of Gülcü. We
settle integrability of the A-distribution function under condition of finitely strong A-
summability in the wide sense and analyze necessity of conditions to conclude finitely
strong A-summability in the wide sense from A-distributional summability. In partic-
ular, we prove a sharp direct theorem as well as its corresponding converse theorem
to describe connection of these notions. We also clarify connection of finitely strong
A-summability in the wide sense and usual A-summability and compute the sum of a
sequence from information about its generalized A-strong summation or its A- distri-
bution. The paper ends with comments on the original work of A. Gülcü.

§0. Introduction
Strong summability (of a sequence (xk) or corresponding partial sums sk := x1 + · · · +

xk, to sum s) as a sharpening of Cesáro-1 summability, is a classical notion, meaning
limn→∞ 1

n

∑n
k=1 |sk − s| = 0. The notion appears in the work of Hardy and Littlewood

already with a more general setting of Hq-strong summability with q > 0, see [3] or [7, Vol.
II, pp. 180-181]. Its importance grew further after the well-known result of Marcinkiewicz
[4] on a.e. pointwise strong summability of Fourier series of integrable functions, see also
[7, Vol. II, pp. 184-188].

For a given sequence (sk) let Fn(y) := 1
n#{k ≤ n : sk < y}. When lim

n→∞ Fn(y) = F (y)

all over (−∞,∞) least an exceptional set of at most countable many points, it is said that
(sk) is summable in distribution to F (y) as limit distribution.

Strong summation was also considered on lacunary subsequences (nj) ⊂ N [1], with
the averaging over k = 1, . . . , n replaced by averaging over k = nj + 1, . . . , nj+1 with
hj := nj+1 − nj → ∞.

In 1983 Yoneda [6] gave a further generalization of the notion of strong or H1-strong
summability, called ”strong summability in the wide sense to sum S”. In the extension
the role of the classical sum s is taken over by a certain function S(y), considered the
”generalized strong sum” of the sequence.

Definition 1 (Yoneda). For a sequence (xk) and corresponding (sk) put Sn(y) := 1
n

∑n
k=1 |sk−

y|. We say that (xk) (or, equivalently, (sk)) is strongly summable in the wide sense to S(y),
if for all −∞ < y < ∞ we have limn→∞ Sn(y) = S(y).
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Example 1. The sequence xk := (−1)k2 has sk = −1+(−1)k, which oscillates, hence is not
strongly summable, but is strongly summable in the wide sense to S(y) = max{1, |y − 1|}.

The above extended definition can be considered for subsequences (nj) ⊂ N, too. In
fact, Nuray and Savas deals with sequences strongly summable in the wide sense to S(y)
along some subsequence (nj), see [5].

Let A = (ank)n=1,∞
k=1,∞ be a Toeplitz matrix. Letting

∑
k stand for

∑∞
k=1, it is said that

(sk) is A-summable to s if limn→∞
∑

k anksk = s, and that it is strongly A-summable to s
if limn→∞

∑
k ank|sk − s| = 0.

Note that treating the sequence of the partial sums (sk) in place of the original sequence
(xk) requires reshaping original Toeplitz matrices T = (tkn)n=1,∞

k=1,∞ , written for (xk), by
defining new entries ank := tn,k − tn,(k+1) of a corresponding matrix A. Following [7,
Chapter III, pp. 74-75], we deal exclusively with Toeplitz matrices A corresponding partial
sums (sk) as above throughout the paper.

For regular Toeplitz matrices limn→∞
∑∞

j=k anj = 1 (for all fixed j, n ∈ N) and also
uniform boundedness of

∑
k |ank| are required. Regularity of A means those properties

throughout this paper.
Finally, we always assume that the Toeplitz matrix A is positive, meaning ank ≥ 0,

(k, n ∈ N), that is, all sks are considered with nonnegative weights only.
Denoting the indicator function of positive reals by χ, i.e. χ(x) = 1 for x > 0 and

χ(x) = 0 for x ≤ 0, one has the corresponding notion of convergence in distribution. Let a
positive, regular Toeplitz matrix A and a sequence (sk) be given. Put

Rn(y) :=
∑

k

ankχ(y − sk).(1)

When limn→∞ Rn(y) = R(y) all over (−∞,∞) least an exceptional set of at most count-
able many points, (sk) is said to be A-summable in distribution with R(y) as its A-limit
distribution.

If (sk) is summable to s, then it is A-summable in distribution with R(y) = χ(y− s) for
any positive and regular Toeplitz summation matrix A.

In 1998 the following notion was introduced in [2], as a common generalization of strong
summation in the wide sense, defined in [6], and strong summation in the wide sense along
some subsequence, considered in [5].

Definition 2 (Gülcü). For any given positive Toeplitz matrix A and sequence (sk) let

Tn(y) :=
∑

k

ank|sk − y| .(2)

When limn→∞ Tn(y) =: T (y) exists in [0,∞] for all y from (−∞,∞), we say that (sk)
is strongly A-summable in the wide sense, or, for short, w.s.s. A-summable, to T (y). If
T (y) < ∞ (∀y ∈ R), we say that (sk) is finitely strongly A-summable in the wide sense (or
f.w.s.s. A-summable) to T (y).

It is easy to see that if a sequence (xk) is summable to s, (sk → s as k → ∞), then
for any positive, regular Toeplitz matrix A it is strongly A-summable in the wide sense to
T (y) = |y − s|.

In this paper we investigate strong A-summability in the wide sense. We recover the
content of [2] and present a couple of new results, sharpening and extending results of
Gülcü. In particular, we correct some errors and show why a normalized definition of A-
summability in distribution is more natural to use in the context. The paper ends with
comments on comparison with [2].
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§1. Preliminaries

Lemma 1 (Gülcü). Assume that (sk) is w.s.s. A-summable to T (y) for the positive, reg-
ular Toeplitz matrix A. Then we have

i) |T (y) − T (z)| ≤ |y − z| for all −∞ < y, z < ∞,

ii) T is a nonnegative and convex function,

iii) T (y) ≥ lim sup
n→∞

∣∣∣∣∑
k

anksk − y

∣∣∣∣,
iv) T (y) ≥ max

{
lim sup

n→∞

∑
k

anksk − y, y − lim inf
n→∞

∑
k

anksk

}
,

v) If T (y0) = 0 for some y0, then both (sk) and (|sk|) are A-summable to s = y0 and
|y0|, respectively.

Proof. (i) follows from the triangle inequality and regularity (lim sup
n→∞

∑∞
j=k anj = 1).

(ii) is obvious for |y − sk|, hence for positive ank even for (2). Taking limits keeps these
properties, hence the assertion.

(iii) follows from Tn(y) =
∑

k ank|sk − y| ≥ |∑k ank(sk − y)| ≥ |∑k anksk − y| −
|∑k ank − 1| |y| and regularity of A.

(iv) is immediate from (iii) as |a − b| = max{a − b, b − a}.
(v) Since ||sk| − |y0|| ≤ |sk − y0|, it is immediate that T (y0) = 0 implies T ∗(|y0|) = 0,

where T ∗ is the corresponding A-strong sum function in the wide sense for the sequence
(|sk|). Hence it suffices to deal with the case of (sk). Furthermore, (iii) with y0 immediately
yields limn→∞

∑
k anksk = y0.

Proposition 1. Let (sk) be any sequence and A be any positive, regular Toeplitz matrix.
Then the following are equivalent.

i) (sk) is strongly A-summable to sum s.

ii) (sk) is finitely w.s.s. A-summable to T (y) := |y − s|.
iii) (sk) is finitely w.s.s. A-summable to T (y) and T (s) = 0.

Proof. (i) ⇒ (ii). We have∣∣∣∣∣Tn(y) −
∑

k

ank|y − s|
∣∣∣∣∣ ≤∑

k

ank ||y − s| − |y − sk|| ≤
∑

k

ank|s − sk| ,

which tends to zero by assumption. On the other hand regularity gives (
∑

k ank) |y − s| →
|y − s|, hence the assertion.

(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i). Clearly we have Tn(s) :=

∑
k ank|s − sk| → T (s) = 0, whence (i).

Lemma 2. Let r be a nondecreasing function with r(−∞) = 0 and r(∞) = b < ∞. Then
we have

t(y) :=

∞∫
−∞

|u|dr(u + y) =

∞∫
y

(b − r(u)) du +

y∫
−∞

r(u)du .(3)

Moreover, if t(y) is finite, then we have lim
v→−∞ vr(v) = 0 and lim

w→∞w(b − r(w)) = 0.
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Proof. When both forms of t(y) in (3) are +∞, then there is nothing to prove. Hence we
can assume that at least one of these expressions is finite. In both forms of t(y), both the
measures and the integrands involved are nonnegative, hence they exist in the extended
sense - both as Lebesgue integrals and as improper Riemann integrals - being either +∞,
or < ∞.

Take now any v < min{0, y} ≤ max{0, y} < w. Partial integration yields
w∫

y

(b − r(u)) du +

y∫
v

r(u)du = (b − r(w))(w − y) + r(v)(y − v) +

w∫
v

|u − y|dr(u) .

As r(∞) = b and r(−∞) = 0, to conclude the proof it suffices to show limv→−∞ vr(v) = 0
and limw→∞ w(b − r(w)) = 0, whenever any of the two forms of t(y) in (3) happens to be
< ∞. If the right hand side of (3) is finite, then for large enough z = z(ε) and w > z,
−v > z we necessarily have (w−z)(b−r(w)) ≤ ∫∞

z
(b−r) < ε and (−v−z)r(v) ≤ ∫ −z

−∞ r < ε.
Therefore in view of r(∞) = b and r(−∞) = 0 it follows that lim supv→−∞ vr(v) ≤ ε and
lim supw→∞ w(b − r(w)) ≤ ε, hence the assertion. Similarly, if the first expression is finite,
then (w − y)(b − r(w)) = (w − y)

∫∞
w−y

dr(u + y) ≤ ∫∞
w−y

|u|dr(u + y) < ε for large enough
w, giving lim supw→∞ w(b − r(w)) ≤ ε, (and similarly for v → −∞), whence the assertion
obtains.

Lemma 3 (Gülcü). For any sequence (sk) and any n ∈ N we have

Tn(y) =

∞∫
−∞

|u|dRn(u + y) =

∞∫
y

(∑
k

ank − Rn(u)

)
du +

y∫
−∞

Rn(u)du .(4)

Furthermore, if Tn(0) is finite, then we have

∑
k

anksk =

∞∫
−∞

udRn(u) =

∞∫
0

(∑
k

ank − Rn(u)

)
du −

0∫
−∞

Rn(u)du .(5)

Proof. Note that dχ = δ0 (the Dirac delta measure at 0), hence positivity of A entails
that all measures ankdχ(· − sk) = ankδsk

are nonnegative. It is easy to see that |x − y| =∫∞
−∞ |u − y|dχ(u − x) for any −∞ < x, y < ∞. Applying it in (2), positivity justifies

interchanging summation and integration, leading to

Tn(y) =
∑

k

ank

∫ ∞

−∞
|u − y|dχ(u − sk) =

∫ ∞

−∞
|u − y|dRn(u) .

This gives the first part of (4), while a reference to Lemma 2 supplies the second part, too.
Regarding (5) note that finite existence of Tn(0) is just absolute convergence of

∑
k anksk.

Hence also the left hand side of (5) is absolute convergent and we obtain

∑
k

anksk =
∑

k

ank

∞∫
−∞

udχ(u − sk) =

∞∫
−∞

udRn(u) ,(6)

interchanging the integral and the sum being permitted by absolute convergence of the
integral in view of (4) (which has already been proved). Since Tn(0) < ∞, the last part
of Lemma 2 yields lim

w→∞w (
∑

k ank − Rn(w)) = 0 and lim
v→−∞ vRn(v) = 0. Splitting the

interval of integration in (6) at 0 and referring to these limit relations, partial integration
yields the last part of (4).
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Lemma 4. Let A be a positive and regular Toeplitz matrix and assume that the sequence
(sk) is A-summable in distribution with the distribution function R. Then if for some n we
have (Rn − R) ∈ L1(0,∞), then we also have

∑
k ank = 1.

Proof. For the monotone functions R and Rn we have lim∞ Rn =
∑

k ank and lim∞ R = 1.
If these limits at ∞ are not equal, then with ε < |∑k ank − 1|/3, and for u large enough,
|R(u) − 1| < ε and also |Rn(u) −∑k ank| < ε ensures |R(u) − Rn(u)| > ε. That, however,
implies

∫∞
0 |R − Rn| = ∞.

§2. Connections between w.s.s. A-summability and in A-distribution

Theorem 1 (Gülcü). If a sequence (sk) is finitely w.s.s. A-summable to T (y), then it is
also A-summable in distribution with

R(y) =
1
2

{
1 +

d

dy
T (y)

}
a.e. .(7)

Proof. From Lemma 3, second part of (4) we easily infer for any −∞ < x < y < ∞

Tn(x) − Tn(y) = (y − x)
∑

k

ank − 2
∫ y

x

Rn .(8)

Observe that χ, hence for positive A also Rn, are nonnegative and non-decreasing. By
regularity,

∑
k ank is bounded, hence (Rn) form a uniformly bounded sequence of non-

decreasing functions. Note that also the total variation of each Rn equals to
∑

k ank (it’s
sup norm) by monotonicity. Thus Helley’s second theorem applies providing at least a
subsequence (nk) and a function R so that limk→∞ Rnk

(u) = R(u) everywhere except for a
countable set. It is then obvious that R is a non-decreasing function of y.

By Lebesgue’s dominated convergence theorem we have

lim
k→∞

∫ y

x

Rnk
(u)du =

∫ y

x

R(u)du(9)

for all −∞ < x < y < ∞. Therefore we are led to

T (x) − T (y) = (y − x) − 2
∫ y

x

R(u)du .(10)

Now differentiation yields (7) for all points of R\E where E is the (countable) set of points
of jumps of the monotone function R.

Note that (10) or (7) immediately implies that R is uniquely determined a.e., hence not
only a subsequence, but also the full sequence (Rn) converges a.e. to R. This concludes the
proof.

Theorem 2. If a sequence (sk) is A-summable in distribution, and, moreover, Tn(z) →
T (z) ∈ R for a certain point z ∈ R, then (sk) is also finitely w.s.s. A-summable to

T (y) = (z − y) + T (z) + 2
∫ y

z

R(u)du .(11)

Proof. Lemma 3, as in the proof of Theorem 1, yields (8). As n → ∞, on the right hand
side the sum tends to 1 by regularity of A, and the integral converges to

∫ y

x
R by Lebesgue’s

dominated convergence theorem. So in view of Tn(z) → T (z), also Tn(y) must converge as
all other terms of (8) do so. Hence we are led to (11).
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Theorem 3. Let the sequence (sk) be A-summable in distribution with R(u) (i.e. Rn(u) →
R(u) a.e. as n → ∞). Moreover, assume the following further conditions:

i) Rn − R → 0 in L1(R) as n → ∞,

ii) 1 − R ∈ L1(0,∞) and R ∈ L1(−∞, 0).

Then (sk) is also finitely w.s.s. A-summable in the wide sense to

T (y) :=

∞∫
y

(1 − R(u)) du +

y∫
−∞

R(u)du .(12)

Proof. By Condition (i), lim
n→∞

∫∞
0

(1−Rn) =
∫∞
0

(1−R) and lim
n→∞

∫ 0

−∞ Rn =
∫ 0

−∞ R, whether
these latter integrals are finite or infinite. Note that we do not - and cannot, in general
- state finiteness of them unless referring to Condition (ii), which provides exactly this
finiteness.

Condition (i) ensures (Rn − R) ∈ L1(0,∞), hence by Lemma 4
∑

k ank = 1. Thus
applying (4) of Lemma 3 for an arbitrary y ∈ R we find

Tn(y) =

∞∫
−∞

|u|dRn(u + y) =

∞∫
y

(1 − Rn(u)) du +

y∫
−∞

Rn(u)du .

Again, in general these can be finite or infinite as well, but at present Conditions (i) and (ii)
imply finiteness for n large. Now letting n → ∞ we obtain by Condition (i) the convergence
of Tn(y) to the (now finite) integrals on the right hand side of (12).

There is a variant of Theorem 3, which hold for the general case, whether (12) is finite
or infinite. However, we emphasize that finite w.s.s. A-summability is not stated now.

Theorem 4 (Gülcü). Let the sequence (sk) be A-summable in distribution with R(u), and
assume Rn − R → 0 in L1(R) as n → ∞. Then (sk) is also w.s.s. A-summable to T (y) in
(12).

Let us note that Condition (ii) of Theorem 3 can be deduced easily (instead of assuming
it), if we make either the restriction that (sk) be bounded, or in case A is a triangular
Toeplitz matrix (meaning ank = 0 for k > n). In the latter case Rn(u) is constant

∑
k ank,

i.e. with the notation (13) below, R̃n(u) = 1 for u > maxk≤n sk, which together with
Condition (i) implies (1 − R) ∈ L1(0,∞); R ∈ L1(−∞, 0) follows similarly. We thus also
have

Corollary 1. Asume that A is a regular, positive triangular matrix. Let the sequence (sk)
be A-summable in distribution with R(u), and assume Rn − R → 0 in L1(R) as n → ∞.
Then (sk) is also f.w.s.s. A-summable to T (y) in (12).

In particular, for considerations of Cesaro-1 summation by Yoneda the triangular con-
dition, hence the above Corollary, is in effect.

§3. Tightness of T and L1 convergence of normalized A-distribution
In connection to Theorems 3 and 4, the natural question of necessity of all conditions

arises. Next we exhibit by example that Condition (ii) can not be dropped from Theorem 3.
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Then in Theorem 5 we will prove that Condition (ii) is satisfied whenever a sequence (sk) is
finitely w.s.s. A-summable. These two results show independence and necessity of Condition
(ii). We also analyze Condition (i), showing how to get around of this seemingly artificially
strong restriction by a suitably modified approach to A-summability in distribution. In
Theorem 5 it will also be seen that normalized A-summability distribution functions do
necessarily satisfy Condition (i), too.

In what follows we denote P = (pn) the (increasing) sequence of primes, and Q the set
of all prime powers. Clearly the subsequences Q(n) := (pj

n)∞j=1 form a disjoint partition of
Q.

Example 2. Let A be defined by ank := 0 for k /∈ Q(n) and ank := 1/(j(j +1)) if k = pj
n ∈

Q(n). Let the sequence (sk) be defined by sk := 0 for k /∈ Q, and sk = j if k = pj with
p = pn ∈ P . We have

i) A is a normalized, positive, regular Toeplitz matrix,

ii) Rn(u) = R(u) = 0 (∀u ≤ 0) and Rn(u) = R(u) = 1 − 1/	u
 (∀u > 0), hence also
Rn → R a.e. and Condition (i) of Theorem 3, but not Condition (ii) of the same
Theorem, are met,

iii) (sk) is w.s.s. A-summable to T (y) ≡ ∞.

Proof. (i). Clearly A is positive, and for any fixed n we have
∑

k ank = 1. Moreover, for
m fixed and for any n > m (hence pn > m), ank = 0 for all k ≤ m, the first nonzero
weight occurring at k = pn in the nth row sequence of A. Thus for any m ∈ N we get∑∞

k=m ank = 1 whenever n > m, proving regularity of A.
(ii). It is obvious that all Rn(u) = 0 for u ≤ 0, as all sk are at least 0. On the other

hand for positive u we find Rn(u) =
∑

k ankχ(u− sk) =
∑

j an,pj
n
χ(u− j) =

∑
j<u

1
j(j+1) =

1 − 1/	u
.
(iii) By Lemma 3, (4) we have Tn(y) ≥ ∫∞

y (1 − Rn) =
∫∞

y+ 1/	u
du = ∞.

Remark 1. With a suitable modification we can easily make e.g. Tn(0) oscillating between
any prescribed (nonnegative) finite or infinite values. See Example 4 for a similar argument.

We have seen that (R − Rn) → 0 in L1(R) is useful to prove f.w.s.s. A-summability.
However, Lemma 4 clarified that this restricts generality considerably, as then we must have∑

k ank = 1 for all but a finite number of values of n. There is no reason to restrict the
definition of f.w.s.s. A-summability to these normalized matrices only. Hence we look for a
modified approach to handle even those cases when A is only regular, but not necessarily
normalized. It is then natural to consider the following definition.

R̃n :=
Rn∑
k ank

=
1∑

k ank

∑
k

ankχ(· − sk).(13)

Clearly this is equivalent to considering Ã in place of A with rows normalized by ãnm :=
anm/

∑
k ank to have sum of weights exactly 1. It is easy to see that for any continuity

point y of R̃, hence also almost everywhere, R̃n(y) → R(y) exactly when Rn(y) → R̃(y) for
n → ∞. That is, the sequence (sk) is A-summable in distribution with R if and only if it
is Ã-summable in distribution with R.

Also, in view of Lemma 3, (4), we can write

T̃n(y) :=
Tn(y)∑
k

ank
=

∞∫
−∞

|u|dR̃n(u + y) =

∞∫
y

(1 − R̃n(u))du +

y∫
−∞

R̃n(u)du .(14)
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Thus regularity of A and strong A-summability in the wide sense to T (y) implies T̃n(y) →
T (y) (n → ∞), too. In other words, (sk) is (finitely) w.s.s. Ã-summable to T (y) if and
only if it is (finitely) w.s.s. A-summable to T (y).

Finally, in order to formulate our next result we need to introduce a further notion.
Take the function T (when it exists, i.e. when (sk) is f.w.s.s. A-summable to it), and define
its ”tightness function” as

Φ(x) :=
T (x) + T (−x) − 2x

2
.(15)

Lemma 5. If (sk) is f.w.s.s. A-summable then (15) is a nonnegative, non-increasing func-
tion. In particular, the limit

τ := τ(A, (sk)) := Φ(∞) := lim
x→∞Φ(x)(16)

exists, and 0 ≤ τ ≤ T (0).

Proof. In view of Lemma 1 (i) Φ : [0,∞) → R is a Lipshitz-1 (hence absolutely continuous)
function with Φ(0) = T (0) and, in regard of Theorem 1, (7), for a.a. x we have Φ′(x) =
(R(x) − 1) − R(−x) ≤ 0. Hence Φ is non-increasing, and Φ(∞) ≤ Φ(x) ≤ Φ(0) = T (0).

On the other hand for any fixed value of x, f.w.s.s. A-summability entails Φ(x) =
limn→∞ Φ̃n(x) with the obvious meaning Φ̃n(x) := (T̃n(x) + T̃n(−x) − 2x)/2. It follows
from (14) that

Φ̃n(x) =

∞∫
x

(1 − R̃n(u))du +

−x∫
−∞

R̃n(u)du ,(17)

which represents a nonnegative, non-increasing function of x. By finite w.s.s. A-summability,
T̃n(y) is finite (at least for n ≥ n0) and we have R̃n ∈ L1(−∞, 0) and (1 − R̃n) ∈ L1(0,∞)
by Lemma 3, (4) and (14). So let us note on passing that these tail integrals tend to zero
when x → ∞, giving Φ̃n(∞) = 0. Also, from Φ̃n(x) ≥ 0 we conclude Φ(x) ≥ 0, as needed.
Now the statements regarding τ follow.

It may seem peculiar that, although Φ̃n(∞) = 0, we can not conclude τ = 0. We’ll
see later in Example 3 that this is essential. But first let us see what can be said in this
generality.

Theorem 5. Assume that with a positive and regular Toeplitz matrix A, the sequence (sk)
is finitely w.s.s. A-summable to T (y). Then the distribution function R defined by (7)
satisfies (1 − R) ∈ L1(0,∞) and R ∈ L1(−∞, 0). Moreover, we have

T (y) = τ +

∞∫
y

(1 − R(u))du +

y∫
−∞

R(u)du = τ +

∞∫
−∞

|u|dR(u + y) ,(18)

with τ defined in (16).

Proof. By Theorem 1, (sk) is A-summable in distribution with (7), and in view of Theorem
2, (11) holds for the functions T and R. On combining (11) for z = L and also z = −L,
where L > 0 is a (large) parameter, a calculation gives

T (y) = Φ(L) +
∫ L

y

(1 − R) +
∫ y

−L

R .
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Since the functions under the integral signs are nonnegative, the limits of these integrals
exist - at least in the extended sense in [0,∞] - when L → ∞. Taking into account Lemma 5,
L → ∞ yields the first equality of (18). As T (y) is finite, it follows that (1−R) ∈ L1(0,∞)
and R ∈ L1(−∞, 0).

Since A is positive and regular, R is non-decreasing with R(−∞) = 0 and R(∞) = 1.
In view of Lemma 2 we can thus infer equality of the two expressions given in (18) for
T (y).

Theorem 6. Assume that with a positive and regular Toeplitz matrix A, the sequence (sk)
is finitely w.s.s. A-summable to T . Let the function R be defined by (7). Denote R̃n and
T̃n according to (13) and (14), respectively. Then the following are equivalent.

i) When n → ∞, we have T̃n → T uniformly on R;

ii) T is tight, i.e. with τ defined in (16), we have τ = 0;

iii) For the f.w.s.s. A-sum function T we have the integral formula

T (y) =

∞∫
−∞

|u|dR(u + y) =
∫ ∞

y

(1 − R(u)) du +
∫ y

−∞
R(u)du ;(19)

iv) When n → ∞, (R̃n − R) → 0 in L1(R) norm.

Proof. By Theorem 1, (sk) is A-summable in distribution with (7), i.e. also R̃n → R a.e.
(n → ∞), and in view of Theorem 5, (1 − R) ∈ L1(0,∞) and R ∈ L1(−∞, 0).

(ii)⇔(iii) by Theorem 5, hence it suffices to show implications (i)⇒(ii)⇒(iv)⇒(i).
(i)⇒(ii). With the notations in the proof of Lemma 5, we find also Φ̃n → Φ uniformly

with n → ∞, while we have already seen that Φ̃n(∞) = 0. Whence τ = Φ(∞) = 0.
(ii)⇒(iv). Let us define for any fixed value y ∈ R the functions

fn(u) := χ(u − y) + sign (y − u)R̃n(u) and f(u) := χ(u − y) + sign (y − u)R(u) .

Then we have 0 ≤ fn, f ≤ 1, T̃n(y) =
∫

R
fn → T (y), and by A-summability in distribution

also fn → f a.e. on R. Thus an application of Fatou’s theorem yields
∫

R
f ≤ T (y) < ∞,

hence f ∈ L1(R). (Taking y = 0 this immediately gives R ∈ L1(−∞, 0) and (1 − R) ∈
L1(0,∞).)

So let us prove limn→∞ ‖R̃n − R‖L1(R) = 0. Take any ε > 0. As R ∈ L1(−∞, 0)
and (1 − R) ∈ L1(0,∞), for a large L(ε), chosen suitably, and for any L ≥ L(ε) we have∫∞

L
(1 − R) +

∫ −L

−∞ R < ε. From this and the triangle inequality we get∫ ∞

−∞
|R − R̃n| ≤

∫ −L

−∞
(R̃n + R) +

∫ ∞

L

((1 − R̃n) + (1 − R)) +
∫ L

−L

|R − R̃n|

≤
∫ −L

−∞
R̃n +

∫ ∞

L

(1 − R̃n) + ε +
∫ L

−L

|R − R̃n|(20)

= Φ̃n(L) + ε +
∫ L

−L

|R − R̃n| ,

using (17) for x = L in the last line.
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Let now n → ∞. By Lebegue’s dominated convergence theorem the integral on the
finite interval [−L, L] converges to 0, and by condition of f.w.s.s. A-summability T̃n(±L) →
T (±L), i.e. also Φ̃n(L) → Φ(L), hence

lim sup
n→∞

∫ ∞

−∞
|R − R̃n| ≤ Φ(L) + ε .(21)

This holding true for all ε > 0 and all L ≥ L(ε), first taking L → ∞ (and using the condition
τ = 0) and then letting ε → 0 we infer lim sup

n→∞

∫∞
−∞ |R − R̃n| = 0, whence (iv).

(iv)⇒(i). Consider the functions fn(u) and f(u) as above, and put εn :=
∫

R
|f − fn| =∫

R
|R̃n − R|. Since T̃n(y) =

∫
R

fn, from condition (iv) we find |T̃n(y) − ∫
R

f | ≤ εn → 0 as
n → ∞, uniformly for all y ∈ R. However, T̃n(y) → T (y) in the pointwise sense, hence also
the uniform limit is T (y), and (i) obtains.

§4. A-summation of f.w.s.s. A-summable sequences

Theorem 7. Let A be a positive and regular Toeplitz matrix, and (sk) be a sequence finitely
w.s.s. A-summable to T (y). Write

S :=

∞∫
−∞

udR(u) =

∞∫
0

(1− R(u))du −
0∫

−∞
R(u)du ,(22)

where R(u) is defined by (7) and the integrals converge absolutely by Theorem 5. Then we
have

S − τ ≤ lim inf
n→∞

∑
k

anksk ≤ lim sup
n→∞

∑
k

anksk ≤ S + τ ,(23)

with τ defined in (16).

Proof. Since (sk) is f.w.s.s. A-summable to T (y), Theorem 5 entails that the integrals in
(22) are absolutely convergent. Since Tn(0) → T (0), by regularity of A also T̃n(0) → T (0)
when n → ∞. Also, the sum

∑
k anksk is absolutely convergent since Tn(0) is finite (at

least for n ≥ n0). Moreover, analogously to the normalization in (14) we can write

S̃n :=
Sn∑
k ank

:=
∑

k anksk∑
k ank

=

∞∫
−∞

udR̃n(u) =

∞∫
0

(1 − R̃n(u))du −
0∫

−∞
R̃n(u)du ,(24)

taking into account (5) of Lemma 3. Clearly we have

|Sn − S| ≤ |Sn − S̃n| + |S̃n − S| ≤
∣∣∣∣1 − 1∑

k ank

∣∣∣∣Tn(0) + |S̃n − S| ,

where the first expression is a product of a 0 sequence and a convergent one. Thus

lim sup
n→∞

|Sn − S| ≤ lim sup
n→∞

|S̃n − S| ≤ lim sup
n→∞

∫ ∞

−∞
|R − R̃n| .(25)

So the proof hinges upon estimating the deviation of R and R̃n in L1(R) norm as n → ∞.
This was already accomplished in the proof of Theorem 6, in the part (ii)⇒(iv). Taking up
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the argument at (21), and taking the limits first in L → ∞ and then in ε → 0 the same
way, we now obtain by (16)

lim sup
n→∞

∫ ∞

−∞
|R − R̃n| ≤ τ .(26)

Combining (25) and (26) yields (23).

Corollary 2 (Gülcü). Let A be a positive and regular Toeplitz matrix, and (sk) be a se-
quence finitely w.s.s. A-summable to T (y). If we also have one - and hence all - of the
equivalent assertions (i)-(iv), listed in Theorem 6, then (sk) is A-summable to S defined in
(22).

From Proposition 1 and Corollary 2 we see the hierarchy ”strong A-summability ⇒
f.w.s.s. A-summability with τ = 0 ⇒ A-summability”, in all cases the formula (22) providing
the A-sum of the series.

We have not seen, however, if τ > 0 is possible, and whether the estimates of (23) are
best possible. Next we aim at showing these by examples.

Let β > 0 be any parameter, and let the numerical sequences (bn) and (αn) be defined
as

bj := α[(j+1)/2] + (−1)jβ with 0 ≤ αj < β for all j ∈ N .(27)

Consider the sequence (sk) defined by

sk :=

{
bk+1−m3m if k = 3m − 2 or k = 3m − 1 , m ∈ N,

0 if k = 3m , m ∈ N ,
(28)

that is, (sk) = 3b1, 3b2, 0, 6b3, 6b4, 0, , 9b5, 9b6, 0, . . . with 3mb2m−1, 3mb2m, 0 on the
(3m − 2)nd, (3m − 1)st and (3m)th places, respectively.

Define the normalized, positive Toeplitz matrix A = (ank) as follows.

ank :=

⎧⎪⎨⎪⎩
1
n if k = 3m with m < n,
1
2n if k = 3n − 2 or k = 3n − 1,

0 otherwise .

(29)

Lemma 6. With the definitions (27), (28) and (29) above, the following assertions hold
true.

i) S̃n = Sn =
∑

k anksk = αn, for all n ∈ N.

ii)

R̃n(u) = Rn(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for −∞ < u ≤ (αn − β)n,
1
2n for (αn − β)n < u ≤ 0,

1 − 1
2n for 0 < u ≤ (αn + β)n,

1 for (αn + β)n ≤ u < ∞ .

(30)

iii) For all u ∈ R the limit distribution function is R(u) = χ(u) and the integral S :=∫
R
|u|dR(u) is just 0.
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iv)

T̃n(y) = Tn(y) =

⎧⎪⎨⎪⎩
|y| + αn if −∞ < y ≤ (αn − β)n,

(1 − 1
n )|y| + β if (αn − β)n ≤ y ≤ (αn + β)n,

|y| − αn if (αn + β)n ≤ y < ∞ .

(31)

v) The f.w.s.s. A-sum function is T (y) = |y| + β for all y ∈ R.

Proof. Since A is normal (meaning
∑

ank = 1 for all n ∈ N), all normalized quantities R̃n,
S̃n, T̃n coincide with their counterparts Rn, Sn and Tn, respectively.

(i). Fix n. Observe that then by construction there are only two sk �= 0 with non-
vanishing weights ank, namely s3n−2 = b2n−1 = n(αn − β) and s3n−1 = b2n = n(αn + β),
both with weights an,3n−2 = an,3n−1 = 1

2n . This gives (i) immediately.
(ii). In (1) we have to replace sk from the sum Sn by the corresponding χ(u− sk), that

is, for most of the cases we insert just χ(u). There are only two different terms, namely
χ(u − n(αn − β)) and χ(u − n(αn + β)), both with weights 1

2n . In other words, Rn is left
continuous, piecewise constant, and has jumps 1

2n , (1 − 1
n ) and 1

2n at n(αn − β), 0 and
n(αn + β), respectively, while Rn(−∞) = 0. Whence (ii) obtains.

(iii). Since 1
2n → 0, Rn(u) → χ(u) uniformly, hence a.e., too.

(iv). There are at least three ways to compute Tn, perhaps the simplest being to take
into account T ′

n = 2Rn−1 a.e., coming from (8) similarly to (7). Using this and computing,
say, Tn(0) = (|n(αn −β)|+ |n(αn +β)|)/(2n) = β, (iv) follows from (ii). Of course, a direct
calculation by (2) or using (4) is equally possible.

(v). Subtracting Tn(y) from |y| + β we get

gn(y) := (|y| + β) − Tn(y) =

⎧⎪⎨⎪⎩
β − αn if −∞ < y ≤ (αn − β)n,
1
n |y| if (αn − β)n ≤ y ≤ (αn + β)n,

αn + β if (αn + β)n ≤ y < ∞ .

(32)

Observe that |αn| < β and we have 0 ≤ gn(y) ≤ |y|/n, hence the assertion.

Example 3. Let the parameters 0 < β and σ with |σ| ≤ β be arbitrary. Let us choose
any sequence (αn) with |αn| < β so that limn→∞ αn = σ; moreover, take the corresponding
sequence (bk) of (27). Then the matrix A and the sequence sk, defined in (29) and (28),
respectively, has the following properties.

i) The sequence (sk) is f.w.s.s. A-summable to T (y) = |y| + β,

ii) The tightness of the f.w.s.s. A-sum function T of the sequence (sk) is τ = β;

iii) The A-limiting distribution of sk is R(u) = χ(u);

iv) The integral S :=
∫

R
|u|dR(u) is 0;

v) The sequence (sk) is A-summable to s = σ.

Proof. Everything follows easily from the preceeding Lemma 6.

Remark 2. It can be observed on this example that neither of the statements (i)-(iv) of
Theorem 6 are satisfied; moreover,

∫
R
|R − R̃n| = τ for all n ∈ N. Still, if we take σ = 0,

the A-sum may hit the value of the integral S; hence equality of them is not equivalent to
the assertions listed. Also, the tightness function (15) is constant τ = T (0) = β and thus
the estimate τ ≤ T (0) of Lemma 5 can be sharp. Compare Corollary 3.
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Modifying our example a little we can even obtain non-A-summable sequences with
tightness τ and proving simultaneous sharpness of the two-sided estimates (23) in Theorem
7.

Example 4. Let the parameters β > 0 and σ, ρ with −β ≤ ρ ≤ σ ≤ β be arbitrary. Let us
choose any sequence (αn) with |αn| < β so that lim infn→∞ αn = ρ and lim supn→∞ αn = σ;
moreover, take the corresponding sequence (bk) of (27). Then the matrix A and the sequence
(sk), defined in (29) and (28), respectively, has the properties (i)-(iv) of Example 3. Further-
more, the sequence (sk) satisfies lim infn→∞

∑
k anksk = ρ and lim supn→∞

∑
k anksk = σ,

too.

§5. Asymptotes of T (y) and A-summability
A real function f is said to have left asymptote l(x) = ax+b, if lim−∞{f−l} = 0. Similarly,

p(x) = cx + d is a right asymptote of f if lim∞ {f − p} = 0. According to Proposition 1, if

(sk) is strongly A-summable then T has both asymptotes, and their equation determines
the value of the sum s. This is not a special case only: the functions T (y), when existing
finitely, always have asymptotes.

Proposition 2. Let A be a positive and regular Toeplitz matrix, and (sk) be a sequence
finitely w.s.s. A-summable to T (y). Let τ denote the tightness parameter defined in (15)
and (16). Then T has asymptotes l(y) = −y+a and p(y) = y+b of slope ±1 with a = S +τ
and b = −S + τ , where S is defined in (22) and the integrals are absolutely convergent. In
particular, τ = (a+ b)/2 and if, furthermore, a+ b = 0, then τ = 0 and (sk) is A-summable
to a = −b = S.

Proof. In view of Theorem 5 R ∈ L1(−∞, 0) and (1 − R) ∈ L1(0,∞). In particular, both
integrals in the formula defining S in (22) as well as in (18) are finite. On combining
Theorems 5 and 2, we obtain for any y < 0

T (y) + y − S − τ = 2
∫ y

−∞
R .

Since we now have R ∈ L1(−∞, 0), this tail integral tends to 0 with y → −∞. That
leads to the assertion with the left asymptote l(y) = −y + S + τ . The right asymptote
p(y) = y − S + τ obtains similarly. The special case τ = 0 is then obvious.

Remark 3. Neither τ = 0, nor a = S or b = −S is necessary for A-summability. On the
other hand, the case of tightness (i.e., of τ = 0) is thus ”asymptotically the same” as strong
summability, see Proposition 1.

A consequence, also obtainable by considering some shifted version of (sk), is the fol-
lowing improvement on the estimate τ ≤ T (0) from Lemma 5.

Corollary 3. Let A be a positive and regular Toeplitz matrix, and (sk) be a sequence finitely
w.s.s. A-summable to T (y). Then the ”tightness parameter” (16) of T satisfies 0 ≤ τ ≤
minR T .

Proof. By Lemma 1 (ii) T is convex, therefore the lines of the asymptotes l and p are
below the graph of T . Hence also max{l, p} ≤ T and the same is true for the minima of
q(x) := max{l(x), p(x)} and T (x). But minR max{l, p} is attained at (a − b)/2, where the
lines intersect; and their (common) value is (a + b)/2 there. Since (a + b)/2 = τ , we find
τ ≤ minR T .
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Remark 4. If minR T = 0, then we have strong A-summability, cf. Proposition 1.

§6. A-summation from conditions weaker than f.w.s.s. A-summability
In fact, to conclude A-summability we need not assume full f.w.s.s. A-summability.

Theorem 8. Let A be a positive and regular Toeplitz matrix, and (sk) be an arbitrary
sequence. Assume that

i) With some function R , Rn → R a.e. in (x,∞);

ii) For a certain z ∈ [x,∞), Tn(z) converges finitely to Z := T (z) := lim
n→∞Tn(z).

Then we have

i) T (y) exists finitely for all y ≥ x. Moreover, T (y) = y − z + Z − 2
∫ y

z
(1 − R) for all

y ≥ x,

ii) T has right asymptote p(y) = y + b with b := Z − z − 2
∫∞

z
(1 − R).

Furthermore, if also (R̃n − R) → 0 in L1(x,∞), then the sequence (sk) is A-summable to
s = −b = z − Z + 2

∫∞
z

(1 − R).

Proof. By Fatou’s theorem,
∫∞

x (1 − R) ≤ lim infn→∞
∫∞

x (
∑

k ank − Rn) which is at most∑
k ank(z − x) + Tn(z) → (z − x) + T (z), in view of the integral representation (4) of Tn in

Lemma 3. Thus (1 − R) ∈ L1(x,∞).
From here we can argue as in the proof of Theorem 2: Lemma 3 yields (8) (now with z in

place of x) and for the interval I between y and z Rn → R together with Tn(z) → T (z) = Z
provides similarly to (11) T (y) = z − y +Z +2

∫ y

z R = y − z +Z − 2
∫ y

z (1−R), i.e. part (i).
Since (1−R) ∈ L1(x,∞) and z, y ∈ [x,∞), the integral

∫ y

z (1−R) converges to
∫∞

z (1−R)
as y → ∞. That yields the asymptote p(y) as stated in part (ii).

Assume now (R̃n−R) → 0 in L1(x,∞). Since Tn(0) =
∑

k ank|sk| ≤
∑

k ank|z|+Tn(z),
Tn(0) is finite (and, in fact, uniformly bounded), hence also (5) of Lemma 3 applies here.
On combining (4) and (5) we find

Tn(y) +
∑

k

anksk = y
∑

k

ank + 2
∫ ∞

y

(∑
k

ank − Rn(u)

)
du ,

that is
1∑

k ank

∑
k

anksk = y − T̃n(y) + 2
∫ ∞

y

(1 − R̃n) .

Since the right hand side converge with n → ∞, so does the left hand side. By regularity
and (1 − R̃n) → (1 − R) in L1(x,∞), we are led to

lim
n→∞

∑
k

anksk = y − T (y) + 2
∫ ∞

y

(1 − R) .

Substituting the formula of part (i) for T (y) gives the statement.

Remark 5. Analogous statements hold for the negative halfline.
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Remark 6. Note that in place of Condition (i) and (R̃n−R) → 0 in L1(x,∞) it suffices to
assume that (1− R̃n) forms a Cauchy sequence in L1(x,∞). Indeed, then by completeness
of L1(x,∞) there exists an L1-limit (1 − R), which implies Rn → R a.e., too.

Corollary 4 (Gülcü). Let A be a positive and regular Toeplitz matrix. If (sk) is bounded
from above by M and Tn(z) converges to the finite value Z := T (z) := limn→∞ Tn(z) for a
certain z ≥ M , then

i) T (y) exists finitely for all y ≥ M . Moreover, T (y) = y − z + Z for all y ≥ M .

ii) T has right asymptote p(y) = y − z + Z.

iii) (sk) is A-summable to s with s = S := z − Z.

Proof. By the boundedness condition, R̃n(y) ≡ 1 for all n ∈ N and all y > M . Hence
Theorem 8 applies.

In Theorem 8 it can still happen that for y < x Tn(y) diverges, however between finite
bounds. Also, if we allow that z be less than x in Condition (ii), then it may happen that
Tn(y) diverges for all y > x, and, even for all y �= z. Also, if we assume only Conditions (i)
and (ii), but not L1-convergence, or if we allow that z be less than x in Condition (ii), then
the sequence (sk) may be A-summable and may not be A-summable as well. These will be
seen from the next examples.

Example 5. Let A := (ank) with ank := δn,k, where δn,k stands for the Kronecker symbol,
i.e. δn,k = 1 or 0 according to n = k or not. Clearly, A is a normalized (hence regular),
positive Toeplitz matrix. Let sk := (−1)k. Then (sk) is a bounded sequence which is not
w.s.s. A-summable as Tn(y) = |y− (−1)n| oscillates for y �= 0; however, for z := 0 T (0) = 1
exists, and also Rn(u) ≡ R(u) := χ(u) for all points u with |u| > 1 as Rn(u) = χ(u−(−1)n).
Furthermore, (sk) is not A-summable as Sn :=

∑
k anksk = (−1)n oscillates between ±1.

Hence z ≥ x in Condition (ii) of Theorem 8 (or z ≥ M from Corollary 4) can not be
dropped.

Assuming existence of T (z) for some point z and also further conditions like (1− R̃n) →
(1−R) in L1(z,∞) or even boundedness of (sk), one would like to obtain more, e.g. f.w.s.s.
A-summability. However, that is not possible, as is seen from the next example.

Example 6. Let A := (ank) with ank := δn,k/2 + δn+2,k/2. Clearly, A is a normalized,
positive Toeplitz matrix. Let sk := �{ik} (where i :=

√−1, as usual). Then (sk) is a
bounded sequence which is not w.s.s. A-summable. However, for |y| ≥ 1 T (y) exists finitely
and is |y|, and for |u| > 1 we have Rn(u) ≡ R(u) := χ(u).

Proof. For any y ∈ R we have R̃n(u) = Rn(u) = χ(u) for n odd and R̃n(u) = Rn(u) =
(χ(u − 1) + χ(u + 1))/2 for n even. Thus R̃n(u) = Rn(u) = χ(u) for all |u| > 1, hence the
limit exists and is R(u) = χ(u), while for |u| < 1 Rn(u) oscillates between 1/2 and χ(u).
Computing Tn(y) either directly from Definition 2 or from Lemma 3 we find Tn(y) = |y| for
n odd and Tn(y) = max{1, |y|} for n even. Thus, for |y| < 1 T (y) does not exist and (sk)
is not w.s.s. A-summable, while T (y) = |y| for all |y| > 1.

Remark 7. Observe that in the above example the sequence (sk) is A-summable to 0 as
Sn :=

∑
k anksk = 0 for all n. This is a general phenomenon, necessarily occurring in view

of Theorem 8 or Corollary 4 - in spite of lack of f.w.s.s. A-summability around 0 - if certain
one-sided conditions are assumed only.
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§7. Historical remarks
The manuscript [2] was written sometimes in 1998 - certainly before January 1999 -

and was seen by the present author in early 2000. The generalized definition, some of the
results and the attempts to push them further clearly suggested the basic idea; however,
it contained errors and a couple of the proofs were incomplete. Unfortunately, the project
did not come to harvest, as A. Gülcü has never published a revised paper. To the contrary,
it seems that he has abandoned not only this work, but also mathematical research as a
whole. After many futile attempts to find and to contact him, finally the present author
decided to finish this work by himself.

In the sequel results proved basically correctly by Gülcü are attributed to him through-
out. Lack of any published version of [2] justifies detailing even these assertions1. However,
sometimes the proofs were reshaped even for these claims, and the build-up of the material
is reordered for good reasons. Thus a few comments about content of [2] are in order here.

Definition 2 is due to Gülcü but restricted to the finite case only. For us it seemed
to be practical to allow +∞ here and distinguish finite w.s.s. A-summability within the
notion: correction of several errors from [2] and general formulation of lemmas and relations
justify our choice. Lemma 1 and (iii) ⇔ (ii) from Proposition 1 are from [2], but some
arguments - e.g. proof of (iv) - are not correct there. To prove Lemma 3 [2] follows [6] and
[5], considering a refining sequence of partitions of R, but the proof is incomplete. Theorem
1 is taken from [2], adding the observation that not only a subsequence, but also the whole
sequence (Rn) must necessarily be convergent a.e., thus cutting a lengthy argument of [2]
short. Also Theorem 2 is from [2], but not the proof being erroneous there.

The main results of our paper stem from the question posed by an invalid statement of
[2] with essentially stating that Theorem 3 holds with Condition (ii) as a part of the result,
and not as a condition. Here it is clarified that validity of Theorem 3 requires Condition (ii),
while without it we can state only Theorem 4. However, if the summation method involves
a triangular matrix A, then - as presented in Corollary 1 - one can even drop Condition (ii).

Corollary 2 can be attributed to Gülcü as in [2, Theorem 4] he presents a longer, direct
proof - based on Lemma 1 - for the version with assuming Condition (iii) from the equivalent
assumptions listed in Theorem 6. However, equivalence with the other conditions, as well
as the phenomenon perceived here as the ”tightness” τ , are described here for the first time.

In [2, Theorem 5] also the easy Corollary 4 is deduced directly from the definitions; the
more general material, as well as the examples constructed, are new.

We have left (iii) and (iv) of Lemma 1 in the formulation only for historical reasons.
Clearly these constitute a half of A-summability and asymptote evaluations of the A-sum,
obtained here also under weaker conditions - e.g. not assuming full f.w.s.s. A-summability
of (sk).
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