Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431-437 431

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS*

ONDREJ CEPEK®T AND SHAO CHIN SUNG?

Received December May 12, 2003; revised February 5, 2004

ABSTRACT. In this paper we study a problem with periodic time slots in which a
processing time and periodically repeating due dates are given for each job, where the
period is the same for all jobs. The objective is to minimize the number of periodic
time slots in which all jobs can be scheduled just-in-time. We show that when set-
up times between jobs are considered, the problem becomes unary NP-hard even in
the single machine case. When set-up times are not considered, we study several
subproblems which arise by putting additional restriction on processing times. We
show that under a rather strict (although natural) restriction the problem is solvable in
polynomial time for an arbitrary number of identical parallel machines, and we present
a simple polynomial time algorithm solving the problem. We also show, that when
the restriction on processing times is lifted, the problem without set-up times becomes
binary NP-hard already for two machines and unary NP-hard when the number of
machines is a part of the input.

1 Introduction In this paper we study a problem with periodic time slots, in which a
processing time and periodically repeating due dates are assigned to each job, where the
period (i.e., the time difference between consecutive due dates) is the same for all jobs. The
objective is to minimize the number of periodic time slots which are sufficient for scheduling
all given jobs just-in-time (i.e. each job is completed exactly on one of its due dates).

This problem is motivated by manufacturing environments with a periodic production
cycle (day, week), where a due date of a job corresponds to a periodically repeating event
(e.g. arrival of a truck which picks up the production). The problem was first studied by
Hiraishi [2] in the environment of identical parallel machines. The following two additional
assumptions were considered:

e a nonnegative set-up time is given for every (ordered) pair of jobs, which means that
when two jobs are scheduled consecutively, an idle time of (at least) the given length
must be scheduled in-between them, and

e for each job, its processing time is less than or equal to its (first) due date, which
implies that every job is scheduled within a single time slot (cannot span over several
neighboring slots)

In [2] a heuristic algorithm for finding a ”good” schedule was proposed. In this note we
shall study this problem further (under the same assumptions), and we shall show that the
presence of set-up times makes the problem unary NP-hard even in the case of a single
machine, unit processing times, and only two different lengths of set-up times. Clearly, two
is the smallest possible number of lengths to consider, because when all set-up times are
the same, they can be simply added to processing times, which constructs an equivalent

2000 Mathematics Subject Classification. 90B35, 90C27.

Key words and phrases. just-in-time scheduling, polynomial time algorithm, NP-hardness.
*This work was supported by the Czech Science Foundation (grant 201/04/1102)
fCorresponding author. Tel: 4420 221914246 Email: cepek@ksi.ms.mff.cuni.cz (O. Cepek)

432 ONDREJ CEPEK AND SHAO CHIN SUNG

problem without set-up times. Thus, in order to establish polynomially solvable cases of the
problem, it is natural to concentrate on the setting with no set-up times (or equivalently
with all set-up times equal to zero).

Next we shall show, that when set-up times are removed from the problem studied in [2]
(and the restriction on processing times is kept in place), the problem becomes solvable
in polynomial time. We present a simple O(n?) greedy algorithm solving this restricted
problem for an arbitrary number of machines, where n is the number of jobs.

Finally, we shall lift the restriction on the processing times (and keep all set-up times
zero) and prove, that in such a case the problem becomes binary NP-hard already for two
machines, and unary NP-hard when the number of machines is not fixed (i.e., when the
number of machines is a part of the input).

2 Problem formulation There are m parallel identical machines My, Ms, ..., M,, and n
jobs Ji, Ja, ..., J, with processing times pi,pa,...,p,. The operation time on all machines
is divided into slots of length L, and each job is assigned a set of periodically repeating due
dates, one per each time slot, namely job J; has due dates d;, L + d;,2L + d;, ... where
0 < dj < L. Moreover, for each pair of jobs Jy, J¢, where k # ¢, a set-up time 0 < ¢y < L is
considered, which means that if J, and .J; are scheduled on some machine M; in the order
that .Jy is started after Ji is completed, then the time difference between the completion of
Ji and the start of J, must be at least t;s. The problem is to find a feasible nonpreemptive
schedule in which each job is completed exactly on one of its due dates, and which minimizes
the number of time slots required for all jobs to be processed. The feasibility of schedules
and the objective function can be described formally as follows.

A schedule is a mapping which assigns to every job .J; an ordered pair (M;), C;), where
M;;; is a machine on which job J; is processed, and Cj is its completion time, i.e. J; is
processed on M;) in the time interval [C; — p;, C;). A schedule is called feasible if

e for every pair of jobs Ji, Jy, where k # £, if My, = M, (both jobs are assigned to
the same machine), then

(1) either Cp > Cy+ty+pr or Cp>Clr+tre+ pe,

e for each job J; there exists a nonnegative integer r; such that C; = r; - L 4+ d; (i.e.
each job is completed exactly on one of its due dates).

Let us denote R = max{ry,ra,...,7,}. Then the objective of the problem is to minimize R
over the set of all feasible schedules.

An additional constraint on the input data was considered in [2]. It was assumed that
p; < d; holds for every job J;. This means that if a job is scheduled just-in-time, it
completely fits within a single time slot. This constraint is a very natural one in practice.
We shall also assume its validity in the next two sections.

In [2], a heuristic algorithm for finding a ”good” schedule with respect to the minimiza-
tion of the value of R was presented. In the next section we shall show, that in fact this
problem is unary NP-hard even for the single machine case (i.e. for m = 1), where moreover
all jobs are assumed to have the same length.

3 Unary NP-Hardness for m = 1 with set-up times and unit time jobs In order
to prove the above mentioned intractability result, we shall use for the reduction the well-
known unary (strongly) NP-complete Hamiltonian path problem (see e.g. [1]), which is
defined as follows.

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS 433

Hamiltonian Path (HP)
Instance: An undirected graph G = (V, E), where V = {v1,...,v,}.

Question: Is there a Hamiltonian path in G, i.e. does there exist a permutation
of vertices vy, ... vp,) such that (vj,vity) € E for every 1 <i<n —17

Now we shall construct an instance of a decision version of our just-in-time schedul-
ing problem, so that this instance has a solution if and only if the input instance of the
Hamiltonian path problem has a solution.

Just-in-time Scheduling with Set-up Time (JSST)

Instance: m = 1, L = 2, Jy,...,J, (identify jobs with vertices of the input
graph), p; =d; =2 for all 1 < j <n, and

b= {0 if (i,j) € E,
" 1 otherwise.

Question: Is there a feasible schedule which occupies at most n time slots, i.e.
such that R < n?

Lemma 1 The input HP instance has a solution if and only if the constructed JSST in-
stance has a solution.

Proof. If HP has a solution, then we easily construct a solution of JSST by scheduling the
jobs in the order given by the Hamiltonian path. All set-up times between consecutive jobs
are in such a case zero, and so the constructed schedule fits into exactly n time slots. On
the other hand if JSST has a solution (in such a case exactly n time slots are occupied as it
is impossible to schedule n unit time jobs in less than n unit time slots) then the sequence
in which jobs are scheduled gives a Hamiltonian path, since all set-up times between con-
secutive jobs must be in such a case zero, and so this order indeed gives a path in the input
graph. [|

Since the above reduction is clearly polynomial, and all processing times, due dates, and
set-up times are nonnegative integers bounded by a constant (namely two), we obtain the
following theorem.

Theorem 1 JSST is unary NP-hard.

Notice that JSST remains unary NP-hard even if the feasibility constraint (1) is re-
quired only for pairs of jobs which are scheduled consecutively. This fact follows from the
easy observation that the feasibility constraint is fulfilled automatically for all other (non-
consecutively scheduled) pairs of jobs in the above presented reduction (the length of every
job is larger then the length of any set-up time).

4 Polynomiality for arbitrary m under p; < d; constraint In the following we shall
consider the case when all set-up times are zero, and hence do not in any way influence the
feasibility of schedules.

In the absence of set-up times the p; < d; constraint, i.e. the constraint that in every
feasible schedule no job spans over more than one time slot, causes that the schedule in
each individual time slot on each individual machine constitutes a ”block” which can be
moved around freely in the schedule (both by permuting blocks on one machine and by
moving blocks from one machine to another) without spoiling the feasibility of the resulting
schedule.

434 ONDREJ CEPEK AND SHAO CHIN SUNG

This observation leads to the following idea. Rather than solving the original problem
of minimizing the number of used time slots on a fixed number of machines, we shall solve
an equivalent problem of scheduling all jobs in a single time slot on a minimum number of
machines. The correspondence between these two problems is obvious. Given a one-slot
schedule on a minimum possible number, say g, of machines, one can easily construct a
schedule on a fixed number m of machines that occupies [¢q/m] time slots, and this is the
best possible value.

So by solving the new minimization problem (minimizing the number of machines with
one slot) we also solve the original one (minimizing the number of used time slots on a fixed
number of machines). The new problem can be solved by the following greedy algorithm.

Algorithm MINNM:

Phase 1. Sort jobs increasingly by s; = d; — p; and renumber them accordingly, i.e., after
renumbering we have
S1 SSQSSSn
Phase 2. Take jobs one by one from the sorted sequence and when processing job J; find
the first available machine M;, i.e. a machine with the smallest index such that no job
(from the set of previously scheduled ones) is processed on it at time s;, and schedule
J; on M; in the time interval [s;, d;).

Obviously, placing each job takes time bounded by the number of machines used up until
that moment, and moreover the total number ¢ of all machines used up by the algorithm
clearly fulfills ¢ < n. Thus, we have the following proposition.

Proposition 1 Algorithm MAXNM runs in O(n?) time.

Notice that the running time of algorithm MINNM does not depend on the number of
machines m in the original problem which minimizes number of time slots. The correctness
of the algorithm is given by the following theorem.

Theorem 2 Algorithm MINNM produces an optimal schedule, i.e. a schedule on a mini-
mum possible number of machines.

Proof. Let g be the number of machines used by the algorithm, and let job J; be the first
one to be scheduled on machine M,. Since MINNM puts J; on M, it means that every
machine My, ..., My processes some job in the time interval [s;, s; +¢) for some suitably
small ¢ > 0. However, this set of ¢—1 jobs together with job J; force every feasible schedule
to use at least ¢ machines because no pair of jobs from this set can be scheduled on the
same machine. []

In the last two sections we shall relax the p; < d; constraint and consider arbitrarily
long processing times.

5 Binary NP-hardness for m = 2 and arbitrary p;’s In this section we shall show
that relaxing the p; < d; constraint causes the problem to become binary NP-hard already
in the two machine case. For the reduction, we shall use the well-known binary NP-complete
PARTITION problem (see e.g. [1]), which is defined as follows.

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS 435

PARTITION
Instance: n positive integers aq,as, ..., ay.

Question: Is there a subset S of the index set I = {1,2,...,n} such that

Zai: Z a; 7

= i€I\S

Now we shall construct an instance of a decision version of the currently considered
just-in-time scheduling problem on two machines, so that this instance has a solution if and
only if the input instance of the PARTITION problem has a solution.

Just-in-time Scheduling on Two Machines (JS2M)

Instance: m =2, L =1, Jp,...,J, (identify jobs with the input numbers «a;),
pj=a; dj=1foralll <j<n.

Question: Is there a feasible schedule which occupies at most T" = %Zle 70
time slots, i.e. such that R < T7?

Lemma 2 The input PARTITION instance has a solution if and only if the constructed
JS2M instance has a solution.

Proof. If PARTITION has a solution, then we easily construct a solution of JS2M by
scheduling the jobs selected into the subset S on the first machine and the remaining jobs
on the second machine. The number of slots used on each machine will be exactly T, and
all jobs will be scheduled just-in-time, because every end of a slot is a due date for every
job, and the lengths of jobs are integral.

On the other hand if JS2M has a solution, then exactly T time slots are occupied on
each of the two machines and so the subset of jobs scheduled on any of the two machines
constitutes a solution to the input PARTITION problem. []

Since the above reduction is clearly polynomial, i.e. the number of bits needed to encode
the constructed instance of JS2M is bounded by a polynomial in the number of bits needed
to encode the input instance of PARTITION, we get the following theorem.

Theorem 3 JS2M is binary NP-hard.

In the last section of this paper we shall strengthen the NP-hardness result to unary
coding. In order to obtain this result we shall sacrifice the fixed number of machines, i.e we
shall assume that the number of machines is a part of the input.

6 Unary NP-hardness for input m and arbitrary p;’s In this section we shall
mimic the proof for the binary NP-hardness using the well-known unary NP-complete 3-
PARTITION problem (see e.g. [1]), which is defined as follows.

436 ONDREJ CEPEK AND SHAO CHIN SUNG

3-PARTITION

Instance: 3m + 1 positive integers b and aq, ag, .. ., a3m, such that % <a; < %
for every 1 < i < 3m, and
3Im
Z a; = mb.
i=1

Question: Can the set I = {1,2,...,n} be partitioned into m disjoint sets
S1,59,..., S, such that

Zai:b foralll1 <i<m?
i€S;

Now we shall construct an instance of a decision version of the considered just-in-time
scheduling problem on m machines (where m is the input value from the instance of 3-
PARTITION), so that this instance has a solution if and only if the input instance of the
3-PARTITION problem has a solution.

Just-in-time Scheduling on m Machines (JSmM)

Instance: L =1, Ji,..., s, (identify jobs with the input numbers a;), p; = a;,
and d; =1 for all 1 < j < 3m.

Question: Is there a feasible schedule which occupies at most b time slots, i.e.
such that R < b?

Lemma 3 The input 3-PARTITION instance has a solution if and only if the constructed
JSmM instance has a solution.

Proof. If 3-PARTITION has a solution, then we easily construct a solution of JSmM by
scheduling the jobs selected into the subset S; on the machine M; for every 1 < i < m.
The number of slots used on each machine will be exactly b, and all jobs will be scheduled
just-in-time, because every end of a slot is a due date for every job, and the lengths of jobs
are integral.

On the other hand if JSmM has a solution, then exactly b time slots are occupied on
each machine and so the subset of jobs scheduled machine M; gives the set S; for every
1 < i < 'm, which constitutes a solution to the input 3-PARTITION problem. [|

As in the previous case, the above reduction is polynomial, i.e. the number of bits
needed to encode the constructed instance of JSmM is bounded by a polynomial in the
number of bits needed to encode the input instance of 3-PARTITION. Hence we get the
following theorem.

Theorem 4 JSmM is unary NP-hard.

REFERENCES

[1] Garey MR, Johnson DS. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, San Francisco, 1979.

[2] Hiraishi K. Just-In-Time Scheduling of Parallel Identical Machines with Multiple Time Slots.
Proceedings of the 4th Czech-Japan Seminar on Data Analysis and Decision Making under
Uncertainty, Jindrichuv Hradec, September 2001.

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS 437

@ Department of Theoretical Informatics and Mathematical Logic, Charles University,
Malostranské nam. 25, 118 00 Praha 1, Czech Republic

(also teaching at the Institute of Finance and Administration - VSFS)

Email: cepek@ksi.ms.mff.cuni.cz

b School of Information Science,

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi, Ishikawa, 923-1292, Japan
Email: son@jaist.ac.jp

