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STOPPING A STOCHASTIC INTEGRAL PROCESS AS CLOSE AS
POSSIBLE TO THE ULTIMATE VALUE OF A FUNCTIONAL

MARIO ABUNDO
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Abstract. We extend to stochastic integral processes with deterministic integrands
the results previously proved by Graversen, Peskir and Shiryaev, on stopping Brownian
motion as close as possible to the ultimate value of a functional.

1. Introduction

In this short note, we extend to stochastic integral processes with deterministic integrands
the results previously proved by Graversen, Peskir and Shiryaev for Brownian Motion (BM),
concerning stopping the process as close as possible to the ultimate value of a functional.
Let us consider the process

(1.1) X(t) = X0 +
∫ t

0

σ(s)dBs

where Bt is a standard Brownian Motion; we assume that σ(t) is a non-negative determin-
istic function. Notice that the quadratic variation of X(t), 〈X〉t =

∫ t

0
σ2(s)ds, turns out to

be a deterministic increasing process, thus X(t) is a martingale which is also a Gaussian
process. Then we consider the optimal stopping problem:

(1.2) w∗ = inf
τ∈[0,1]

E[X(τ) − S1]2

where the infimum is taken over all stopping times τ ∈ [0, 1] of X(t), and St is a given
functional of the process X(t) for t ∈ [0, 1]. We consider two cases: in the first one St is the
maximum process of X(t) in [0, t], i.e. St = maxs∈[0,t]X(s), in the second case St is the
time average of X(t) in the interval [0, t], i.e. St = 1

t

∫ t

0 X(s)ds.
Since S1 is a random quantity whose value depends on the entire path of the process X(t)
over the interval [0, 1], its ultimate value is at any time t ∈ [0, 1), unknown. The optimal
stopping problem above consists in finding the particular (random) time τ∗ at which the
process X(t) must be terminated so that w∗ = E[X(τ∗) − S1]2, in this way the value of
the process at τ∗ is as ”close” as possible to the ultimate value S1, where ”closeness” is
meant in the sense of mean-square distance. Our results generalize the analogous ones found
in (Graversen, Peskir and Shiryaev, 2000) for BM; for instance, they have applications in
Stochastic Finance, when an optimal decision (i.e. a stopping time) has to be based on a
prediction of the future behaviour e.g. of a stoch price X(t) of the form (1.1).
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2. Statement of the problem and main results

Throughout this section X(t) is the solution of the stochastic differential equation:

(2.1) dX(t) = σ(t)dBt, X(0) = X0

where Bt is a standard Brownian Motion, σ(t) ≥ 0 is a (deterministic) bounded continuous
function; we denote by 〈X〉t =

∫ t

0 σ
2(s)ds, the quadratic variation of X.

2.1. The case of the maximum functional. Our aim is to solve the optimal stopping
problem:

(2.2) w∗ = inf
τ∈[0,1]

E[X(τ) − S1]2

where the infimum is taken over all stopping times τ ∈ [0, 1] of X(t), and
S1 = maxs∈[0,1]X(t). First, we recall the following result holding for BM.

Theorem 2.1. (Graversen, Peskir and Shiryaev, 2000) Let us consider the optimal stop-
ping problem (2.2), with X(t) ≡ Bt and X0 = 0 (i.e. σ(·) = 1 and St ≡ S0

t
.= maxs∈[0,t]Bs).

Then the value w∗ ≡ w0∗ is given by

(2.3) w0
∗ = 2Φ(z0

∗) − 1 = 0.73....

where z0∗ = 1.12.... is the unique root of

(2.4) 4Φ(z0
∗) − 2z0

∗φ(z0
∗) − 3 = 0

and

φ(x) = (1/
√

2π)e−x2/2, Φ(x) =
∫ x

−∞
φ(u)du

Moreover w0
∗ = E[Bτ0∗ − S0

1 ]2, where

(2.5) τ0
∗ = inf{0 ≤ t ≤ 1 : S0

t −Bt ≥ z0
∗
√

1 − t}

The following holds:

Theorem 2.2. Let us consider the optimal stopping problem (2.2), where X(t) satisfies
(2.1), and denote by ρ(t) = 〈X〉t the quadratic variation of the process X. We suppose that

(2.6) ρ(+∞) = +∞
Then:

(2.7) w∗ = ρ(1)w0
∗

where w0
∗ is given by (2.3). Moreover, the infimum in (2.2) is attained at τ∗, which is given

by:

(2.8) τ∗ = inf{0 < t < ρ(1) : S0
t −Bt ≥ z0

∗
√
ρ(1) − t}

where z0
∗ is given by (2.4).
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Proof.
We assume X0 = 0; the general case is reduced to this by considering the process Z(t) .=
X(t) − X0. Thanking to (2.6), by a random-time change (see e.g. Krylov, 1994) we can
write: X(t) = B̃〈X〉t

= B̃ρ(t), where B̃ is a suitable BM. Then:

S1 = max
s∈[0,1]

X(s) = max
s∈[0,1]

B̃ρ(s) = max
u∈[0,ρ(1)]

B̃u

So:

(2.9) w∗ = inf
τ∈[0,1]

E [X(τ) − S1]
2 = inf

u∈[0,ρ(1)]
E

(
B̃u − max

u∈[0,ρ(1)]
B̃u

)2

Now, by using the scaling property of BM, B̃ρ(1)·s/
√
ρ(1) .= Ws is also BM, so setting

s = u/ρ(1), the last expression of the infimum can be written:

ρ(1) · inf
s∈[0,1]

E

[(
Ws − max

r∈[0.1]
Wr

)2
]

Therefore, from Theorem 1.1 (2.7) follows. Moreover, by the scaling property of BM again
(see Remark 4 of (Graversen, Peskir and Shiryaev, 2000) ), we obtain (2.8).

2.2. The case of the integral functional. We consider here the optimal stopping prob-
lem (1.2), with St = 1

t

∫ t

0 X(s)ds, i.e. S1 is the time average of the process X(t) in the
interval [0, 1]. First, we state a representation result for the functional I1

.= S1.

Lemma 2.3. The following formula holds:

(2.10) I1 =
∫ 1

0

X(s)ds = X(0) +
∫ 1

0

σ(s)(1 − s)dBs

Proof.
By Itô’s formula, we get:

(2.11)
∫ t

0

X(s)ds = tX(t) −
∫ t

0

sσ(s)dBs

By using that:

(2.12) X(1) = X(0) +
∫ 1

0

σ(s)dBs

and taking t = 1 in (2.11), we easily obtain (2.10).

Remark 2.4. In the special case when X(t) ≡ Bt, formula (2.10) gives
I1 =

∫ 1

0
(1 − t)dBt, as already stated in (Graversen, Peskir and Shiryaev, 2000).

We associate to I1 the martingale:

(2.13) Mt
.= X(0) +

∫ t

0

σ(s)(1 − s)dBs

Note that M1 = I1; moreover, it is easy to see that:

(2.14) Mt = (1 − t)X(t) +
∫ t

0

X(s)ds
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Theorem 2.5. For any stopping time τ ∈ [0, 1] :

(2.15) E[X(τ) − I1]2 = E

(∫ τ

0

(2s− 1)σ2(s)ds
)

+
∫ 1

0

σ2(s)(1 − s)2ds

Thus the infimum over all stopping times τ ∈ [0, 1] can be esplicitly calculated by finding
the minimum of the function
τ → ψ(τ) .=

∫ τ

0 (2s−1)σ2(s)ds+
∫ 1

0 σ
2(s)(1−s)2ds and τ∗ is the value at which ψ attains

its minimum.

Proof.
We assume X0 = 0; the general case is reduced to this by considering the process Z(t) .=
X(t) −X0. We have:

(2.16) E[X(τ) − I1]2 = E[X(τ)2] − 2E[X(τ)I1] + E[I2
1 ]

By Itô’s formula, the first addendum in the right-hand member of (2.16) is:

(2.17) E[X(τ)2] = E

(∫ τ

0

σ2(s)ds
)

Moreover, by (2.10) the third addendum in the right-hand member of (2.16) is:

(2.18)
∫ 1

0

σ2(s)(1 − s)2ds

An application of the optional sampling theorem for martingale to bounded stopping times,
gives that, for any stopping time τ ≤ 1 :

(2.19) E[X(τ)I1] ≡ E[X(τ)M1] = E[X(τ)Mτ ]

By using that d(X(t)Mt) = X(t)dMt +MtdX(t) + σ2(t)(1 − t)dt we obtain:

(2.20) E[X(τ)Mτ ] = E

(∫ τ

0

X(t)σ(t)(1 − t)dBt

)

+E
(∫ τ

0

Mtσ(t)dBt

)
+ E

(∫ τ

0

σ2(t)(1 − t)dt
)

which is equal to

(2.21) E

(∫ τ

0

σ2(t)(1 − t)dt
)

since the others terms vanish by the optional sampling theorem again. Thus, (2.15) follows
by (2.17), (2.18) and (2.21).

Remark 2.6. Note that, unlike Theorem 2.2, we do not require that 〈X〉∞ = ∞. We
observe that, although I1 is unknown because it is a random quantity whose value depends
on the entire path of the process X(t) over the time interval [0, 1], the optional sampling
theorem permits to write E[X(τ)I1] as E[X(τ)Mτ ] which involves values of the process until
the time τ.
In the case of BM (σ(·) = 1) (2.15) furnishes

inf
τ∈[0,1]

E[X(τ) − I1]2 = inf
τ∈[0,1]

E(τ2 − τ +
1
3
) =

1
12

and the infimum is attained at τ∗ = 1
2 , as already found in (Graversen, Peskir and Shiryaev,

2000).
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