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KYUNG HO KIM, EUN HWAN ROH AND YONG HO YON

Received March 5, 2004

ABSTRACT. In this paper, we define an ideal of a subtraction semigroup and a strong
subtraction semigroup and characterizations of ideals is given. We prove that x A y
is the greatest lower bound of z and y in subtraction semigroup X. Also we define a
congruence relation on a subtraction semigroup and a quotient subtraction semigroup
and prove the isomorphisms.

1. INTRODUCTION

B. M. Schein [2] considered systems of the form (®;o0,\), where ® is a set of functions
closed under the composition “o” of functions (and hence (®;0) is a function semigroup)
and the set theoretic subtraction “\” (and hence (®;\) is a subtraction algebra in the sense
of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup
of invertible functions. B. Zelinka [3] discussed a problem proposed by B. M. Schein [2]
concerning the structure of multiplication in a subtraction semigroup. He solved the problem
for subtraction algebras of a special type, called the atomic subtraction algebras. In this
paper, we define an ideal of a subtraction semigroup and a strong subtraction semigroup
and characterizations of ideals is given. We prove that x A y is the greatest lower bound of
2 and y in subtraction semigroup X. Also we define a congruence relation on a subtraction
semigroup and a quotient subtraction semigroup and prove the isomorphisms.

2. PRELIMINARIES

< 7

By a subtraction algebra we mean an algebra (X; —) with a single binary operation “—

that satisfies the following identities: for any z,y, 2z € X,

(SA1) = —(y —z) ==

(SA2) z —(z —y) =y — (y —x);

(SA3) (z—y)—2z=(x—2)—y.
The last identity permits us to omit parentheses in expressions of the form (x — y) — z.
The subtraction determines an order relation on X: a < b < a—b =0, where 0 = a —a
is an element that does not depend on the choice of a € X. The ordered set (X;<) is
a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in
which every interval [0,a] is a Boolean algebra with respect to the induced order. Here
aNb=a— (a—b); the complement of an element b € [0, a] is a — b; and if b, ¢ € [0, a], then

bve = WA =a—-((a=b)A(a—c))
= a—((a—b)—((a—0b)—(a—c))).
In a subtraction algebra, the following hold:
(S1) z—0=zand 00—z =0.
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)

3) x <y if and only if z = y — w for some w € X.

4) x <y impliesx —z2<y—zand 2 —y < z—x for all z € X.
)

By a subtraction semigroup we mean an algebra (X;-, —) with two binary operations “—”
and “”that satisfies the following axioms: for any z,y,z € X,

(SS1) (X;-) is a semigroup;
(SS2) (X;—) is a subtraction algebra;
(SS3) z(y — 2) =xy — zz and (z —y)z = xz — yz.

A subtraction semigroup is said to be multiplicatively abelian if multiplication is commu-
tative.

Example 2.1. Let X = {0, 1} in which “=” and “” are defined by

-0 1 10 1
0(0 O 010 O
1({1 0 110 1

It is easy to check that X is a subtraction semigroup.

Lemma 2.2. Let X be a subtraction semigroup. Then the following hold.

(1) 20 =0 and 0z =0
(2) x <y implies ax < ay and za < ya.
(3) x(yNz)=ayAzz and (x Ny)z =22z ANyz

Proof. (1) z0 = 2(0—0) =20 — 20 = 0 and 0z = (0 — 0)x = 0z — O0x = 0.
(2) Let < y. Then we have z —y = 0, and so

ax —ay = a(zx —y) = a0 = 0.

Hence ax < ay. Similarly, we have xa < ya.
B)zxyAz)=z(y—(y—2)) =2y —z(y — 2) = 2y — (vy — x2z) = vy A zz. Similarly, we
have (z Ay)z = xz A yz. O

Lemma 2.3. Let X be a subtraction semigroup. Then (X; <) is a poset, where x <y &
x—y=0 for any z,y € X.

Proof. For any x € X, we have x < x since x — x = 0. Thus < is reflexive.

Let 2,y € X besuch that x <yandy < z. Then x—y = 0 and y—x = 0. Thus by (SA1)
and (SA2) and (S1), wehavez =z —(y—z)=0c—0=z—(z—y)=y—(y—2)=y—0=y.
Hence < is antisymmetry.

Let x,y,2z € X be such that x <y and y < z. Then by (S4), we have x — 2z <y — 2z = 0.
Thus we get © — 2 = 0 by (S1). Hence < is transitivity. O

Proposition 2.4. Let X be a subtraction semigroup. Then for any z,y € X, x Ay is the
greatest lower bound of x and y.

Proof. Let x,y € X. Thensince x Ay=z—(x —y)=y— (y —z) < x,y from (S2), z Ay
is a lower bound of x and y.
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If z is a lower bound of  and y, then z —y = 0 and z = = — w for some w € X from
(S5), and hence
s @Ay =z (2 (z—y)
=@-w)—(z—-(r-y)
=@-(@-(r-y)-w
=(x—y)—w (from (S5))

=(@—-w)—y
= Z — y
=0.
It follows z < x Ay, and so z A y is the greatest lower bound of  and y. O

3. IDEALS OF SUBTRACTION SEMIGROUP

Definition 3.1. Let X be a subtraction semigroup. A subalgebra I of (X, —) is called a
left ideal of X if XI C I, a right ideal if IX C I, and an (two-sided) ideal if it is both a left
and right ideal.

Example 3.2. Let X = {0,1,2,3,4,5} in which “~” and “” are defined by

-0 1 2 3 4 5 -0 1 2 3 4 5
00 0 OO 0 O 0[O0 0 00O 0O
111 0 3 4 3 1 110 1 4 3 4 0
212 5 0 2 5 4 210 4 2 0 4 5
313 0 3 0 3 3 3]0 3 0 3 00
414 0 0 4 0 4 410 4 4 0 4 0
55 5 0 5 5 0 5/0 0 5 0 0 5
It is easy to check that (X;—,-) is a subtraction semigroup. Let I = {0,1,3,4}. Then [ is

an ideal of X.

Example 3.3. Let X be a subtraction semigroup and a € X. Then
Xa={za|ze X}
is a left ideal of X.

Proof. Let za,ya € Xa. Then za—ya = (x—y)a € Xa, and so Xa is a subalgebra of (X, —).
Let za € Xa and z € X. Then z(va) = (2z)a € Xa, which shows that X(Xa) C Xa.
Therefore, Xa is a left ideal. O

Let S be a subset of a subtraction semigroup X. The ideal of X generated by S is the
intersection of all ideals in X containing S. The element 1 is called a wunity in a subtraction
semigroup X if lx =21 =z for all z € X.

Definition 3.4. A strong subtraction semigroup is a subtraction semigroup X that satisfies
the following condition : for each z,y € X,

T—y=2x—TY.

If X ia a strong subtraction semigroup with a unity 1, then 1 is the greatest element in
Xsincex—1=z—axl=x—x=0forallz e X.
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Example 3.5. In Example 3.2, if - is defined by -y = 0 for all z,y € X, then x-y # x Ay
in general.

Example 3.6. Let X = {0,a,b,1} in which “~” and “” are defined by

—|o a b 1 0 a b 1
00 0 O O 0j0 0 0 O
ala 0 a O a|l0 a 0 a
b|b b 0 0 b0 0 b b
11 b a O 1{0 a b 1
It is easy to check that (X;—,-) is a strong subtraction semigroup with unity 1.

Lemma 3.7. Let X be a strong subtraction semigroup. Then

(1) zy <y forallz,y € X,
(2) <y, z,y € X if and only if v < xy.

Proof. (1) For any x,y € X, zy —y = ay — (zy)y = zy —x(yy) = x(y —yy) = 2(y —y) = 0.
(2) It is easy to show from the definition of strong subtraction semigroup and the above
(1). O

Theorem 3.8. Let (X, —,-) be a strong subtraction semigroup and I a subalgebra of (X, —).
Then the followings are equivalent :

(1) I is an ideal in (X, —,"),

(2) yel andx <y implyx € 1.

Proof. Suppose that I is an ideal in X, and let y € I and x < y. Then z = y — w for some
w € X from Lemma 2.2 and (S5), andsox =y —w=y—yw € [

Conversely, Suppose that y € I and = <y imply = € I. If s € X and a € I, then by the
Lemma 3.7,(1), sa < a € I, hence sa € I. Since s < s and s < sa from Lemma 3.7,(2), we
have

as —a=as — (as)a = as — a(sa) = a(s — sa) = al = 0,

and as < a € I, and hence as € I. This completes the proof.
O

Theorem 3.9. If X is a strong subtraction semigroup, then the principal ideal generated
byac X is (a]={r e X |z <a}.

Proof. Let z,y € (a]. Since (t—y)—a=(x—a)—y=0—y=0,z—y <aand z—y € (al,
and hence (a] is a subalgebra of X. From the Theorem 3.8, (a] is an ideal in X.

If J is an ideal containing a and x € (al, then z < a € J. Since J is an ideal, x € J from
the Theorem 3.8. Hence (a] C J and it follows that (a] is the principal ideal generated by
a. O

If X is a strong subtraction semigroup with 1, then the principal ideal generated by a is
(a] = Xa.

Theorem 3.10. Let X be a strong subtraction semigroup with a unity 1. Then the following

are equivalent :

(1) I is an ideal in X,
(2) yel andx <y implyx € 1.
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Proof. Let I be an ideal in X, and let y € I and = < y. Then z = y — w for some w € X,
hencex =y—-—w=y—ywel
Suppose that y € [ and ¢ < y imply « € I. If z,y € I, then x —y € I, since

r—y=x—axy=x(l—y) <z-1=2x €l Hencel is a subalgebra of X. Let s € X and
a € I. Then

as—a=a(s—1)=a0=0
and

sa—a=(s—1)a=0a=0,
hence as < a and sa < a, that is, IX C I and XI C I. It follows that I is an ideal in
X. O

Theorem 3.11. Let X be a strong subtraction semigroup with 1. Then we have
TANY =2z2Y.
Proof. For any x,y € X, we have

sAhy=z—(vr—y) =z—(r—ay)=ay—(zy—x)
=zy—az(y—1)=zy — 20
zy —0=2xy

O

Corollary 3.12. If X is a strong subtraction semigroup with 1, then ss = s for all s € X,
i.e, X is a multiplicatively abelian idempotent subtraction semigroup.

Lemma 3.13. Let X be a strong subtraction semigroup with 1. Then the set
ann(a) ={z € X |zt Na=0,a€ X}
is an ideal of X.

Proof. Let x,y € ann(a). Then we have z Aa = za = 0 and y A a = ya = 0. Hence we get
(x—y)ha=(rx—yla=za—ya=0—-0=0, and so z — y € ann(a). Also, let = € ann(a)
and s € X. Then we obtain z Aa = za =0, and so, sz Aa = (sz)a = s(xa) = s0 = 0. Thus
sz € ann(a). Similarly, we have xs € ann(a). This completes the proof. O

Let X be a strong subtraction semigroup. If s < ¢ for all s,t € X, then we have
ann(s) C ann(t).

4. CONGRUENCE RELATION AND ISOMORPHISM THEOREM

In what follows, let X denote a subtraction semigroup unless otherwise specified.

Definition 4.1. Let X be a subtraction semigroup and let p be a binary relation on X.
Then
(1) pissaid to be right (resp. left) compatible if whenever (z,y) € p then (x —z,y—2) € p
(resp. (z —x,2 —y) € p) and (xz,yz) € p (resp. (zx,zy) € p) for all z,y, 2z € X;
(2) p is said to be compatible if (x,y) € p and (u,v) € p imply (x — u,y —v) € p and
(zu,yv) € p for all z,y,u,v € X,
(3) A compatible equivalence relation is called a congruence relation.

Using the notion of left (resp. right) compatible relation, we give a characterization of a
congruence relation.

Theorem 4.2. Let X be a subtraction semigroup. Then an equivalence relation p on X is
congruence if and only if it is both left and right compatible.
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Proof. Assume that p is a congruence relation on X. Let ,y € X be such that (x,y) € p.
Note that (z,2) € p for all z € X because p is reflexive. It follows from the compatibility
of p that (z — 2,y — 2) € p and (zz,yz) € p. Hence p is right compatible. Similarly, p is left
compatible.

Conversely, suppose that p is both left and right compatible. Let x,y,u,v € X be such
that (z,y) € p and (u,v) € p. Then (z —u,y —u) € p and (vu,yu) € p. by the right
compatibility. Using the left compatibility of p, we have (y —u,y — v) € p and (yu, yv) € p.
It follows from the transitivity of p that (xr —u,y —v) € p and (zu,yv) € p. Hence p is
congruence. O

For a binary relation p on a subtraction semigroup X, we denote
zp:={y € X [(z,y) € p} and X/p:={ap|zec X}

Theorem 4.3. Let p be a congruence relation on a subtraction semigroup X. Then X/p
is a subtraction semigroup under the operations

zp—yp=(x—y)p and (xp)(yp) = (xy)p
for all zp,yp € X/p.

Proof. Since p is a congruence relation, the operations are well-defined. Clearly, (X/p, —)
is a subtraction algebra and (X/p,-) is a semigroup. For every xp, yp, zp € X/p, we have

xp(yp —zp) =zply —z)p=1x(y —2)p
= (zy —z2)p = (zy)p — (x2)p

= zpyp — xpzp,
and
(p—yp)zp = (x—y)pzp=((z —y)2)p
= (zz —y2)p = (w2)p — (y2)p
= zpzp — Ypzp.
Thus X/p is a subtraction semigroup. O

Definition 4.4. Let X and X’ be subtraction semigroups. A mapping f : X — X’ is called
a subtraction semigroup homomorphism (briefly, homomorphism) if f(z —y) = f(z) — f(y)
and f(zy) = f(z)f(y) for all z,y € X.

Lemma 4.5. Let f: X — X' be a subtraction semigroup homomorphism. Then
(1) f(0) =0,
(2) @ <y imply f(z) < f(y).
@3) fleny)=f@)Af(y).
Proof. (1). Suppose that x is an element of X. Then
f0)=flx—=z)=f(z) - f(z)=0
(2) Let « < y. Then we have  — y = 0. Thus we have
0=flz—y)=flx) - fy),
and so f(2) < (y).
B) fleny) = flz—(z—y)) = flx) = (f(z) = f(y)) = f(2) A fy). O
Proposition 4.6. Let f : X — X' be a subtraction semigroup homomorphism and J =
f7H0) = {0}. Then f(z) < f(y) imply x < y.

Proof. If f(z) < f(y), then we have f(x) — f(y) = f(x —y) = 0, and so x — y is an element
of J. Hence x —y = 0, and so we obtain z < y. O
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Theorem 4.7. Let p be a congruence relation on a subtraction semigroup X. Then the
mapping p* : X — X/p defined by p*(xz) = xzp for all x € X is a subtraction semigroup
homomorphism.

Proof. Let z,y € X. Then p*(z —y) = (z —y)p = zp —yp = p*(x) — p*(y), and p*(xy) =
(zy)p = (xp)(yp) = p*(x)p*(y). Hence p* is a subtraction semigroup homomorphism. O

Theorem 4.8. Let X and X' be subtraction semigroups and let f : X — X' be a subtrac-
tion semigroup homomorphism. Then the set

Ky :={(z,y) e X x X | f(z) = f(y)}
is a congruence relation on X and there exists a unique 1-1 subtraction semigroup homo-
morphism f : X/Ky — X' such that f o K} = f, where K7 : X — X/Kjy. That is, the
following diagram commute:

X/ Ky

X/

Proof. It is clear that K¢ is an equivalence relation on X. Let x,y,u,v € X be such that
(x,v), (u,v) € Ky. Then f(z) = f(y) and f(u) = f(v), which imply that

fle—u)=f(z) = flu) = fly) = fv) = fly—v)
and
fleu) = f(2)f(u) = f(y)f(v) = f(yv).
It follows that (x — u,y —v) € Ky and (zu,yv) € Ky. Hence Ky is a congruence relation
on X. Let f: X/K; — X' be a map defined by f(zK;) = f(x) for all z € X. It is clear
that f is well-defined. For any 2Ky, yK; € X/Ky, we have

faKr—yKy) = [z —9)Kp) = flz—y)

= [f&)=fly) = f=Ky) = fyKy)

and

F(@Kp)(yKy) = [f((zy)Ky) = f(zy)

@) f(y) = f(aKyp) f(yKy).
If f(zKy) = f(yKy), then f(z) = f(y) and so (z,y) € Ky, that is, 2Ky = yK;. Thus
f is a 1-1 subtraction semigroup homomorphism. Now let g be a subtraction semigroup
homomorphism from X/K to X’ such that g o K3} = f. Then

9(xKy) = g(Kj(2)) = f(z) = f(xKy)

for all 2Ky € X/Ky. It follows that ¢ = f so that f is unique. This completes the
proof. O

Corollary 4.9. Let p and o be congruence relations on a subtraction semigroup X such
that p C o. Then the set

o/p:={(zp,yp) € X/px X/p| (z,y) € o}
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is a congruence relation on X/p and there exists a 1-1 and onto sublraction semigroup

homomorphism from fT/S to X/o.

Proof. Let g : X/p — X /o be a function defined by g(zp) = zo for all zp € X/p. Since p C
o, it follows that g is a well-defined onto subtraction semigroup homomorphism. According
to Theorem 4.8, it is sufficient to show that K, = o/p. Let (zp,yp) € K4. Then zo =
g(zp) = g(yp) = yo and so (x,y) € 0. Hence (zp,yp) € o/p, and thus K, C a/p.
Conversely, if (zp,yp) € o/p, then (x,y) € ¢ and so xo = yo. It follows that

9(zp) = zo = yo = g(yp)
so that (zp,yp) € K. Hence Ky = o/p, and the proof is complete. O

Theorem 4.10. Let I be an ideal of a subtraction semigroup X. Then p; := (I x I)UAx
is a congruence relation on X, where Ax = {(z,z) |z € X}.

Proof. Clearly, p; is reflexive and symmetric. Noticing that (z,y) € p; if and only if
x,y € I or x =y, we know that if (x,y) € p; and (y, z) € pr then (z,2) € p;. Hence py is
an equivalence relation on X. Assume that (z,y) € pr and (u,v) € p;. Then we have the
following four cases: (i) z,y € [ and u,v € I; (ii) z,y € I and u = v; (iii) x = y and u,v € I;
and (iv) z = y and u = v. In either case, we get t —u=y—vor (r —u,y—v) € I x I, and
zu =yv or (zu,yv) € I x I. Therefore p; is a congruence relation on X. O

Let X be a multiplicatively abelian subtraction semigroup and px be a binary relation
on X defined by
(a,b) € px <= Ju € X such that au = bu. (%)

Clearly, px is reflexive and symmetric. Let (a,b), (b,¢) € px. Then there exist u,v € X
such that au = bu and bv = cv. These imply a(buv) = (au)(bv) = (bu)(cv) = c¢(buv), whence
px is transitive. Thus px is an equivalence relation on X.

Theorem 4.11. Let X be a multiplicatively abelian subtraction semigroup and px be a
binary relation on X defined by (x). Then px 1is a congruence relation on X, and X/px is
a multiplicatively abelian subtraction semigroup.

Proof. Let (a,b),(c,d) € px, Then there exist u,v € X such that au = bu and cv = dv.
These imply (ac)(uwv) = (au)(cv) = (bu)(dv) = (bd)(uwv) and (a — ¢)(uwv) = auv — cuv =
buv —duv = (b—d)uv, whence (ac,bd) € px and (a—c¢,b—d) € px. Thus px is a congruence
relation on X, and clearly X/px is a multiplicatively abelian subtraction semigroup. O

Let X be a multiplicatively abelian subtraction semigroup. Then (px)* : X — X/px
defined by
(px)*(a) = apx
is a surjective subtraction semigroup homomorphism.

Theorem 4.12. Let X and X' be multiplicatively abelian subtraction semigroups with X/px
and X'/ px, respectively and ¢ : X — X' be a subtraction semigroup homomorphism. Then
there exists a unique homomorphism ¢/p : X/px — X'/px: such that ¢/p o (px)* =
(px:)" 0 ¢.

Proof. Define ¢/p : X/px — X'/px: by ¢/plapx) = ¢(a)px. If apx = bpx, then there
exists v € X such that au = bu. Thus ¢(a)p(u) = ¢(b)¢(u) and (¢p(a), (b)) € px/, so
d(a)px: = ¢(b)px:. Therefore ¢/p is well-defined. Next, we prove that ¢/p is a homomor-
phism. In fact, ¢/p(apx — bpx) = ¢/p((a —b)px) = ¢(a — b)px: = (¢(a) — ¢(b))px' =
p(a)px: —p(b)px: = ¢/plapx)—=6/p(bpx) and ¢/p(apx -bpx) = ¢/p((ab)px) = Plab)px: =
(¢(a) - ¢(b))px+ = dla)px: - d(b)px: = ¢/plapx) - ¢/p(bpx). For any a € X, we have
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(@/po(px)*)(a) = ¢/p((px)*(a)) = &/plapx) = d(a)px: = (px')"(d(a)) = ((px)" © §)(a).
Thus ¢/po (px)* = (px/)* o @. Finally, if there exists a homomorphism g : X/px — X'/px
such that g o (px)* = (px)" © ¢, then g(apx) = g((px)*(a)) = (g © (px)*)(a) = ((px/)" ©
¢)(a) = (px')*(¢(a)) = dla)px' = ¢/p(apx). Thus g = ¢/p and ¢/p is unique. O

It is clear that Hom(X, X') is a semigroup under multiplication defined by (¢1 - ¢2)(a) =
¢1(a) - ¢2(a). Likewise Hom(X/px, X' /px-) is a semigroup by Theorem 4.12, we can define
a mapping

&: Hom(X,X') — Hom(X/px,X'/px:)

by ®(¢) = ¢/p. Then we have the following theorem.

Theorem 4.13. Let X and X' be multiplicatively abelian subtraction semigroups with X/px
and X'/px+, respectively. Then the above mapping ® given by ®(¢) = ¢/p is a semigroup
homomorphism.

Proof. Let ¢1,¢02 € Hom(X,X') and apx € X/px. Then ((¢1 - ¢2)/p)(apx) = ((¢1 -
$2)(a))px: = (¢1(a) - 2(a))px = ¢1(a)px: - d2(a)px: = é1/plapx) - d2/plapx) = (1/p -
¢2/p)(apx). Consequently, (¢1 - ¢2)/p = ¢1/p - ¢2/p. Thus the map

®: Hom(X,X') — Hom(X/px,X'/px’)

given by ®(¢) = ¢/p is a semigroup homomorphism. O
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