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ON FIRST-PASSAGE-TIME DENSITIES FOR CERTAIN SYMMETRIC
MARKOV CHAINS
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ABSTRACT. The spatial symmetry property of truncated birth-death processes studied
in Di Crescenzo [6] is extended to a wider family of continuous-time Markov chains.
We show that it yields simple expressions for first-passage-time densities and avoiding
transition probabilities, and apply it to a bilateral birth-death process with jumps. It
is finally proved that this symmetry property is preserved within the family of strongly
similar Markov chains.

1 Introduction A spatial symmetry for the transition probabilities of truncated birth-
death processes has been studied in Di Crescenzo [6]. Such a property leads to simple
expressions for certain first-passage-time densities and avoiding transition probabilities. In
this paper we aim to extend those results to a wider class of continuous-time Markov chains.

Given a set {z,} of positive real numbers and the transition probabilities py ,(t) of
a continuous-time Markov chain whose state-space is {0,1,..., N} or Z, in Section 2 we
introduce the following spatial symmetry property:

(1) PNk N-n(t) = 22 prn(t).

Tk

In section 3 we point out some properties of first-passage-time densities and avoiding transi-
tion probabilities for Markov chains that are symmetric in the sense of (1). These properties
allow one to obtain simple expressions for first-passage-time densities in terms of probability
current functions, and for avoiding transition probabilities in terms of the ‘free’ transition
probabilities. In Section 4 we then apply these results to a special bilateral birth-death
process with jumps. Finally, in Section 5 we refer to the notion of strong similarity between
the transition probabilities of Markov chains, expressed by pgn(t) = (8n/Bk) Pk.n(t) (see
Pollett [16], and references therein) and show the following preservation result: if py ., (t)
possesses the symmetry property (1), then also py () does it.

2 Symmetric Markov chains Let {X(¢), ¢t > 0} be a homogeneous continuous-time
Markov chain on a state-space S. We shall assume that S = {0,1,..., N}, where N is a
fixed positive integer, or S=Z =1{...,—-1,0,1,...}. Let

(2) pen(t) =Pr{X(r+1¢) =n|X(r) =k}, kneS8; t,7>0
be the stationary transition probabilities of X (¢), satisfying the initial conditions

1, k=n,
pkv"(o):%":{ 0, k#n.
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Let @ be the infinitesimal generator of the transition function (2), i.e. the matrix whose
(k,n)-th finite entries are:

d
(3) Qkn = &pk,n(t) t:07
satisfying the following relations: (a) g, > 0 for all k,n € S such that k # n, (b) gu.n <0
foralln €S, and (¢) ) .gqrn=0foral keS.

The spatial symmetry of Markov processes allows one to approach effectively the first-
passage-time problem. Indeed, it has been often exploited by various authors to ob-
tain closed-form results for first-passage-time distributions; see Giorno et al. [13] and
Di Crescenzo et al. [8] for one-dimensional diffusion processes, Di Crescenzo et al. [7]
for two-dimensional diffusion processes, and Di Crescenzo [5] for a class of two-dimensional
random walks. Moreover, in Di Crescenzo [6] a symmetry for truncated birth-death pro-
cesses was expressed as in (1), with z; suitably depending on the birth and death rates.
Such symmetry notion can be extended to the wider class of continuous-time Markov chains
considered above. Indeed, for a set of positive real numbers {z,; n € S} there holds:

Tn

(4) PN—k,N—n(t) = x_pk’"(t) forall k,n € Sandt >0
k
if and only if
(5) dN—k,N—n = i_n qk,n for all k,n € S.
k

The proof is similar to that of Theorem 2.1 in Di Crescenzo [6], and thus is omitted.

Eq. (4) focuses on a symmetry with respect to N/2, which identifies with the mid point
of S when § = {0, 1, ..., N}. For each sample-path of X (¢) from k to n there is a symmetric
path from N —k to N —n, and the ratio of their probabilities is time-independent. Hence, in
the following we shall say that X (t) possesses a central symmetry if relation (4) is satisfied.

Remark 2.1 If X (t) possesses a central symmetry, then

X IN—
oo ZNER orallk,n e S.
Tk TN—-n

An example of a Markov chain with finite state-space and a central symmetry is given
hereafter.

Example 2.1 Let X (¢) be a continuous-time Markov chain with state-space S = {0, 1, 2, 3},
with 0 and 3 absorbing states, and infinitesimal generator

0 0 0 0

Q= o+ —aleo+0%) — B oo Bo oo
e! 6 —a(oo+0*) — oo (aoo+B)o |’
0 0 0 0

with o, 8,0 > 0 and g9 = 1+ p. Then, X(¢) has a central symmetry, with py_g n—_n(t) =
ok Prn(t) for all k,n € S and t > 0, and qn_p, n—n(f) = ok Qi for all k,n € S.

Remark 2.2 If X(t) has a central symmetry and possesses a stationary distribution {m,, n €
S}, with . lir+n Prn(t) =mp >0 for all k,n € S, then the following statements hold:

— 100
(a) Sequence {xy} is constant, so that pn_g, N—n(t) = Drn(t) for allk,n € S and t > 0.
(b) The stationary distribution is symmetric with respect to N/2, i.e.

TN—pn = Tp, foralln € S.
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(¢) Let X*(t) be the reversed process of X(t), obtained from X (t) when time is reversed,
and characterized by rates and transition probabilities

T, % .
qz,n = _: q’l’L,ka pk,n(t) = _:pn,k(t)u k?” E S? t Z O

m 7r
Then, also X*(t) has a central symmetry, with py_,. n_,,(t) = py ,(t) for all k,n € S and
t>0.
(d) Let D = {djn} be the deviation matrix of X (¢), with elements (see Coolen-Schrijner
and Van Doorn [2])

+oo
don = / Pont) —mldt,  kmeS.
0

Then, D has a central symmetry, i.e. dN—g,N—n = din for allk,n € S.

An example of a Markov chain satisfying the assumptions of Remark 2.2 is the birth-
death process on S with birth rate A, = o (N —n) and death rate p,, = an (see Giorno et
al. [11], or Section 4.1 of Di Crescenzo [6]).

3 First-passage-time densities In this section we shall focus on the first-passage-time
problem for Markov chains X (¢) that have a central symmetry and that satisfy the following
assumptions:

(i) N = 2s, with s a positive integer;

(i) aij =00 =0, 25 s >0, 2508, Gs >0, 2ies s >0and 32, g g >0
for all i € S_ and j € S, where

S_={neS; n<s}, Sy ={neS; n>s}

(in other words, if states ¢ and j are separated by s then all sample-paths of X (¢) from ¢ to
j, or from j to 4, must cross s);
(iii) the subchains defined on S_ and S are irreducibles.

In addition, we introduce the following non-negative random variables:

T;' = upward first-passage time of X (¢) from state i € S_ to state s,

7,8

T, = downward first-passage time of X (t) from state j € Sy to state s.

We shall denote by g;f s(t) and g; ((t) the corresponding probability density functions. Due
to assumptions (i)-(iii), for all ¢ > 0 such densities satisfy the following renewal equations:

t
0 pis) = [ gE. bt -0, e, jels)US,
0
t
(7) pisl) = [ a0 paslt-0) a0, i€S_Ush je sy
0
For all ¢ > 0 and k € S let us now introduce the probability currents

(6) L0 =lm T PLX () = 5, X0 <5 | XO) =k = 3 prilt) e
ieS_

O) (0 =lm TP+ ) = 5, X0 > 5 | XO) = k= 3 prg(0) g
jeS+
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They represent respectively the upward and downward entrance probability fluxes at state
s at time ¢t. Due to assumptions (i)-(iii) and Eqs. (6)-(9), fori € S_, j € S+ and ¢ > 0 they
satisfy the following integral equations:

5

(10) his(t) = /t 917 (9) by (t = 0) dY,
0

(11) hi(t) = /t 955 (0) hid o (t —9) dV.
0

Hereafter we extend Proposition 2.2 of Di Crescenzo [6] to the case of Markov chains.

Proposition 3.1 Under assumptions (i)-(iii), for all i € S_, j € S; and t > 0 the
following equations hold:

¢
(12) a0 =10~ [ gl 0t - ) o,
0
t
(13) 50 =10 = [ g5 @) B (e = 0) a0,
0
Proof. For all £ > 0 and ¢ € S_, making use of assumptions (i)-(iii) and Eq. (8) we have
d
_pi,s(t) - Z pl,n(t) dn,s = hj:g (t) + Z pl,n(t) dn,s-

dt
neS ne{stusSy

Hence, recalling (6) we obtain

d t t
m0 =5 | [ -0 = S [ a0 a,
0 ne{s}uSy 0
¢ 0
1) =gh®+ [ g0 |Gt =D = 3 palt-9)au| 40,
0
ne{s}uSy

where use of initial condition pss(0) = 1 has been made. From Chapman-Kolmogorov
forward equation we have

0
aps,s(t - 19) - Z ps,n(t - 19) Qn,s - h:,s(t - 19)7 t > 197
ne{s}uSy
so that Eq. (14) gives (12). The proof of (13) goes along similar lines. [ |
With reference to a Markov chain that has a central symmetry, we now come to the

main result of this paper, expressing the first-passage-time densities through the symmetry
state s as difference of probability currents (8) and (9).

Theorem 3.1 For a Markov chain that has a central symmetry and satisfies assumptions
(i)-(i1), for allt >0 and k € S there results:

_ Ts
(15) Bavns(8) = 2 hiE (1)
k

Moreover, for alli € S_, 7 € S4 and t > 0 the upward and downward first-passage-time
densities through state s are given by

(16) 98.(t) = hi(t) —hi (), g;,(t) = hy (t) = h (1)
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Proof. Recalling that N = 2s, for t > 0 we have

hos—i,s(t) = Z P2s—k,j(t) @j,s (from (9))
jeSy
= Z P2s—k,25—i(t) Gas—i,s (setting j = 2s — 1)
ieS_
T
= Z Pk,i(t) Gi,s (from (4) and (5))
T
ieS_
T
= — I ,(t). (from (8))
Tk ’

Eq. (15) then holds. In particular, for k = s it implies that h_ (t —¥) = h (t — ) for all
t > 1. Hence, relations (16) follow from Eqs. (10)-(13). [ |

For a Markov chain X (¢) satisfying assumptions (i)-(iii) let us now introduce the s-
avoiding transition probabilities:

L) = P X (t) =n, X(9) £ s for all ¥ € (0,1) | X(0) = k},

where k,n € S_US. We note that p,iszb(t) is related to py n(t) by

t
;mmw—/}mgmmmu—mda knes.,

s 0

a7 Pin(t) = t
;mmw—/}mgmmmu—mda hnes,.

0

In the following theorem, for symmetric Markov chains two different expressions are given
for p,iszl(t) in terms of py ,(t). It extends Theorem 2.4 of Di Crescenzo [6]; the proof is

similar and therefore is omitted.

Theorem 3.2 Under the assumptions of Theorem 3.1, for t > 0 and for k,n € S_ US4
there holds:

Tk
PEN(E) = Pin(t) = 25 p2acin(t)
S
Z,
= pk,n(t) -= pk,Zan(t)
Tn

We conclude this section by pointing out that for a Markov chain having a central
symmetry, for all £ > 0 the following relations hold:

Ty _

— Zj . .
(18) g’;":@(t) = x_gQS—i,s(t)’ gj,s(t) = x_Jgé:—j,s(t)? (S S*’ J€ SJrv
s Tn (s
p;s>—k,25—n(t) = apliﬂ)m(t)? k,neS_U SJr'

4 A bilateral birth-death process with jumps In this section we shall apply the
above results to a special symmetric Markov chain X (¢) with state-space Z, characterized
by the following transitions: (a) from n € Z to n 4+ 1 with rate A, (b) from n € Z to
n — 1 with rate u, and (c) from n € Z — {0} to 0 with rate a. Hence, X (¢) is a bilateral
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birth-death process that includes jumps toward state 0. In order to obtain an expression
for the transition probabilities py »(t), we note that for all ¢ > 0 the following system holds:

;tpk n(t) = =M+ p+a)prn(t) + Aprna(t) + pprnia(t),  neZ—{0},
rolt) =~ 1) pro®) + Apk1(0) + pra() + 0 Y per )

r#0

The probability generating function

“+o0
> prnlt) 2

n—=—oo

is thus solution of

(19) %H(z t) =u(z) H(z,t) + a,

where u(z) = A+ p+a)+ Az + g, with initial condition H(z,0) = z*. The unique
solution of (19) is

t
(20) H(Z, t) = H(Z, 0) eu(z) t + O[/ eu(z) T dr.
0

Hence, recalling that

exp{()\z—i— )} Z I,(vt) (B2)"

n—=—oo

for v =2/ Ap and 8 = \/A/p, from (20) we obtain:

t too
(21) H (s, t) = e~ Hutalt Z L—g(vt) ™ ks"—l—oz/ e~ tuta)T Z I,(v7) (Bs)" dr
n=-—o0o 0 n=-—oo

where I,,(x) denotes the modified Bessel function of the first kind. Equating the coefficients
of z™ on both sides of (21) finally yields the transition probabilities

e .
(22) prn(t) = <3> In- k(2\/ t) ~(tutayt +a<3> / e Orrta)T 2/ ApT)dr.
K M 0

Note that (22) can be expressed as

t
(23) Pron(t) = ¢ Fen(t) + 0 / O Pon(r) dr,
0

where, for all t > 0 and k,n € Z,

(24) Bion(t) = (A)Tfn—k@m ) e= O,

I

is the transition probability of the Poisson bilateral birth-death process with birth rate A
and death rate u (see, for instance, Section 2.1 of Conolly [1]). Assuming that the stationary
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probabilities ,, = \ 1151_0 D (t) exist for all n € Z, from (19) we have

+oo
o
p2" = lim H(zt) = ——— =
Z e = e (%) u(z)  AMz—z1)(22 — 2)

B
| 2 GV EE))

n=—oo

where
A + A 24\
Z1,2 = Thre \/(2)\+u—|—a) 'u, 0<2z1 <1< 29.
Hence,
az™ "
— forn=-1,-2,...,
Az2 — 71)
azy ™
— forn=0,1,2,....
Az2 — 71)

It is not hard to see that if A = u then X (¢) has a central symmetry with respect to
state 0, with z = 1 for all k:

p*k,*n(t) = pk,’ﬂ(t)v q—k,—n = qk,n

for all ¢ > 0 and k,n € Z. Note that if A = y, then z; and 29 are reciprocal zeroes of u(z),
so that the stationary distribution (25) is symmetric, i.e. m, = 7_, for all n € Z. Since
¢i,j = ¢j,i =0, g0 > 0 and gj0 > 0 for all ¢, 5 € Z such that 1 < 0 < j, and ¢o,—1 > 0 and
go,1 > 0, this Markov chain satisfies assumptions (i)-(iii) for which 0 is a symmetry state.
In this case the first-passage-time densities through 0 can be obtained via Theorem 3.1.
Indeed, if A = p, making use of (22) and of property I,(x) = I_,(z), for all ¢ > 0 and
k=1,2,... we have:

1=—00

+oo —1
Iro(t) = hi o) = hf (1) = e g0 — D prilt) gio
i=1 i

= Apra(t) = pr,1(1)] + @

+oo —1
Zpk,j OEY pk,i(t)l

+oo
(26) = e@“aﬁ{x [Ti-1(2At) = Tip1 (2AE)] + @Y [T j (20 1) — Ty (22 1)] }

Furthermore, recalling (18), in this special case for all ¢ > 0 and k = 1,2, ... there holds:
9500 = gi (1)
In analogy with Theorem 3.2 and by virtue of (22), when A = y, we have

2 (8) = Pron(t) — Pk (D)

(27) = e ML LX) — Ly (200)],  t>0.
Note that
(28) P () = Pk (),

0 —at ~0
(29) P (1) = e B (1),
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where ﬁ,i%(t) is the transition probability of X (£) when A = u. Functions (26) and (27) are
shown in Figure 1 for some choices of the involved parameters.
We finally remark that Eqs. (23) and (29) are in agreement with similar results for

birth-death processes with catastrophes obtained in Di Crescenzo et al. [9] and [10].

0.08 0.3
0.06 0.25
0.2
0.04 0.15
0.1
0.02
0.05
2.5 5 7.5 10 12.5 15 2.5 5 7.5 10 12.5 15

Figure 1: On the left-hand are the plots of the downward first-passage-time density (26)
for k=3, A=1and a =0.1,0.2,0.3, from bottom to top near the origin. On the right the
0-avoiding transition probabilities (27) for k=3, n =1, A=1and o« =0.1,0.2,0.5,1

(top to bottom) are indicated.

5 Strong similarity The notion of similarity between stochastic processes has attracted
the attention of several authors (see Giorno et al. [12], for time-homogeneous diffusion pro-
cesses, Gutiérrez Jaimez et al. [14] for time-nonhomogeneous diffusion processes, Di Crescenzo
[3], [4], and Lenin et al. [15], for birth-death processes, and Pollett [16], for Markov chains).
Two continuous-time Markov chains X (t) and X (t), with state-space S, are said to be
strongly similar if their transition probabilities satisfy

(30) Drn(t) = %pk,n(t), forallt>0and k,n €S,

k
where {8,, n € S} is a suitable sequence of real positive numbers (we refer the reader to
Pollett [16], for further details). In the following theorem we state that if a Markov chain
has a central symmetry, then any of its similar chains has a central symmetry as well.

Theorem 5.1 Let X (t) and X(t) be strongly similar continuous-time Markov chains with
state-space S; if X (t) has a central symmetry, then for allt > 0 and k,n € S one has:

— Ty
prk,an(t) - Tnpk,n(t)
Tk
with 5
Ty, = N=n Tn, nes.
Bn

The proof is an immediate consequence of assumed symmetry and similarity properties.
Hereafter we show an application of Theorem 5.1 to a birth-death process having con-
stant rates and state-space Z.

Example 5.1 Let X(¢) be the bilateral birth-death process with birth and death rates A
and u, respectively. From transition probabilities (24) it is not hard to see X(¢) has a
central symmetry with respect to 0, i.e. for all £ > 0 and k,n € Z there results

Ln

)\ —n
@) = o (), witha, = (2] .
ptal®) = 22 it (2)
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The Markov chains that are strongly similar to X (¢) constitute a family of bilateral birth-
death processes characterized by birth and death rates (see Section 4 of Di Crescenzo [4],
and Example 3 of Pollett [16])

N ﬁnJrl ~ ﬁnfl
)\’I'L - )\7 n - b n 6 Z?
B, Hn =g,

and by transition probabilities (30), with py ,(t) given in (24) and

A n
ﬁn:1+7]<—> ) nGZ,
1%

for all > 0. Due to Theorem 5.1, the family of strongly similar processes has a central
symmetry with respect to 0:

D—k,—n(t) = ,xv—nﬁkm(t), with z,, = Bn Ty = 7pn (—) , n € Z.
T, B 147 (ﬁ) 1z
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