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ABSTRACT. In this paper we generalize some of the results from [18] to the noncommu-
tative case. We present reversed left-pseudo-BCK(pP) algebras, reversed left-pseudo-
BCK(pRP) algebras and left-X-pseudo-BCK(pR) algebras (i.e porims), left-X-pseudo-
BCK(pRP) algebras. We prove they are categorically equivalent.

1 Introduction

The notions of ”left” and "right” pseudo-algebras are connected with the left-continuity
of a pseudo-t-norm and with the right-continuity of a pseudo-t-conorm on [0, 1], respectively,
and are discussed in detail in [10]. We can also say that they are connected with the
"negative (left)” cone and with the ”positive (right)” cone, respectively, of an arbitrary
l-group (lattice-ordered group).

At the beginning, pseudo-t-norms and pseudo-t-conorms were defined on [0, 1], as follows
[10]: a binary operation ® on the real interval [0, 1] is a pseudo-t-norm iff it is associative,
non-decreasing (isotone) in the first argument and in the second argument, i.e. if x > y,
then z @z > y©®zand 2O x > 2@y, for every z,y,z € [0,1], and it has 1 as neutral
element, ie. x®1 =z =10z, for every x € [0,1]. A binary operation & on the real
interval [0, 1] is a pseudo-t-conorm iff it is associative, non-decreasing in the first argument
and in the second argument and it has 0 as neutral element.

We define, more generally, a pseudo-t-norm, ®, on a poset (A,>,1) with greatest el-
ement 1 iff the above mentioned axioms are fulfilled. We define also, more generally, a
pseudo-t-conorm, @, on a poset (A, <,0) with smallest element 0 iff the above mentioned
corresponding axioms are fulfilled.

A commutative pseudo-t-norm (pseudo-t-conorm) is a t-norm (t-conorm, respectively).

Recall now the following definition: a partially ordered, integral left-monoid (see Defi-
nition 3.1 and Remark 3.2) is an algebra (A,>,®,1) such that: (A,>,1) is a poset with
greatest element 1, (A, ®, 1) is a left-monoid (i.e. ® is associative and has 1 as neutral ele-
ment) and © is non-decreasing in the first and in the second argument (or, ® is compatible
with >); integral means that the greatest element of the poset (A,>) coincides with the
neutral element of the left-monoid.

The inverse notion, the partially ordered, integral right-monoid, is an algebra (A, <, ®,0)
such that: (A, <,0) is a poset with smallest element 0, (A, ®,0) is a right-monoid (i.e. @
is associative and has 0 as neutral element) and @ is non-decreasing in the first and in the
second argument (or, @ is compatible with <).

Remark 1.1 The statement: ”® is a pseudo-t-norm on the poset (A4, >,1) with greatest
element 1”7 is equivalent with the statement: ”the algebra (A4,>,®, 1) is a partially ordered,
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integral left-monoid”. The statement: ”@ is a pseudo-t-conorm on the poset (A, <,0) with
smallest element 07 is equivalent with the statement ”the algebra (A, <, ®,0) is a partially
ordered, integral right-monoid”.

If the algebra is initially defined as "right” (or as ”left”) algebra, then we shall put the
word right-" (or "left-", respectively) between parenthesis and it can be omitted.

The passage from the "right” algebra to its inverse, the ”left” algebra, is made by re-
placing everywhere the pseudo-t-conorm @ by the pseudo-t-norm ©®, the pseudo-coresiduum
(—Rr,~r) by the pseudo-residuum (—=—, ~»=~»p) ("R” comes from "right”, "L” comes
from "left”), by replacing 0 by 1 (and 1 by 0), by replacing the binary relation < by its
inverse relation, >.

The passage from the ”left” algebra to its inverse, the ”right” algebra, is made by
replacing everywhere the pseudo-t-norm ©® by the pseudo-t-conorm @, the pseudo-residuum
(—=—1, ~=~»1) by the pseudo-coresiduum (—pg, ~»g), by replacing 1 by 0 (and 0 by
1), by replacing the binary relation > by its inverse relation, <.

The motivation for this paper was the curiosity to find out how it looks the generalization
to the noncommutative case of some structures and results from [18].

In the following two sections, we discuss about pseudo-BCK algebras and porims and,
in connection with them, we introduce and study reversed left-pseudo-BCK(pP), reversed
left-pseudo-BCK (pRP) algebras and left-X-pseudo-BCK(pR), left-X-pseudo-BCK (pRP) al-
gebras.

We give an equivalent definition of reversed left-pseudo-BCK algebras (Definition 2.8)
in order to be able to define the pseudo-residuum (—,~») on a poset (4,>,1) and the
left-residoid (Definition 2.9).

The most important result of the paper is Theorem 3.12, which is the generalization to
the noncommuative case of the basic theorem of [18], namely of Theorem 2.56. Based on
this Theorem 3.12, someone can generalize all the other results from [18].

Note that a kind of duality appears between the two ”general worlds”, of ”—,~+, 1”7 and
of ”®, 17: the properties of the pseudo-residuum (—,~>) are in correspondence with the
properties of the pseudo-t-norm ©@. We shall point out from time to time this correspondence
in the paper.

We assume the reader is familiar with [18] and [17], but the paper is self-contained as
much as possible. The old, already known results are presented without proof.

2 Reversed left-pseudo-BCK(pP) and left-pseudo-BCK (pRP) algebras

In this section we recall the history and the basic facts about pseudo-BCK algebras.
Reversed left-pseudo-BCK(pP) algebras are presented in Definition 2.11, while reversed
left-pseudo-BCK(pRP) algebras are introduced by Definition 2.12. They are categorically
equivalent (Theorem 2.15). Other important results in this section are Theorem 2.7, Defi-
nition 2.8, Definition 2.9 and Lemma 2.13.

The notion of pseudo-BCK algebra was introduced in 2001 [14], as a noncommutative
generalization of Iséki’s (right-) BCK algebras [15], [20].

Definition 2.1 A (right-) pseudo-BCK algebra [14] is a structure A = (4, <, %, 0,0), where
“<” is a binary relation on A, “x” and “o” are binary operations on A and “0” is an element
of A, verifying, for all z,y, z € A, the axioms:

(IR) (z*y)o(xxz) <zxy, (zoy)x(zoz)<zoy,
(II-R) zo(zxy) <y, zx(voy) <y,

(III-R) z < =z,

(IV-R) 0 < =,

(VR)z <y, y<z=z=y,
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(VIR) z <y<=axxy=0<=zo0oy =0.

We introduce the following defintion, which is the noncommutative generalization of a
"BCK algebra with condition (S)” [19]: a (right-) pseudo-BCK algebra (A, <, *,0,0) is with
condition (pS) (pseudo-sum) if there exist, for all z,y € A, the greatest element of the set
{z | zxy < z} and the greatest element of the set {z | z o x < y}, if they are equal and are
denoted by = @y, i.e. if the following condition (pS) holds:

notation

(pS) there exist, for all z,y € A, z B y max{z | zxy <z} =max{z | zoxz < y}.
The left-pseudo-BCK algebra is the "inverse” of the (right-) pseudo-BCK algebra; it is
obtained by replacing < by the "inverse” order relation, >, and by replacing 0 by 1:

Definition 2.2 A left-pseudo-BCK algebra is a structure A = (A,>,0,#, 1), where “>”
is a binary relation on A, “0” and “#” are binary operations on A and “1” is an element
of A, verifying, for all z,y, z € A, the axioms:

(L (20y)#(202) > 20y, (atby)O(0#z) > 2y,
(II-L) z#(z0y) 2y, x0(z#y) = v,

(ITII-L) = > «,

(IV-L) 1 > «z,

(V-L)z>y, y>z=z=y,

(VIL) z > y < z0y = 1 < z#y = 1.

The reversed left-pseudo-BCK algebra is the reversed structure of the left-pseudo-BCK
algebra; it is obtained by reversing both operations O, #, i.e. by replacing Oy by y —
x =y —r x and z#y by y~ x =y~ z, for all x,y:

Definition 2.3 A reversed left-pseudo-BCK algebra is a structure A = (A, >, —,~» 1),
where “>” is a binary relation on A, “—” and “~+” are binary operations on A and “1” is
an element of A verifying, for all x,y, z € A, the axioms:
HDE—a)~y—z)2y—z (zoz)—>~a) 2y~ 2,
M) (y—a)oz>y, (yoz)—a >y,
1

Vie>y y>e=z=y,
V)z>y<—=y—arx=1l<=y~z=1

In this section we recall the basic properties of reversed left-pseudo-BCK algebras (the
"reversed” of those from [17]) (for the proofs see [14]).
Let A= (A,>,—,~,1) be a reversed left-pseudo-BCK algebra.

Remark that, by (VI), the relation > is equationally definable in terms of —,~» and 1.

Definition 2.4 We shall say that A is commutative if  — y =z~ y, for all z,y € A.

Then, we get immediately that

Corollary 2.5 Any commutative reversed left-pseudo-BCK algebra is a reversed left-BCK
algebra.

(From now on in this paper we shall work only with reversed left-pseudo-BCK algebras
and therefore we shall simply say ”left-pseudo-BCK algebras” instead of "reversed left-
pseudo-BCK algebras”.

We shall freely write x > y or y < x in the sequel.
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Proposition 2.6 The following properties hold in a left-pseudo-BCK algebra:

(1) r<y=y—z<z—ozandy~z<xT~ 2,
(2) <y, y<z=z<z

(3) 2o (y—x) =y — (2~ a)

(4) <y—re=y<zoa,

(5) r<y—z TSy~

(6) loz=z=1~z,

(7) r<y=z—ozr<zoyadz~r<z~Y.

Remark that ”>" is a partial order relation, by (III), (V) and (2) and that (A4,>,1) is
a poset (partial ordered set) with greatest element 1, by (IV).

Theorem 2.7
i) Let A= (A,>,—,~,1) such that:

(A1) (A,>,1) is a poset with greatest element 1 (i.e. 1 > x, for all z € A);
(A2) (A, —,~», 1) verifies: for all z,y,z € A,
(R1))1l—-z=x=1~zx,
(B2) (y—=2)~[z—a)~(y—a) =1 (y~z2) = [zvz) = (y~o)]=1;
(A3)z my=1l<=z~y=1<= <y, foralz,ye A;
(A4) c<y=z—ox<z—>y z~r<z~y, foralzy,zec A

Then, A is a left-pseudo-BCK algebra.
i1) Conversely, every left-pseudo-BCK algebra satisfies (A1) - (A4).

Proof.

(i): (VI)is (A3). (IIT), (IV), (V) hold by (A1). (I) holds by (R2) and (VI). (I): By (R2)
and (VI), forall z,y,z2 € A,z —wy< (y—z)~(z—x)and 2~y < (y~ ) — (2 ~ x).
Take then z = 1 and apply (R1); we get y < (y — z) ~ z and y < (y ~ x) — x. Thus,

(IT) holds.
(ii): (A1) follows by (III),(V) (2) and (IV). (A2): (R1) is (6), (R2) follows by (I) and
(VI). (A3) is (VI). (A4) is (7). O

By this theorem we get the following equivalent definition of left-pseudo-BCK algebras:

Definition 2.8 A left-pseudo-BCK algebra is an algebra A = (A,>,—,~», 1) such that
the above (Al) - (A4) hold.

We also get the following definitions:

Definition 2.9 (See the corresponding definitions of a pseudo-t-norm, of a left-monoid and
of a partially ordered, integral left-monoid from Introduction)

(i) A pseudo-residuum on the poset (A, >, 1) with greatest element 1 is an ordered pair
of binary operations, (—,~), verifying (A2), (A3), (A4) from Theorem 2.7; — is the first
component (left residual [3]) and ~» is the second component (right residual [3]) of the
pseudo-residuum.

(ii) The algebra (A, >, —,~», 1) such that (A2) and (A3) hold is called a left-residoid.

(iii) The algebra (A, >, —,~», 1) such that (A1) - (A4) hold is called a partially ordered,
integral left-residoid (i.e. a duplicate name for ”left-pseudo-BCK algebra”) (integral means
that the greatest element of the poset (A, >) is the element 1 of the left-residoid).
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Remarks 2.10

(i) (See Remark 1.1) The statement: ”The ordered pair (—,~>) is a pseudo-residuum
on a poset (A, >, 1) with greatest element 17 is equivalent with the statement: ”the algebra
(A,>,—,~,1) is a partially ordered, integral left-residoid, i.e. a left-pseudo-BCK algebra”.
Note that the places of the two components, — and ~», are not commutative.

(i) A pseudo-residuum is commutative if — =~». It follows that a commutative pseudo-
residuum is a residuum, — (i.e. we associate to the ordered pair (—, —) the element —). An
abelian (i.e. commutative) left-residoid is an algebra (A, >, —=~» 1) such that — verifies
the corresponding axioms (A2) and (A3) [18].

The inverse notion of the ”(right-) pseudo-BCK algebra with condition (pS) (pseudo-
sum, @)” is the "left-pseudo-BCK algebra with condition (pP) (pseudo-product, ®)”, the
reverse of which is defined as follows.

Definition 2.11 A (reversed) left-pseudo-BCK algebra with condition (pP) (i.e. with pseudo-
product) or a left-pseudo-BCK (pP) algebra for short is an algebra A = (A, >, —,~»,1) such
that:

(I1) A is a left-pseudo-BCK algebra, i.e. (Al) - (A4) hold,

(12) for any z,y € A, there exist the smallest (least) element (under >) of the set
{z | * <y — z} and the smallest element of the set {z | y < x ~ z}, they are equal and
are denoted by z ® y, i.e. A satisfies the following condition (pP):

notation

(pP) there exist, for all z,y € A, 20y = min{z|z<y— z} =min{z |y <z~ z}.

Remark that we could define a left-pseudo-BCK(pP) algebra as an algebra (A4, >, —,~
,®, 1), but we shall not do this because the operation @ is defined in terms of > and —,~.

We denote by r-pBCK(pP) the class of (reversed) left-pseudo-BCK(pP) algebras and by
r-pBCK (pP) the corresponding category.

Definition 2.12 (See Theorem 2.7)
A left-pseudo-BCK(pRP) algebra is an algebra A = (A, >, —,~, ®,1) such that:
(I1-pRP) A,pcx = (4,>,—,~, 1) satisfies (A1), (A2), (A3),
(I2-pRP) © is a binary operation verifying the following condition (pRP):

(pRP) for all z,y,z€ A, 2 0y <z<=z<y—z<=y <z~ 2z

We denote by r-pBCK(pRP) the class of (reversed) left-pseudo-BCK(pRP) algebras and
by r-pBCK (pRP) the corresponding category.
An important result is the following;:

Lemma 2.13 Let A= (A4,>,—,~,®,1) (or A= (A, >,©,—,~, 1)) such that:
(A1) (A, >,1) is a poset with greatest element 1,
(pRP) for allz,y,z€ A, 2 0y<z<=ax<y—z<=y<z~ z

Then, for all x,y,z € A, we have:

(8) (y—z)0y<z, yo(y~z) <z,
(9) y<r—(yor), <y~ (you),
(10) r<y=z2—x<2—>y, z~T<z~7,
(

11) r<y=z0z<y0z z0x<z0yY.
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Proof.

8): (y—z)0y <
(pRP)
&

(PEP) y — ¢ < y — x, which is true by (Al). y©® (y ~ z) <

y~ x <y~ x, which is true by (Al).

9):y<z—(yoz) (pgp) y Oz <y Oz, which is true by (Al). z <y~ (yOx) (pgp)

y©x <y O x, which is true by (Al).

(10): By (8), (z — x) ® z < x and since z < y, it follows that (z — ) ® z < y; hence,
z — x <z — vy, by (pPRP). By (8) also, 2® (2 ~ x) < z and since x < y, it follows that
2 ® (z~ x) <y; hence, z~ x < 2z~ gy, by (pRP).

(11): By (9), y < z — (y ® %) and since x < y, it follows that x < z — (y ® z); hence,
x®z < yo®z by (pPRP). By (9) also, y < z ~ (2 ® y) and since z < y, it follows that
x <z~ (2®y); hence, 20 x < 2Oy, by (pRP).

O

Remark that (10) is axiom (A4) (while (11) is axiom (X3) from Definition 3.1).

Corollary 2.14 Let A= (A, >, —,~,0,1) be a left-pseudo-BCK(pRP) algebra. Then,
i) for all x,y,z € A: (8), (9), (10) and (11) hold.
it) (A, >, —,~, 1) is a left-pseudo-BCK algebra.
Proof. Obvious, by Lemma 2.13 (we use Definition 2.8 of left-pseudo-BCK algebras).
O
Then we have the following

Theorem 2.15 (We use Definition 2.8 of left-pseudo-BCK algebras)
1) Let A= (A, >,—,~,1) be a left-pseudo-BCK (pP) algebra, where for all x,y € A:

notation

xOyY min{z |z <y — z} =min{z |y <z~ z}.

Define
m(A) = (4,>,—,~,0,1).
Then, w(A) is a left-pseudo-BCK(pRP) algebra.
1’) Conversely, let A= (A,>,—,~,®,1) be a left-pseudo-BCK (pRP) algebra. Define

T(A) = (4,2, —=,~,1).
Then, 7*(A) is a left-pseudo-BCK (pP) algebra, where for all z,y € A:
min{z |z <y—z}=min{z |y<z~z}=20y.
2) The above defined mappings are mutually inverse.

Proof.

1): Ifz <y — z, then by (pP), 20y < z. If x ®y < z, then, it follows by (A4),
that y — (z ®y) <y — z and since we also have that z <y — (z ® y), by (pP), we get
x<y—z Ify<az~ z then by (pP), 20y < z. f x ®y < z, then, it follows by (A4),
that © ~ (x ®y) < x ~ 2 and since we also have that y < x ~ (z ® y), by (pP), we get
y < x ~> z. Thus, (pRP) holds.

1’) By Corollary 2.14, 7*(A) is a left-pseudo-BCK algebra. It remains to prove that
condition (pP) holds. Since z ®y < z ® y, by (pRP) we get that z < y — (z © y),
ie. 20y e{z]|x <y — z}. If z verifies x < y — z, then by (pRP), 2 ®y < z. Thus,
min{z | x <y — z} = x@y. Also, since xOy < x@y, by (pRP) we get that y < x ~ (zOy),
ie. 20y e{z|y <z~ z} If 2 verifies y < x ~ z, then by (pRP), 2 ®y < z. Thus,
min{z |y <z~ z} =2 ©y too.

2) is obvious. O
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Lemma 2.16 Let A be a left-pseudo-BCK(pP) algebra, where for all x,y € A:

2Oy """ min{z |2 <y — 2z} =min{z |y <z~ 2}

Then, for all x,y,z € A,
(12) r<y=z02<ydz 20x<z0UY.
Proof. By Theorem 2.15 and Corollary 2.14. O

Proposition 2.17 (See [19] for the commutative case)
Let A = (A, >,—,~,0,1) be a left-pseudo-BCK(pRP) algebra. Then, the algebra
(A,®,1) is a left-monoid.

Proof. By Theorem 2.15, (A, >, —,~», 1) is a left-pseudo-BCK(pP) algebra, where for
al z,y € A,min{z |z <y—z}=min{z|y<z~z} =20y
e associativity:
(zOy) oz < a(pgp) zOy < z—>a(p<§>P)
z — (x~ a) and
4

x@(y@z)ga(pgp)xg(y@z)—>a@y®z§xva
(z20y)0z=20(yO2).

xﬁy%(z%a)@nyM(ZHa)@yg

(PEP) y <z — (z ~ a). Thus,

ox@lga(pgp)xg1—>a@x§a;thus,x®1:x. Also,l@xga(pgp)xglrw
agxga;thus,l(Dx:x. O

Corollary 2.18 Let A = (A,>,—,~,1) be a left-pseudo-BCK (pP) algebra, where for all
x,y € A:

x@ymm:tw"min{z |z <y—z}=min{z |y <z~ z}.
Then the algebra (A, >,®, 1) is a partially ordered, integral left-monoid (i.e. a left-X-pseudo-
BCK algebra, cf. Definition 3.1), or, equivalently, the operation ® is a pseudo-t-norm on
the poset (A, >,1) with greatest element 1.

Proof. By Remark 1.1, Proposition 2.17 and Lemma 2.16. O
By this corollary, the pseudo-t-norm ® will be called ”the pseudo-t-norm associated
with the pseudo-residuum (ordered pair of implications) (—,~»)".

3 Left-X-pseudo-BCK(pR) and left-X-pseudo-BCK (pRP) algebras

In this section we introduce left-X-pseudo-BCK(pR) algebras (duplicate name for porims)
(Definition 3.3) and left-X-pseudo-BCK(pRP) algebras (Definition 3.4); they are categor-
ically equivalent (Theorem 3.6). We prove the equivalence between the category of left-
X-pseudo-BCK(pR) algebras and the category of (reversed) left-pseudo-BCK(pP) algebras
(Theorem 3.12), which is a fundamental result.

Definition 3.1 A left-X-pseudo-BCK algebra is an algebra A = (A,>,®, 1), where > is a
binary relation on A, ® is a binary operation on A and 1 € A, such that :

(A1) (A, >,1) is a poset with greatest element 1,

(X2) (A,®,1) is a left-monoid,

(X3) for every z,y,2 €A, 2 >y=>202>2y0z, 20x>20y.

In the sequel we shall freely write x > y or y < z.
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Remark 3.2 Note that, in fact, a left-X-pseudo-BCK algebra is a duplicate name for what
in the literature is called a ”partially ordered, integral left-monoid” (see [3], for example).
We shall use in the sequel our terminology, for the sake of the harmony of names. By
Remark 1.1, the previous definition says that ® is a pseudo-t-norm on the poset (A, >, 1)
with greatest element 1.

Definition 3.3 A left-X-pseudo-BCK algebra with condition (pR) (i.e. with pseudo-residuum,
(—,~)) or a left-X-pseudo-BCK (pR) algebra for short is an algebra A = (A4, >,®, 1) such
that:

(X-11) A is a left-X-pseudo-BCK algebra, i.e. (A1), (X2), (X3) hold,

(X-12) for every y,z € A, there exists the greatest (last) element (under >) of the
set {x | z ®y < z}, denoted by y — z and for every z,z € A, there exists the greatest
element of the set {y | t®y < z}, denoted by x ~ z, i.e. the following condition (pR) holds:
(pR) there exist, for all x,y,z € A, y — 2 notation max{z |z Oy < z} and x ~ z
max{y |z ©®y < z}.

notation

Remark that in fact a left-X-pseudo-BCK(pR) algebra is a duplicate name for what in
the literature is called a ”porim” (i.e. ”partially ordered, residuated, integral left-monoid”)
(see [3], for example), or, better, a ”left-porim”. Here also we shall use our terminology for
the same reason as above.

Remark also that we could define a left-X-pseudo-BCK(pR) algebra as an algebra (A, >
,®,—,~, 1), but we shall not do this because the operations (pseudo-residuum) —,~» are
defined in terms of > and ©.

We denote by X-pBCK(pR) the class of left-X-pseudo-BCK(pR) algebras and by X-
pBCK(pR) the corresponding category.

Definition 3.4 A left-X-pseudo-BCK(pRP) algebra is an algebra A = (A,>,0, —,~, 1)
such that:

(X-I1-pRP) Ax = (A, >,®, 1) satisfies (A1), (X2),

(X-12-pRP) — and ~» are binary operations verifying condition (pRP):

(pRP) for all z,y,z€ A,z <y—z2z<=y<z~z<=z20y <2

Corollary 3.5 (See the corresponding Corollary 2.14)

Let A= (A,>,0,—,~,1) be a left-X-pseudo-BCK (pRP) algebra. Then,
i) for all x,y,z € A, (8), (9), (10) and (11) hold.
it) (A, >,0,1) is a left-X-pseudo-BCK algebra.

Proof. Obvious, by Lemma 2.13. O
Then, we have:

Theorem 3.6
1) Let A = (A,>,0,1) be a left-X-pseudo-BCK(pR) algebra (porim), where for all
x,y,z € A:

notation

y—z = max{z|z0y<z}, z~2z

notation

max{y |z Oy < z}.

Define
p(A) = (A7 27 ®7 _)7M7 1)'
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Then, p(A) is a left-X-pseudo-BCK(pRP) algebra.
1’) Conversely, let A = (A, >,®,—,~, 1) be a left-X-pseudo-BCK(pRP) algebra. Define

(A = (4,2,0,1).
Then, p*(A) is a left-X-pseudo-BCK (pR) algebra, where for all x,y,z € A:
max{z |zQy<z}=y—z2 max{y|zoy<z}=0~ =z

2) The above defined mappings are mutually inverse.

Proof.

DIfzoy < z then by (pR), z <y — z. If z <y — 2z, it follows, by (X3), that
zOy < (y — z) Oy, and since we also have by (pR) that (y — 2) Oy < z, we get z Oy < z.
Also, if x @y < z, then by (pR), y <z~ z. If y < x ~ z, it follows, by (X3), that
x@y < z®(x~ z), and since we also have by (pR) that z©® (x ~ 2) < z, we get tOy < 2.
Thus, (pRP) holds.

1’) By Corollary 3.5, p*(A) is a left-X-pseudo-BCK algebra. It remains to prove that
condition (pR) holds. Since y — z <y — z, by (pRP) we get (y — 2) ©y < z. If x verifies
x ®y < z, then, by (pRP), z <y — z. Thus, max{z | 2 ©®y < 2z} =y — z. Also, since
x~ 2z <z~ 2z, by (pPRP) we get @ (x ~ 2) < z. If y verifies x ® y < z, then, by (pRP),
y <z~ z Thus, max{y |z Oy <z} =z~ 2.

2) is obvious. a

Lemma 3.7 (See the corresponding Lemma 2.16)
Let A be a left-X-pseudo-BCK (pR) algebra, where for all x,y,z € A:

notation notation

y— max{z |z Oy <z}, z~z max{y |z ©y < z}.
Then, for all x,y,z € A,
rly=z2—c<2—=yY, 2~ 2~
Proof. By Theorem 3.6 and Corollary 3.5(i). O

Lemma 3.8 Let A = (A, >,®,1) be a left-X-pseudo-BCK (pR) algebra, where for all z,y, z €
A:

y — 7 Mot max{z |z Oy <z}, -~ 5 motetion max{y |z ©y < z}.
Then, for all x,y,z € A, we have:
(13) loz=x=1~uzx,
(14) (rOy) —z=2—=(y—2), @Oy ~z=y~(r~2),
(15) (z—=z)0y—2)<y—z, ([Y~2)O0(~z)<y~

Proof. By Theorem 3.6, (A,>,®, —,~, 1) is a left-X-pseudo-BCK(pRP) algebra, i.e.
(pRP) holds.

(13): 1 — o = g "L™ max{y |y©1l <z} ==z &gmax{y | y <z} = =, which is
true, by (Al).

Also, 1~z =2
by (Al).

notation
<~

max{y | loy <z} == X2 max{y | y < z} = x, which is true,
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(14): (zoy) — 2 notation max{u |u® (x0y) <z} () max{u | (u®z) Oy < z}
(PR;P) max{u | oY S y — Z} nota:tion — (y N Z)
Also, (x ©y) ~ 2 notation max{u | (z@y)Ou < z} 2 max{u |z @ (yoOu) <z}

(PR;P) max{u | y Ou< -~ Z} nota:tion

notation

y~ (z~2).
(15): y — 2

notation

max{u |u Oy < z},
2o max{v |v®z <z},
notation

y—z = max{w|woy<z}

Hence, we get that (y — 2) ©y < z and (2 — z) ® z < x; then, by (X3),
(z—=2)0ly—2)0y] < (2 =) ®z <z hence, by (X2), [z —2) O (y—2)] 0y < a.
It follows that (z —» 2) ® (y — 2) <y — =.

Also, y ~ 2z """ max{u |y © u < 2},
7~ g TN max{v | z v < x},
Y~z " max{w |y O w < z}.

Hence, we get that y ® (y ~ 2) < z and 2z © (z ~ z) < x; then, by (X3),
[y© (y~2)]© (2~ 12) <20 (2~ 2) <z, hence, by (X2), y© [(y~ 2) 0 (2~ 2)] <.
It follows that (y~ 2) ® (z ~ x) <y~ .

Proposition 3.9 (See the corresponding Proposition 2.17)

Let A = (A, >,0,—,~,1) be a left-X-pseudo-BCK(pRP) algebra. Then, the algebra
(A, >, —,~,1) is a left-residoid (Definition 2.9), i.e. (A2) ((R1) and (R2)) and (A3) hold.

Proof. (A3): xeyzlglgx%y(g)l(axgy@xgy.
xvyzlglgx«»y(g)xG)lgy@xgy.

(R1): is (13).

2y

R2): (y = 2)~[z—a)~(@y—a))=1 [(z = 2)0(y —2)]~ (- z)=
122 [(z—z)® (y — 2)] <y — x, which is true by (15).
Also, (y~ 2) = [z~ 2) = (g~ o) =1 E (gm0 (o 2)] - o) =182
[(y ~ 2) ® (2 ~ )] <y~ x, which is true by (15) too. Thus, (A2) holds. O

Corollary 3.10 (See the corresponding Corollary 2.18)
Let A= (A,>,0,1) be a left-X-pseudo-BCK(pR) algebra, where for all x,y,z € A:

notation notation

y—z = max{z|z0y<z}, xz~z = max{y|zoy<z}
Then, the algebra (A,>,—,~»,1) is a partially ordered, integral left-residoid (i.e. a left-
pseudo-BCK algebra, cf. Definition 2.9), or, equivalently, the ordered pair of operations
(—,~) is a pseudo-residuum on the poset (A, >,1) with greatest element 1.

Proof. By Remarks 2.10(i), Proposition 3.9 and Lemma 3.7. O

Theorem 3.11
1) Let A= (A, >,0,—,~1) be a left-X-pseudo-BCK(pRP) algebra. Define

V(A Y (4,2, 50, 1).

Then, v'(A) is a left-pseudo-BCK(pRP) algebra.
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1’) Conversely, let A= (A,>,—,~,®,1) be a left-pseudo-BCK(pRP) algebra. Define
§'(A) Y (4,2,0,5,~,1).

Then, §'(A) is a left-X-pseudo-BCK(pRP) algebra.
2) The above defined mappings are mutually inverse.

Proof.

1): (A2) holds, since:
o (R1): 1_>x>1(§’:> lor<122
which are true by (Al).

(X2) (pRP (X2)

x<1and1~>x>1<:>x®1<1 — x <1,

o (R2): (y — 2) ~ [(zﬂ)wy%)]:xlglg(y%w[(zﬂ)w@%n
pR’(yez)@K(zﬂ) o) Eyoz<(zoa)~ (y—2)
D (coney—o2<y—a

(QR:Q (z—2)0(y—2)o0y<z X2 (z = 2)©[(y — 2z) ©y] <z which is always true

(indeed, by (8), (y — 2z) ®y < z; then, by (11), (z = 2) O [(y = 2) O Y)] < (z — 2) © 2;
but, (z — z) ® z <z, by (8) again; it follows that (z — z) © [(y — 2) © y] < z, by (Al)).
Also, (y~2) = [z ) = (g~ 2)] = 1L EF 1< (e 2) = [0 2) = (y~ )

(”RP’1@<y«»z><<z~»x>~<y~»x> B yv<(zom) — (Y~ 1)

(QR:Q (y~2)0(z~a)<y~c

eg)y(ﬁ[(yvz)Q(zvx)]gx@[y@(y«»z)}@(zvx)gxwhichisalwaystrue

(indeed, by (8), y ® (y ~ z) < z; then, by (11), [y© (y ~ 2)]® (z ~ z) < 2©® (2 ~ x); but,
z® (z ~ z) <z, by (8) again; it follows that [y Oy~ 2)]6(z~ ) <z by (Al)).

(A3) holds: x—>y—1$:;1<x—>y(p 1®x§y@x§yandxvy=1@

1§x’v>y(<:>)x®1§y&:;x§y.

1’): By Definition 2.12, (A1) and (pRP) hold. By Proposition 2.17, (A4,®,1) is a left-
monoid, i.e. (X2) holds.

2) is obvious. a

By Theorems 3.6, 3.11 and 2.15, we get the following very important result.

Theorem 3.12
1) Let A = (A, >,0,1) be a left-X-pseudo-BCK(pR) algebra (porim), where for any
x,y,z € A:

notation notation

y—z = max{z|zoy<z}, z~z = max{y|lzoy<z}

Define

y(A) Y

Then, v(A) is a left-pseudo-BCK (pP) algebra, where for all z,y € A:

(A>—>f\»1)

min{z|z<y—z}=min{z|y<z~z}=20y.

1’) Conversely, let A= (A, >, —,~»,1) be a left-pseudo-BCK (pP) algebra, where for all
x,y € A:

x@ynom:tionmin{z|x§y_,z}:min{z|y§xvz}.
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Define

5(A) E (4,>,0,1).

Then, 6(A) is a left-X-pseudo-BCK (pR) algebra, where for all x,y,z € A:

max{z |z0Qy<z}=y—z2 max{y|z0y<z}=z~ 2.

2) The above defined mappings are mutually inverse.

Remarks 3.13

1) By Remark 3.2 and by Theorem 3.12, we get that the associated pseudo-residuum
(ordered pair of implications) (—,~+) of a pseudo-t-norm ® must verify the properties of
—,~> from the definition of a left-pseudo-BCK algebra (see Definition 2.8). Therefore,
we’ve got Definition 2.9 and Remark 2.10.

2) By the above Theorem 3.12, the category X-pBCK(pR) is equivalent with the
category r-pBCK(pP), v and § being the equivalence functors, where

d=p odom y=m"0q'op

(see Figure 1).

T 5 p*

r-pBCK (pP) T r-pBCK(pRP) +' X-pBCK(pRP) 2 X-pBCK(pR) = porims

(1]

2l
3]

(4]

5]
(6]
(7l
(8]

(9]

Figure 1: Equivalent categories
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