
Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 259–292 259
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Abstract. We proposed in [6] a multiple integration on a multidimensional interval,
named the (LA) integral in the strong sense, which reduces to the special Denjoy
integral in the one-dimensional case (cf. [5]). In this paper, we show that in the
two-dimensional case, Fubini’s theorem holds for the (LA) integral in the strong sense
in addition to the following three statements which have been proved in [6]: The
indefinite integral of an (LA) integrable function in the strong sense is continuous; the
derivative of a finitely additive interval function which is derivable in the strong sense
at every point is (LA) integrable in the strong sense; and the indefinite integral of an
(LA) integrable function f in the strong sense is, at almost all points p, derivable in
the ordinary sense and its derivative coincides with f(p).

In [6], we defined a multiple integration for a real valued function on a multidimensional
interval, named the (LA) integral in the strong sense or the strong (LA) integral. In this
paper, we discuss the statements shown in [6] which are true in all multidimensional cases,
in more detail (Theorems 1, 2 and 3), and show that, in the two-dimensional case, Fubini’s
theorem holds for the strong (LA) integral (Theorem 6). Theorem 2 is already proved in
[6], but in this paper, we show a direct proof of the theorem (Proposition 9).

In general, when a function f is strongly (LA) integrable on an n-dimensional interval
R (n ≥ 2), for a variable taken arbitrarily if, fixing a point p in the projection of the interval
R into the (n−1)-dimensional space consisting of the other variables, we consider the func-
tion f as a function of the variable taken first, then the function is strongly (LA) integrable
for almost all p in the projection of R (Theorem 4).

This paper is a correction of the study for the multiple integral proposed in [4], named
the (D) integral (we found recently an error in the study (precisely, in the proof of [4,
Théorèm 6])).

We remark that we have defined in the paper [9] a multidimensional multiple integration,
named the (D0) integral, whose integral reduces to the special Denjoy integral in the one-
dimensional case and is expressible as the iterated integral of the one-dimensional (D0)
integral.

Throughout this paper, we refer to the terminology and notations indicated in the paper
[9]. In this paper, parts of the proof are omitted. The proof of the parts omitted is leaved
to the reader to see the corresponding parts in [6] or [9].

We denote the n-dimensional Euclidean space by En. A finite system of intervals is called
non-overlapping if they have mutually no common inner points. An interval function in an
interval R0 ⊂ En means a function defined on the family of all sub-intervals of R0. A finitely
additive interval function, or in short, an additive interval function, in R0 means an interval
function F such that F (I1 ∪ I2) = F (I1) + F (I2) for any pair of non-overlapping intervals
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I1 and I2 whose union is an interval. A finite system of intervals Ii (i = 1, 2, . . . , i0) in En

is called an elementary system if Ii ∩ Ii′ = ∅ for i �= i′, sometimes the elementary system
is denoted by S : {Ii (i = 1, 2, . . . , i0)}. Throughout this paper, µn denotes the Lebesgue
measure on En, sometimes, the Lebesgue measure of an interval I in En is denoted by
|I|. Sometimes, for an elementary system S : {Ii (i = 1, 2, . . . , i0)}, S denotes the set
∪i0

i=1Ii and |S| denotes the Lebesgue measure
∑i0

i=1 |Ii|, and when F is a finitely additive
interval function in an interval containing S, F (S) denotes

∑i0
i=1 F (Ii). Measure means

Lebesgue measure. For a set A in En, A denotes the closure of A in En and A◦ denotes
the interior of A in En. For an interval I = [a1, b1; a2, b2; . . . ; an, bn], norm(I) denotes
max{bi − ai : i = 1, 2, . . . , n}, and d(I) denotes sup{dist(x, y) : x, y ∈ I}. For a closed set
F in the one-dimensional Euclidean space E1, an interval I in E1 is said to be contiguous
to F if the both end-points of I belong to F and I◦ ∩ F = ∅. N denotes the set {1, 2, . . .}.
Sometimes, the empty set is treated as a measurable set or a closed set.

Let the Euclidean space En be the product space En = En1 × En2 of Euclidean spaces
En1 and En2 and A a subset of En. Then proj

En1

x(A) denotes the projection of A into En1 and

proj
En2

y(A) the projection of A into En2 , in particular, when n = 2 and n1 = n2 = 1, projx(A)

denotes proj
En1

x(A), and projy(A) denotes proj
En2

y(A). For a point p ∈ En1 , Ap denotes the set

{(p, q) : (p, q) ∈ A, q ∈ En2} and for a point q ∈ En2 , Aq denotes the set {(p, q) : (p, q) ∈
A, p ∈ En1}.

§1 Multidimensional integration

Definition 1 ([6, Definition 5]). Let R0 be an interval in the n0-dimensional Euclidean
space En0 and f a real valued measurable function on R0. The function f is said to be
(LA) integrable in the strong sense or strongly (LA) integrable on R0 if there exist a finitely
additive interval function F in R0, a nondecreasing sequence of measurable sets Mn (n =
1, 2, . . . ) such that Mn ⊂ R0 and ∪∞

n=1Mn = R0, and a nondecreasing sequence of closed
sets Fn (n = 1, 2, . . . ) such that Fn ⊂ Mn and µn0(R0 − ∪∞

n=1Fn) = 0, satisfying the
following two conditions (1) and (2):

(1) The function f is Lebesgue integrable on Fn for each n ∈ N ;

(2) Given n ∈ N and ε > 0, there exists a δ(n, ε) > 0 for which the following holds; if
Ii (i = 1, 2, . . . , i0) is a finite system of non-overlapping intervals in R0 such that

(2.1) Ii ∩ Mn �= ∅ for i = 1, 2, . . . , i0;

(2.2) µn0(∪i0
i=1Ii − Mn) < δ(n, ε);

(2.3) norm(Ii) < 1/n for i = 1, 2, . . . , i0,

then the following inequality holds:∣∣∣∣∣
i0∑

i=1

F (Ii) −
i0∑

i=1

(L)
∫

Ii∩Fn

f(p)dp

∣∣∣∣∣ < ε.

In this case, F (R0) is called the (LA) integral in the strong sense or the strong (LA) integral,
of f(p) on R0, and is denoted by
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(SLA)
∫

R0

f(p)dp or (SLA)
∫

R0

f(x1, x2, . . . , xn0)d(x1, x2, . . . , xn0).

In this definition, it does not arise any confusion by Proposition 2 below. The sequence
Mn (n = 1, 2, . . . ) is called a characteristic sequence of the strong (LA) integral and the
sequence Fn (n = 1, 2, . . . ) a fundamental sequence of the strong (LA) integral. In the case
when we can choose {Mn}∞n=1 and {Fn}∞n=1 so that Mn = Fn for every n, the function f is
said to be strongly (LA∗) integrable on R0.

We remark that in Definition 1 we can suppose that

δ(n, ε) ≥ δ(m, ε) for m > n, and δ(n, ε) ≥ δ(n, ε′) for ε > ε′. (1◦)

When no confusion is possible, we also use the symbols (SLA)
∫

R0
fdp, (SLA)

∫
R0

f, (L)
∫

A f,
etc.

Remark 1. In the definition of the strong (LA) integral we can replace the condition
(2.3) with the condition:

(2.3′) d(Ii) < 1/n for i = 1, 2, . . . , i0.

Because, we have norm(I) ≤ d(I) ≤ (n0)1/2 norm(I) for any interval I in En0 . First,
suppose that, if, for n ∈ N and ε > 0, a system of non-overlapping intervals Ii (i =
1, 2, . . . , i0) satisfies (2.1), (2.2) and (2.3′), then

∣∣∣∑i0
i=1 F (Ii) −

∑i0
i=1(L)

∫
Ii∩Fn

f
∣∣∣ < ε holds,

where {Mn}, {Fn} and δ(n, ε) are those indicated in the definition of the (LA) integral. In
this case, take a sequence of positive integers mn (n = 1, 2, . . . ) so that mn ≥ (n0)1/2n and
1 < m1 < m2 < . . . , and put

M∗
1 = . . . = M∗

m1−1 = ∅, M∗
m1

= M∗
m1+1 = . . . = M∗

m2−1 = M1, . . . ,

M∗
mn

= M∗
mn+1 = . . . = M∗

mn+1−1 = Mn, . . . ;

F ∗
1 = . . . = F ∗

m1−1 = ∅, F ∗
m1

= F ∗
m1+1 = . . . = F ∗

m2−1 = F1, . . . ,

F ∗
mn

= F ∗
mn+1 = . . . = F ∗

mn+1−1 = Fn, . . . .

Then, if, for mn +k ∈ N and ε > 0, where 0 ≤ k ≤ (mn+1−1)−mn, a finite system of non-
overlapping intervals Ii (i = 1, 2, . . . , i0) satisfies (2.1), (2.2) and (2.3) for mn + k, M∗

mn+k

and δ(mn + k, ε), then

(2.1) Ii ∩ Mn �= ∅ for i = 1, 2, . . . , i0;

(2.2) µn0(∪i0
i=1Ii − Mn) < δ(mn + k, ε) ≤ δ(n, ε) by mn + k > n;

(2.3′) d(Ii) ≤ (n0)1/2norm(Ii) < (n0)1/2(1/(mn + k)) ≤ (n0)1/2(1/mn)

≤ (n0)1/2/((n0)1/2n) = 1/n for i = 1, 2, . . . , i0.

Hence,
∣∣∣∑i0

i=1 F (Ii) −
∑i0

i=1(L)
∫

Ii∩Fn
f
∣∣∣ < ε, so

∣∣∣∑i0
i=1 F (Ii) −

∑i0
i=1(L)

∫
Ii∩F∗

mn+k
f
∣∣∣ < ε.

The converse is clear by the inequality indicated first.

By Remark 1, we have:
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Proposition 1. A function f is strongly (LA) integrable on R0 in En0 in the sense of
Definition 1 if and only if it is (LA) integrable in the strong sense on R0 in the sense of [6,
Definition 5], and both integrals coincide.

By Proposition 1 above and [6, Corollary 1, p. 421], we have:

Proposition 2. Tha finitely additive interval function F indicated in the definition of
the strong (LA) integral is uniquely determined.

The following Propositions 3-5 follow immediately from the definition of the strong
(LA) integral.

Proposition 3. If a function f is strongly (LA) integrable on an interval R0 in En0 ,
then so is it on any sub-interval R of R0. If F is an interval function indicated in the
definition of the strong (LA) integral for f, then F (R) is the strong (LA) integral of f on
R for any sub-interval R ⊂ R0.

Proposition 4. Let f = g almost everywhere in R0 ⊂ En0 . Then, if one of them is
strongly (LA) integrable on R0, then so is the other, and the strong (LA) integrals of f and
g on R0 coincide.

Proposition 5. If f and g are strongly (LA) integrable on an interval R0 in En0 , then
so is αf +βg, where α and β are real numbers, and (SLA)

∫
R0

(αf +βg) = α(SLA)
∫

R0
f +

β(SLA)
∫

R0
g.

Proposition 6. Let f be a function on an interval I0 in the one-dimensional Euclidean
space E1. Then it is strongly (LA) integrable on I0 if and only if it is (D0) integrable ([9],
Definition 1) (so special Denjoy integrable by [9, Proposition 4]) on I0, and both integrals
coincide.

Proof. It is clear that if f is (D0) integrable, then f is strongly (LA) integrable and
both integrals coincide, because a finite system of non-overlapping intervals is classified into
two parts so that each part is an elementary system. Next, we prove that if f is strongly
(LA) integrable on I0, then f is (D0) integrable on I0. Let F, {Mn}∞n=1, {Fn}∞n=1 and
δ(n, ε) be those indicated in the definition of the strong (LA) integral for f. Now, given
n ∈ N and ε > 0, put

δ∗(n, ε) = (1/2) min{1/n, δ(n, ε/2)}.

Next, we shall prove that:

If Ii (i = 1, 2, . . . , i0) is an elementary system of intervals in I0 such that

(2.1) Ii ∩ Mn �= ∅ for i = 1, 2, . . . , i0;

(2.2) µ1(∪i0
i=1Ii − Mn) < δ∗(n, ε),

then ∣∣∣∣∣
i0∑

i=1

F (Ii) −
i0∑

i=1

(L)
∫

Ii∩Fn

f

∣∣∣∣∣ < ε.
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In this case, without loss of generality, we can suppose that there exists an integer i1 with
0 ≤ i1 ≤ i0 for which

µ1(Ii ∩ Mn) = 0 for i = 1, 2, . . . , i1 and µ1(Ii ∩ Mn) > 0 for i = 11 + 1, . . . , i0.

First:

(i) For Ii (i = 1, 2, . . . , i1) : We have µ1(∪i1
i=1Ii − Mn) < δ∗(n, ε) < δ(n, ε/2), and for

i = 1, 2, . . . , i1, µ1(Ii) = µ1(Ii − Mn) < δ∗(n, ε) and so norm(Ii) < 1/n. Hence, with (2.1)
above by the definition of the strong (LA) integral we have∣∣∣∣∣

i1∑
i=1

F (Ii) −
i1∑

i=1

(L)
∫

Ii∩Fn

f

∣∣∣∣∣ < ε/2.

Next:

(ii) For Ii (i = i1 + 1, . . . , i0) : For each i ∈ {i1 + 1, . . . , i0}, by the Vitali’s covering
theorem we can find finite intervals J i

1, . . . , J i
k0(i) such that: |J i

k| < 1/n, J i
k ⊂ Ii and both

end-points of J i
k belong to Mn for k = 1, 2, . . . , k0(i); µ1((Ii ∩Mn)−∪k0(i)

k=1 J i
k) < 1/2n; and

J i
1, . . . , J i

k0(i) are mutually disjoint. Denote the family of intervals contiguous to the closed

set consisting of ∪k0(i)
k=1 J i

k and the both end-points of Ii by Hi
h (h = 1, 2, . . . , h0(i)). Then

(∪k0(i)
k=1 J i

k) ∪ (∪h0(i)
h=1 Hi

h) = Ii for each i.

Further

J i
k ∩ Mn �= ∅ for each pair i, k;

Hi
h ∩ Mn �= ∅ for each pair i, h;

µ1(∪i0
i=i1+1((∪k0(i)

k=1 J i
k)∪ (∪h0(i)

h=1 Hi
h))−Mn) = µ1(∪i0

i=i1+1Ii −Mn) < δ∗(n, ε) < δ(n, ε/2);

norm(J i
k) = |J i

k| < 1/n for each pair i, k;

norm(Hi
h) = |Hi

h| ≤ µ1(Ii − ∪k0(i)
k=1 J i

k) ≤ µ1(Ii − (Ii ∩ Mn)) + µ1((Ii ∩ Mn) − ∪k0(i)
k=1 J i

k)
< δ∗(n, ε) + 1/2n ≤ 1/2n + 1/2n = 1/n for each pair i, h.

The system of intervals {J i
k, Hi

h, where i = i1 + 1, . . . , i0, k = 1, 2, . . . , k0(i) and h =
1, 2, . . . , h0(i)} is a finite system of non-overlapping intervals in I0. Hence by the definition
of the strong (LA) integral

∣∣∣∣∣
i0∑

i=i1+1

F (Ii) −
i0∑

i=i1+1

(L)
∫

Ii∩Fn

f

∣∣∣∣∣ =

∣∣∣∣∣∣
i0∑

i=i1+1

⎛
⎝k0(i)∑

k=1

F (J i
k) +

h0(i)∑
h=1

F (Hi
h)

⎞
⎠

−
i0∑

i=i1+1

⎛
⎝k0(i)∑

k=1

(L)
∫

Ji
k∩Fn

f +
h0(i)∑
h=1

(L)
∫

Hi
h∩Fn

f

⎞
⎠
∣∣∣∣∣∣ < ε/2.

Thus, by (i) and (ii), |∑i0
i=1 F (Ii) −

∑i0
i=1(L)

∫
Ii∩Fn

f | < ε.

The indefinite integral of a strongly (LA) integrable function f on R0 is the interval
function F in R0 defined by F (I) = (SLA)

∫
I
f for every interval I ⊂ R0.
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An interval function F in R0 is said to be continuous on R0 if, given ε > 0, there exists
a δ(ε) > 0 such that |F (R)| < ε for every interval R ⊂ R0 with |R| < δ(ε), to be continuous
from the inside for an interval R ⊂ R0 if, given ε > 0, there exists a δ(ε) > 0 such that
|F (R) − F (J)| < ε for every interval J ⊂ R with µn0(R − J) < δ(ε), and to be continuous
from the inside on R0 if F is continuous from the inside for every intereval R ⊂ R0.

Theorem 1. The indefine integral of a strongly (LA) integrable function on an interval
R0 in En0 is continuous on R0.

This theorem is true by Propositions 7 and 8 below. Proposition 7 is proved in [10,
Théorèm, p. 282].

Proposition 7. An additive function F in an interval R0 ⊂ En0 is continuous on R0 if
and only if it is continuous from the inside on R0.

Proposition 8. The indefinite integral of a strongly (LA) integrable function in an
interval R0 is continuous from the inside on R0.

In order to prove Proposition 8, it is sufficient to prove the following lemma (the proof
is a correction of [6, Proposition 12]).

Lemma 1. Let F be the indefinite integral of a strongly (LA) integrable function f on
an interval R0 in En0 and A ⊂ R0 an (n0−1)-dimensional interval contained in a hyperplane
of En0 written for some i ∈ {1, 2, . . . , n0} in the from

A = {(ξ1, . . . , ξn0) : ξi = c and aj ≤ ξi ≤ bj for j �= i}.

Then given ε > 0, there exists ρ(ε) > 0 such that for any intervals A+ε and A−ε in En0

written in the form

A+e = {(ξ1, . . . , ξn0) : c ≤ ξi ≤ c + e and aj ≤ ξj ≤ bj for j �= i};

A−e = {(ξ1, . . . , ξn0) : c − e ≤ ξi ≤ c and aj ≤ ξj ≤ bj for j �= i}.

where 0 < e < ρ(ε), and contained in R0, we have |F (A+e)| < ε and |F (A−e)| < ε.

Proof. We shall prove only for the case of i = 1. Let {Mn}∞n=1 and {Fn}∞n=1 be the se-
quences of measurable sets and closed sets indicated in the definition of the strong (LA) in-
tegral of f. In this case, by the definition given n ∈ N and ε > 0, there exists a δ∗(n, ε) > 0
such that for any interval I ⊂ R0 such that I ∩Mn �= ∅, |I| < δ∗(n, ε), and norm(I) < 1/n,
we have |F (I)| < ε. For each p ∈ A, take the n(p) ∈ N with p ∈ Mn(p) − Mn(p)−1, where
M0 = ∅. Define a function g on A by g(p) = 1/3n(p) for p ∈ A. Then, by [3, Compatibility
theorem, p. 168] for example, there exists a g-fine division of the (n0 − 1)-dimensional
interval A, written (Ds, ps) (s = 1, 2, . . . , s0) with ps ∈ Ds. Given ε > 0, put

ρ(ε) =
[
min

{
min

1≤s≤s0
δ∗(n(ps), ε/s0), min

1≤s≤s0
1/n(ps)

}]
/3 max{1, (n0 − 1)-dimensional

measure of A}.
Let 0 < e < ρ(ε) and put D∗

s = [c−ρ(ε), c+ρ(ε)]×projy(Ds). Then, the set A+e is the union
of non-overlapping intervals D∗

s ∩ A+e (s = 1, 2, . . . , s0). In this case, ps ∈ (D∗
s ∩ A+e) ∩

Mn(ps), norm(D∗
s ∩ A+e) ≤ d(D∗

s) < 1/n(ps) and |D∗
s ∩ A+ε| < ρ(ε) ((n0 − 1)-dimensional
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measure of A) < δ∗(n(ps), ε/s0) for each s ∈ {1, 2, . . . , s0}. Hence, |F (D∗
s ∩ A+e)| < ε/s0

for each s ∈ {1, 2, . . . , s0}. Therefore, |F (A+ε)| < ε for every e with 0 < e < ρ(ε). Similarly,
|F (A−ε)| < ε for every e with 0 < e < ρ(ε).

For an interval function F in an interval R ⊂ En0 and a p ∈ R, consider a variable
interval I ⊂ R with p ∈ I. Then, if there exists the limit value limd(I)→0 F (I)/|I| as a finite
value, the interval function F is said to be derivable in the strong sense at p, and the limit
value is called the strong derivative of F at p and is denoted by F ′

s(p).

Theorem 2 ([6, Proposition 3]). Let F be a finitely additive interval function in an
interval R0 in the n0-dimensional Euclidean space En0 (n0 ≥ 1) which is derivable in the
strong sense at every point of R0. Then the strong derivative F ′

s of F is strongly (LA) in-
tegrable, more precisely, strongly (LA∗) integrable, on R0, and F (R0) = (SLA)

∫
R0

F ′
s

holds.

This theorem is proved in [6, Proposition 3], but in what follows, we shall show a direct
proof of the theorem, as an immediate consequence of Proposition 9 below.

For a finitely additive interval function F in an interval R0 which is derivable in the
strong sense at every point of R0, we denote, for each n ∈ N, by An the set of all p ∈ R0 at
which

[A,n] : |F (I)|/|I| < n for any interval I ⊂ R0 such that p ∈ I and d(I) < 4/n.

Lemma 2. Let F be a finitely additive interval function in an interval R0 in En0 (n0 ≥
1). Suppose that F is derivable in the strong sense at every point of R0. Then:

(1) An ⊂ A2n for every n ∈ N ;

(2) |F ′
s| ≤ n on An for every n ∈ N ;

(3) F ′
s is measurable and bounded on An for every n ∈ N ;

(4) An ↑ R0 as n → ∞.

Proof. It is proved in [11, p. 112, (4.2), Theorem] that F ′
s is measurable on R0. For (1),

see [6, p. 415]. The other parts are clear.

Let R = [a1, b1; . . . ; an0 , bn0 ] be an interval in En0 . Corresponding to each s ∈ {0, 1, . . .},
consider a grating(s) of R obtained by the family of hyperplanes:

xi = ai + k(bi − ai)2−s (1 ≤ i ≤ n0, 0 ≤ k ≤ 2s, i, k are integers),

where xi is ith coordinate of point of En0 . We denote the family of hyperplanes indicated
above by Hs(R). An interval in R written

[a1 + k1(b1 − a1)2−s, a1 + (k1 + 1)(b1 − a1)2−s; . . . ; ai + ki(bi − ai)2−s, ai + (ki + 1)

(bi − ai)2−s; . . . ; an0 + kn0(bn0 − an0)2
−s, an0 + (kn0 + 1)(bn0 − an0)2

−s],

where k1, . . . , kn0 are integers with 0 ≤ ki ≤ 2s − 1 (i = 1, 2, . . . , n0), is called a mesh of
grating(s) of R. An interval in R is called a mesh of R if it is a mesh of grating(s) of R for
some s ∈ {0, 1, . . .}. For an interval I = [c1, d1; . . . ; ci, di; . . . ; cn0 , dn0 ], the intersection of
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the interval I and any one of the 2n0 hyperplanes xi = ci and xi = di is called a face of the
interval I.

We denote the family of all intervals I in R for which there exists an s such that each
face of I is contained in some hyperplane belonging to Hs(R), by J(R).

Lemma 3 Under the same assumption as in Lemma 2, for each n ∈ N and any interval
R ⊂ R0, the following (1) and (2) hold:

(1) For each interval I ∈ J(R) such that I ∩An �= ∅, let us choose a sequence of meshes
of R; Rn

j (j = 1, 2, . . . ) (possibly empty or finite) as in [A], (a) and (b) indicated in [6, p.
409]. In this case, we have:

(i) ∪∞
j=1R

n
j = I − An, and Rn

j (j = 1, 2, . . . ) is non-overlapping;

(ii)
∑∞

j=1 F (Rn
j ) is convergent;

(iii) If I is a mesh of R with d(I) < 1/n, then

∞∑
j=1

|F (Rn
j )| ≤ (nκn0)

∞∑
j=1

|Rn
j |,

where κn0 is a number depending only on the dimension of En0 such that κn0 > 1.

(2) For each interval I ∈ J(R) such that I ∩ An = ∅, let us choose a finite sequence
Rn

j (j = 1, 2, . . . , j0) as in [A], (c) indicated in [6, p. 410]. In this case, we have

(iv) F (I) =
∑j0

j=1 F (Rn
j ).

Proof. The case of (1) is proved in a quite similar way as in [6, p. 410], replacing F with
An and using Lemma 2, (1) above instead of (2.3) in [6, p. 408]. The case of (2) is clear.

Under the same assumption as in Lemma 2, for each n ∈ N and any interval R ⊂ R0,
we define a function Gn(R; I) on J(R) as follows:

(a) Gn(R; I) = (L)
∫

I∩An
f +

∑∞
j=1 F (Rn

j ) if I − An �= ∅ and I ∩ An �= ∅;
(b) Gn(R; I) = (L)

∫
I∩An

f if I − An = ∅ and I ∩ An �= ∅;
(c) Gn(R; I) = F (I) if I − An = ∅,

where Rn
j (j = 1, 2, . . . ) is the sequence of meshes of R chosen in Lemma 3.

Let R ⊂ R0 be an interval, K a function of mesh of interval R ⊂ R0 and p ∈ R. Let I
be a variable mesh of R with p ∈ I. Then, if there exists a unique limit: limd(I)→0 K(I)/|I|
as a finite limit, we say that K is derivable with respect to meshes of R at p, and denote
the limit by K ′

R(P ).

Lemma 4. Under the same assumption as in Lemma 2, for each n ∈ N and any interval
R ⊂ R0, the function Gn(R; I) on J(R) has the following properties:

(1) Gn(R; I) is additive;

(2) (Gn(R))′R = F ′
s almost everywhere in R ∩ An.

This is proved in a quite similar way as in the proof of [6. Lemma 2], replacing F with
An and F ′

η with F ′
s.
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Lemma 5. Under the same assumption as in Lemma 2, for each n ∈ N F (R) =
Gn(R; R) holds for any interval R ⊂ R0, where Gn(R; R) is the value defined above as
I = R. More precisely

F (R) = (L)
∫

R∩An

f +
∞∑

j=1

F (Rn
j ),

where{Rn
j } (possibly empty or finite) is the sequence of meshes of R indicated in Lemma 3.

Proof. This is proved in a quite similar way as in [6, Lemma 3], replacing F with An, F ′
η

with F ′
s, and A2n(η) with A2n, and putting

δ(ε) = min{δ1(ε), ε/4nκn0, (|R|/(norm(R))n0)(1/(n
√

n0))n0}.

Proposition 9. Let F be a finitely additive interval function in an interval R0 ⊂
En0 (n0 ≥ 1). Suppose that F is derivable in the strong sense at every point of R0. Then,
for An (n = 1, 2, . . . ) the following statements hold:

(1) An ↑ R0 as n → ∞;

(2) F ′
s is measurable and bounded on An for every n ∈ N ;

(3) Given n ∈ N and ε > 0, there exists δ(n, ε) > 0 such that, if a finite system of
non-overlapping intervals Ri (i = 1, 2, . . . , i0) in R0 satisfies:

(3.1) Ri ∩ An �= ∅ for i = 1, 2, . . . , i0;

(3.2) µn0(∪i0
i=1Ri − An) < δ(n, ε); and

(3.3) d(Ri) < 1/n for i = 1, 2, . . . , i0,

then ∣∣∣∣∣
i0∑

i=1

F (Ri) −
i0∑

i=1

(L)
∫

Ri∩An

F ′
s

∣∣∣∣∣ < ε.

Proof. (1) and (2) hold by Lemma 2. Next, we prove (3). For n ∈ N and ε > 0 given,
put δ(n, ε) = ε/nκn0, where κn0 is the number indicated in (iii) of Lemma 3. For each
interval Ri, let {Rin

j } (j = 1, 2, . . . ) be the sequence of meshes of Ri chosen as in Lemma 3
to define Gn(Ri; Ri). Then, by Lemmas 5 and 3 we have∣∣∣∣∣

i0∑
i=1

F (Ri) −
i0∑

i=1

(L)
∫

Ri∩An

F ′
s

∣∣∣∣∣
=

∣∣∣∣∣∣
i0∑

i=1

(L)
∫

Ri∩An

F ′
s −

i0∑
i=1

∞∑
j=1

F (Rin
j ) −

i0∑
i=1

(L)
∫

Ri∩An

F ′
s

∣∣∣∣∣∣
≤

i0∑
i=1

(nκn0

∞∑
j=1

|Rin
j |) = nκn0

(
i0∑

i=1

µn0(Ri − An)

)
< nκn0δ(n, ε) = ε.

For an interval I in En, the parameter of regurality of I is the number |I|/|R|, where R is
the minimum cube containing I, and is denoted by r(I). If r(I) ≥ η, the interval I is called
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η-regular. A sequence of intervals {Ii} is said to be η-regular if Ii is η-regular for every i, and
we say that the sequence {Ii} tends to p if d(Ii) → 0 as i → ∞ and p ∈ Ii for every i. Let
F be an interval function in an interval R0 in En and p ∈ R0. For an η with 1 ≥ η > 0, we
call the least upper bound [resp. the greatest lower bound] (extended real number) of the
numbers l for which there is an η-regular sequence {Ii} of intervals tending to p such that
limi→∞ F (Ii)/|Ii| = l the upper derivate [resp. the lower derivate] in the η-regular sense
of F at p. The upper [resp. lower] derivate of F in the η-regular sense at p is denoted by
DηF (p) [resp. DηF (p)]. When DηF (p) = DηF (p), the common value is called the derivative
in the η-regular sense of F at p, and is denoted by F ′

η(p). If further F ′
η(p) is finite, F is said

to be derivable in the η-regular sanse at p. As easily seen, F is derivable in the η-regular
sense at p if and only if there exists a unique limit limd(I)→0 F (I)/|I| as a finite limit, where
I is a variable η-regular interval with p ∈ I. If limη→0 DηF (p) = limη→0 DηF (p), then the
common value is called the ordinary derivative of F at p, and is denoted by F ′(p). When
F ′(p) is finite, F is said to be derivable in the ordinary sense at p.

Theorem 3. Let f be strongly (LA) integrable on an interval R0 in En0 and F an
indefinite integral of f. Then, at almost all p ∈ R0, F is derivable in the ordinary sense and
F ′(p) = f(p) holds.

The theorem holds by virtue of [6, Theorem 5, (2), p. 424] and Proposition 1 above.
Because, a strongly (LA) integrable function on R0 is (LA) integrable in the ordinary sense
on R0 (see, for the definition of “(LA) integrable in the ordinary sense”, [6, Definition 4, p.
423]). To prove the theorem we extend the idea of the semi-regular integral in the Burkill
sense introduced by S.Kempisty in [2] to the η-regular integral in the Burkill sense with any
η, where 0 < η < 1([6, p. 416])(cf. [1]).

We improve on the definition of (D) integrability proposed in [4] as in Definition 2 below,
by replacing the condition that “Mn is closed” with the condition that “Mn is measurable”.

Definition 2. Let R0 be an interval in En0 and f a measurable function on R0. The
function f is said to be (D) integrable on R0 if there exist a finitely additive interval function
F in R0, a nondecreasing sequence of measurable sets Mn (n = 1, 2, . . . ) such that Mn ⊂ R0

and ∪∞
n=1Mn = R0, and a nondecreasing sequence of closed sets Fn (n = 1, 2, . . . ) such that

Fn ⊂ Mn and µn0(R0 − ∪∞
n=1Fn) = 0, satisfying the following two conditions (1) and (2):

(1) The function f is Lebesgue integrable on Fn for each n ∈ N ;

(2) Given n ∈ N and ε > 0, there exists a δ(n, ε) > 0 for which the following holds: if
Ii (i = 1, 2, . . . , i0) is an elementary system in R0 such that

(2.1) Ii ∩ Mn �= ∅ for i = 1, 2, . . . , i0;

(2.2) µn0(∪i0
i=1Ii − Mn) < δ(n, ε);

(2.3) norm(Ii) < 1/n for i = 1, 2, . . . , i0,

then the following inequality holds:∣∣∣∣∣
i0∑

i=1

F (Ii) −
i0∑

i=1

(L)
∫

Ii∩Fn

f

∣∣∣∣∣ < ε.

In this case, the sequence Mn (n = 1, 2, . . . ) is called a characteristic sequence of the
(D) integral and the sequence Fn (n = 1, 2, . . . ) is called a fundamental sequence of the
(D) integral.
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We remark that in Definition 2 we can suppose that

δ(n, ε) ≥ δ(m, ε) for m > n and δ(n, ε) ≥ δ(n, ε′) for ε > ε′. (2◦)

Proposition 10. Let f = g almost everywhere in an interval R0 ⊂ En0 . Then, if one of
them is (D) integrable on R0, then so is the other, and both integrals coincide.

The condition imposed on the definition of (D) integrability is weaker than it imposed
on the definition of the (D0) integral and is weaker than it imposed on the definition of the
strong (LA) integral. Hence

Proposition 11. (1) If f is (D0) integrable on an interval R0 in En0 , then it is (D) in-
tegrable on R0.

(2) If f is strongly (LA) integrable on an interval R0 in En0 , then it is (D) integrable
on R0.

Since the difference in the definition of strong (LA) integrability and (D) integrability is
only the difference of condition given for the system of intervals Ii (i = 1, 2, . . . , i0): “non-
overlapping intervals” and “mutually disjoint intervals”. Hence, when n0 = 1, the finitely
additive interval function F indicated in the definition of (D) integrability is uniquely
determined by Proposition 2, so we may call F (R0) the (D) integral of f on R0, and denote
F (R0) by (D)

∫
R0

f(p)dp etc.

By Proposition 6 and the statement above, we have

Proposition 12. When n0 = 1, for the (LA) in the strong sense, (D), and (D0) their
integrabilities are equivalent with the integrability of Denjoy in the special sense, and their
integrals coincide.

In what follows, R0 denotes an interval in En0 . When f is (D) integrable on R0, let
F, {Mn}∞n=1, {Fn}∞n=1 and δ(n, ε) be those indicated in the definition of (D) integrability
for f.

Lemma 6. Let f be (D) integrable on an interval R0 in En0 . Then, if, for n ∈ N and
ε > 0, Ii (i = 1, 2, . . . , i0) is an elementary system in R0 such that

(2.1∗) Ii ∩ Mn �= ∅ for i = 1, 2, . . . , i0;

(2.2∗) µn0(∪i0
i=1Ii) < δ(n, ε);

(2.3∗) norm(Ii) < 1/n for i = 1, 2, . . . , i0,

then ∣∣∣∣∣
i0∑

i=1

F (Ii) −
i0∑

i=1

(L)
∫

Ii∩Fn

f

∣∣∣∣∣ < λn0ε,

where λn0 is a positive number depending only on the dimension of the space En0 . In
particular λ2 = 4.

The lemma follows easily from the definition of (D) integrability.
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Let f be (D) integrable on R0 in En0 . For n ∈ N and ε > 0, let η(n, ε) be a positive
number such that

if µn0(E) < η(n, ε), then (L)
∫

E∩Fn

|f | < ε. (3◦)

Without loss of generality, we can suppose that

η(n, ε) ≥ η(m, ε) for n < m and η(n, ε) ≥ η(n, ε′) for ε > ε′. (4◦)

Throughout this paper, let εn (n = 1, 2, . . . ) be a sequence of positive numbers such
that

εn ↓ 0 and
∞∑

m=n+1

εm ≤ εn for each n ∈ N, (5◦)

and let ε∗∗n (n = 1, 2, . . . ) be the nonincreasing sequence defined by

ε∗∗n = min{1/n, δ(n, εn/2n+5), η(n, εn/2n+5)} for each n ∈ N. (6◦)

We have ε∗∗n ↓ 0

Let J be an interval in the one-dimensional Euclidean space E1 and An (n = 1, 2, . . . )
a nondecreasing sequence of closed sets in E1 such that ∪∞

n=1An = J. Then we say that
a non-empty closed set Fnm in E1, where n < m, has the property (B1) for n < m in J
associated with {An}∞n=1 and {ε∗∗n }∞n=1 if it has the following property (B1).

(B1): (1) Fnm ⊂ J and Fnm ⊂ Am;

(2) Denote the sequence of intervals contiguous to the set consisting of the set Fnm

and the both end-points of J by Jj (j = 1, 2, . . . ). Then, Jj (j = 1, 2, . . . ) are classified
into m − n + 1 parts written Jkj (j = 1, 2, . . . ) (possibly empty or finite), where k =
n, n + 1, n + 2, . . . , m, so that

1)
∑∞

j=1 |Jkj | < ε∗∗n ;

2) (Jkj)◦ ∩ Ak = ∅ for every j ∈ N ;

3) one at least of the end-points of the interval Jkj belongs to Ak for each j ∈ N.

In this case, the point taken as one at least of the end-points of Jkj in 3) is called the
characteristic point of Jkj and the number k is called the characteristic number of Jkj .

First, let us spply Lemma 2 in [4, p. 72; 8, p. 2] for the interval R0, the sequence of
closed sets {Mn}∞n=1 and the sequence of positive numbers {ε∗∗n }∞n=1. Then, the following
statement (I) holds.

(I) There exist two increasing sequences of positive integers

ni and mi (i = 1, 2, . . . ) such that i < ni and ni < mi < ni+1 (7◦)

and a nondecreasing sequence of non-empty closed sets

Fnimi (i = 1, 2, . . . )
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having the following properties (1) and (2):

(1) Fnimi ⊂ R0 and Fnimi ⊂ Mmi for every i ∈ N ;

(2) Put
Y = ∪∞

i=1 proj
En0−1

y(Fnimi) and Z = proj
En0−1

y(R0) − Y, (8◦)

then

a) µn0−1(Z) = 0;

b) for each q ∈ Y and i ∈ N, if (Fnimi)q �= ∅, the closed set (Fnimi)q has the property
(B1) for ni < mi in (R0)q associated with {(Mn)q}∞n=1 and {ε∗∗n }∞n=1; and

c) ∪∞
i=1(Fnimi)q = (R0)q holds for each q ∈ Y.

Next, to each point

q ∈ Z

(
= proj

En0−1
y(R0) − ∪∞

i=1 proj
En0−1

y(Fnimi)

)
,

let us apply Lemma 1 in [4, p. 72; 8, p. 2] for the one-dimensional interval (R0)q, the
sequence of one-dimensional closed set {(Mn)q}∞n=1 and the sequence of positive numbers
{ε∗∗n }∞n=1. Then:

(II) There exist two increasing sequences of positive integers

ni(q) and mi(q) (i = 1, 2, . . . ) such that i < ni(q) and ni(q) < mi(q) < ni+1(q)

and a nondecreasing sequence of non-empty closed sets

Fni(q)mi(q) (i = 1, 2, . . . )

such that:

a) each Fni(q)mi(q) has the property (B1) for ni(q) < mi(q) in (R0)q associated with
{(Mn)q}∞n=1 and {ε∗∗n }∞n=1, in particular, Fni(q)mi(q) ⊂ (R0)q and Fni(q)mi(q) ⊂ (Mmi(q))

q;
and

b) ∪∞
i=1Fni(q)mi(q) = (R0)q.

An elementary system S : Ii (i = 1, 2, . . . , i0) in En is called a (∗)-elemetary system if

proj
En−1

y(I1) = proj
En−1

y(I2) = . . . = proj
En−1

y(Ii0 ).

An elementary system S is called a (∗∗)-elementary system if it is composed of finite (∗)-
elemetary systems Sl (l = 1, 2, . . . , l0) such that

proj
En−1

y(Sl) ∩ proj
En−1

y(Sl′) = ∅ for l, l′ ∈ {1, 2, . . . , l0} with l �= l′.
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Lemma 7. If f is (D) integrable on an interval R0 in En0(n0 ≥ 2), then there exists
a nondecreasing sequence of measurable sets Bh (h = 1, 2, . . . ) (the first finite sets may be
empty) such that:

(1) Bh ↑ R0 as h → ∞;

(2) for every h ∈ N, the set (Bh)q is a closed set for every q ∈ proj
En−1

y(Bh),

in such a way that the following statement holds:

Corresponding to h, ε with h ∈ N and ε > 0, there exists a ρ∗(h, ε) > 0 such that:

Given ε > 0, suppose that, for some h ∈ N, a (∗∗)-elementary system S consisting of
(∗)-elementary systems Sl (l = 1, 2, . . . , l0), where for each l

Sl is a (∗)-elementary system consisting of intervals written

Ilj (j = 1, 2, . . . , j0(l)),

satisfies the following conditions:

(a) For each l ∈ {1, 2, . . . , l0}, there exists a ql ∈ proj
En0−1

y(Sl) ∩ proj
En0−1

y(Bh) such that

(Ilj)ql ∩ (Bh)ql �= ∅ for every j ∈ {1, 2, . . . , j0(l)};
(b) | proj

En0−1

y(S)| < ρ∗(h, ε);

(c) norm( proj
En0−1

y(Sl)) < 1/h for every l ∈ {1, 2, . . . , l0}.

Then the following inequality holds:

|F (S)| < ε.

Proof. For simplicity, we prove only for the case when n0 = 2 and R0 = [0, 1; 0, 1].
Denote ql taken in the assumption (a) of the lemma by yl.

Let

ni, mi and Fnimi (i = 1, 2, . . . )

be the two sequeces of positive integers and the sequence of non-empty closed sets indicated
in (I) above.

Corresponding to each h ∈ N, if there exists an mi with mi ≤ h, then we put

i(h) = max{i : mi ≤ h, i ∈ N}. (9◦)

In this case, the following holds:

Fnkmk
= Fni(mk)mi(mk) for every k ∈ N.

Put, as in (8◦)

Z = proj y(R0) − ∪∞
i=1 proj y(Fnimi).
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Then

µ1(Z) = 0.

Corresponding to each y ∈ Z, let ni(y),mi(y) and Fni(y)mi(y) (i = 1, 2, . . . ) be the two
sequences of positive integers and the sequence of closed sets indicated in (II) above.

Corresponding to h ∈ N, if there exists an mi(y) with mi(y) ≤ h, then we put

i(y, h) = max{i : mi(y) ≤ h, i ∈ N}. (10◦)

Given an h ∈ N, put

Bh = Fni(h)mi(h) ∪
(
∪∗

y∈ZFni(y,h)(y)mi(y,h)(y)

)
when i(h) is definable;

Bh = ∪∗
y∈ZFni(y,h)(y)mi(y,h)(y) for the other case, (11◦)

where the union ∪∗
y∈Z is over all y ∈ Z for which i(y, h) is definable. Then, Bh (h = 1, 2, . . . )

is a nondecreasing sequence of measurable sets (the first finite sets may be empty) satisfying
(1) and (2) of the lemma.

Now, for h ∈ N and ε > 0, put

ρ∗(h, ε) = min{δ(h, ε/27h), η(h, ε/24h)}. (12◦)

Then

ρ∗(h, ε) ≥ ρ∗(k, ε) for k > h and ρ∗(h, ε) ≥ ρ∗(h, ε′) for ε > ε′.

Given ε > 0, let, for some h ∈ N, S be a (∗∗)-elementary system Sl (l = 1, 2, . . . , l0)
satisfying the conditions (a), (b) and (c) of the lemma for Bh, ρ∗(h, ε) defined above and
h.

First of all, for the (∗∗)-elementary system S we suppose the following condition:

(d) Let l ∈ {1, 2, . . . , l0} and yl the point of projy(Sl)∩projy(Bh) taken in the condition
(a). For each pair l, j with l ∈ {1, 2, . . . , l0} and j ∈ {1, 2, . . . , j0(l)− 1}, if we denote by al

j

the right hand end-point of one-dimensional interval (Ilj)yl and by bl
j the left hand end-point

of one-dimensional interval (Il,j+1)yl , then ([al
j , b

l
j ]×{yl})∩Bh �= ∅ for j = 1, 2, . . . j0(l)−1.

The proof requires four steps.

(1) Consider the family of all intervals Ilj , possibly empty, for which

|proj x(Ilj)| < 1/h, where l ∈ {1, 2, . . . , l0} and j ∈ {1, 2, . . . , j0(l)},

and denote the family by

R1
m (m = 1, 2, . . . , m1).

Then, by the condition (a), we have R1
m ∩ Bh �= ∅ for m = 1, 2, . . . , m1. Further since

Mmi(h) ⊃ Fni(h)mi(h) , Mmi(y,h)(y) ⊃ Fni(y,h)(y)mi(y,h)(y) by (1) of (I) and a) of (II), mi(h) ≤ h

and mi(y,h)(y) ≤ h, we have Mh ⊃ Bh. Therefore
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R1
m ∩ Mh �= ∅ for m = 1, 2, . . . , m1.

(2) Consider the family of all intervals Ilj , possibly empty, for which

|proj x(Ilj)| ≥ 1/h, where l ∈ {1, 2, . . . , l0} and j ∈ {1, 2, . . . , j0(l)}. (13◦)

For each interval Ilj of the family and yl taken in (a), denote the sequence of one-dimensional
intervals contiguous to the one-dimensional closed set consisting of the non-empty closed
set (Ilj)yl ∩ (Bh)yl and the both end-points of the interval (Ilj)yl by

Jljr (r = 1, 2, . . . ),

where we can suppose that |Jljr| ≥ |Jljr+1| for r = 1, 2, . . . . Take an index r such that

|Jljr| ≥ 1/2h and |Jljr+1| < 1/2h, and written r0(l, j).

Next consider the sequence of one-dimensional intervals contiguous to the one-dimensional
closed set consisting of the set ∪r0(l,j)

r=1 Jljr and the both end-points of the interval (Ilj). De-
note the sequence by

Kljt (t = 1, 2, . . . , t0(l, j)).

Then, for l ∈ {1, 2, . . . , l0} and j ∈ {1, 2, . . . , j0(l)}, we have

∪r0(l,j)
r=1 Jljr ∪ ∪t0(l,j)

t=1 Kljt = (Ilj)yl ;

∪t0(l,j)
t=1 Kljt = ∪∞

r=r0(l,j)+1Jljr ∪ ((Ilj)yl ∩ (Bh)yl); (14◦)

{Jljr (r = 1, 2, . . . , r0(l, j));Kljt (t = 1, 2, . . . , t0(l, j))} are non-overlapping.

For Kljt (l = 1, 2, . . . , l0, j = 1, 2, . . . , j0(l), t = 1, 2, . . . , t0(l, j)), first consider

(2.1): the family (possibly empty)

{Kljt : |Kljt| < 1/h, where l, j is any pair belonging to the set of all indices (l, j)

for which Ilj is chosen to be (13◦), and t ∈ {1, 2, . . . , t0(l, j)}},

and associate, with each Kljt of the family, the two-dimensional interval

proj x(Kljt) × proj y(Sl).

We denote the family of such two-dimensional intervals by

R2
m (m = 1, 2, . . . , m2).

Since then Kljt ∩ Bh �= ∅ and Mh ⊃ Bh, we have
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R2
m ∩ Mh �= ∅ for m = 1, 2, . . . , m2.

Next, consider

(2,2): the family (possibly empty)

{Kljt : |Kljt| ≥ 1/h, where l, j is any pair belonging to the set of all indices (l, j)

for which Ilj is chosen to be (13◦), and t ∈ {1, 2, . . . , t0(l, j)}}.

Corresponding to each Kljt of the family, take a finite sequence of non-overlapping one-
dimensional intervals K ′

ljts (s = 1, 2, . . . , s0(l, j, t)) whose union is Kljt and such that
1/2h ≤ |K ′

ljts| < 1/h. With each of such intervals K ′
ljts we associate a two-dimensional

interval;

proj x(K ′
ljts) × proj y(Sl),

and denote the family of all such two-dimensional intervals by

R3
m (m = 1, 2, . . . , m3).

Then, we have

R3
m ∩ Mh �= ∅ for m = 1, 2, . . . , m3.

Because, K ′
ljts ∩ Bh �= ∅ holds for every K ′

ljts. Indeed, suppose that K ′
ljts ∩ (Bh)yl = ∅.

for some K ′
ljts. Since then K ′

ljts ⊂ ∪∞
r=r0(l,j)+1Jljr by (14◦) and Jljr (r = 1, 2, . . . ) are the

intervals contiguous to the closed set consisting of the non-empty closed set (Bh)yl ∩ (Ilj)yl

and the both end-points of (Ilj)yl , there exists an r∗ ≥ r0(l, j) + 1 for which K ′
ljts ⊂ Jljr∗ .

Hence, |K ′
ljts| ≤ |Jljr∗ | < 1/2h, which contradicts |K ′

ljts| ≥ 1/2h. Thus, K ′
ljts ∩Mh �= ∅ for

every K ′
ljts by Mh ⊃ Bh.

For simplicity, we put

{Rm (m = 1, 2, . . . , m0)}
= {R1

m (m = 1, 2, . . . , m1);R2
m (m = 1, 2, . . . , m2);R3

m (m = 1, 2, . . . , m3)}.

As easily seen, Rm (m = 1, 2, . . . , m0) are classified into two parts so that each part is an
elementary system. In addition, we have Rm ∩Mh �= ∅ for m = 1, 2, . . . , m0;

∑m0
m=1 |Rm| <

δ(h, ε/27h), because | projy(S)| < ρ∗(h, ε) ≤ δ(h, ε/27h) by (b) and (12◦) and | projx(R0)| =
1; and norm(Rm) < 1/h for m = 1, 2, . . . , m0 by (c). Hence by Lemma 1, we have∣∣∣∣∣

m0∑
m=1

F (Rm) −
m0∑

m=1

(L)
∫

Rm∩Fh

f

∣∣∣∣∣ < 4(ε/27h) × 2 = ε/16h.

Further, since
∑m0

m=1 |Rm| < ρ∗(h, ε) ≤ η(h, ε/24h),
∣∣∣∑m0

m=1(L)
∫

Rm∩Fh
f
∣∣∣ < ε/16h. There-

fore
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∣∣∣∣∣
m0∑

m=1

F (Rm)

∣∣∣∣∣ < ε/16h + ε/16h = ε/8h. (15◦)

Next, consider

(2.3) the family of one-dimensional intervals Jljr (l = 1, 2, . . . , l0, j = 1, 2, . . . j0(l), r =
1, 2, . . . , r0(l, j)). Then we have |Jljr| ≥ 1/2h for each such Jljr. Corresponding to each such
interval Jljr, there exists uniquely a one-dimensional interval Hljr having thte following
properties:

(a◦) Hljr is contained in one of the intervals contiguous to the closed set consisting of
(Bh)yl and the both end-points of (R0)yl , say H ′

ljr;

(b◦) Hljr ⊃ Jljr;
(c◦) One end-point of the interval Hljr is an end-point of Jljr;

(d◦) The other end-point of the interval Hljr is the characteristic point of the interval
H ′

ljr say pljr.

We denote the characteristic number of the characteristic point pljr by hljr. Since then
ni(h) ≤ hljr ≤ mi(h) or ni(y,h)(y) ≤ hljr ≤ mi(y,h)(y) for some y ∈ Z by the definition
of characteristic number, we have 1 ≤ hljr ≤ h by (9◦) and (10◦). In this case, by the
assumption (d) and the definition of (∗)-elementary system, Hljr (j = 1, 2, . . . , j0(l), r =
1, 2, . . . , r0(l, j)) are non-overlapping for each l ∈ {1, 2, . . . , l0}.

Next, for each triple l, j, r with l ∈ {1, 2, . . . , l0}, j ∈ {1, 2, . . . , j0(l)}, and r ∈ {1, 2, . . . ,
r0(l, j)}, put

Qljr = proj x(Jljr) × proj y(Sl);

Q∗
ljr = proj x(Hljr) × proj y(Sl).

First, corresponding to each k with 1 ≤ k ≤ h, consider the family of two-dimensional
intervals Q∗

ljr for which hljr = k, where l = 1, 2, . . . , l0, j = 1, 2, . . . , j0(l) and r =
1, 2, . . . , r0(l, j), and denote the family by R∗

km (m = 1, 2, . . . , m0(k)). When Q∗
ljr is denoted

by R∗
km, we denote Qljr by Rkm. Then for each k with 1 ≤ k ≤ h :

R∗
km (m = 1, 2, . . . , m0(k)) are non-overlapping;

R∗
km ∩ Mk �= ∅ for m = 1, 2, . . . , m0(k);

µ2(∪m0(k)
m=1 R∗

km) ≤ µ2(S) < ρ∗(h, ε) ≤ δ(h, ε/27h) ≤ δ(k, ε/27h) by (b), (12◦) and

(2◦); and

norm(R∗
km) < max{ε∗∗k , 1/h} ≤ max{1/k, 1/h} = 1/k for m = 1, 2, . . . , m0(k) by

virtue of 1) of (2) of the property (B1), (c) and (6◦).

In addition, R∗
km (m = 1, 2, . . . , m0(k)) are classified into two elementary systems. Hence,

by Lemma 5 we have∣∣∣∣∣∣
m0(k)∑
m=1

F (R∗
km) −

m0(k)∑
m=1

(L)
∫

R∗
km∩Fk

f

∣∣∣∣∣∣ < 4(ε/27h) × 2 = ε/16h.
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On the other hand, since (1 ≤)k ≤ h, by (b), (12◦) and (4◦)

m0(k)∑
m=1

|R∗
km| ≤ µ2(S) < ρ∗(h, ε) ≤ η(h, ε/24h) ≤ η(k, ε/24h).

Hence, by (3◦) ∣∣∣∣∣∣
m0(k)∑
m=1

(L)
∫

R∗
km∩Fk

f

∣∣∣∣∣∣ < ε/16h.

Therefore

∣∣∣∣∣∣
m0(k)∑
m=1

F (R∗
km)

∣∣∣∣∣∣ < ε/16h + ε/16h = ε/8h.

Thus, we obtain ∣∣∣∣∣∣
h∑

k=1

m0(k)∑
m=1

F (R∗
km)

∣∣∣∣∣∣ < ε/8.

Similarly, we obtain ∣∣∣∣∣∣
h∑

k=1

m0(k)∑
m=1

F (R∗
km − Rkm)

∣∣∣∣∣∣ < ε/8.

Therefore ∣∣∣∣∣∣
h∑

k=1

m0(k)∑
m=1

F (Rkm)

∣∣∣∣∣∣ < ε/4. (16◦)

By (15◦) and (16◦)

|F (S)| ≤
∣∣∣∣∣

m0∑
m=1

F (Rm)

∣∣∣∣∣+
∣∣∣∣∣∣

h∑
k=1

m0(k)∑
m=1

F (Rkm)

∣∣∣∣∣∣ < ε/8h + ε/4 < ε/2,

because S = ∪m0
m=1Rm ∪ ∪h

k=1 ∪m0(k)
m=1 Rkm.

In general, the intervals constructing S classified into two parts so that each part satisfies
the condition (d). Hence, |F (S)| < ε holds.

As an application of Lemma 7, we obtain:

Proposition 13. Let f be (D) integrable on an interval R0 in the two-dimensional
Euclidean space, then if Ii (i = 1, 2, . . . ) is a sequence of intervals in R0 such that:
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I1 ⊃ I2 ⊃ . . . and | proj y(Ii)| → 0,

we have limi→∞ F (Ii) = 0.

Proof. There exists a point q ∈ ∩∞
i=1Ii. Since Bh ↑ R0 by (1) of Lemma 7, there exists an

h0 such that q ∈ Bh0 . Hence, Ii ∩ Bh0 �= ∅ for every i ∈ N. For ε > 0, take an i0 = i0(ε) so
that | proj y(Ii)| < min{ρ∗(h0, ε), 1/h0} for every i ≥ i0 (ρ∗(h0, ε) is the number indicated
in Lemma 7). In this case, norm(proj y(Ii)) < 1/h0 for every i ≥ i0. Hence, by Lemma 7,
|F (Ii)| < ε holds for every i ≥ i0.

For an interval I = [a1, b1; a2, b2; . . . ; an, bn] in En, we denote by Rm(I) the family of all
intervals which are written; [a1 + (k1(b1 − a1))/m, a1 + ((k1 + 1)(b1 − a1))/m; a2 + (k2(b2 −
a2))/m, a2 + ((k2 + 1)(b2 − a2))/m; . . . ; an + (kn(bn − an))/m, an + ((kn + 1)(bn − an))/m],
where ki is an integer with 0 ≤ ki ≤ m − 1 for i = 1, 2, . . . , n.

Lemma 8. Let f be (D) integrable on an interval R0 in En0 (n0 ≥ 2). Given a
sequence of positive numbers εn (n = 1, 2, . . . ) such that εn ↓ 0 and

∑∞
m=n+1 εm < εn for

every n ∈ N, there exist:

nondecreasing sequences of closed sets Ai (i = 1, 2, . . . ) and Di (i = 1, 2, . . . ) such that

(1) µn0(R0 − ∪∞
i=1Ai) = 0 and µn0(R0 − ∪∞

i=1Di) = 0;

(2) Ai ⊃ Di for every i ∈ N ;

(3) f is Lebesgue integrable on Di for every i ∈ N,

and a nonincreasing sequence of positive numbers τ∗
i (i = 1, 2, . . . ) with τ∗

i ↓ 0,

in such a way that the following statement (4) holds:

(4) For each i ∈ N the following holds: If S is a (∗∗)-elementary system consisting

of (∗)-elementary systems Sl (l = 1, 2, . . . , l0), where for each l

Sl is a (∗)-elementary system consisting of intervals written

Ilj (j = 1, 2, . . . , j0(l)),

such that

(4.0) norm

(
proj

En0−1

y(Sl)

)
< τ∗

i for l = 1, 2, . . . , l0,

and for which there exists a non-empty measurable set Y in proj
En0−1

y(R0) such that:

(4.1) Y ⊂ proj
En0−1

y(S◦) ∩ proj
En0−1

y(Ai);

(4.2) µn0−1

(
proj

En0−1

y(S) − Y

)
< τ∗

i ;

(4.3) Y ∩ proj
En0−1

y((Sl)◦) �= ∅ for every l ∈ {1, 2, . . . , l0};

(4.4) for each l ∈ {1, 2, . . . , l0} if q ∈ Y ∩ proj
En0−1

y((Sl)◦), then
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(Ilj)q ∩ (Ai)q �= ∅ for every j ∈ {1, 2, . . . , j0(l)},

then the following inequality holds:∣∣∣∣F (S) − (L)
∫

S∩Di

f

∣∣∣∣ < εi.

We emphasize that, in the two-dimensional case, we can remove the assumption (4.0)
in the statement (4) of Lemma 8 above. In detail:

Lemma 9. When n0 = 2, for the {Ai}∞i=1, {Di}∞i=1 and {τ∗
i }∞i=1 indicated in Lemma 8

the following statement (4∗) holds:

(4∗) For every i ∈ N, the following holds: Let S be a (∗∗)-elementary system with the
form indicated in (4) of Lemma 8 (without the assumption of (4.0)). If, for such an S, there
exists a non-empty measurable set Y in proj

En0−1

y(R0) satisfying the conditions (4.1), (4.2),

(4.3) and (4.4) in Lemma 8, then
∣∣∣F (S) − (L)

∫
S∩Di

f
∣∣∣ < εi holds.

Proof of Lemma 8. For simplicity, we prove only for the case when n0 = 2 and R0 =
[0, 1; 0, 1]. For the {εn}∞n=1 given in the lemma, we define {ε∗∗n }∞n=1 as in (6◦). Let ni, mi and
Fnimi (i = 1, 2, . . . ) be the sequences of integers and the sequence of closed sets obtained
as in (I), associating with R0, {Mn}∞n=1 and {ε∗∗n }∞n=1. Put

τi = (1/2) min{1/mi, ρ∗(mi, εi/24)} for each i ∈ N, (17◦)

where ρ∗(h, ε) is the number defined in (12◦). Then, τi (i = 1, 2, . . . ) is a nonincreasing
sequence with τi ↓ 0.

For each i ∈ N, take an h(i) ∈ N so that

h(i) > i, h(j) > h(i) for j > i and µ2(Fnimi − Fmh(i)) < τi. (18◦)

Put

Ai = Fnimi and Di = Fnimi ∩ Fmh(i) for each i ∈ N. (19◦)

Then

Ai ⊃ Di and µ2(Ai − Di) < τi for each i ∈ N.

Put

τ∗
i = (1/2) min

{
τi, η(mh(i), εh(i)/25)

}
for each i ∈ N. (20◦)

Then, {Ai}∞i=1 and {Di}∞i=1 are nondecreasing sequences of closed sets satisfying (1), (2)
and (3) of the lemma, and {τ∗

i }∞i=1 is a nonincreasing sequence with τ∗
i ↓ 0 by (4◦). Next,

we shall prove that the statement (4) holds for them. The proof requires three steps.

Take an i ∈ N and fix. Under the assumption of (4) of the lemma:

(i) The case when µ1(Y ∩ proj y((Sl)◦)) > 0 for l = 1, 2, . . . , l0 : There exists an m0(i)
with
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m0(i) > mi (21◦)

such that: for each pair l, j with l ∈ {1, 2, . . . , l0} and j ∈ {1, 2, . . . , j0(l)}, there exists a
non-empty family of cells belonging to Rm0(i)(Ilj), denoted by

Rljs (s = 1, 2, . . . , s0(l, j)),

such that:
1) Rljs ∩ Ai �= ∅ for s = 1, 2, . . . , s0(l, j);

2) R ∩ Ai = ∅ for the other cells R belonging to Rm0(i)(Ilj);

3) µ2

(
∪s0(l,j)

s=1 Rljs − Ai

)
< τh(i)/

∑l0
l=1 j0(l);

and, further, when we denote the family of Rljs for which

Rljs ∩ Di �= ∅, where s ∈ {1, 2, . . . , s0(l, j)}

by Rljs (s = 1, 2, . . . , s1(l, j)) (possibly empty), where s1(l, j) ≤ s0(l, j) (without loss of
generality, such expression is possible), we have

4) µ2

(
∪s1(l,j)

s=1 Rljs − Di

)
< τh(i)/

∑l0
l=1 j0(l).

Denote, for each pair l, j, the set ∪(proj y(R)− proj y((R)◦)), where the union ∪ is over
all cells R belonging to Rm0(i)(Ilj), by Elj . Then, Elj = Elj′ for j, j′ ∈ {1, 2, . . . , j0(l)}.
Denote the common set by El.

Now put Yl = (Y − El) ∩ projy((Sl)◦) for l = 1, 2, . . . , l0. Then, we have

Yl ∩ Yl′ = ∅ for l, l′ ∈ {1, 2, . . . , l0} with l �= l′;

∪l0
l=1Yl ⊂ Y and µ1(Y − ∪l0

l=1Yl) = 0.

In this case, as seen in [9, proof of Lemma 3], for each l ∈ {1, 2, . . . , l0} there exists a finite
sequence of intervals in projy(R0) written

J(yl
v) (v = 1, 2, . . . , v0(l)),

having the following properties:

1∗) yl
v ∈ Yl for v = 1, 2, . . . , v0(l);

2∗) yl
v ∈ (J(yl

v))
◦ for v = 1, 2, . . . , v0(l);

3∗) ∪v0(l)
v=1 J(yl

v) ⊂ proj y((Sl)◦);

4∗) µ1

(
Yl − ∪v0(l)

v=1 J(yl
v)
)

< τ∗
i /l0;

5∗) norm(J(yl
v)) < 1/mi for v = 1, 2, . . . , v0(l);

6∗) J(yl
v) ∩ J(yl

v′) = ∅ for v �= v′;

7∗) The both end-points of J(yl
v) belong to Yl.
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(Refore to [9, Remark 1, (1)] for the case n0 − 1 ≥ 2.)

By 3∗), 4∗) and (4.2), we have:

8∗) µ1(projy(S) − ∪l0
l=1 ∪v0(l)

v=1 J(yl
v)) < 2τ∗

i .

Because, µ1(projy(S) − ∪l0
l=1 ∪v0(l)

v=1 J(yl
v)) =

∑l0
l=1 µ1(projy(Sl) − ∪v0(l)

v=1 J(yl
v)) ≤∑l0

l=1 µ1(projy(Sl) − Yl) +
∑l0

l=1 µ1(Yl − ∪v0(l)
v=1 J(yl

v)) < µ1(projy(S) − ∪l0
l=1Yl) +

τ∗
i ≤ µ1(projy(S) − Y ) + µ1(Y − ∪l0

l=1Yl) + τ∗
i < 2τ∗

i .

In this case, as seen in [9, proof of Lemma 3], J(yl
v) (v = 1, 2, . . . , v0(l)) can be chosen to

have the following properties (α) and (β) in addition to the properties 1∗)-7∗) above:

(α) For each l ∈ {1, 2, . . . , l0}, put

I l
v = proj x(R0) × J(yl

v) for v = 1, 2, . . . , v0(l).

Then, for every interval I l
v ∩ Rljs belonging to the family:{

I l
v ∩ Rljs : (Rljs)yl

v ∩ (Ai)yl
v �= ∅,

where j ∈ {1, 2, . . . , j0(l)} and s ∈ {1, 2, . . . , s0(l, j)}
}

(22◦)

which is non-empty, we have

proj y(Il
v ∩ Rljs) = J(yl

v) for every v ∈ {1, 2, . . . , v0(l)}.

(β) For each l ∈ {1, 2, . . . , l0}, put

I l
vj = proj x(Ilj) × J(yl

v) for v = 1, 2, . . . , v0(l) and j ∈ 1, 2, . . . , j0(l),

and, in each I l
vj , consider the family of all two-dimensional intervals I contained in I l

vj , such
that the both sides of I parallel to y-axis, say ss(I), belong to K, (I − ss(I)) ⊂ I l

vj − K

and projy(I) = projy(Il
vj), where K is the closed set consisting of the set ∪(Rljs ∩ I l

vj), ∪
is over all Rljs, s = 1, 2, . . . , s0(l, j) with (Rljs)yl

v ∩ (Ai)yl
v �= ∅, and the both sides of I l

vj

parallel to y-axis. Denote the family by

Ll
vjz (z = 1, 2, . . . , z0(l, v, j)).

For simplicity, for each pair l, v with l ∈ {1, 2, . . . , l0} and v ∈ {1, 2, . . . , v0(l)}, denote the
family

Ll
vjz (j = 1, 2, . . . , j0(l), z = 1, 2, . . . , z0(l, v, j))

by

Ll
vw (w = 1, 2, . . . , w0(l, v)). (23◦)

Then we have

Ll
vw ∩ Ai = ∅ for w = 1, 2, . . . , w0(l, v);
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and Ll
vw (l = 1, 2, . . . , l0, v = 1, 2, . . . , v0(l), w = 1, 2, . . . , w0(l, v)) are mutually disjoint.

Next, for each l ∈ {1, 2, . . . , l0}, denote the family of intervals contiguous to the closed
set consisting of ∪v0(l)

v=1 J(yl
v) and the both end-points of projy(Sl) by

J∗l
u (u = 1, 2, . . . , u0(l)).

(Refer to [9, Remark 1, (2)] for the case of n0 − 1 ≥ 2.)

Put

I∗l
u = proj x(R0) × J∗l

u for u = 1, 2, . . . , u0(l);

I∗l
uj = I∗l

u ∩ Ilj for u = 1, 2, . . . , u0(l) and j = 1, 2, . . . , j0(l). (24◦)

(i,1) Denote the family of intervals indicated in (α) (defined in (22◦)):

{
I l
v ∩ Rljs : (Rljs)yl

v ∩ (Ai)yl
v �= ∅, l ∈ {1, 2, . . . , l0}, v ∈ {1, 2, . . . , v0(l)},

j ∈ {1, 2, . . . , j0(l)} and s ∈ {1, 2, . . . , s0(l, j)}
}

by

Rs (s = 1, 2, . . . , s0).

In this case without loss of generality, we can suppose that

Rs ∩ Di �= ∅ for s ∈ {1, 2, . . . , s1} and Rs ∩ Di = ∅ for s ∈ {s1 + 1, . . . , s0},

where 0 ≤ s1 ≤ s0 (if s1 = 0, then the former is empty; if s1 = s0, then the latter is empty).

First, for Rs (s = 1, 2, . . . , s1), we have, as seen in [9, proof of Lemm 3, (i,2)],

1) Rs ∩ Mmh(i) �= ∅ for s = 1, 2, . . . , s1;

2) µ2

(∪s1
s=1Rs − Mmh(i)

) ≤ µ2 (∪s1
s=1Rs − Di)

≤∑l0
l=1

∑j0(l)
j=1 µ2

(
∪s1(l,j)

s=1 Rljs − Di

)
<
∑l0

l=1

(
(τh(i)/

∑l0
l=1 j0(l)) × (j0(l))

)
= τh(i) < δ

(
mh(i), εh(i)/211

)
by 4) above.

Further

3) norm(Rs) < 1/m0(i) < 1/mi < 1/mh(i), since m0(i) > mi and i < h(i) by (21◦) and
(18◦).

Hence, by the definition of (D) integrability we have∣∣∣∣∣
s1∑

s=1

F (Rs) −
s1∑

s=1

(L)
∫

Rs∩Fmh(i)

f

∣∣∣∣∣ < εh(i)/211.
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On the other hand, as in [9, proof of Lemma 3, (i,2)]∣∣∣∣∣
s1∑

s=1

(L)
∫

Rs∩(Fmh(i)
−Di)

f

∣∣∣∣∣ < εh(i)/28.

Hence ∣∣∣∣∣
s1∑

s=1

F (Rs) −
s1∑

s=1

(L)
∫

Rs∩Di

f

∣∣∣∣∣ < εi/211 + εh(i)/28.

Next, consider for Rs (s = s1 + 1, . . . , s0). Then, as seen in [9, proof of Lemma 3, (i,2)]
we have

(1) Rs ∩ Mmi �= ∅ for s = s1 + 1, . . . , s0;

(2) µ2

(∪s0
s=s1+1Rs

)
< δ(mi, εi/27).

Further, we have

(3) norm(Rs) < 1/mi for s = s1 + 1, . . . , s0.

Hence, by Lemma 6∣∣∣∣∣
s0∑

s=s1+1

F (Rs) −
s0∑

s=s1+1

(L)
∫

Rs∩Fmi

f

∣∣∣∣∣ < 4εi/27 = εi/25.

Therefore, as in [9, proof of Lemma 3, (i,2)], we obtain∣∣∣∣∣
s0∑

s=1

F (Rs) −
s0∑

s=1

(L)
∫

Rs∩Di

f

∣∣∣∣∣ < εi/27 + 3εi/25.

(i,2) For the family indicated in (β) (defined in (23◦)):

Ll
vw (v = 1, 2, . . . , v0(l), w = 1, 2, . . . , w0(l, v)) :

Corresponding to each two-dimensional interval Ll
vw, consider the one-dimensional interval,

say J l
vw, determined uniquely by the following four conditions, by virtue of the assumption

of (4.4) of the lemma:

1◦) J l
vw is contained in an interval, say J∗l

vw, which is one of the intervals contiguous to
the closed set consisting of the set (Ai)yl

v , i.e., (Fnimi)yl
v and the both end-points of the

interval (R0)yl
v ;

2◦) One end-point of J l
vw is one of the end-points of (Ll

vw)yl
v ;

3◦) The other end-point of J l
vw is the characteristic point of the interval J∗l

vw taken in
1◦) above, say pl

vw;

4◦) J l
vw ⊃ (Ll

vw)yl
v .

In this case, J l
vw (w = 1, 2, . . . , w0(l, v)) are classified into two parts: J l1

vw (w =
1, 2, . . . , w1(l, v)) and J l2

vw (w = 1, 2, . . . , w2(l, v)) so that each part consists of mutually
disjoint intervals. Denote the interval associated with J l1

vw in 1◦) by J∗l1
vw . Similarly, we



284 SHIZU NAKANISHI

define J∗l2
vw . We denote the characteristic point of J∗l1

vw by pl1
vw. Similarly, we define pl2

vw. We
denote the characteristic numbers of pl1

vw and pl2
vw by hl1

vw and hl2
vw, respectively. We have

ni ≤ hl1
vw ≤ mi and ni ≤ hl2

vw ≤ mi.

Put

H l1
vw = J l1

vw × J(yl
v) for v = 1, 2, . . . , v0(l) and w = 1, 2, . . . , w1(l, v).

For each k ∈ N with ni ≤ k ≤ mi, denote the families of all intervals J l1
vw and H l1

vw for
which hl1

vw = k by

J l1k
vw

(
w = 1, 2, . . . , w1(l, v, k)) and H l1k

vw (w = 1, 2, . . . , w1(l, v, k)
)
,

respectively. Then, H l1k
vw (l = 1, 2, . . . , l0, v = 1, 2, . . . , v0(l), w = 1, 2, . . . , w1(l, v, k)) is an

elemetary system in R0 such that:

(1) H l1k
vw ∩ Mk �= ∅;

(2) µ2

(
∪l0

l=1 ∪v0(l)
v=1 ∪w1(l,v,k)

w=1 H l1k
vw

)
< ε∗∗k ≤ δ(k, εk/2k+5) as seen in [9, proof of Lemma

3, (i,1)];

(3) norm (H l1k
vw ) = max{|J l1k

vw |, norm(J(yl
v))}

≤ max{ε∗∗k , 1/mi} (by hl1
vw = k and 5∗))

≤ 1/k (by (6◦) and k ≤ mi).

Hence, by Lemma 6

∣∣∣∣∣∣
l0∑

l=1

v0(l)∑
v=1

w1(l,v,k)∑
w=1

F (H l1k
vw ) −

l0∑
l=1

v0(l)∑
v=1

w1(l,v,k)∑
w=1

(L)
∫

Hl1k
vw ∩Fk

f

∣∣∣∣∣∣ < 4(εk/2k+5) = εk/2k+3.

Further, as in [9, proof of Lemma 3, (i,1)]∣∣∣∣∣∣
l0∑

l=1

v0(l)∑
v=1

w1(l,v,k)∑
w=1

(L)
∫

Hl1k
vw ∩Fk

f

∣∣∣∣∣∣ < εk/2k+5.

Therefore ∣∣∣∣∣∣
mi∑

k=ni

l0∑
l=1

v0(l)∑
v=1

w1(l,v,k)∑
w=1

F (H l1k
vw )

∣∣∣∣∣∣ < εi/8.

Consequently ∣∣∣∣∣∣
l0∑

l=1

v0(l)∑
v=1

w1(l,v)∑
w=1

F (H l1
vw)

∣∣∣∣∣∣ < εi/8.

Similarly
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∣∣∣∣∣∣
l0∑

l=1

v0(l)∑
v=1

w1(l,v)∑
w=1

F (H l1
vw − Ll1

vw)

∣∣∣∣∣∣ < εi/8.

Hence ∣∣∣∣∣∣
l0∑

l=1

v0(l)∑
v=1

w1(l,v)∑
w=1

F (Ll1
vw)

∣∣∣∣∣∣ < εi/4.

Thus, since Ll1
vw ∩ Di = ∅,∣∣∣∣∣∣

l0∑
l=1

v0(l)∑
v=1

w1(l,v)∑
w=1

(
F (Ll1

vw) − (L)
∫

Ll1
vw∩Di

f

)∣∣∣∣∣∣ < εi/4.

Similarly ∣∣∣∣∣∣
l0∑

l=1

v0(l)∑
v=1

w2(l,v)∑
w=1

(
F (Ll2

vw) − (L)
∫

Ll2
vw∩Di

f

)∣∣∣∣∣∣ < εi/4.

Therefore ∣∣∣∣∣∣
l0∑

l=1

v0(l)∑
v=1

w0(l,v)∑
w=1

(
F (Ll

vw) − (L)
∫

Ll
vw∩Di

f

)∣∣∣∣∣∣ < εi/2.

(i,3): For I∗l
uj (l = 1, 2, . . . , l0, u = 1, 2, . . . , u0(l), j = 1, 2, . . . , j0(l)) defined in (24◦):

For each pair l, u with l ∈ {1, 2, . . . , l0} and u ∈ {1, 2, . . . , u0(l)}, denote the (∗)-elementary
system:

I∗l
uj (j = 1, 2, . . . , j0(l))

by Sl
u and consider the (∗∗)-elementary system consisting of (∗)-elementary systems

Sl
u (l = 1, 2, . . . , l0, u = 1, 2, . . . , u0(l)).

(Refer to [9, Remark 1, (3)] for the case of n0 − 1 ≥ 2.)

Then, as seen in [9, proof of Lemma 3]

there exists a ylu ∈ projy(Sl
u) ∩ projy(Bmi) for which (I∗l

uj)
ylu ∩ (Bmi)ylu �= ∅ for j =

1, 2, . . . , j0(l), for each pair l, u with l ∈ {1, 2, . . . , l0} and u ∈ {1, 2, . . . , u0(l)};∑l0
l=1

∑u0(l)
u=1

∣∣proj y(Sl
u)
∣∣ ≤ µ1 (proj y(S) − Y ) + µ1

(
∪l0

l=1Yl − ∪l0
l=1 ∪v0(l)

v=1 J(yl
v)
)

< τ∗
i + τ∗

i ≤ τi < ρ∗(mi, εi/24) by (4.2) and 4∗);

and further, by (4.0)

norm(proj y(Sl
u)) ≤ norm(proj y(Sl)) < τ∗

i < τi < 1/mi for every pair l, u with l ∈
{1, 2, . . . , l0} and u ∈ {1, 2, . . . , u0(l)}.
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(Remark A: When n0 = 2, the assumption (4.0) is not needed. Because, by 8∗), (20◦) and
(17◦) we have µ1(proj y(I∗l

uj)) = µ1(J∗l
u ) < 2τ∗

i ≤ τi < 1/mi.)

Therefore, by Lemma 7 ∣∣∣∣∣∣
l0∑

l=1

u0(l)∑
u=1

F (Sl
u)

∣∣∣∣∣∣ < εi/24.

On the other hand, since
∑l0

l=1

∑u0(l)
u=1 |Sl

u| ≤
∑l0

l=1

∑u0(l)
u=1 | projy(Sl

u)| < 2τ∗
i ≤ η(mh(i), εh(i)/25)

and Di ⊂ Fmh(i) , ∣∣∣∣∣∣
l0∑

l=1

u0(l)∑
u=1

(L)
∫

Sl
u∩Di

f

∣∣∣∣∣∣ < εh(i)/25 ≤ εi/25.

Therefore ∣∣∣∣∣∣
l0∑

l=1

u0(l)∑
u=1

F (Sl
u) −

l0∑
l=1

u0(l)∑
u=1

(L)
∫

Sl
u∩Di

f

∣∣∣∣∣∣ < εi/24 + εi/25.

Consequently, by(i,1), (i,2) and (i,3)∣∣∣∣F (S) − (L)
∫

s∩Di

f

∣∣∣∣ < εi/27 + 3εi/25 + εi/2 + εi/24 + εi/25.

(ii) The case when µ1(Y ∩ projy((Sl)◦)) = 0 for l = 1, 2, . . . , l0 : As in [9, proof of
Lemma 3], for every l ∈ {1, 2, . . . , l0}, there exists a yl ∈ projy(Sl) ∩ projy(Bmi) for which
(Ilj)yl ∩ (Bmi)yl �= ∅ for j = 1, 2, . . . , j0(l); | projy(S)| < τ∗

i < τi < ρ∗(mi, εi/24); and by
(4.0) norm(projy(Sl)) < τ∗

i < τi < 1/mi for l = 1, 2, . . . , l0.

(Remark B: When n0 = 2, the condition (4.0) is not needed. Because, we have µ1(Y ∩
projy((Sl)◦)) = 0, and so µ1(Y ∩projy(Sl)) = 0. Hence, by (4.2) µ1(projy(Sl)) < τ∗

i < 1/mi.
So norm(projy(Sl)) < 1/mi for l = 1, 2, . . . , l0.)

Hence, by Lemma 7

|F (S)| < εi/24.

Further, since µ2(S) ≤ µ1(projy(S)) < τ∗
i < η(mh(i), εh(i)/25) and Di ⊂ Fmh(i) ,∣∣∣∣(L)

∫
S∩Di

f

∣∣∣∣ < εh(i)/25 ≤ εi/25.

Consequently ∣∣∣∣F (S) − (L)
∫

S∩Di

f

∣∣∣∣ < εi/24 + εi/25.

(iii) The case when µ1(Y ∩ projy((Sl)◦)) > 0 for some l ∈ {1, 2, . . . , l0} and µ1(Y ∩
projy((Sl)◦)) = 0 for some l ∈ {1, 2, . . . , l0} : This case follows from the results of (i) and
(ii).
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By (i), (ii) and (iii) the proof is complete.

Proof of Lemma 9. The proof of Lemma 9 is complete by Remarks A and B with the
proof of Lemma 8.

Theorem 4. Let f(x1, x2, . . . , xn0) be (D) integrable on the interval R0 = [a1, b1; a2, b2;
. . . ; an0 , bn0 ] in the n0-dimensional Euclidean space En0 (n0 ≥ 2). Then, the following two
statements hold.

(1) Given any n ∈ {1, 2, . . . , n0}, for almost all q = (x1, x2, . . . , xn−1, xn+1, . . . , xn0) in
the (n0 − 1)-dimensional interval [a1, b1; a2, b2; . . . ; an−1, bn−1; an+1, bn+1; . . . ; an0 , bn0 ] the
function f(x1, x2, . . . , xn0) considered as a function of xn in the one-dimensional interval
[an, bn] is (D) integrable on [an, bn].

(2) Corresponding to each n ∈ {1, 2, . . . , n0}, there exists a nondecreasing sequence of
closed sets Di (i = 1, 2, . . . ) in R0 such that µn0(R0 − ∪∞

i=1Di) = 0 and

(D)
∫ bn

an

f(x1, x2, . . . , xn, . . . , xn0)dxn = lim
i→∞

(L)
∫

(Di)
q

f(x1, x2, . . . , xn, . . . , xn0)dxn

for almost all q = (x1, x2, . . . , xn−1, xn+1 . . . , xn0) in the (n0 − 1)-dimensional interval
[a1, b1; a2, b2; . . . ; an−1, bn−1; an+1, bn+1; . . . ; an0 , bn0 ].

Proof. For simplicity, we prove only for the case when n0 = 2 and R0 = [0, 1; 0, 1].
Let {εn}∞n=1 be the sequence of positive numbers given in (5◦) such that εn ↓ 0 and∑∞

m=n+1 εm < εn for every n ∈ N. Let

Ai = Fnimi (i = 1, 2, . . . ) and Di = Fnimi ∩ Fmh(i) (i = 1, 2, . . . )

τ∗
i (i = 1, 2, . . . )

be the nondecreasing sequences of closed sets and the sequence of positive numbers de-
fined as seen in the proof of Lemma 8 for the sequence {εn}∞n=1. Let Z = projy(R0) −
∪∞

i=1 projy(Fnimi) (defined in (8◦)) as in (I).

As seen in [9, proof of Theorem 1], there exists a set X0 of µ1-measure zero with X0 ⊃ Z
such that for every y ∈ projy(R0) − X0, we have:

(a) (Ai)y (i = 1, 2, . . . ) is a nondecreasing sequence of closed sets whose union is (R0)y;
and

(b) (Di)y (i = 1, 2, . . . ) is a nondecreasing sequence of closed sets such that (Di)y ⊂
(Ai)y, µ1((R0)y −∪∞

i=1(Di)y) = 0 and f(x, y) is Lebesgue integrable on (Di)y as a function
of x for every i ∈ N.

Hence, by [9, Remark 2], in order that the function f(x, y) is (D) integrable on [0, 1]
as a function of x for almost all y ∈ projy(R0) − X0, it is sufficient to prove that, when we
denote the set of all y ∈ projy(R0)−X0 for which one at least of the statements of (1) and
(2) in [9, Lemma 5] is not true by Y ∗, we have µ1(Y ∗) = 0. In order to prove it, supposing
µ1(Y ∗) > 0, we lead a contradiction. For the proof, we can proceed in the same way as in
the case of [9, Theorem 1], making the following alterations:

(1) We employ τ∗
i defined in (20◦) of this paper instead of κ∗

i defined in [9, (14◦)];
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(2) We employ Lemma 8 of this paper instead of [9, Lemma 3];

(3) For each s ∈∗ {1, 2, . . . , s0} with µ1(Zs) �= ∅, we choose the one-dimensional elemen-
tary system Ks

l (l = 1, 2, . . . , l0(s)) indicated in [9, proof of Theorem 1] so that it satisfies
the condition

norm(Ks
l ) < τ∗

i′(s) for l = 1, 2, . . . , l0(s),

in addition to the following conditions indicated in [9, (23◦) and (24◦)]:

(Ks
l )◦ ∩ Zs �= ∅ for l = 1, 2, . . . , l0(s);

µ1(Zs − ∪l0(s)
l=1 Ks

l ) < k0/2s0; and

µ1(∪l0(s)
l=1 Ks

l − Zs) < (1/s0)(min{δ, τ∗
i′(s)}).

From this fact, each of the following two-dimensional (∗∗)-elementary systems:

Ss
l (s ∈ �i, l ∈ {1, 2, . . . , l0(s)}) and Ss

l (s ∈ Λi, l ∈ {1, 2, . . . , l0(s)}),

considered in (A) and (B) as in [9, proof of Theorem 1], respectively, has the following
property:

(4.0) norm(projy(Ss
l )) = norm(Ks

l ) < τ∗
i .

By virtue of this fact, we can employ Lemma 8 of this paper instead of [9, Lemma 3].

Now, put

W0 = X0 ∪ Y ∗.

Then, µ1(W0) = 0, and for every y ∈ projy(R0) − W0, f(x, y) is (D) integrable as a
function of x on [0, 1], limi→∞(L)

∫
(Di)y f(x, y)dx exists, and the limit value coincides with

(D)
∫ 1

0
f(x, y)dx.

§2 Two-dimensional integration

Theorem 5 (Fubini’s Theorem). Let f(x, y) be (D) integrable on an interval R0 =
[a, b; c, d] in the two-dimensional Euclidean space E2. Then:

(1) For almost all y ∈ [c, d], the function f(x, y) considered as a function of x is (D)
integrable on [a, b];

(1′) For almost all x ∈ [a, b], the function f(x, y) considered as a function of y is (D)
integrable on [c, d];

(2) (D)
∫ b

a f(x, y)dx is (D) integrable on [c, d];

(2′) (D)
∫ d

c f(x, y)dy is (D) integrable on [a, b];

(3) (D)
∫ d

c

(
(D)

∫ b

a
f(x, y)dx

)
dy = (D)

∫ b

a

(
(D)

∫ d

c
f(x, y)dy

)
dx = F ([a, b; c, d]).

Proof. (1) and (1′) are already proved in Theorem 4. Next, we prove only (2) and the
first equality of (3) for the case of R0 = [0, 1; 0, 1]. We omit the proof of the others, because
the proof is similar. Put
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fi(y) = (L)
∫

(Di)y

f(x, y)dx for every y ∈ proj y(R0) − W0, and

= 0 for every y ∈ W0;

f(y) = (D)
∫ 1

0

f(x, y)dx for every y ∈ proj y(R0) − W0, and

= 0 for every y ∈ W0,

where {Di}∞i=1 is the sequence of closed sets and W0 is the set of µ1-measure zero, indicated
in the proof of Theorem 4.

Since then f(y) = limi→∞ fi(y) on projy(R0) and fi(y) is measurable for each i ∈
N, there exists a sequence of measurable sete M∗

k (k = 0, 1, . . . ) such that: ∪∞
k=0M

∗
k =

projy(R0); µ1(M∗
0 ) = 0; and for each k ∈ N, M∗

k ∩ M∗
0 = ∅, M∗

k+1 ⊃ M∗
k , M∗

k is a closed
set, fi(y) converges uniformly to f(y) on M∗

k , and f(y) is Lebesgue integrable on M∗
k .

Let {Bk}∞k=1 be the sequence of measurable sets indicated in Lemma 7 (defined in (11◦)).
Put

Z0 = projy(R0) − ∪∞
k=1 projy(Dk);

Lk =
(
(projy(Bk) ∩ Z0) ∪ projy(Dk)

) ∩ (M∗
0 ∪ M∗

k ) for k = 1, 2, . . . ;

Nk = projy(Dk) ∩ M∗
k for k = 1, 2, . . . .

Then, µ1(Z0) = 0, Lk (k = 1, 2, . . . ) is a nondecreasing sequence of measurable sets whose
union is projy(R0) and Nk (k = 1, 2, . . . ) is a nondecreasing sequence of closed sets such
that Nk ⊂ Lk and µ1(projy(R0)−∪∞

k=1Nk) = 0. Further f(y) is Lebesgue integrable on Nk

for each k ∈ N.

For k ∈ N and ε > 0, take an i0(k, ε) so that i0(k, ε) ≥ k, εi0(k,ε) < ε/7 and |f(y) −
fi0(k,ε)(y)| < ε/7 for every y ∈ M∗

k . Let λ(k, ε) be a positive number such that if µ2(E) <

λ(k, ε), then
∣∣∣(L)

∫
E∩Di0(k,ε)

f(x, y)d(x, y)
∣∣∣ < ε/7. Let λ∗(k, ε) be a positive number such

that if µ1(E) < λ∗(k, ε), then
∣∣∣(L)

∫
E∩Nk

f(y)dy
∣∣∣ < ε. Put

δ∗(k, ε) = (1/2) min{τ∗
i0(k,ε), ρ∗(k, ε/7), λ(k, ε), λ∗(k, ε/7)}.

We denote, for any set E ⊂ projy(R0), the set projx(R0) × E by E∗, and let G(I) be the
interval function in projy(R0) defined by G(I) = F ((I)∗) for any interval I ⊂ projy(R0),
where F is the interval function indicated in the definition of (D) integrability.

Next, we prove that:

For k ∈ N and ε > 0, if It (t = 1, 2, . . . , t0) is an elementary system in projy(R0) such
that

It ∩ Lk �= ∅ for t = 1, 2, . . . , t0 and µ1

(∪t0
t=1It − Lk

)
< δ∗(k, ε),

then
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∣∣∣∣∣
t0∑

t=1

G(It) −
t0∑

t=1

(L)
∫

It∩Nk

f(y)dy

∣∣∣∣∣ < ε.

For It (t = 1, 2, . . . , t0), denote by I1t (t = 1, 2, . . . , t1) the family of all intervals It for
which It ∩ projy(Dk) �= ∅, where t ∈ {1, 2, . . . , t0}; and by I2t (t = 1, 2, . . . , t2) the others.
Let {Ak}∞k=1 (k = 1, 2, . . . ) be the sequence of closed sets indicated in the proof of Theorem
4.

(i) For I1t (t = 1, 2, . . . , t1) : By Proposition 13, there exists an elementary system
H1t (t = 1, 2, . . . , t1) in projy(R0) such that (H1t)◦ ⊃ I1t for t = 1, 2, . . . , t1, µ1(∪t1

t=1H1t −
∪t1

t=1I1t) < δ∗(k, ε), and ∣∣∣∣∣
t1∑

t=1

G(H1t) −
t1∑

t=1

G(I1t)

∣∣∣∣∣ < ε/7.

In this case, for the (∗∗)-elementary system (H1t)∗ (t = 1, 2, . . . , t1) in R0, we have
projy((H1t)∗) = H1t and projy(((H1t)∗)◦) = (H1t)◦. Further, as seen in [9, proof of Theo-
rem 2], putting Y = ∪t1

t=1(H1t)◦ ∩ projy(Ai0(k,ε)), we have µ1(∪t1
t=1H1t − Y ) < τ∗

i0(k,ε), and
Y ∩ (H1t)◦ = (H1t)◦ ∩ projy(Ai0(k,ε)) �= ∅ for t = 1, 2, . . . , t1. Hence, by Lemma 9∣∣∣∣∣

t1∑
t=1

F ((H1t)∗) −
t1∑

t=1

(L)
∫

(H1t)∗∩Di0(k,ε)

f(x, y)d(x, y)

∣∣∣∣∣ < εi0(k,ε) < ε/7.

And so ∣∣∣∣∣
t1∑

t=1

G(H1t) −
t1∑

t=1

(L)
∫

H1t

fi0(k,ε)(y)dy

∣∣∣∣∣ < ε/7.

Thus, as seen in [9, proof of Theorem 2], the following holds:∣∣∣∣∣
t1∑

t=1

G(I1t) −
t1∑

t=1

(L)
∫

I1t∩Nk

f(y)d(y)

∣∣∣∣∣ < 5ε/7.

(ii) For I2t (t = 1, 2, . . . , t2) : For the (∗∗)-elementary system (I2t)∗ (t = 1, 2, . . . , t2),
as seen in [9, proof of Theorem 2], we have (I2t)∗ ∩ Bk �= ∅ for t = 1, 2, . . . , t2, and
µ1(projy(∪t2

t=1(I2t)∗)) < δ∗(k, ε) < ρ∗(k, ε/7). Further, norm(projy((I2t)∗)) = µ1(I2t) <
δ∗(k, ε) < τ∗

i0(k,ε) ≤ τ∗
k < τk < 1/mk and so norm(projy((I2t)∗)) < 1/k by (7◦) for t =

1, 2, . . . , t2. Hence, by Lemma 7∣∣∣∣∣
t2∑

t=1

F ((I2t)∗)

∣∣∣∣∣ < ε/7, and so

∣∣∣∣∣
t2∑

t=1

G(I2t)

∣∣∣∣∣ < ε/7.

Therefore, as seen in [9, proof of Theorem 2] we obtain∣∣∣∣∣
t2∑

t=1

G(I2t) −
t2∑

t=1

(L)
∫

I2t∩Nk

f(y)d(y)

∣∣∣∣∣ < 2ε/7.
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Thus, by (i) and (ii)

∣∣∣∣∣
t0∑

t=1

G(It) −
t0∑

t=1

(L)
∫

It∩Nk

f(y)d(y)

∣∣∣∣∣ < ε.

Consequently, f(y) is (D0) integrable on projy(R0) and so (D) integrable on projy(R0),
and the (D) integral of f(y) on projy(R0) coincides with F (R0).

By Proposition 11, (2) and Proposition 12, as a corollary of Theorem 5 we obtain:

Theorem 6 (Fubini’s Theorem). Let f(x, y) be strongly (LA) integrable on an
interval R0 = [a, b; c, d] in the two-dimensional Euclidean space E2. Then:

(1) For almost all y ∈ [c, d], the function f(x, y) considered as a function of x is strongly
(LA) integrable on [a, b];

(1′) For almost all x ∈ [a, b], the function f(x, y) considered as a function of y is strongly
(LA) integrable on [c, d];

(2) (SLA)
∫ b

a f(x, y)dx is strongly (LA) integrable on [c, d];

(2′) (SLA)
∫ d

c f(x, y)dy is strongly (LA) integrable on [a, b];

(3) (SLA)
∫ d

c

(
(SLA)

∫ b

a
f(x, y)dx

)
dy = (SLA)

∫ b

a

(
(SLA)

∫ d

c
f(x, y)dy

)
dx

= (SLA)
∫

R0
f(x, y)d(x, y).

As a corollary of Theorems 2 and 6, by Proposition 6 we obtain:

Theorem 7. If a finitely additive interval function F (I) in an interval R0 = [a, b; c, d]
in the two-dimensional Euclidean space E2 is derivable in the strong sense at every point
of R0, then:

(1) For almost all y ∈ [c, d], the function F ′
s(x, y) considered as a function of x is special

Denjoy integrable on [a, b];

(1′) For almost all x ∈ [a, b], the function F ′
s(x, y) considered as a function of y is special

Denjoy integrable on [c, d];

(2) (D)
∫ b

a F ′
s(x, y)dx is special Denjoy integrable on [c, d];

(2′) (D)
∫ d

c F ′
s(x, y)dy is special Denjoy integrable on [a, b];

(3) F (R0)
(
= (SLA)

∫
R0

F ′
s(x, y)d(x, y)

)
= (D)

∫ d

c

(
(D)

∫ b

a
F ′

s(x, y)dx
)

dy

= (D)
∫ b

a

(
(D)

∫ d

c
F ′

s(x, y)dy
)

dx,

where (D)
∫

denotes the special Denjoy integral.

Problem. Does Fubini’s theorem hold for the strong (LA) integral in the n0-dimensional
case when n0 ≥ 3?
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