A MULTIDIMENSIONAL INTEGRATION

Shizu Nakanishi

Received September 25, 2003

ABSTRACT. We proposed in [6] a multiple integration on a multidimensional interval, named the (LA) integral in the strong sense, which reduces to the special Denjoy integral in the one-dimensional case (cf. [5]). In this paper, we show that in the two-dimensional case, Fubini's theorem holds for the (LA) integral in the strong sense in addition to the following three statements which have been proved in [6]: The indefinite integral of an (LA) integrable function in the strong sense is continuous; the derivative of a finitely additive interval function which is derivable in the strong sense at every point is (LA) integrable in the strong sense; and the indefinite integral of an (LA) integrable function f in the strong sense is, at almost all points p, derivable in the ordinary sense and its derivative coincides with f(p).

In [6], we defined a multiple integration for a real valued function on a multidimensional interval, named the (LA) integral in the strong sense or the strong (LA) integral. In this paper, we discuss the statements shown in [6] which are true in all multidimensional cases, in more detail (Theorems 1, 2 and 3), and show that, in the two-dimensional case, Fubini's theorem holds for the strong (LA) integral (Theorem 6). Theorem 2 is already proved in [6], but in this paper, we show a direct proof of the theorem (Proposition 9).

In general, when a function f is strongly (LA) integrable on an n-dimensional interval R $(n \geq 2)$, for a variable taken arbitrarily if, fixing a point p in the projection of the interval R into the (n-1)-dimensional space consisting of the other variables, we consider the function f as a function of the variable taken first, then the function is strongly (LA) integrable for almost all p in the projection of R (Theorem 4).

This paper is a correction of the study for the multiple integral proposed in [4], named the (D) integral (we found recently an error in the study (precisely, in the proof of [4, Théorèm 6])).

We remark that we have defined in the paper [9] a multidimensional multiple integration, named the (D_0) integral, whose integral reduces to the special Denjoy integral in the onedimensional case and is expressible as the iterated integral of the one-dimensional (D_0) integral.

Throughout this paper, we refer to the terminology and notations indicated in the paper [9]. In this paper, parts of the proof are omitted. The proof of the parts omitted is leaved to the reader to see the corresponding parts in [6] or [9].

We denote the *n*-dimensional Euclidean space by E_n . A finite system of intervals is called non-overlapping if they have mutually no common inner points. An interval function in an interval $R_0 \subset E_n$ means a function defined on the family of all sub-intervals of R_0 . A finitely additive interval function, or in short, an additive interval function, in R_0 means an interval function F such that $F(I_1 \cup I_2) = F(I_1) + F(I_2)$ for any pair of non-overlapping intervals

²⁰⁰⁰ Mathematics Subject Classification. 28A35, 28A15, 26A39.

Key words and phrases. Multiple integral, Fubini's theorem, additive interval function, derivative, special Denjoy integral.

 I_1 and I_2 whose union is an interval. A finite system of intervals I_i $(i = 1, 2, ..., i_0)$ in E_n is called an *elementary system* if $I_i \cap I_{i'} = \emptyset$ for $i \neq i'$, sometimes the elementary system is denoted by $S : \{I_i \ (i = 1, 2, ..., i_0)\}$. Throughout this paper, μ_n denotes the Lebesgue measure on E_n , sometimes, the Lebesgue measure of an interval I in E_n is denoted by |I|. Sometimes, for an elementary system $S : \{I_i \ (i = 1, 2, ..., i_0)\}$, S denotes the set $\cup_{i=1}^{i_0} I_i$ and |S| denotes the Lebesgue measure $\sum_{i=1}^{i_0} |I_i|$, and when F is a finitely additive interval function in an interval containing S, F(S) denotes $\sum_{i=1}^{i_0} F(I_i)$. Measure means Lebesgue measure. For a set A in E_n , \overline{A} denotes the closure of A in E_n and A° denotes the interior of A in E_n . For an interval $I = [a_1, b_1; a_2, b_2; \ldots; a_n, b_n]$, norm(I) denotes $\max\{b_i - a_i : i = 1, 2, \ldots, n\}$, and d(I) denotes $\sup\{\operatorname{dist}(x, y) : x, y \in I\}$. For a closed set F in the one-dimensional Euclidean space E_1 , an interval I in E_1 is said to be *contiguous* to F if the both end-points of I belong to F and $I^\circ \cap F = \emptyset$. N denotes the set $\{1, 2, \ldots\}$. Sometimes, the empty set is treated as a measurable set or a closed set.

Let the Euclidean space E_n be the product space $E_n = E_{n_1} \times E_{n_2}$ of Euclidean spaces E_{n_1} and E_{n_2} and A a subset of E_n . Then $\operatorname{proj}_x(A)$ denotes the projection of A into E_{n_1} and $\operatorname{proj}_{E_{n_2}}(A)$ the projection of A into E_{n_2} , in particular, when n = 2 and $n_1 = n_2 = 1$, $\operatorname{proj}_x(A)$ denotes $\operatorname{proj}_{E_{n_2}}(A)$, and $\operatorname{proj}_y(A)$ denotes $\operatorname{proj}_{E_{n_2}}(A)$. For a point $p \in E_{n_1}$, A^p denotes the set $\{(p,q) : (p,q) \in A, q \in E_{n_2}\}$ and for a point $q \in E_{n_2}$, A^q denotes the set $\{(p,q) : (p,q) \in A, q \in E_{n_2}\}$ and for a point $q \in E_{n_2}$, A^q denotes the set $\{(p,q) : (p,q) \in A, p \in E_{n_1}\}$.

§1 Multidimensional integration

Definition 1 ([6, Definition 5]). Let R_0 be an interval in the n_0 -dimensional Euclidean space E_{n_0} and f a real valued measurable function on R_0 . The function f is said to be (LA) integrable in the strong sense or strongly (LA) integrable on R_0 if there exist a finitely additive interval function F in R_0 , a nondecreasing sequence of measurable sets M_n (n =1, 2, ...) such that $M_n \subset R_0$ and $\bigcup_{n=1}^{\infty} M_n = R_0$, and a nondecreasing sequence of closed sets F_n (n = 1, 2, ...) such that $F_n \subset M_n$ and $\mu_{n_0}(R_0 - \bigcup_{n=1}^{\infty} F_n) = 0$, satisfying the following two conditions (1) and (2):

(1) The function f is Lebesgue integrable on F_n for each $n \in N$;

(2) Given $n \in N$ and $\varepsilon > 0$, there exists a $\delta(n, \varepsilon) > 0$ for which the following holds; if I_i $(i = 1, 2, ..., i_0)$ is a finite system of non-overlapping intervals in R_0 such that

- (2.1) $I_i \cap M_n \neq \emptyset$ for $i = 1, 2, ..., i_0$;
- (2.2) $\mu_{n_0}(\cup_{i=1}^{i_0} I_i M_n) < \delta(n, \varepsilon);$
- (2.3) $norm(I_i) < 1/n$ for $i = 1, 2, ..., i_0$,

then the following inequality holds:

$$\left|\sum_{i=1}^{i_0} F(I_i) - \sum_{i=1}^{i_0} (L) \int_{I_i \cap F_n} f(p) dp \right| < \varepsilon.$$

In this case, $F(R_0)$ is called the (LA) integral in the strong sense or the strong (LA) integral, of f(p) on R_0 , and is denoted by

$$(SLA) \int_{R_0} f(p)dp \text{ or } (SLA) \int_{R_0} f(x_1, x_2, \dots, x_{n_0}) d(x_1, x_2, \dots, x_{n_0})$$

In this definition, it does not arise any confusion by Proposition 2 below. The sequence M_n (n = 1, 2, ...) is called a *characteristic sequence* of the strong (LA) integral and the sequence F_n (n = 1, 2, ...) a *fundamental sequence* of the strong (LA) integral. In the case when we can choose $\{M_n\}_{n=1}^{\infty}$ and $\{F_n\}_{n=1}^{\infty}$ so that $M_n = F_n$ for every n, the function f is said to be strongly (LA^*) integrable on R_0 .

We remark that in Definition 1 we can suppose that

$$\delta(n,\varepsilon) \ge \delta(m,\varepsilon)$$
 for $m > n$, and $\delta(n,\varepsilon) \ge \delta(n,\varepsilon')$ for $\varepsilon > \varepsilon'$. (1°)

When no confusion is possible, we also use the symbols $(SLA) \int_{R_0} f dp$, $(SLA) \int_{R_0} f$, $(L) \int_A f$, etc.

Remark 1. In the definition of the strong (LA) integral we can replace the condition (2.3) with the condition:

$$(2.3') d(I_i) < 1/n \text{ for } i = 1, 2, \dots, i_0.$$

Because, we have $norm(I) \leq d(I) \leq (n_0)^{1/2} norm(I)$ for any interval I in E_{n_0} . First, suppose that, if, for $n \in N$ and $\varepsilon > 0$, a system of non-overlapping intervals I_i $(i = 1, 2, \ldots, i_0)$ satisfies (2.1), (2.2) and (2.3'), then $\left|\sum_{i=1}^{i_0} F(I_i) - \sum_{i=1}^{i_0} (L) \int_{I_i \cap F_n} f\right| < \varepsilon$ holds, where $\{M_n\}, \{F_n\}$ and $\delta(n, \varepsilon)$ are those indicated in the definition of the (LA) integral. In this case, take a sequence of positive integers m_n $(n = 1, 2, \ldots)$ so that $m_n \geq (n_0)^{1/2}n$ and $1 < m_1 < m_2 < \ldots$, and put

$$M_{1}^{*} = \dots = M_{m_{1}-1}^{*} = \emptyset, \ M_{m_{1}}^{*} = M_{m_{1}+1}^{*} = \dots = M_{m_{2}-1}^{*} = M_{1}, \dots,$$
$$M_{m_{n}}^{*} = M_{m_{n}+1}^{*} = \dots = M_{m_{n+1}-1}^{*} = M_{n}, \dots;$$
$$F_{1}^{*} = \dots = F_{m_{1}-1}^{*} = \emptyset, \ F_{m_{1}}^{*} = F_{m_{1}+1}^{*} = \dots = F_{m_{2}-1}^{*} = F_{1}, \dots,$$
$$F_{m_{n}}^{*} = F_{m_{n}+1}^{*} = \dots = F_{m_{n+1}-1}^{*} = F_{n}, \dots.$$

Then, if, for $m_n + k \in N$ and $\varepsilon > 0$, where $0 \le k \le (m_{n+1} - 1) - m_n$, a finite system of nonoverlapping intervals I_i $(i = 1, 2, ..., i_0)$ satisfies (2.1), (2.2) and (2.3) for $m_n + k$, $M^*_{m_n+k}$ and $\delta(m_n + k, \varepsilon)$, then

(2.1) $I_i \cap M_n \neq \emptyset$ for $i = 1, 2, ..., i_0$; (2.2) $\mu_{n_0}(\bigcup_{i=1}^{i_0} I_i - M_n) < \delta(m_n + k, \varepsilon) \le \delta(n, \varepsilon)$ by $m_n + k > n$; (2.3') $d(I_i) \le (n_0)^{1/2} \operatorname{norm}(I_i) < (n_0)^{1/2} (1/(m_n + k)) \le (n_0)^{1/2} (1/m_n)$ $\le (n_0)^{1/2} / ((n_0)^{1/2} n) = 1/n$ for $i = 1, 2, ..., i_0$.

Hence, $\left|\sum_{i=1}^{i_0} F(I_i) - \sum_{i=1}^{i_0} (L) \int_{I_i \cap F_n} f\right| < \varepsilon$, so $\left|\sum_{i=1}^{i_0} F(I_i) - \sum_{i=1}^{i_0} (L) \int_{I_i \cap F_{m_n+k}^*} f\right| < \varepsilon$. The converse is clear by the inequality indicated first.

By Remark 1, we have:

Proposition 1. A function f is strongly (LA) integrable on R_0 in E_{n_0} in the sense of Definition 1 if and only if it is (LA) integrable in the strong sense on R_0 in the sense of [6, Definition 5], and both integrals coincide.

By Proposition 1 above and [6, Corollary 1, p. 421], we have:

Proposition 2. The finitely additive interval function F indicated in the definition of the strong (LA) integral is uniquely determined.

The following Propositions 3-5 follow immediately from the definition of the strong (LA) integral.

Proposition 3. If a function f is strongly (LA) integrable on an interval R_0 in E_{n_0} , then so is it on any sub-interval R of R_0 . If F is an interval function indicated in the definition of the strong (LA) integral for f, then F(R) is the strong (LA) integral of f on R for any sub-interval $R \subset R_0$.

Proposition 4. Let f = g almost everywhere in $R_0 \subset E_{n_0}$. Then, if one of them is strongly (LA) integrable on R_0 , then so is the other, and the strong (LA) integrals of f and g on R_0 coincide.

Proposition 5. If f and g are strongly (LA) integrable on an interval R_0 in E_{n_0} , then so is $\alpha f + \beta g$, where α and β are real numbers, and $(SLA) \int_{R_0} (\alpha f + \beta g) = \alpha(SLA) \int_{R_0} f + \beta(SLA) \int_{R_0} g$.

Proposition 6. Let f be a function on an interval I_0 in the one-dimensional Euclidean space E_1 . Then it is strongly (LA) integrable on I_0 if and only if it is (D_0) integrable ([9], Definition 1) (so special Denjoy integrable by [9, Proposition 4]) on I_0 , and both integrals coincide.

Proof. It is clear that if f is (D_0) integrable, then f is strongly (LA) integrable and both integrals coincide, because a finite system of non-overlapping intervals is classified into two parts so that each part is an elementary system. Next, we prove that if f is strongly (LA) integrable on I_0 , then f is (D_0) integrable on I_0 . Let F, $\{M_n\}_{n=1}^{\infty}$, $\{F_n\}_{n=1}^{\infty}$ and $\delta(n,\varepsilon)$ be those indicated in the definition of the strong (LA) integral for f. Now, given $n \in N$ and $\varepsilon > 0$, put

$$\delta^*(n,\varepsilon) = (1/2)\min\{1/n, \delta(n,\varepsilon/2)\}.$$

Next, we shall prove that:

If I_i $(i = 1, 2, ..., i_0)$ is an elementary system of intervals in I_0 such that (2.1) $I_i \cap M_n \neq \emptyset$ for $i = 1, 2, ..., i_0$;

(2.2)
$$\mu_1(\bigcup_{i=1}^{i_0} I_i - M_n) < \delta^*(n,\varepsilon),$$

then

$$\left|\sum_{i=1}^{i_0} F(I_i) - \sum_{i=1}^{i_0} (L) \int_{I_i \cap F_n} f\right| < \varepsilon.$$

In this case, without loss of generality, we can suppose that there exists an integer i_1 with $0 \le i_1 \le i_0$ for which

$$\mu_1(I_i \cap M_n) = 0$$
 for $i = 1, 2, ..., i_1$ and $\mu_1(I_i \cap M_n) > 0$ for $i = 1_1 + 1, ..., i_0$.

First:

(i) For I_i $(i = 1, 2, ..., i_1)$: We have $\mu_1(\bigcup_{i=1}^{i_1} I_i - M_n) < \delta^*(n, \varepsilon) < \delta(n, \varepsilon/2)$, and for $i = 1, 2, ..., i_1$, $\mu_1(I_i) = \mu_1(I_i - M_n) < \delta^*(n, \varepsilon)$ and so $norm(I_i) < 1/n$. Hence, with (2.1) above by the definition of the strong (LA) integral we have

$$\left|\sum_{i=1}^{i_1} F(I_i) - \sum_{i=1}^{i_1} (L) \int_{I_i \cap F_n} f\right| < \varepsilon/2.$$

Next:

(ii) For I_i $(i = i_1 + 1, ..., i_0)$: For each $i \in \{i_1 + 1, ..., i_0\}$, by the Vitali's covering theorem we can find finite intervals $J_1^i, ..., J_{k_0(i)}^i$ such that: $|J_k^i| < 1/n$, $J_k^i \subset I_i$ and both end-points of J_k^i belong to M_n for $k = 1, 2, ..., k_0(i)$; $\mu_1((I_i \cap M_n) - \bigcup_{k=1}^{k_0(i)} J_k^i) < 1/2n$; and $J_1^i, ..., J_{k_0(i)}^i$ are mutually disjoint. Denote the family of intervals contiguous to the closed set consisting of $\bigcup_{k=1}^{k_0(i)} J_k^i$ and the both end-points of I_i by H_h^i $(h = 1, 2, ..., h_0(i))$. Then $(\bigcup_{k=1}^{k_0(i)} J_k^i) \cup (\bigcup_{h=1}^{h_0(i)} H_h^i) = I_i$ for each i.

Further

 $\begin{aligned} J_k^i \cap M_n \neq \emptyset \text{ for each pair } i, k; \\ H_h^i \cap M_n \neq \emptyset \text{ for each pair } i, h; \\ \mu_1(\cup_{i=i_1+1}^{i_0}((\bigcup_{k=1}^{k_0(i)}J_k^i) \cup (\bigcup_{h=1}^{h_0(i)}H_h^i)) - M_n) &= \mu_1(\cup_{i=i_1+1}^{i_0}I_i - M_n) < \delta^*(n,\varepsilon) < \delta(n,\varepsilon/2); \\ norm(J_k^i) &= |J_k^i| < 1/n \text{ for each pair } i, k; \\ norm(H^i) &= |H^i| < \mu_1(L_i - |I^{k_0(i)}|I^i) \leq \mu_2(L_i - (L_i \cap M_i)) + \mu_2((L_i \cap M_i) - |I^{k_0(i)}|I^i). \end{aligned}$

$$norm(H_h^i) = |H_h^i| \le \mu_1(I_i - \bigcup_{k=1}^{\kappa_0(i)} J_k^i) \le \mu_1(I_i - (I_i \cap M_n)) + \mu_1((I_i \cap M_n) - \bigcup_{k=1}^{\kappa_0(i)} J_k^i) < \delta^*(n, \varepsilon) + 1/2n \le 1/2n + 1/2n = 1/n \text{ for each pair } i, h.$$

The system of intervals $\{J_k^i, H_h^i, \text{ where } i = i_1 + 1, \dots, i_0, k = 1, 2, \dots, k_0(i) \text{ and } h = 1, 2, \dots, h_0(i)\}$ is a finite system of non-overlapping intervals in I_0 . Hence by the definition of the strong (LA) integral

$$\left|\sum_{i=i_{1}+1}^{i_{0}} F(I_{i}) - \sum_{i=i_{1}+1}^{i_{0}} (L) \int_{I_{i}\cap F_{n}} f\right| = \left|\sum_{i=i_{1}+1}^{i_{0}} \left(\sum_{k=1}^{k_{0}(i)} F(J_{k}^{i}) + \sum_{h=1}^{h_{0}(i)} F(H_{h}^{i})\right) - \sum_{i=i_{1}+1}^{i_{0}} \left(\sum_{k=1}^{k_{0}(i)} (L) \int_{J_{k}^{i}\cap F_{n}} f + \sum_{h=1}^{h_{0}(i)} (L) \int_{H_{h}^{i}\cap F_{n}} f\right)\right| < \varepsilon/2.$$

Thus, by (i) and (ii), $|\sum_{i=1}^{i_0} F(I_i) - \sum_{i=1}^{i_0} (L) \int_{I_i \cap F_n} f| < \varepsilon$.

The *indefinite integral* of a strongly (LA) integrable function f on R_0 is the interval function F in R_0 defined by $F(I) = (SLA) \int_I f$ for every interval $I \subset R_0$.

An interval function F in R_0 is said to be *continuous on* R_0 if, given $\varepsilon > 0$, there exists a $\delta(\varepsilon) > 0$ such that $|F(R)| < \varepsilon$ for every interval $R \subset R_0$ with $|R| < \delta(\varepsilon)$, to be *continuous* from the inside for an interval $R \subset R_0$ if, given $\varepsilon > 0$, there exists a $\delta(\varepsilon) > 0$ such that $|F(R) - F(J)| < \varepsilon$ for every interval $J \subset R$ with $\mu_{n_0}(R - J) < \delta(\varepsilon)$, and to be *continuous* from the inside on R_0 if F is continuous from the inside for every interval $R \subset R_0$.

Theorem 1. The indefine integral of a strongly (LA) integrable function on an interval R_0 in E_{n_0} is continuous on R_0 .

This theorem is true by Propositions 7 and 8 below. Proposition 7 is proved in [10, Théorèm, p. 282].

Proposition 7. An additive function F in an interval $R_0 \subset E_{n_0}$ is continuous on R_0 if and only if it is continuous from the inside on R_0 .

Proposition 8. The indefinite integral of a strongly (LA) integrable function in an interval R_0 is continuous from the inside on R_0 .

In order to prove Proposition 8, it is sufficient to prove the following lemma (the proof is a correction of [6, Proposition 12]).

Lemma 1. Let F be the indefinite integral of a strongly (LA) integrable function f on an interval R_0 in E_{n_0} and $A \subset R_0$ an (n_0-1) -dimensional interval contained in a hyperplane of E_{n_0} written for some $i \in \{1, 2, ..., n_0\}$ in the from

$$A = \{(\xi_1, \dots, \xi_{n_0}) : \xi_i = c \text{ and } a_j \le \xi_i \le b_j \text{ for } j \ne i\}.$$

Then given $\varepsilon > 0$, there exists $\rho(\varepsilon) > 0$ such that for any intervals $A_{+\varepsilon}$ and $A_{-\varepsilon}$ in E_{n_0} written in the form

$$A_{+e} = \{ (\xi_1, \dots, \xi_{n_0}) : c \le \xi_i \le c + e \text{ and } a_j \le \xi_j \le b_j \text{ for } j \ne i \};$$
$$A_{-e} = \{ (\xi_1, \dots, \xi_{n_0}) : c - e \le \xi_i \le c \text{ and } a_j \le \xi_j \le b_j \text{ for } j \ne i \}.$$

where $0 < e < \rho(\varepsilon)$, and contained in R_0 , we have $|F(A_{+e})| < \varepsilon$ and $|F(A_{-e})| < \varepsilon$.

Proof. We shall prove only for the case of i = 1. Let $\{M_n\}_{n=1}^{\infty}$ and $\{F_n\}_{n=1}^{\infty}$ be the sequences of measurable sets and closed sets indicated in the definition of the strong (LA) integral of f. In this case, by the definition given $n \in N$ and $\varepsilon > 0$, there exists a $\delta^*(n,\varepsilon) > 0$ such that for any interval $I \subset R_0$ such that $I \cap M_n \neq \emptyset$, $|I| < \delta^*(n,\varepsilon)$, and norm(I) < 1/n, we have $|F(I)| < \varepsilon$. For each $p \in A$, take the $n(p) \in N$ with $p \in M_{n(p)} - M_{n(p)-1}$, where $M_0 = \emptyset$. Define a function g on A by g(p) = 1/3n(p) for $p \in A$. Then, by [3, Compatibility theorem, p. 168] for example, there exists a g-fine division of the $(n_0 - 1)$ -dimensional interval A, written (D_s, p_s) $(s = 1, 2, \ldots, s_0)$ with $p_s \in D_s$. Given $\varepsilon > 0$, put

$$\rho(\varepsilon) = \left[\min\left\{ \min_{1 \le s \le s_0} \delta^*(n(p_s), \varepsilon/s_0), \min_{1 \le s \le s_0} 1/n(p_s) \right\} \right] / 3 \max\{1, (n_0 - 1) \text{-dimensional} measure of } A\}.$$

Let $0 < e < \rho(\varepsilon)$ and put $D_s^* = [c - \rho(\varepsilon), c + \rho(\varepsilon)] \times \operatorname{proj}_y(D_s)$. Then, the set A_{+e} is the union of non-overlapping intervals $D_s^* \cap A_{+e}$ $(s = 1, 2, \ldots, s_0)$. In this case, $p_s \in (D_s^* \cap A_{+e}) \cap M_{n(p_s)}$, $\operatorname{norm}(D_s^* \cap A_{+e}) \leq d(D_s^*) < 1/n(p_s)$ and $|D_s^* \cap A_{+\varepsilon}| < \rho(\varepsilon)$ $((n_0 - 1)$ -dimensional measure of A) $< \delta^*(n(p_s), \varepsilon/s_0)$ for each $s \in \{1, 2, ..., s_0\}$. Hence, $|F(D_s^* \cap A_{+e})| < \varepsilon/s_0$ for each $s \in \{1, 2, ..., s_0\}$. Therefore, $|F(A_{+\varepsilon})| < \varepsilon$ for every e with $0 < e < \rho(\varepsilon)$. Similarly, $|F(A_{-\varepsilon})| < \varepsilon$ for every e with $0 < e < \rho(\varepsilon)$.

For an interval function F in an interval $R \subset E_{n_0}$ and a $p \in R$, consider a variable interval $I \subset R$ with $p \in I$. Then, if there exists the limit value $\lim_{d(I)\to 0} F(I)/|I|$ as a finite value, the interval function F is said to be *derivable in the strong sense* at p, and the limit value is called the *strong derivative* of F at p and is denoted by $F'_s(p)$.

Theorem 2 ([6, Proposition 3]). Let F be a finitely additive interval function in an interval R_0 in the n_0 -dimensional Euclidean space E_{n_0} ($n_0 \ge 1$) which is derivable in the strong sense at every point of R_0 . Then the strong derivative F'_s of F is strongly (LA) integrable, more precisely, strongly (LA^{*}) integrable, on R_0 , and $F(R_0) = (SLA) \int_{R_0} F'_s$ holds.

This theorem is proved in [6, Proposition 3], but in what follows, we shall show a direct proof of the theorem, as an immediate consequence of Proposition 9 below.

For a finitely additive interval function F in an interval R_0 which is derivable in the strong sense at every point of R_0 , we denote, for each $n \in N$, by A_n the set of all $p \in R_0$ at which

[A,n]: |F(I)|/|I| < n for any interval $I \subset R_0$ such that $p \in I$ and d(I) < 4/n.

Lemma 2. Let F be a finitely additive interval function in an interval R_0 in E_{n_0} ($n_0 \ge 1$). Suppose that F is derivable in the strong sense at every point of R_0 . Then:

- (1) $\overline{A}_n \subset A_{2n}$ for every $n \in N$;
- (2) $|F'_s| \leq n$ on A_n for every $n \in N$;
- (3) F'_s is measurable and bounded on \overline{A}_n for every $n \in N$;
- (4) $\overline{A}_n \uparrow R_0 \text{ as } n \to \infty.$

Proof. It is proved in [11, p. 112, (4.2), Theorem] that F'_s is measurable on R_0 . For (1), see [6, p. 415]. The other parts are clear.

Let $R = [a_1, b_1; \ldots; a_{n_0}, b_{n_0}]$ be an interval in E_{n_0} . Corresponding to each $s \in \{0, 1, \ldots\}$, consider a *grating*(s) of R obtained by the family of hyperplanes:

 $x_i = a_i + k(b_i - a_i)2^{-s} \ (1 \le i \le n_0, \ 0 \le k \le 2^s, \ i, k \text{ are integers}),$

where x_i is *i*th coordinate of point of E_{n_0} . We denote the family of hyperplanes indicated above by $\mathfrak{H}_s(R)$. An interval in R written

$$[a_1 + k_1(b_1 - a_1)2^{-s}, a_1 + (k_1 + 1)(b_1 - a_1)2^{-s}; \dots; a_i + k_i(b_i - a_i)2^{-s}, a_i + (k_i + 1)(b_i - a_i)2^{-s}; \dots; a_{n_0} + k_{n_0}(b_{n_0} - a_{n_0})2^{-s}, a_{n_0} + (k_{n_0} + 1)(b_{n_0} - a_{n_0})2^{-s}],$$

where k_1, \ldots, k_{n_0} are integers with $0 \le k_i \le 2^s - 1$ $(i = 1, 2, \ldots, n_0)$, is called a *mesh of* grating(s) of R. An interval in R is called a *mesh* of R if it is a mesh of grating(s) of R for some $s \in \{0, 1, \ldots\}$. For an interval $I = [c_1, d_1; \ldots; c_i, d_i; \ldots; c_{n_0}, d_{n_0}]$, the intersection of

the interval I and any one of the $2n_0$ hyperplanes $x_i = c_i$ and $x_i = d_i$ is called a *face* of the interval I.

We denote the family of all intervals I in R for which there exists an s such that each face of I is contained in some hyperplane belonging to $\mathfrak{H}_s(R)$, by $\mathfrak{J}(R)$.

Lemma 3 Under the same assumption as in Lemma 2, for each $n \in N$ and any interval $R \subset R_0$, the following (1) and (2) hold:

(1) For each interval $I \in \mathfrak{J}(R)$ such that $I \cap \overline{A}_n \neq \emptyset$, let us choose a sequence of meshes of $R; R_j^n$ (j = 1, 2, ...) (possibly empty or finite) as in [A], (a) and (b) indicated in [6, p. 409]. In this case, we have:

(i) $\bigcup_{j=1}^{\infty} R_j^n = I - \overline{A}_n$, and R_j^n (j = 1, 2, ...) is non-overlapping;

(ii) $\sum_{i=1}^{\infty} F(R_i^n)$ is convergent;

(iii) If I is a mesh of R with d(I) < 1/n, then

$$\sum_{j=1}^{\infty} |F(R_j^n)| \le (n\kappa_{n_0}) \sum_{j=1}^{\infty} |R_j^n|,$$

where κ_{n_0} is a number depending only on the dimension of E_{n_0} such that $\kappa_{n_0} > 1$.

(2) For each interval $I \in \mathfrak{J}(R)$ such that $I \cap \overline{A}_n = \emptyset$, let us choose a finite sequence R_i^n $(j = 1, 2, ..., j_0)$ as in [A], (c) indicated in [6, p. 410]. In this case, we have

(iv) $F(I) = \sum_{j=1}^{j_0} F(R_j^n).$

Proof. The case of (1) is proved in a quite similar way as in [6, p. 410], replacing F with \overline{A}_n and using Lemma 2, (1) above instead of (2.3) in [6, p. 408]. The case of (2) is clear.

Under the same assumption as in Lemma 2, for each $n \in N$ and any interval $R \subset R_0$, we define a function $G_n(R; I)$ on $\mathfrak{J}(R)$ as follows:

- (a) $G_n(R;I) = (L) \int_{I \cap \overline{A}_n} f + \sum_{j=1}^{\infty} F(R_j^n)$ if $I \overline{A}_n \neq \emptyset$ and $I \cap \overline{A}_n \neq \emptyset$;
- (b) $G_n(R;I) = (L) \int_{I \cap \overline{A}} f$ if $I \overline{A}_n = \emptyset$ and $I \cap \overline{A}_n \neq \emptyset$;
- (c) $G_n(R;I) = F(I)$ if $I \overline{A}_n = \emptyset$,

where R_j^n (j = 1, 2, ...) is the sequence of meshes of R chosen in Lemma 3.

Let $R \subset R_0$ be an interval, K a function of mesh of interval $R \subset R_0$ and $p \in R$. Let I be a variable mesh of R with $p \in I$. Then, if there exists a unique limit: $\lim_{d(I)\to 0} K(I)/|I|$ as a finite limit, we say that K is *derivable with respect to meshes of* R at p, and denote the limit by $K'_{\mathfrak{R}}(P)$.

Lemma 4. Under the same assumption as in Lemma 2, for each $n \in N$ and any interval $R \subset R_0$, the function $G_n(R; I)$ on $\mathfrak{J}(R)$ has the following properties:

- (1) $G_n(R;I)$ is additive;
- (2) $(G_n(R))'_{\mathfrak{R}} = F'_s$ almost everywhere in $R \cap \overline{A}_n$.

This is proved in a quite similar way as in the proof of [6. Lemma 2], replacing F with \overline{A}_n and F'_n with F'_s .

266

Lemma 5. Under the same assumption as in Lemma 2, for each $n \in N$ $F(R) = G_n(R; R)$ holds for any interval $R \subset R_0$, where $G_n(R; R)$ is the value defined above as I = R. More precisely

$$F(R) = (L) \int_{R \cap \overline{A}_n} f + \sum_{j=1}^{\infty} F(R_j^n),$$

where $\{R_i^n\}$ (possibly empty or finite) is the sequence of meshes of R indicated in Lemma 3.

Proof. This is proved in a quite similar way as in [6, Lemma 3], replacing F with \overline{A}_n , F'_η with F'_s , and $A_{2n}(\eta)$ with A_{2n} , and putting

$$\delta(\varepsilon) = \min\{\delta_1(\varepsilon), \varepsilon/4n\kappa_{n_0}, \ (|R|/(norm(R))^{n_0})(1/(n\sqrt{n_0}))^{n_0}\}.$$

Proposition 9. Let F be a finitely additive interval function in an interval $R_0 \subset E_{n_0}$ $(n_0 \geq 1)$. Suppose that F is derivable in the strong sense at every point of R_0 . Then, for \overline{A}_n (n = 1, 2, ...) the following statements hold:

- (1) $\overline{A}_n \uparrow R_0 \text{ as } n \to \infty;$
- (2) F'_s is measurable and bounded on \overline{A}_n for every $n \in N$;

(3) Given $n \in N$ and $\varepsilon > 0$, there exists $\delta(n, \varepsilon) > 0$ such that, if a finite system of non-overlapping intervals R_i $(i = 1, 2, ..., i_0)$ in R_0 satisfies:

- (3.1) $R_i \cap \overline{A}_n \neq \emptyset$ for $i = 1, 2, \dots, i_0$;
- (3.2) $\mu_{n_0}(\bigcup_{i=1}^{i_0} R_i \overline{A}_n) < \delta(n, \varepsilon)$; and
- (3.3) $d(R_i) < 1/n$ for $i = 1, 2, \ldots, i_0$,

then

$$\left|\sum_{i=1}^{i_0} F(R_i) - \sum_{i=1}^{i_0} (L) \int_{R_i \cap \overline{A}_n} F'_s \right| < \varepsilon.$$

Proof. (1) and (2) hold by Lemma 2. Next, we prove (3). For $n \in N$ and $\varepsilon > 0$ given, put $\delta(n,\varepsilon) = \varepsilon/n\kappa_{n_0}$, where κ_{n_0} is the number indicated in (iii) of Lemma 3. For each interval R_i , let $\{R_j^{in}\}$ (j = 1, 2, ...) be the sequence of meshes of R_i chosen as in Lemma 3 to define $G_n(R_i; R_i)$. Then, by Lemmas 5 and 3 we have

$$\left| \sum_{i=1}^{i_0} F(R_i) - \sum_{i=1}^{i_0} (L) \int_{R_i \cap \overline{A}_n} F'_s \right|$$

=
$$\left| \sum_{i=1}^{i_0} (L) \int_{R_i \cap \overline{A}_n} F'_s - \sum_{i=1}^{i_0} \sum_{j=1}^{\infty} F(R_j^{i_n}) - \sum_{i=1}^{i_0} (L) \int_{R_i \cap \overline{A}_n} F'_s \right|$$

$$\leq \sum_{i=1}^{i_0} (n\kappa_{n_0} \sum_{j=1}^{\infty} |R_j^{i_n}|) = n\kappa_{n_0} \left(\sum_{i=1}^{i_0} \mu_{n_0} (R_i - \overline{A}_n) \right) < n\kappa_{n_0} \delta(n, \varepsilon) = \varepsilon$$

For an interval I in E_n , the parameter of regurality of I is the number |I|/|R|, where R is the minimum cube containing I, and is denoted by r(I). If $r(I) \ge \eta$, the interval I is called η -regular. A sequence of intervals $\{I_i\}$ is said to be η -regular if I_i is η -regular for every i, and we say that the sequence $\{I_i\}$ tends to p if $d(I_i) \to 0$ as $i \to \infty$ and $p \in I_i$ for every i. Let F be an interval function in an interval R_0 in E_n and $p \in R_0$. For an η with $1 \ge \eta > 0$, we call the least upper bound [resp. the greatest lower bound] (extended real number) of the numbers l for which there is an η -regular sequence $\{I_i\}$ of intervals tending to p such that $\lim_{i\to\infty} F(I_i)/|I_i| = l$ the upper derivate [resp. the lower derivate] in the η -regular sense of F at p. The upper [resp. lower] derivate of F in the η -regular sense at p is denoted by $\overline{D}_{\eta}F(p)$ [resp. $\underline{D}_{\eta}F(p)$]. When $\overline{D}_{\eta}F(p) = \underline{D}_{\eta}F(p)$, the common value is called the derivative in the η -regular sense of F at p, and is denoted by $F'_{\eta}(p)$. If further $F'_{\eta}(p)$ is finite, F is said to be derivable in the η -regular sanse at p. As easily seen, F is derivable in the η -regular sense at p if and only if there exists a unique limit $\lim_{d(I)\to 0} F(I)/|I|$ as a finite limit, where I is a variable η -regular interval with $p \in I$. If $\lim_{\eta\to 0} \overline{D}_{\eta}F(p) = \lim_{\eta\to 0} \underline{D}_{\eta}F(p)$, then the common value is called the ordinary derivative of F at p, and is denoted by F'(p). When F'(p) is finite, F is said to be derivable in the ordinary sense at p.

Theorem 3. Let f be strongly (LA) integrable on an interval R_0 in E_{n_0} and F an indefinite integral of f. Then, at almost all $p \in R_0$, F is derivable in the ordinary sense and F'(p) = f(p) holds.

The theorem holds by virtue of [6, Theorem 5, (2), p. 424] and Proposition 1 above. Because, a strongly (LA) integrable function on R_0 is (LA) integrable in the ordinary sense on R_0 (see, for the definition of "(LA) integrable in the ordinary sense", [6, Definition 4, p. 423]). To prove the theorem we extend the idea of the semi-regular integral in the Burkill sense introduced by S.Kempisty in [2] to the η -regular integral in the Burkill sense with any η , where $0 < \eta < 1([6, p. 416])(cf. [1]).$

We improve on the definition of (D) integrability proposed in [4] as in Definition 2 below, by replacing the condition that " M_n is closed" with the condition that " M_n is measurable".

Definition 2. Let R_0 be an interval in E_{n_0} and f a measurable function on R_0 . The function f is said to be (D) integrable on R_0 if there exist a finitely additive interval function F in R_0 , a nondecreasing sequence of measurable sets M_n (n = 1, 2, ...) such that $M_n \subset R_0$ and $\bigcup_{n=1}^{\infty} M_n = R_0$, and a nondecreasing sequence of closed sets F_n (n = 1, 2, ...) such that $F_n \subset M_n$ and $\mu_{n_0}(R_0 - \bigcup_{n=1}^{\infty} F_n) = 0$, satisfying the following two conditions (1) and (2):

(1) The function f is Lebesgue integrable on F_n for each $n \in N$;

(2) Given $n \in N$ and $\varepsilon > 0$, there exists a $\delta(n, \varepsilon) > 0$ for which the following holds: if I_i $(i = 1, 2, ..., i_0)$ is an elementary system in R_0 such that

- (2.1) $I_i \cap M_n \neq \emptyset$ for $i = 1, 2, \ldots, i_0$;
- (2.2) $\mu_{n_0}(\cup_{i=1}^{i_0} I_i M_n) < \delta(n, \varepsilon);$
- (2.3) $norm(I_i) < 1/n$ for $i = 1, 2, ..., i_0$,

then the following inequality holds:

$$\left|\sum_{i=1}^{i_0} F(I_i) - \sum_{i=1}^{i_0} (L) \int_{I_i \cap F_n} f\right| < \varepsilon.$$

In this case, the sequence M_n (n = 1, 2, ...) is called a *characteristic sequence* of the (D) integral and the sequence F_n (n = 1, 2, ...) is called a *fundamental sequence* of the (D) integral.

We remark that in Definition 2 we can suppose that

$$\delta(n,\varepsilon) \ge \delta(m,\varepsilon)$$
 for $m > n$ and $\delta(n,\varepsilon) \ge \delta(n,\varepsilon')$ for $\varepsilon > \varepsilon'$. (2°)

Proposition 10. Let f = g almost everywhere in an interval $R_0 \subset E_{n_0}$. Then, if one of them is (D) integrable on R_0 , then so is the other, and both integrals coincide.

The condition imposed on the definition of (D) integrability is weaker than it imposed on the definition of the (D_0) integral and is weaker than it imposed on the definition of the strong (LA) integral. Hence

Proposition 11. (1) If f is (D_0) integrable on an interval R_0 in E_{n_0} , then it is (D) integrable on R_0 .

(2) If f is strongly (LA) integrable on an interval R_0 in E_{n_0} , then it is (D) integrable on R_0 .

Since the difference in the definition of strong (LA) integrability and (D) integrability is only the difference of condition given for the system of intervals I_i $(i = 1, 2, ..., i_0)$: "nonoverlapping intervals" and "mutually disjoint intervals". Hence, when $n_0 = 1$, the finitely additive interval function F indicated in the definition of (D) integrability is uniquely determined by Proposition 2, so we may call $F(R_0)$ the (D) integral of f on R_0 , and denote $F(R_0)$ by $(D) \int_{R_0} f(p) dp$ etc.

By Proposition 6 and the statement above, we have

Proposition 12. When $n_0 = 1$, for the (LA) in the strong sense, (D), and (D_0) their integrabilities are equivalent with the integrability of Denjoy in the special sense, and their integrals coincide.

In what follows, R_0 denotes an interval in E_{n_0} . When f is (D) integrable on R_0 , let F, $\{M_n\}_{n=1}^{\infty}$, $\{F_n\}_{n=1}^{\infty}$ and $\delta(n,\varepsilon)$ be those indicated in the definition of (D) integrability for f.

Lemma 6. Let f be (D) integrable on an interval R_0 in E_{n_0} . Then, if, for $n \in N$ and $\varepsilon > 0, I_i$ $(i = 1, 2, ..., i_0)$ is an elementary system in R_0 such that

- (2.1*) $I_i \cap \overline{M}_n \neq \emptyset$ for $i = 1, 2, \ldots, i_0$;
- (2.2*) $\mu_{n_0}(\cup_{i=1}^{i_0} I_i) < \delta(n,\varepsilon);$
- (2.3^*) norm $(I_i) < 1/n$ for $i = 1, 2, \ldots, i_0$,

then

$$\left|\sum_{i=1}^{i_0} F(I_i) - \sum_{i=1}^{i_0} (L) \int_{I_i \cap F_n} f\right| < \lambda_{n_0} \varepsilon,$$

where λ_{n_0} is a positive number depending only on the dimension of the space E_{n_0} . In particular $\lambda_2 = 4$.

The lemma follows easily from the definition of (D) integrability.

Let f be (D) integrable on R_0 in E_{n_0} . For $n \in N$ and $\varepsilon > 0$, let $\eta(n, \varepsilon)$ be a positive number such that

if
$$\mu_{n_0}(E) < \eta(n,\varepsilon)$$
, then $(L) \int_{E \cap F_n} |f| < \varepsilon.$ (3°)

Without loss of generality, we can suppose that

$$\eta(n,\varepsilon) \ge \eta(m,\varepsilon) \text{ for } n < m \text{ and } \eta(n,\varepsilon) \ge \eta(n,\varepsilon') \text{ for } \varepsilon > \varepsilon'.$$
 (4°)

Throughout this paper, let ε_n (n = 1, 2, ...) be a sequence of positive numbers such that

$$\varepsilon_n \downarrow 0 \text{ and } \sum_{m=n+1}^{\infty} \varepsilon_m \le \varepsilon_n \text{ for each } n \in N,$$
(5°)

and let ε_n^{**} (n = 1, 2, ...) be the nonincreasing sequence defined by

$$\varepsilon_n^{**} = \min\{1/n, \delta(n, \varepsilon_n/2^{n+5}), \eta(n, \varepsilon_n/2^{n+5})\} \text{ for each } n \in N.$$
(6°)

We have $\varepsilon_n^{**} \downarrow 0$

Let J be an interval in the one-dimensional Euclidean space E_1 and A_n (n = 1, 2, ...)a nondecreasing sequence of closed sets in E_1 such that $\bigcup_{n=1}^{\infty} A_n = J$. Then we say that a non-empty closed set F_{nm} in E_1 , where n < m, has the property (**B**₁) for n < m in J associated with $\{A_n\}_{n=1}^{\infty}$ and $\{\varepsilon_n^{**}\}_{n=1}^{\infty}$ if it has the following property (**B**₁).

(**B**₁): (1) $F_{nm} \subset J$ and $F_{nm} \subset A_m$;

(2) Denote the sequence of intervals contiguous to the set consisting of the set F_{nm} and the both end-points of J by J_j (j = 1, 2, ...). Then, J_j (j = 1, 2, ...) are classified into m - n + 1 parts written J_{kj} (j = 1, 2, ...) (possibly empty or finite), where k = n, n + 1, n + 2, ..., m, so that

1)
$$\sum_{j=1}^{\infty} |J_{kj}| < \varepsilon_n^{**};$$

- 2) $(J_{kj})^{\circ} \cap A_k = \emptyset$ for every $j \in N$;
- 3) one at least of the end-points of the interval J_{kj} belongs to A_k for each $j \in N$.

In this case, the point taken as one at least of the end-points of J_{kj} in 3) is called the *characteristic point* of J_{kj} and the number k is called the *characteristic number* of J_{kj} .

First, let us spply Lemma 2 in [4, p. 72; 8, p. 2] for the interval R_0 , the sequence of closed sets $\{\overline{M}_n\}_{n=1}^{\infty}$ and the sequence of positive numbers $\{\varepsilon_n^{**}\}_{n=1}^{\infty}$. Then, the following statement (I) holds.

(I) There exist two increasing sequences of positive integers

$$n_i \text{ and } m_i \ (i = 1, 2, \dots) \text{ such that } i < n_i \text{ and } n_i < m_i < n_{i+1}$$
 (7°)

and a nondecreasing sequence of non-empty closed sets

$$F_{n_i m_i}$$
 $(i = 1, 2, ...)$

having the following properties (1) and (2):

- (1) $F_{n_im_i} \subset R_0$ and $F_{n_im_i} \subset \overline{M}_{m_i}$ for every $i \in N$;
- (2) Put

$$Y = \bigcup_{i=1}^{\infty} \operatorname{proj}_{E_{n_0}-1} y(F_{n_i m_i}) \text{ and } Z = \operatorname{proj}_{E_{n_0}-1} y(R_0) - Y,$$
(8°)

then

a)
$$\mu_{n_0-1}(Z) = 0;$$

b) for each $q \in Y$ and $i \in N$, if $(F_{n_im_i})^q \neq \emptyset$, the closed set $(F_{n_im_i})^q$ has the property (\mathbf{B}_1) for $n_i < m_i$ in $(R_0)^q$ associated with $\{(\overline{M}_n)^q\}_{n=1}^{\infty}$ and $\{\varepsilon_n^{**}\}_{n=1}^{\infty}$; and

c) $\cup_{i=1}^{\infty} (F_{n_i m_i})^q = (R_0)^q$ holds for each $q \in Y$.

Next, to each point

$$q \in Z\left(=\operatorname{proj}_{E_{n_0}-1} y(R_0) - \bigcup_{i=1}^{\infty} \operatorname{proj}_{E_{n_0}-1} y(F_{n_i m_i})\right),$$

let us apply Lemma 1 in [4, p. 72; 8, p. 2] for the one-dimensional interval $(R_0)^q$, the sequence of one-dimensional closed set $\{(\overline{M}_n)^q\}_{n=1}^{\infty}$ and the sequence of positive numbers $\{\varepsilon_n^{**}\}_{n=1}^{\infty}$. Then:

(II) There exist two increasing sequences of positive integers

$$n_i(q)$$
 and $m_i(q)$ $(i = 1, 2, ...)$ such that $i < n_i(q)$ and $n_i(q) < m_i(q) < n_{i+1}(q)$

and a nondecreasing sequence of non-empty closed sets

$$F_{n_i(q)m_i(q)}$$
 $(i = 1, 2, ...)$

such that:

a) each $F_{n_i(q)m_i(q)}$ has the property (\mathbf{B}_1) for $n_i(q) < m_i(q)$ in $(R_0)^q$ associated with $\{(\overline{M}_n)^q\}_{n=1}^{\infty}$ and $\{\varepsilon_n^{**}\}_{n=1}^{\infty}$, in particular, $F_{n_i(q)m_i(q)} \subset (R_0)^q$ and $F_{n_i(q)m_i(q)} \subset (\overline{M}_{m_i(q)})^q$; and

b) $\cup_{i=1}^{\infty} F_{n_i(q)m_i(q)} = (R_0)^q$.

An elementary system $S: I_i \ (i = 1, 2, ..., i_0)$ in E_n is called a (*)-elemetary system if

$$\operatorname{proj}_{E_{n-1}} {}_{y}(I_{1}) = \operatorname{proj}_{E_{n-1}} {}_{y}(I_{2}) = \ldots = \operatorname{proj}_{E_{n-1}} {}_{y}(I_{i_{0}})$$

An elementary system S is called a (**)-elementary system if it is composed of finite (*)-elementary systems S_l $(l = 1, 2, ..., l_0)$ such that

$$\operatorname{proj}_{E_{n-1}} {}_{y}(S_l) \cap \operatorname{proj}_{E_{n-1}} {}_{y}(S_{l'}) = \emptyset \text{ for } l, \ l' \in \{1, 2, \dots, l_0\} \text{ with } l \neq l'.$$

Lemma 7. If f is (D) integrable on an interval R_0 in $E_{n_0}(n_0 \ge 2)$, then there exists a nondecreasing sequence of measurable sets B_h (h = 1, 2, ...) (the first finite sets may be empty) such that:

- (1) $B_h \uparrow R_0$ as $h \to \infty$;
- (2) for every $h \in N$, the set $(B_h)^q$ is a closed set for every $q \in \operatorname{proj}_y(B_h)$,

in such a way that the following statement holds:

Corresponding to h, ε with $h \in N$ and $\varepsilon > 0$, there exists a $\rho^*(h, \varepsilon) > 0$ such that:

Given $\varepsilon > 0$, suppose that, for some $h \in N$, a (**)-elementary system S consisting of (*)-elementary systems S_l $(l = 1, 2, ..., l_0)$, where for each l

 S_l is a (*)-elementary system consisting of intervals written

$$I_{lj} \ (j = 1, 2, \dots, j_0(l)),$$

satisfies the following conditions:

(a) For each $l \in \{1, 2, \dots, l_0\}$, there exists a $q_l \in \underset{E_{n_0-1}}{\operatorname{proj}} y(S_l) \cap \underset{E_{n_0-1}}{\operatorname{proj}} y(B_h)$ such that $(I_{lj})^{q_l} \cap (B_h)^{q_l} \neq \emptyset$ for every $j \in \{1, 2, \dots, j_0(l)\}$;

(b) $| \operatorname{proj}_{E_{n_0-1}} y(S) | < \rho^*(h, \varepsilon);$ (c) $\operatorname{norm}(\operatorname{proj}_{E_{n_0-1}} y(S_l)) < 1/h$ for every $l \in \{1, 2, \dots, l_0\}.$

Then the following inequality holds:

 $|F(S)| < \varepsilon.$

Proof. For simplicity, we prove only for the case when $n_0 = 2$ and $R_0 = [0, 1; 0, 1]$. Denote q_l taken in the assumption (a) of the lemma by y_l .

Let

$$n_i, m_i \text{ and } F_{n_i m_i} \ (i = 1, 2, \dots)$$

be the two sequeces of positive integers and the sequence of non-empty closed sets indicated in (I) above.

Corresponding to each $h \in N$, if there exists an m_i with $m_i \leq h$, then we put

$$i(h) = \max\{i : m_i \le h, i \in N\}.$$
(9°)

In this case, the following holds:

$$F_{n_k m_k} = F_{n_{i(m_k)} m_{i(m_k)}}$$
 for every $k \in N$

Put, as in (8°)

$$Z = \operatorname{proj}_{y}(R_0) - \bigcup_{i=1}^{\infty} \operatorname{proj}_{y}(F_{n_i m_i}).$$

Then

$$\mu_1(Z) = 0.$$

Corresponding to each $y \in Z$, let $n_i(y), m_i(y)$ and $F_{n_i(y)m_i(y)}$ (i = 1, 2, ...) be the two sequences of positive integers and the sequence of closed sets indicated in (II) above.

Corresponding to $h \in N$, if there exists an $m_i(y)$ with $m_i(y) \leq h$, then we put

$$i(y,h) = \max\{i : m_i(y) \le h, i \in N\}.$$
 (10°)

Given an $h \in N$, put

$$B_{h} = F_{n_{i(h)}m_{i(h)}} \cup \left(\bigcup_{y \in Z}^{*} F_{n_{i(y,h)}(y)m_{i(y,h)}(y)} \right) \text{ when } i(h) \text{ is definable;}$$
$$B_{h} = \bigcup_{y \in Z}^{*} F_{n_{i(y,h)}(y)m_{i(y,h)}(y)} \text{ for the other case,}$$
(11°)

where the union $\bigcup_{y\in Z}^*$ is over all $y\in Z$ for which i(y,h) is definable. Then, B_h (h = 1, 2, ...) is a nondecreasing sequence of measurable sets (the first finite sets may be empty) satisfying (1) and (2) of the lemma.

Now, for $h \in N$ and $\varepsilon > 0$, put

$$\rho^*(h,\varepsilon) = \min\{\delta(h,\varepsilon/2^7h), \ \eta(h,\varepsilon/2^4h)\}.$$
(12°)

Then

$$\rho^*(h,\varepsilon) \ge \rho^*(k,\varepsilon)$$
 for $k > h$ and $\rho^*(h,\varepsilon) \ge \rho^*(h,\varepsilon')$ for $\varepsilon > \varepsilon'$.

Given $\varepsilon > 0$, let, for some $h \in N$, S be a (**)-elementary system S_l $(l = 1, 2, ..., l_0)$ satisfying the conditions (a), (b) and (c) of the lemma for B_h , $\rho^*(h, \varepsilon)$ defined above and h.

First of all, for the (**)-elementary system S we suppose the following condition:

(d) Let $l \in \{1, 2, ..., l_0\}$ and y_l the point of $\operatorname{proj}_y(S_l) \cap \operatorname{proj}_y(B_h)$ taken in the condition (a). For each pair l, j with $l \in \{1, 2, ..., l_0\}$ and $j \in \{1, 2, ..., j_0(l) - 1\}$, if we denote by a_j^l the right hand end-point of one-dimensional interval $(I_{l_j})^{y_l}$ and by b_j^l the left hand end-point of one-dimensional interval $(I_{l_j}, b_j^l] \times \{y_l\}) \cap B_h \neq \emptyset$ for $j = 1, 2, ..., j_0(l) - 1$.

The proof requires four steps.

(1) Consider the family of all intervals I_{lj} , possibly empty, for which

 $|\operatorname{proj}_{x}(I_{l_{j}})| < 1/h$, where $l \in \{1, 2, \dots, l_{0}\}$ and $j \in \{1, 2, \dots, j_{0}(l)\}$,

and denote the family by

$$R_m^1 \ (m = 1, 2, \dots, m_1).$$

Then, by the condition (a), we have $R_m^1 \cap B_h \neq \emptyset$ for $m = 1, 2, \ldots, m_1$. Further since $\overline{M}_{m_{i(h)}} \supset F_{n_{i(h)}m_{i(h)}}, \overline{M}_{m_{i(y,h)}(y)} \supset F_{n_{i(y,h)}(y)m_{i(y,h)}(y)}$ by (1) of (I) and a) of (II), $m_{i(h)} \leq h$ and $m_{i(y,h)}(y) \leq h$, we have $\overline{M}_h \supset B_h$. Therefore

$$R_m^1 \cap \overline{M}_h \neq \emptyset$$
 for $m = 1, 2, \ldots, m_1$.

(2) Consider the family of all intervals I_{lj} , possibly empty, for which

$$|\operatorname{proj}_{x}(I_{lj})| \ge 1/h$$
, where $l \in \{1, 2, \dots, l_0\}$ and $j \in \{1, 2, \dots, j_0(l)\}$. (13°)

For each interval I_{lj} of the family and y_l taken in (a), denote the sequence of one-dimensional intervals contiguous to the one-dimensional closed set consisting of the non-empty closed set $(I_{lj})^{y_l} \cap (B_h)^{y_l}$ and the both end-points of the interval $(I_{lj})^{y_l}$ by

$$J_{ljr} (r=1,2,\ldots),$$

where we can suppose that $|J_{ljr}| \ge |J_{ljr+1}|$ for r = 1, 2, ... Take an index r such that

$$|J_{ljr}| \ge 1/2h$$
 and $|J_{ljr+1}| < 1/2h$, and written $r_0(l,j)$.

Next consider the sequence of one-dimensional intervals contiguous to the one-dimensional closed set consisting of the set $\bigcup_{r=1}^{r_0(l,j)} J_{ljr}$ and the both end-points of the interval (I_{lj}) . Denote the sequence by

$$K_{ljt}$$
 $(t = 1, 2, \dots, t_0(l, j)).$

Then, for $l \in \{1, 2, ..., l_0\}$ and $j \in \{1, 2, ..., j_0(l)\}$, we have

$$\bigcup_{r=1}^{r_0(l,j)} J_{ljr} \cup \bigcup_{t=1}^{t_0(l,j)} K_{ljt} = (I_{lj})^{y_l}; \\
\bigcup_{t=1}^{t_0(l,j)} K_{ljt} = \bigcup_{r=r_0(l,j)+1}^{\infty} J_{ljr} \cup ((I_{lj})^{y_l} \cap (B_h)^{y_l}); \\
\{J_{ljr} \ (r = 1, 2, \dots, r_0(l,j)); K_{ljt} \ (t = 1, 2, \dots, t_0(l,j))\} \text{ are non-overlapping.} \\
\text{For } K_{ljt} \ (l = 1, 2, \dots, l_0, \ j = 1, 2, \dots, j_0(l), \ t = 1, 2, \dots, t_0(l,j)), \text{ first consider} \\
(2.1): \text{ the family (possibly empty)}$$

 $\{K_{ljt} : |K_{ljt}| < 1/h$, where l, j is any pair belonging to the set of all indices (l, j)for which I_{lj} is chosen to be (13°) , and $t \in \{1, 2, \dots, t_0(l, j)\}\}$,

and associate, with each K_{ljt} of the family, the two-dimensional interval

$$\operatorname{proj}_{x}(K_{lit}) \times \operatorname{proj}_{y}(S_{l}).$$

We denote the family of such two-dimensional intervals by

$$R_m^2 \ (m=1,2,\ldots,m_2).$$

Since then $K_{ljt} \cap B_h \neq \emptyset$ and $\overline{M}_h \supset B_h$, we have

$$R_m^2 \cap \overline{M}_h \neq \emptyset$$
 for $m = 1, 2, \dots, m_2$.

Next, consider

(2,2): the family (possibly empty)

 $\{K_{lit}: |K_{lit}| \geq 1/h, \text{ where } l, j \text{ is any pair belonging to the set of all indices } (l, j)$

for which I_{lj} is chosen to be (13°) , and $t \in \{1, 2, ..., t_0(l, j)\}\}$.

Corresponding to each K_{ljt} of the family, take a finite sequence of non-overlapping onedimensional intervals K'_{ljts} $(s = 1, 2, ..., s_0(l, j, t))$ whose union is K_{ljt} and such that $1/2h \leq |K'_{ljts}| < 1/h$. With each of such intervals K'_{ljts} we associate a two-dimensional interval;

$$\operatorname{proj}_{x}(K'_{lits}) \times \operatorname{proj}_{y}(S_{l}),$$

and denote the family of all such two-dimensional intervals by

$$R_m^3 \ (m = 1, 2, \dots, m_3).$$

Then, we have

$$R_m^3 \cap \overline{M}_h \neq \emptyset$$
 for $m = 1, 2, \ldots, m_3$.

Because, $K'_{ljts} \cap B_h \neq \emptyset$ holds for every K'_{ljts} . Indeed, suppose that $K'_{ljts} \cap (B_h)^{y_l} = \emptyset$. for some K'_{ljts} . Since then $K'_{ljts} \subset \bigcup_{r=r_0(l,j)+1}^{\infty} J_{ljr}$ by (14°) and J_{ljr} (r = 1, 2, ...) are the intervals contiguous to the closed set consisting of the non-empty closed set $(B_h)^{y_l} \cap (I_{lj})^{y_l}$ and the both end-points of $(I_{lj})^{y_l}$, there exists an $r^* \geq r_0(l,j) + 1$ for which $K'_{ljts} \subset J_{ljr^*}$. Hence, $|K'_{ljts}| \leq |J_{ljr^*}| < 1/2h$, which contradicts $|K'_{ljts}| \geq 1/2h$. Thus, $K'_{ljts} \cap \overline{M}_h \neq \emptyset$ for every K'_{lits} by $\overline{M}_h \supset B_h$.

For simplicity, we put

$$\{R_m \ (m = 1, 2, \dots, m_0)\}\$$

= $\{R_m^1 \ (m = 1, 2, \dots, m_1); R_m^2 \ (m = 1, 2, \dots, m_2); R_m^3 \ (m = 1, 2, \dots, m_3)\}.$

As easily seen, R_m $(m = 1, 2, ..., m_0)$ are classified into two parts so that each part is an elementary system. In addition, we have $R_m \cap \overline{M}_h \neq \emptyset$ for $m = 1, 2, ..., m_0; \sum_{m=1}^{m_0} |R_m| < \delta(h, \varepsilon/2^7 h)$, because $|\operatorname{proj}_y(S)| < \rho^*(h, \varepsilon) \le \delta(h, \varepsilon/2^7 h)$ by (b) and (12°) and $|\operatorname{proj}_x(R_0)| = 1$; and $\operatorname{norm}(R_m) < 1/h$ for $m = 1, 2, ..., m_0$ by (c). Hence by Lemma 1, we have

$$\left|\sum_{m=1}^{m_0} F(R_m) - \sum_{m=1}^{m_0} (L) \int_{R_m \cap F_h} f\right| < 4(\varepsilon/2^7 h) \times 2 = \varepsilon/16h$$

Further, since $\sum_{m=1}^{m_0} |R_m| < \rho^*(h,\varepsilon) \le \eta(h,\varepsilon/2^4h), \ \left|\sum_{m=1}^{m_0} (L) \int_{R_m \cap F_h} f\right| < \varepsilon/16h$. Therefore

$$\left|\sum_{m=1}^{m_0} F(R_m)\right| < \varepsilon/16h + \varepsilon/16h = \varepsilon/8h.$$
(15°)

Next, consider

(2.3) the family of one-dimensional intervals J_{ljr} $(l = 1, 2, ..., l_0, j = 1, 2, ..., j_0(l), r =$ $1, 2, \ldots, r_0(l, j)$). Then we have $|J_{ljr}| \ge 1/2h$ for each such J_{ljr} . Corresponding to each such interval J_{ljr} , there exists uniquely a one-dimensional interval H_{ljr} having the following properties:

 (a°) H_{ljr} is contained in one of the intervals contiguous to the closed set consisting of $(B_h)^{y_l}$ and the both end-points of $(R_0)^{y_l}$, say H'_{ljr} ;

(b°) $H_{ljr} \supset J_{ljr};$

j

(

(c°) One end-point of the interval H_{ljr} is an end-point of J_{ljr} ;

(d°) The other end-point of the interval H_{ljr} is the characteristic point of the interval H'_{ljr} say p_{ljr} .

We denote the characteristic number of the characteristic point p_{ljr} by h_{ljr} . Since then $n_{i(h)} \leq h_{ljr} \leq m_{i(h)}$ or $n_{i(y,h)}(y) \leq h_{ljr} \leq m_{i(y,h)}(y)$ for some $y \in Z$ by the definition of characteristic number, we have $1 \leq h_{ljr} \leq h$ by (9°) and (10°). In this case, by the assumption (d) and the definition of (*)-elementary system, H_{ljr} $(j = 1, 2, ..., j_0(l), r =$ $1, 2, \ldots, r_0(l, j)$ are non-overlapping for each $l \in \{1, 2, \ldots, l_0\}$.

Next, for each triple l, j, r with $l \in \{1, 2, ..., l_0\}, j \in \{1, 2, ..., j_0(l)\}$, and $r \in \{1, 2, ..., j_0(l)\}$ $r_0(l,j)$, put

$$Q_{ljr} = \operatorname{proj}_{x}(J_{ljr}) \times \operatorname{proj}_{y}(S_{l});$$

$$Q_{ljr}^* = \operatorname{proj}_x(H_{ljr}) \times \operatorname{proj}_y(S_l).$$

First, corresponding to each k with $1 \le k \le h$, consider the family of two-dimensional intervals Q_{ljr}^* for which $h_{ljr} = k$, where $l = 1, 2, \ldots, l_0, j = 1, 2, \ldots, j_0(l)$ and $r = l_1 + l_2 + \ldots + l_0$ $1, 2, \ldots, r_0(l, j)$, and denote the family by R_{km}^* $(m = 1, 2, \ldots, m_0(k))$. When Q_{ljr}^* is denoted by R_{km}^* , we denote Q_{ljr} by R_{km} . Then for each k with $1 \le k \le h$:

$$\begin{split} R^*_{km} & (m=1,2,\ldots,m_0(k)) \text{ are non-overlapping;} \\ R^*_{km} \cap \overline{M}_k \neq \emptyset \text{ for } m=1,2,\ldots,m_0(k); \\ \mu_2(\cup_{m=1}^{m_0(k)} R^*_{km}) \leq \mu_2(S) < \rho^*(h,\varepsilon) \leq \delta(h,\varepsilon/2^7h) \leq \delta(k,\varepsilon/2^7h) \text{ by (b), (12^\circ) and} \\ (2^\circ); \text{ and} \\ norm(R^*_{km}) < \max\{\varepsilon^{**}_k, 1/h\} \leq \max\{1/k, 1/h\} = 1/k \text{ for } m=1,2,\ldots,m_0(k) \text{ by} \end{split}$$

virtue of 1) of (2) of the property (\mathbf{B}_1) , (c) and (6°) .

In addition, R_{km}^* $(m = 1, 2, ..., m_0(k))$ are classified into two elementary systems. Hence, by Lemma 5 we have

$$\left|\sum_{m=1}^{m_0(k)} F(R_{km}^*) - \sum_{m=1}^{m_0(k)} (L) \int_{R_{km}^* \cap F_k} f \right| < 4(\varepsilon/2^7h) \times 2 = \varepsilon/16h.$$

On the other hand, since $(1 \le)k \le h$, by (b), (12°) and (4°)

$$\sum_{m=1}^{m_0(k)} |R_{km}^*| \le \mu_2(S) < \rho^*(h,\varepsilon) \le \eta(h,\varepsilon/2^4h) \le \eta(k,\varepsilon/2^4h)$$

Hence, by (3°)

$$\left|\sum_{m=1}^{m_0(k)} (L) \int_{R_{km}^* \cap F_k} f\right| < \varepsilon/16h.$$

Therefore

$$\left|\sum_{m=1}^{m_0(k)} F(R_{km}^*)\right| < \varepsilon/16h + \varepsilon/16h = \varepsilon/8h.$$

Thus, we obtain

$$\left|\sum_{k=1}^{h}\sum_{m=1}^{m_0(k)}F(R_{km}^*)\right| < \varepsilon/8.$$

Similarly, we obtain

$$\left| \sum_{k=1}^{h} \sum_{m=1}^{m_0(k)} F(R_{km}^* - R_{km}) \right| < \varepsilon/8.$$

Therefore

$$\left| \sum_{k=1}^{h} \sum_{m=1}^{m_0(k)} F(R_{km}) \right| < \varepsilon/4.$$
 (16°)

By (15°) and (16°)

$$|F(S)| \le \left|\sum_{m=1}^{m_0} F(R_m)\right| + \left|\sum_{k=1}^{h} \sum_{m=1}^{m_0(k)} F(R_{km})\right| < \varepsilon/8h + \varepsilon/4 < \varepsilon/2,$$

because $S = \bigcup_{m=1}^{m_0} R_m \cup \bigcup_{k=1}^h \bigcup_{m=1}^{m_0(k)} R_{km}$

In general, the intervals constructing S classified into two parts so that each part satisfies the condition (d). Hence, $|F(S)| < \varepsilon$ holds.

As an application of Lemma 7, we obtain:

Proposition 13. Let f be (D) integrable on an interval R_0 in the two-dimensional Euclidean space, then if I_i (i = 1, 2, ...) is a sequence of intervals in R_0 such that:

$$I_1 \supset I_2 \supset \ldots$$
 and $|\operatorname{proj}_y(I_i)| \to 0$,

we have $\lim_{i\to\infty} F(I_i) = 0$.

Proof. There exists a point $q \in \bigcap_{i=1}^{\infty} I_i$. Since $B_h \uparrow R_0$ by (1) of Lemma 7, there exists an h_0 such that $q \in B_{h_0}$. Hence, $I_i \cap B_{h_0} \neq \emptyset$ for every $i \in N$. For $\varepsilon > 0$, take an $i_0 = i_0(\varepsilon)$ so that $|\operatorname{proj}_y(I_i)| < \min\{\rho^*(h_0,\varepsilon), 1/h_0\}$ for every $i \ge i_0$ ($\rho^*(h_0,\varepsilon)$) is the number indicated in Lemma 7). In this case, $\operatorname{norm}(\operatorname{proj}_y(I_i)) < 1/h_0$ for every $i \ge i_0$. Hence, by Lemma 7, $|F(I_i)| < \varepsilon$ holds for every $i \ge i_0$.

For an interval $I = [a_1, b_1; a_2, b_2; \dots; a_n, b_n]$ in E_n , we denote by $\mathbf{R}_m(I)$ the family of all intervals which are written; $[a_1 + (k_1(b_1 - a_1))/m, a_1 + ((k_1 + 1)(b_1 - a_1))/m; a_2 + (k_2(b_2 - a_2))/m, a_2 + ((k_2 + 1)(b_2 - a_2))/m; \dots; a_n + (k_n(b_n - a_n))/m, a_n + ((k_n + 1)(b_n - a_n))/m]$, where k_i is an integer with $0 \le k_i \le m - 1$ for $i = 1, 2, \dots, n$.

Lemma 8. Let f be (D) integrable on an interval R_0 in E_{n_0} $(n_0 \ge 2)$. Given a sequence of positive numbers ε_n (n = 1, 2, ...) such that $\varepsilon_n \downarrow 0$ and $\sum_{m=n+1}^{\infty} \varepsilon_m < \varepsilon_n$ for every $n \in N$, there exist:

nondecreasing sequences of closed sets A_i (i = 1, 2, ...) and D_i (i = 1, 2, ...) such that

- (1) $\mu_{n_0}(R_0 \bigcup_{i=1}^{\infty} A_i) = 0$ and $\mu_{n_0}(R_0 \bigcup_{i=1}^{\infty} D_i) = 0;$
- (2) $A_i \supset D_i$ for every $i \in N$;
- (3) f is Lebesgue integrable on D_i for every $i \in N$,

and a nonincreasing sequence of positive numbers τ_i^* (i = 1, 2, ...) with $\tau_i^* \downarrow 0$,

in such a way that the following statement (4) holds:

(4) For each $i \in N$ the following holds: If S is a (**)-elementary system consisting of (*)-elementary systems S_l $(l = 1, 2, ..., l_0)$, where for each l

 S_l is a (*)-elementary system consisting of intervals written

$$I_{lj} \ (j = 1, 2, \dots, j_0(l)),$$

such that

(4.0)
$$norm\left(\underset{E_{n_0-1}}{\text{proj}}_{y}(S_l) \right) < \tau_i^* \text{ for } l = 1, 2, \dots, l_0,$$

and for which there exists a non-empty measurable set Y in $\operatorname{proj}_{E_{n_0-1}} y(R_0)$ such that:

(4.1)
$$Y \subset \underset{E_{n_0-1}}{\operatorname{proj}} y(S^\circ) \cap \underset{E_{n_0-1}}{\operatorname{proj}} y(A_i);$$

(4.2) $\mu_{n_0-1} \left(\underset{E_{n_0-1}}{\operatorname{proj}} y(S) - Y \right) < \tau_i^*;$
(4.3) $Y \cap \underset{E_{n_0-1}}{\operatorname{proj}} y((S_l)^\circ) \neq \emptyset$ for every $l \in \{1, 2, \dots, l_0\};$

(4.4) for each $l \in \{1, 2, \dots, l_0\}$ if $q \in Y \cap \underset{E_{n_0-1}}{\operatorname{proj}} y((S_l)^\circ)$, then

$$(I_{lj})^q \cap (A_i)^q \neq \emptyset$$
 for every $j \in \{1, 2, \dots, j_0(l)\},\$

then the following inequality holds:

$$\left|F(S) - (L)\int_{S \cap D_i} f\right| < \varepsilon_i.$$

We emphasize that, in the two-dimensional case, we can remove the assumption (4.0)in the statement (4) of Lemma 8 above. In detail:

Lemma 9. When $n_0 = 2$, for the $\{A_i\}_{i=1}^{\infty}$, $\{D_i\}_{i=1}^{\infty}$ and $\{\tau_i^*\}_{i=1}^{\infty}$ indicated in Lemma 8 the following statement (4^*) holds:

(4*) For every $i \in N$, the following holds: Let S be a (**)-elementary system with the form indicated in (4) of Lemma 8 (without the assumption of (4.0)). If, for such an S, there exists a non-empty measurable set Y in $\operatorname{proj}_{E_{n_0-1}} y(R_0)$ satisfying the conditions (4.1), (4.2), (4.3) and (4.4) in Lemma 8, then $\left|F(S) - (L)\int_{S\cap D_i} f\right| < \varepsilon_i$ holds.

Proof of Lemma 8. For simplicity, we prove only for the case when $n_0 = 2$ and $R_0 =$ [0,1;0,1]. For the $\{\varepsilon_n\}_{n=1}^{\infty}$ given in the lemma, we define $\{\varepsilon_n^{**}\}_{n=1}^{\infty}$ as in (6°) . Let n_i, m_i and $F_{n_im_i}$ (i = 1, 2, ...) be the sequences of integers and the sequence of closed sets obtained as in (I), associating with R_0 , $\{\overline{M}_n\}_{n=1}^{\infty}$ and $\{\varepsilon_n^{**}\}_{n=1}^{\infty}$. Put

$$\tau_i = (1/2) \min\{1/m_i, \ \rho^*(m_i, \ \varepsilon_i/2^4)\} \text{ for each } i \in N,$$
(17°)

where $\rho^*(h,\varepsilon)$ is the number defined in (12°). Then, τ_i (i = 1, 2, ...) is a nonincreasing sequence with $\tau_i \downarrow 0$.

For each $i \in N$, take an $h(i) \in N$ so that

$$h(i) > i, \ h(j) > h(i) \text{ for } j > i \text{ and } \mu_2(F_{n_i m_i} - F_{m_{h(i)}}) < \tau_i.$$
 (18°)

Put

$$A_i = F_{n_i m_i} \text{ and } D_i = F_{n_i m_i} \cap F_{m_{h(i)}} \text{ for each } i \in N.$$
(19°)

Then

$$A_i \supset D_i$$
 and $\mu_2(A_i - D_i) < \tau_i$ for each $i \in N$.

Put

$$\tau_i^* = (1/2) \min \left\{ \tau_i, \ \eta(m_{h(i)}, \ \varepsilon_{h(i)}/2^5) \right\} \text{ for each } i \in N.$$
(20°)

Then, $\{A_i\}_{i=1}^{\infty}$ and $\{D_i\}_{i=1}^{\infty}$ are nondecreasing sequences of closed sets satisfying (1), (2) and (3) of the lemma, and $\{\tau_i^*\}_{i=1}^\infty$ is a nonincreasing sequence with $\tau_i^* \downarrow 0$ by (4°). Next, we shall prove that the statement (4) holds for them. The proof requires three steps.

Take an $i \in N$ and fix. Under the assumption of (4) of the lemma:

(i) The case when $\mu_1(Y \cap \operatorname{proj}_y((S_l)^\circ)) > 0$ for $l = 1, 2, \ldots, l_0$: There exists an $m_0(i)$ with

$$m_0(i) > m_i \tag{21^\circ}$$

such that: for each pair l, j with $l \in \{1, 2, ..., l_0\}$ and $j \in \{1, 2, ..., j_0(l)\}$, there exists a non-empty family of cells belonging to $\mathbf{R}_{m_0(i)}(I_{lj})$, denoted by

$$R_{ljs} \ (s = 1, 2, \dots, s_0(l, j)),$$

such that:

1) $R_{ljs} \cap A_i \neq \emptyset$ for $s = 1, 2, \dots, s_0(l, j);$

2) $R \cap A_i = \emptyset$ for the other cells R belonging to $\mathbf{R}_{m_0(i)}(I_{lj})$;

3)
$$\mu_2 \left(\bigcup_{s=1}^{s_0(l,j)} R_{ljs} - A_i \right) < \tau_{h(i)} / \sum_{l=1}^{l_0} j_0(l);$$

and, further, when we denote the family of R_{ljs} for which

$$R_{ljs} \cap D_i \neq \emptyset$$
, where $s \in \{1, 2, \dots, s_0(l, j)\}$

by R_{ljs} $(s = 1, 2, ..., s_1(l, j))$ (possibly empty), where $s_1(l, j) \leq s_0(l, j)$ (without loss of generality, such expression is possible), we have

4)
$$\mu_2 \left(\bigcup_{s=1}^{s_1(l,j)} R_{ljs} - D_i \right) < \tau_{h(i)} / \sum_{l=1}^{l_0} j_0(l)$$

Denote, for each pair l, j, the set $\cup (\operatorname{proj}_{y}(R) - \operatorname{proj}_{y}((R)^{\circ}))$, where the union \cup is over all cells R belonging to $\mathbf{R}_{m_{0}(i)}(I_{lj})$, by E_{lj} . Then, $E_{lj} = E_{lj'}$ for $j, j' \in \{1, 2, \ldots, j_{0}(l)\}$. Denote the common set by E_{l} .

Now put $Y_l = (Y - E_l) \cap \operatorname{proj}_{y}((S_l)^{\circ})$ for $l = 1, 2, \ldots, l_0$. Then, we have

$$Y_l \cap Y_{l'} = \emptyset \text{ for } l, \ l' \in \{1, 2, \dots, l_0\} \text{ with } l \neq l';$$
$$\cup_{l=1}^{l_0} Y_l \subset Y \text{ and } \mu_1(Y - \cup_{l=1}^{l_0} Y_l) = 0.$$

In this case, as seen in [9, proof of Lemma 3], for each $l \in \{1, 2, ..., l_0\}$ there exists a finite sequence of intervals in $\operatorname{proj}_u(R_0)$ written

$$J(y_v^l) \ (v = 1, 2, \dots, v_0(l)),$$

having the following properties:

- $1^{*}) \ y_{v}^{l} \in Y_{l} \text{ for } v = 1, 2, \dots, v_{0}(l);$ $2^{*}) \ y_{v}^{l} \in (J(y_{v}^{l}))^{\circ} \text{ for } v = 1, 2, \dots, v_{0}(l);$ $3^{*}) \ \cup_{v=1}^{v_{0}(l)} J(y_{v}^{l}) \subset \operatorname{proj}_{y}((S_{l})^{\circ});$ $4^{*}) \ \mu_{1} \left(Y_{l} \cup_{v=1}^{v_{0}(l)} J(y_{v}^{l})\right) < \tau_{i}^{*}/l_{0};$ $5^{*}) \ norm(J(y_{v}^{l})) < 1/m_{i} \text{ for } v = 1, 2, \dots, v_{0}(l);$ $6^{*}) \ J(y_{v}^{l}) \cap J(y_{v'}^{l}) = \emptyset \text{ for } v \neq v';$
- 7^{*}) The both end-points of $J(y_v^l)$ belong to Y_l .

280

(Refore to [9, Remark 1, (1)] for the case $n_0 - 1 \ge 2$.)

By 3^*), 4^*) and (4.2), we have:

8*)
$$\mu_1(\operatorname{proj}_y(S) - \bigcup_{l=1}^{l_0} \bigcup_{v=1}^{v_0(l)} J(y_v^l)) < 2\tau_i^*$$

Because, $\mu_1(\operatorname{proj}_y(S) - \bigcup_{l=1}^{l_0} \bigcup_{v=1}^{v_0(l)} J(y_v^l)) = \sum_{l=1}^{l_0} \mu_1(\operatorname{proj}_y(S_l) - \bigcup_{v=1}^{v_0(l)} J(y_v^l)) \le \sum_{l=1}^{l_0} \mu_1(\operatorname{proj}_y(S_l) - Y_l) + \sum_{l=1}^{l_0} \mu_1(Y_l - \bigcup_{v=1}^{v_0(l)} J(y_v^l)) < \mu_1(\operatorname{proj}_y(S) - \bigcup_{l=1}^{l_0} Y_l) + \tau_i^* \le \mu_1(\operatorname{proj}_y(S) - Y) + \mu_1(Y - \bigcup_{l=1}^{l_0} Y_l) + \tau_i^* < 2\tau_i^*.$

In this case, as seen in [9, proof of Lemma 3], $J(y_v^l)$ $(v = 1, 2, ..., v_0(l))$ can be chosen to have the following properties (α) and (β) in addition to the properties 1^*)- 7^*) above:

(α) For each $l \in \{1, 2, \ldots, l_0\}$, put

$$I_v^l = \operatorname{proj}_x(R_0) \times J(y_v^l) \text{ for } v = 1, 2, \dots, v_0(l).$$

Then, for every interval $I_v^l \cap R_{ljs}$ belonging to the family: $\{I_v^l \cap R_{ljs} : (R_{ljs})^{y_v^l} \cap (A_i)^{y_v^l} \neq \emptyset,$

 $(\cdots - i)$

where
$$j \in \{1, 2, \dots, j_0(l)\}$$
 and $s \in \{1, 2, \dots, s_0(l, j)\}\}$ (22°)

which is non-empty, we have

$$\operatorname{proj}_{y}(I_{v}^{l} \cap R_{ljs}) = J(y_{v}^{l}) \text{ for every } v \in \{1, 2, \dots, v_{0}(l)\}.$$

(β) For each $l \in \{1, 2, ..., l_0\}$, put

$$I_{vj}^{l} = \operatorname{proj}_{x}(I_{lj}) \times J(y_{v}^{l}) \text{ for } v = 1, 2, \dots, v_{0}(l) \text{ and } j \in 1, 2, \dots, j_{0}(l),$$

and, in each I_{vj}^l , consider the family of all two-dimensional intervals I contained in I_{vj}^l , such that the both sides of I parallel to y-axis, say ss(I), belong to $K, (I - ss(I)) \subset I_{vj}^l - K$ and $\operatorname{proj}_y(I) = \operatorname{proj}_y(I_{vj}^l)$, where K is the closed set consisting of the set $\cup(R_{ljs} \cap I_{vj}^l), \cup$ is over all $R_{ljs}, s = 1, 2, \ldots, s_0(l, j)$ with $(R_{ljs})^{y_v^l} \cap (A_i)^{y_v^l} \neq \emptyset$, and the both sides of I_{vj}^l parallel to y-axis. Denote the family by

$$L_{vjz}^{l} (z = 1, 2, \dots, z_0(l, v, j))$$

For simplicity, for each pair l, v with $l \in \{1, 2, ..., l_0\}$ and $v \in \{1, 2, ..., v_0(l)\}$, denote the family

$$L_{vjz}^{l}$$
 $(j = 1, 2, \dots, j_0(l), z = 1, 2, \dots, z_0(l, v, j))$

by

$$L_{vw}^{l} \ (w = 1, 2, \dots, w_0(l, v)).$$
 (23°)

Then we have

$$L_{vw}^l \cap A_i = \emptyset$$
 for $w = 1, 2, \ldots, w_0(l, v);$

and L_{vw}^{l} $(l = 1, 2, ..., l_0, v = 1, 2, ..., v_0(l), w = 1, 2, ..., w_0(l, v))$ are mutually disjoint.

Next, for each $l \in \{1, 2, ..., l_0\}$, denote the family of intervals contiguous to the closed set consisting of $\bigcup_{v=1}^{v_0(l)} J(y_v^l)$ and the both end-points of $\operatorname{proj}_y(S_l)$ by

$$J_u^{*l} \ (u = 1, 2, \dots, u_0(l)).$$

(Refer to [9, Remark 1, (2)] for the case of $n_0 - 1 \ge 2$.) Put

$$I_u^{*l} = \operatorname{proj}_x(R_0) \times J_u^{*l} \text{ for } u = 1, 2, \dots, u_0(l);$$

$$I_{uj}^{*l} = I_u^{*l} \cap I_{lj} \text{ for } u = 1, 2, \dots, u_0(l) \text{ and } j = 1, 2, \dots, j_0(l).$$
(24°)

(i,1) Denote the family of intervals indicated in (α) (defined in (22°)):

$$\{I_v^l \cap R_{ljs} : (R_{ljs})^{y_v^l} \cap (A_i)^{y_v^l} \neq \emptyset, \ l \in \{1, 2, \dots, l_0\}, \ v \in \{1, 2, \dots, v_0(l)\},\$$

$$j \in \{1, 2, \dots, j_0(l)\}$$
 and $s \in \{1, 2, \dots, s_0(l, j)\}\}$

by

$$R_s \ (s=1,2,\ldots,s_0)$$

In this case without loss of generality, we can suppose that

$$R_s \cap D_i \neq \emptyset$$
 for $s \in \{1, 2, \dots, s_1\}$ and $R_s \cap D_i = \emptyset$ for $s \in \{s_1 + 1, \dots, s_0\}$,

where $0 \le s_1 \le s_0$ (if $s_1 = 0$, then the former is empty; if $s_1 = s_0$, then the latter is empty).

First, for R_s $(s = 1, 2, ..., s_1)$, we have, as seen in [9, proof of Lemm 3, (i,2)],

1) $R_s \cap M_{m_{h(i)}} \neq \emptyset$ for $s = 1, 2, \ldots, s_1$;

2)
$$\mu_2 \left(\bigcup_{s=1}^{s_1} R_s - M_{m_{h(i)}} \right) \leq \mu_2 \left(\bigcup_{s=1}^{s_1} R_s - D_i \right)$$

 $\leq \sum_{l=1}^{l_0} \sum_{j=1}^{j_0(l)} \mu_2 \left(\bigcup_{s=1}^{s_1(l,j)} R_{ljs} - D_i \right)$
 $< \sum_{l=1}^{l_0} \left((\tau_{h(i)} / \sum_{l=1}^{l_0} j_0(l)) \times (j_0(l)) \right)$
 $= \tau_{h(i)} < \delta \left(m_{h(i)}, \varepsilon_{h(i)} / 2^{11} \right)$ by 4) above

Further

3) $norm(R_s) < 1/m_0(i) < 1/m_i < 1/m_{h(i)}$, since $m_0(i) > m_i$ and i < h(i) by (21°) and (18°).

Hence, by the definition of (D) integrability we have

$$\left|\sum_{s=1}^{s_1} F(R_s) - \sum_{s=1}^{s_1} (L) \int_{R_s \cap F_{m_{h(i)}}} f\right| < \varepsilon_{h(i)} / 2^{11}.$$

282

On the other hand, as in [9, proof of Lemma 3, (i,2)]

$$\left|\sum_{s=1}^{s_1} (L) \int_{R_s \cap (F_{m_{h(i)}} - D_i)} f\right| < \varepsilon_{h(i)} / 2^8.$$

Hence

$$\left|\sum_{s=1}^{s_1} F(R_s) - \sum_{s=1}^{s_1} (L) \int_{R_s \cap D_i} f\right| < \varepsilon_i / 2^{11} + \varepsilon_{h(i)} / 2^8.$$

Next, consider for R_s $(s = s_1 + 1, ..., s_0)$. Then, as seen in [9, proof of Lemma 3, (i,2)] we have

(1) $R_s \cap \overline{M}_{m_i} \neq \emptyset$ for $s = s_1 + 1, \dots, s_0$; (2) $\mu_2 \left(\bigcup_{s=s_1+1}^{s_0} R_s \right) < \delta(m_i, \varepsilon_i/2^7)$.

Further, we have

(3) $norm(R_s) < 1/m_i$ for $s = s_1 + 1, \dots, s_0$.

Hence, by Lemma 6

$$\left|\sum_{s=s_1+1}^{s_0} F(R_s) - \sum_{s=s_1+1}^{s_0} (L) \int_{R_s \cap F_{m_i}} f\right| < 4\varepsilon_i/2^7 = \varepsilon_i/2^5.$$

Therefore, as in [9, proof of Lemma 3, (i,2)], we obtain

$$\left|\sum_{s=1}^{s_0} F(R_s) - \sum_{s=1}^{s_0} (L) \int_{R_s \cap D_i} f\right| < \varepsilon_i / 2^7 + 3\varepsilon_i / 2^5.$$

(i,2) For the family indicated in (β) (defined in (23°)):

$$L_{vw}^{l}$$
 $(v = 1, 2, \dots, v_0(l), w = 1, 2, \dots, w_0(l, v))$:

Corresponding to each two-dimensional interval L_{vw}^l , consider the one-dimensional interval, say J_{vw}^l , determined uniquely by the following four conditions, by virtue of the assumption of (4.4) of the lemma:

1°) J_{vw}^l is contained in an interval, say J_{vw}^{*l} , which is one of the intervals contiguous to the closed set consisting of the set $(A_i)^{y_v^l}$, i.e., $(F_{n_im_i})^{y_v^l}$ and the both end-points of the interval $(R_0)^{y_v^l}$;

2°) One end-point of J_{vw}^l is one of the end-points of $(L_{vw}^l)^{y_v^l}$;

3°) The other end-point of J_{vw}^l is the characteristic point of the interval J_{vw}^{*l} taken in 1°) above, say p_{vw}^l ;

4°) $J_{vw}^l \supset (L_{vw}^l)^{y_v^l}$.

In this case, J_{vw}^l $(w = 1, 2, ..., w_0(l, v))$ are classified into two parts: J_{vw}^{l1} $(w = 1, 2, ..., w_1(l, v))$ and J_{vw}^{l2} $(w = 1, 2, ..., w_2(l, v))$ so that each part consists of mutually disjoint intervals. Denote the interval associated with J_{vw}^{l1} in 1°) by J_{vw}^{*l1} . Similarly, we

define J_{vw}^{*l2} . We denote the characteristic point of J_{vw}^{*l1} by p_{vw}^{l1} . Similarly, we define p_{vw}^{l2} . We denote the characteristic numbers of p_{vw}^{l1} and p_{vw}^{l2} by h_{vw}^{l1} and h_{vw}^{l2} , respectively. We have $n_i \leq h_{vw}^{l1} \leq m_i$ and $n_i \leq h_{vw}^{l2} \leq m_i$.

Put

$$H_{vw}^{l1} = J_{vw}^{l1} \times J(y_v^l)$$
 for $v = 1, 2, \dots, v_0(l)$ and $w = 1, 2, \dots, w_1(l, v)$.

For each $k \in N$ with $n_i \leq k \leq m_i$, denote the families of all intervals $J_{vw}^{l_1}$ and $H_{vw}^{l_1}$ for which $h_{vw}^{l_1} = k$ by

$$J_{vw}^{l1k}$$
 ($w = 1, 2, \dots, w_1(l, v, k)$) and H_{vw}^{l1k} ($w = 1, 2, \dots, w_1(l, v, k)$),

respectively. Then, H_{vw}^{l1k} $(l = 1, 2, ..., l_0, v = 1, 2, ..., v_0(l), w = 1, 2, ..., w_1(l, v, k))$ is an elemetary system in R_0 such that:

(1) $H_{vw}^{l1k} \cap \overline{M}_k \neq \emptyset;$ (2) $\mu_2 \left(\bigcup_{l=1}^{l_0} \bigcup_{v=1}^{v_0(l)} \bigcup_{w=1}^{w_1(l,v,k)} H_{vw}^{l1k} \right) < \varepsilon_k^{**} \leq \delta(k, \varepsilon_k/2^{k+5})$ as seen in [9, proof of Lemma 3, (i,1)];

$$\begin{aligned} (3) \ norm \ (H_{vw}^{l1k}) &= \max\{|J_{vw}^{l1k}|, norm(J(y_v^l))\} \\ &\leq \max\{\varepsilon_k^{**}, 1/m_i\} \ (\text{by } h_{vw}^{l1} = k \text{ and } 5^*)) \\ &\leq 1/k \ (\text{by } (6^\circ) \text{ and } k \leq m_i). \end{aligned}$$

Hence, by Lemma 6

$$\left|\sum_{l=1}^{l_0}\sum_{v=1}^{v_0(l)}\sum_{w=1}^{w_1(l,v,k)}F(H_{vw}^{l1k}) - \sum_{l=1}^{l_0}\sum_{v=1}^{v_0(l)}\sum_{w=1}^{w_1(l,v,k)}(L)\int_{H_{vw}^{l1k}\cap F_k}f\right| < 4(\varepsilon_k/2^{k+5}) = \varepsilon_k/2^{k+3}.$$

Further, as in [9, proof of Lemma 3, (i,1)]

$$\left|\sum_{l=1}^{l_0}\sum_{v=1}^{v_0(l)}\sum_{w=1}^{w_1(l,v,k)}(L)\int_{H_{vw}^{l1k}\cap F_k}f\right| < \varepsilon_k/2^{k+5}.$$

Therefore

$$\left|\sum_{k=n_i}^{m_i} \sum_{l=1}^{l_0} \sum_{v=1}^{v_0(l)} \sum_{w=1}^{w_1(l,v,k)} F(H_{vw}^{l1k})\right| < \varepsilon_i/8.$$

Consequently

$$\left|\sum_{l=1}^{l_0}\sum_{v=1}^{v_0(l)}\sum_{w=1}^{w_1(l,v)}F(H_{vw}^{l1})\right| < \varepsilon_i/8.$$

Similarly

$$\left|\sum_{l=1}^{l_0}\sum_{v=1}^{v_0(l)}\sum_{w=1}^{w_1(l,v)}F(H_{vw}^{l1}-L_{vw}^{l1})\right| < \varepsilon_i/8.$$

Hence

$$\left|\sum_{l=1}^{l_0} \sum_{v=1}^{v_0(l)} \sum_{w=1}^{w_1(l,v)} F(L_{vw}^{l1})\right| < \varepsilon_i/4.$$

Thus, since $L_{vw}^{l_1} \cap D_i = \emptyset$,

$$\left|\sum_{l=1}^{l_0}\sum_{v=1}^{v_0(l)}\sum_{w=1}^{w_1(l,v)} \left(F(L_{vw}^{l_1}) - (L)\int_{L_{vw}^{l_1} \cap D_i} f\right)\right| < \varepsilon_i/4.$$

Similarly

$$\left| \sum_{l=1}^{l_0} \sum_{v=1}^{v_0(l)} \sum_{w=1}^{w_2(l,v)} \left(F(L_{vw}^{l2}) - (L) \int_{L_{vw}^{l2} \cap D_i} f \right) \right| < \varepsilon_i / 4$$

Therefore

$$\left| \sum_{l=1}^{l_0} \sum_{v=1}^{v_0(l)} \sum_{w=1}^{w_0(l,v)} \left(F(L_{vw}^l) - (L) \int_{L_{vw}^l \cap D_i} f \right) \right| < \varepsilon_i/2.$$

(i,3): For I_{uj}^{*l} $(l = 1, 2, ..., l_0, u = 1, 2, ..., u_0(l), j = 1, 2, ..., j_0(l))$ defined in (24°): For each pair l, u with $l \in \{1, 2, ..., l_0\}$ and $u \in \{1, 2, ..., u_0(l)\}$, denote the (*)-elementary system:

$$I_{uj}^{*l} \ (j = 1, 2, \dots, j_0(l))$$

by S_u^l and consider the (**)-elementary system consisting of (*)-elementary systems

$$S_u^l \ (l = 1, 2, \dots, l_0, \ u = 1, 2, \dots, u_0(l)).$$

(Refer to [9, Remark 1, (3)] for the case of $n_0 - 1 \ge 2$.)

Then, as seen in [9, proof of Lemma 3]

there exists a $y_{lu} \in \operatorname{proj}_y(S_u^l) \cap \operatorname{proj}_y(B_{m_i})$ for which $(I_{uj}^{*l})^{y_{lu}} \cap (B_{m_i})^{y_{lu}} \neq \emptyset$ for $j = 1, 2, \ldots, j_0(l)$, for each pair l, u with $l \in \{1, 2, \ldots, l_0\}$ and $u \in \{1, 2, \ldots, u_0(l)\}$;

$$\sum_{l=1}^{l_0} \sum_{u=1}^{u_0(l)} \left| \operatorname{proj}_y(S_u^l) \right| \le \mu_1 \left(\operatorname{proj}_y(S) - Y \right) + \mu_1 \left(\bigcup_{l=1}^{l_0} Y_l - \bigcup_{l=1}^{l_0} \bigcup_{v=1}^{v_0(l)} J(y_v^l) \right) \le \tau_i^* + \tau_i^* \le \tau_i < \rho^*(m_i, \varepsilon_i/2^4) \text{ by (4.2) and } 4^*);$$

and further, by (4.0)

 $norm(\operatorname{proj}_{y}(S_{u}^{l})) \leq norm(\operatorname{proj}_{y}(S_{l})) < \tau_{i}^{*} < \tau_{i} < 1/m_{i}$ for every pair l, u with $l \in \{1, 2, \ldots, l_{0}\}$ and $u \in \{1, 2, \ldots, u_{0}(l)\}$.

(**Remark A**: When $n_0 = 2$, the assumption (4.0) is not needed. Because, by 8^*), (20°) and (17°) we have $\mu_1(\text{proj}_y(I_{uj}^{*l})) = \mu_1(J_u^{*l}) < 2\tau_i^* \leq \tau_i < 1/m_i$.)

Therefore, by Lemma 7

$$\left|\sum_{l=1}^{l_0}\sum_{u=1}^{u_0(l)}F(S_u^l)\right| < \varepsilon_i/2^4.$$

On the other hand, since $\sum_{l=1}^{l_0} \sum_{u=1}^{u_0(l)} |S_u^l| \le \sum_{l=1}^{l_0} \sum_{u=1}^{u_0(l)} |\operatorname{proj}_y(S_u^l)| < 2\tau_i^* \le \eta(m_{h(i)}, \varepsilon_{h(i)}/2^5)$ and $D_i \subset F_{m_{h(i)}}$,

$$\left|\sum_{l=1}^{l_0}\sum_{u=1}^{u_0(l)}(L)\int_{S_u^l\cap D_i}f\right| < \varepsilon_{h(i)}/2^5 \le \varepsilon_i/2^5.$$

Therefore

$$\left|\sum_{l=1}^{l_0}\sum_{u=1}^{u_0(l)}F(S_u^l) - \sum_{l=1}^{l_0}\sum_{u=1}^{u_0(l)}(L)\int_{S_u^l\cap D_i}f\right| < \varepsilon_i/2^4 + \varepsilon_i/2^5.$$

Consequently, by(i,1), (i,2) and (i,3)

$$\left|F(S) - (L)\int_{s \cap D_i} f\right| < \varepsilon_i/2^7 + 3\varepsilon_i/2^5 + \varepsilon_i/2 + \varepsilon_i/2^4 + \varepsilon_i/2^5.$$

(ii) The case when $\mu_1(Y \cap \operatorname{proj}_y((S_l)^\circ)) = 0$ for $l = 1, 2, \ldots, l_0$: As in [9, proof of Lemma 3], for every $l \in \{1, 2, \ldots, l_0\}$, there exists a $y_l \in \operatorname{proj}_y(S_l) \cap \operatorname{proj}_y(B_{m_i})$ for which $(I_{lj})^{y_l} \cap (B_{m_i})^{y_l} \neq \emptyset$ for $j = 1, 2, \ldots, j_0(l)$; $|\operatorname{proj}_y(S)| < \tau_i^* < \tau_i < \rho^*(m_i, \varepsilon_i/2^4)$; and by $(4.0) \operatorname{norm}(\operatorname{proj}_y(S_l)) < \tau_i^* < \tau_i < 1/m_i$ for $l = 1, 2, \ldots, l_0$.

(**Remark B**: When $n_0 = 2$, the condition (4.0) is not needed. Because, we have $\mu_1(Y \cap \operatorname{proj}_y((S_l)^\circ)) = 0$, and so $\mu_1(Y \cap \operatorname{proj}_y(S_l)) = 0$. Hence, by (4.2) $\mu_1(\operatorname{proj}_y(S_l)) < \tau_i^* < 1/m_i$. So $\operatorname{norm}(\operatorname{proj}_y(S_l)) < 1/m_i$ for $l = 1, 2, \ldots, l_0$.)

Hence, by Lemma 7

$$|F(S)| < \varepsilon_i/2^4$$

Further, since $\mu_2(S) \leq \mu_1(\operatorname{proj}_y(S)) < \tau_i^* < \eta(m_{h(i)}, \varepsilon_{h(i)}/2^5)$ and $D_i \subset F_{m_{h(i)}}$,

$$\left| (L) \int_{S \cap D_i} f \right| < \varepsilon_{h(i)} / 2^5 \le \varepsilon_i / 2^5.$$

Consequently

$$\left|F(S) - (L)\int_{S\cap D_i} f\right| < \varepsilon_i/2^4 + \varepsilon_i/2^5.$$

(iii) The case when $\mu_1(Y \cap \operatorname{proj}_y((S_l)^\circ)) > 0$ for some $l \in \{1, 2, \ldots, l_0\}$ and $\mu_1(Y \cap \operatorname{proj}_y((S_l)^\circ)) = 0$ for some $l \in \{1, 2, \ldots, l_0\}$: This case follows from the results of (i) and (ii).

By (i), (ii) and (iii) the proof is complete.

Proof of Lemma 9. The proof of Lemma 9 is complete by Remarks A and B with the proof of Lemma 8.

Theorem 4. Let $f(x_1, x_2, \ldots, x_{n_0})$ be (D) integrable on the interval $R_0 = [a_1, b_1; a_2, b_2; \ldots; a_{n_0}, b_{n_0}]$ in the n_0 -dimensional Euclidean space E_{n_0} $(n_0 \ge 2)$. Then, the following two statements hold.

(1) Given any $n \in \{1, 2, ..., n_0\}$, for almost all $q = (x_1, x_2, ..., x_{n-1}, x_{n+1}, ..., x_{n_0})$ in the $(n_0 - 1)$ -dimensional interval $[a_1, b_1; a_2, b_2; ...; a_{n-1}, b_{n-1}; a_{n+1}, b_{n+1}; ...; a_{n_0}, b_{n_0}]$ the function $f(x_1, x_2, ..., x_{n_0})$ considered as a function of x_n in the one-dimensional interval $[a_n, b_n]$ is (D) integrable on $[a_n, b_n]$.

(2) Corresponding to each $n \in \{1, 2, ..., n_0\}$, there exists a nondecreasing sequence of closed sets D_i (i = 1, 2, ...) in R_0 such that $\mu_{n_0}(R_0 - \bigcup_{i=1}^{\infty} D_i) = 0$ and

$$(D)\int_{a_n}^{b_n} f(x_1, x_2, \dots, x_n, \dots, x_{n_0}) dx_n = \lim_{i \to \infty} (L)\int_{(D_i)^q} f(x_1, x_2, \dots, x_n, \dots, x_{n_0}) dx_n$$

for almost all $q = (x_1, x_2, \dots, x_{n-1}, x_{n+1}, \dots, x_{n_0})$ in the $(n_0 - 1)$ -dimensional interval $[a_1, b_1; a_2, b_2; \dots; a_{n-1}, b_{n-1}; a_{n+1}, b_{n+1}; \dots; a_{n_0}, b_{n_0}]$.

Proof. For simplicity, we prove only for the case when $n_0 = 2$ and $R_0 = [0, 1; 0, 1]$. Let $\{\varepsilon_n\}_{n=1}^{\infty}$ be the sequence of positive numbers given in (5°) such that $\varepsilon_n \downarrow 0$ and $\sum_{m=n+1}^{\infty} \varepsilon_m < \varepsilon_n$ for every $n \in N$. Let

$$A_i = F_{n_i m_i}$$
 $(i = 1, 2, ...)$ and $D_i = F_{n_i m_i} \cap F_{m_{h(i)}}$ $(i = 1, 2, ...)$

$$\tau_i^* \ (i=1,2,\dots)$$

be the nondecreasing sequences of closed sets and the sequence of positive numbers defined as seen in the proof of Lemma 8 for the sequence $\{\varepsilon_n\}_{n=1}^{\infty}$. Let $Z = \operatorname{proj}_y(R_0) - \bigcup_{i=1}^{\infty} \operatorname{proj}_y(F_{n_im_i})$ (defined in (8°)) as in (I).

As seen in [9, proof of Theorem 1], there exists a set X_0 of μ_1 -measure zero with $X_0 \supset Z$ such that for every $y \in \operatorname{proj}_u(R_0) - X_0$, we have:

(a) $(A_i)^y$ (i = 1, 2, ...) is a nondecreasing sequence of closed sets whose union is $(R_0)^y$; and

(b) $(D_i)^y$ (i = 1, 2, ...) is a nondecreasing sequence of closed sets such that $(D_i)^y \subset (A_i)^y$, $\mu_1((R_0)^y - \bigcup_{i=1}^{\infty} (D_i)^y) = 0$ and f(x, y) is Lebesgue integrable on $(D_i)^y$ as a function of x for every $i \in N$.

Hence, by [9, Remark 2], in order that the function f(x, y) is (D) integrable on [0, 1] as a function of x for almost all $y \in \operatorname{proj}_y(R_0) - X_0$, it is sufficient to prove that, when we denote the set of all $y \in \operatorname{proj}_y(R_0) - X_0$ for which one at least of the statements of (1) and (2) in [9, Lemma 5] is not true by Y^* , we have $\mu_1(Y^*) = 0$. In order to prove it, supposing $\mu_1(Y^*) > 0$, we lead a contradiction. For the proof, we can proceed in the same way as in the case of [9, Theorem 1], making the following alterations:

(1) We employ τ_i^* defined in (20°) of this paper instead of κ_i^* defined in [9, (14°)];

(2) We employ Lemma 8 of this paper instead of [9, Lemma 3];

(3) For each $s \in \{1, 2, ..., s_0\}$ with $\mu_1(Z_s) \neq \emptyset$, we choose the one-dimensional elementary system K_l^s $(l = 1, 2, ..., l_0(s))$ indicated in [9, proof of Theorem 1] so that it satisfies the condition

$$norm(K_l^s) < \tau_{i'(s)}^*$$
 for $l = 1, 2, \dots, l_0(s)$,

in addition to the following conditions indicated in $[9, (23^{\circ}) \text{ and } (24^{\circ})]$:

 $(K_l^s)^\circ \cap Z_s \neq \emptyset$ for $l = 1, 2, \dots, l_0(s);$

 $\mu_1(Z_s - \bigcup_{l=1}^{l_0(s)} K_l^s) < k_0/2s_0$; and

$$\mu_1(\bigcup_{l=1}^{l_0(s)} K_l^s - Z_s) < (1/s_0)(\min\{\delta, \tau_{i'(s)}^*\}).$$

From this fact, each of the following two-dimensional (**)-elementary systems:

 $S_l^s \ (s \in \Delta_i, \ l \in \{1, 2, \dots, l_0(s)\}) \text{ and } S_l^s \ (s \in \Lambda_i, \ l \in \{1, 2, \dots, l_0(s)\}),$

considered in (A) and (B) as in [9, proof of Theorem 1], respectively, has the following property:

(4.0) $\operatorname{norm}(\operatorname{proj}_{u}(S_{l}^{s})) = \operatorname{norm}(K_{l}^{s}) < \tau_{i}^{*}.$

By virtue of this fact, we can employ Lemma 8 of this paper instead of [9, Lemma 3].

Now, put

$$W_0 = X_0 \cup Y^*.$$

Then, $\mu_1(W_0) = 0$, and for every $y \in \operatorname{proj}_y(R_0) - W_0$, f(x, y) is (D) integrable as a function of x on [0, 1], $\lim_{i \to \infty} (L) \int_{(D_i)^y} f(x, y) dx$ exists, and the limit value coincides with $(D) \int_0^1 f(x, y) dx$.

§2 Two-dimensional integration

Theorem 5 (Fubini's Theorem). Let f(x, y) be (D) integrable on an interval $R_0 = [a, b; c, d]$ in the two-dimensional Euclidean space E_2 . Then:

(1) For almost all $y \in [c, d]$, the function f(x, y) considered as a function of x is (D) integrable on [a, b];

(1') For almost all $x \in [a, b]$, the function f(x, y) considered as a function of y is (D) integrable on [c, d];

- (2) (D) $\int_{a}^{b} f(x, y) dx$ is (D) integrable on [c, d];
- (2') $(D) \int_{c}^{d} f(x, y) dy$ is (D) integrable on [a, b];

(3) (D)
$$\int_{c}^{d} \left((D) \int_{a}^{b} f(x, y) dx \right) dy = (D) \int_{a}^{b} \left((D) \int_{c}^{d} f(x, y) dy \right) dx = F([a, b; c, d]).$$

Proof. (1) and (1') are already proved in Theorem 4. Next, we prove only (2) and the first equality of (3) for the case of $R_0 = [0, 1; 0, 1]$. We omit the proof of the others, because the proof is similar. Put

288

$$f_i(y) = (L) \int_{(D_i)^y} f(x, y) dx \text{ for every } y \in \operatorname{proj}_y(R_0) - W_0, \text{ and}$$
$$= 0 \text{ for every } y \in W_0;$$

$$f(y) = (D) \int_0^1 f(x, y) dx \text{ for every } y \in \operatorname{proj}_y(R_0) - W_0, \text{ and}$$
$$= 0 \text{ for every } y \in W_0,$$

where $\{D_i\}_{i=1}^{\infty}$ is the sequence of closed sets and W_0 is the set of μ_1 -measure zero, indicated in the proof of Theorem 4.

Since then $f(y) = \lim_{i\to\infty} f_i(y)$ on $\operatorname{proj}_y(R_0)$ and $f_i(y)$ is measurable for each $i \in N$, there exists a sequence of measurable sete M_k^* (k = 0, 1, ...) such that: $\bigcup_{k=0}^{\infty} M_k^* = \operatorname{proj}_y(R_0)$; $\mu_1(M_0^*) = 0$; and for each $k \in N$, $M_k^* \cap M_0^* = \emptyset$, $M_{k+1}^* \supset M_k^*$, M_k^* is a closed set, $f_i(y)$ converges uniformly to f(y) on M_k^* , and f(y) is Lebesgue integrable on M_k^* .

Let $\{B_k\}_{k=1}^{\infty}$ be the sequence of measurable sets indicated in Lemma 7 (defined in (11°)). Put

$$Z_0 = \operatorname{proj}_y(R_0) - \bigcup_{k=1}^{\infty} \operatorname{proj}_y(D_k);$$

$$L_k = \left(\left(\operatorname{proj}_y(B_k) \cap Z_0 \right) \cup \operatorname{proj}_y(D_k) \right) \cap \left(M_0^* \cup M_k^* \right) \text{ for } k = 1, 2, \dots;$$

$$N_k = \operatorname{proj}_y(D_k) \cap M_k^* \text{ for } k = 1, 2, \dots.$$

Then, $\mu_1(Z_0) = 0$, L_k (k = 1, 2, ...) is a nondecreasing sequence of measurable sets whose union is $\operatorname{proj}_y(R_0)$ and N_k (k = 1, 2, ...) is a nondecreasing sequence of closed sets such that $N_k \subset L_k$ and $\mu_1(\operatorname{proj}_y(R_0) - \bigcup_{k=1}^{\infty} N_k) = 0$. Further f(y) is Lebesgue integrable on N_k for each $k \in N$.

For $k \in N$ and $\varepsilon > 0$, take an $i_0(k,\varepsilon)$ so that $i_0(k,\varepsilon) \ge k$, $\varepsilon_{i_0(k,\varepsilon)} < \varepsilon/7$ and $|f(y) - f_{i_0(k,\varepsilon)}(y)| < \varepsilon/7$ for every $y \in M_k^*$. Let $\lambda(k,\varepsilon)$ be a positive number such that if $\mu_2(E) < \lambda(k,\varepsilon)$, then $|(L) \int_{E \cap D_{i_0(k,\varepsilon)}} f(x,y)d(x,y)| < \varepsilon/7$. Let $\lambda^*(k,\varepsilon)$ be a positive number such that if $\mu_1(E) < \lambda^*(k,\varepsilon)$, then $|(L) \int_{E \cap N_k} f(y)dy| < \varepsilon$. Put

$$\delta^*(k,\varepsilon) = (1/2) \min\{\tau^*_{i_0(k,\varepsilon)}, \ \rho^*(k,\varepsilon/7), \ \lambda(k,\varepsilon), \ \lambda^*(k,\varepsilon/7)\}.$$

We denote, for any set $E \subset \operatorname{proj}_y(R_0)$, the set $\operatorname{proj}_x(R_0) \times E$ by E^* , and let G(I) be the interval function in $\operatorname{proj}_y(R_0)$ defined by $G(I) = F((I)^*)$ for any interval $I \subset \operatorname{proj}_y(R_0)$, where F is the interval function indicated in the definition of (D) integrability.

Next, we prove that:

For $k \in N$ and $\varepsilon > 0$, if I_t $(t = 1, 2, ..., t_0)$ is an elementary system in $\operatorname{proj}_y(R_0)$ such that

$$I_t \cap L_k \neq \emptyset$$
 for $t = 1, 2, \ldots, t_0$ and $\mu_1 \left(\bigcup_{t=1}^{t_0} I_t - L_k \right) < \delta^*(k, \varepsilon)$

then

$$\left|\sum_{t=1}^{t_0} G(I_t) - \sum_{t=1}^{t_0} (L) \int_{I_t \cap N_k} f(y) dy\right| < \varepsilon.$$

For I_t $(t = 1, 2, ..., t_0)$, denote by I_{1t} $(t = 1, 2, ..., t_1)$ the family of all intervals I_t for which $I_t \cap \operatorname{proj}_y(D_k) \neq \emptyset$, where $t \in \{1, 2, ..., t_0\}$; and by I_{2t} $(t = 1, 2, ..., t_2)$ the others. Let $\{A_k\}_{k=1}^{\infty}$ (k = 1, 2, ...) be the sequence of closed sets indicated in the proof of Theorem 4.

(i) For I_{1t} $(t = 1, 2, ..., t_1)$: By Proposition 13, there exists an elementary system H_{1t} $(t = 1, 2, ..., t_1)$ in $\operatorname{proj}_y(R_0)$ such that $(H_{1t})^\circ \supset I_{1t}$ for $t = 1, 2, ..., t_1$, $\mu_1(\bigcup_{t=1}^{t_1} H_{1t} - \bigcup_{t=1}^{t_1} I_{1t}) < \delta^*(k, \varepsilon)$, and

$$\left|\sum_{t=1}^{t_1} G(H_{1t}) - \sum_{t=1}^{t_1} G(I_{1t})\right| < \varepsilon/7.$$

In this case, for the (**)-elementary system $(H_{1t})^*$ $(t = 1, 2, ..., t_1)$ in R_0 , we have $\operatorname{proj}_y((H_{1t})^*) = H_{1t}$ and $\operatorname{proj}_y(((H_{1t})^*)^\circ) = (H_{1t})^\circ$. Further, as seen in [9, proof of Theorem 2], putting $Y = \bigcup_{t=1}^{t_1} (H_{1t})^\circ \cap \operatorname{proj}_y(A_{i_0(k,\varepsilon)})$, we have $\mu_1(\bigcup_{t=1}^{t_1} H_{1t} - Y) < \tau^*_{i_0(k,\varepsilon)}$, and $Y \cap (H_{1t})^\circ = (H_{1t})^\circ \cap \operatorname{proj}_y(A_{i_0(k,\varepsilon)}) \neq \emptyset$ for $t = 1, 2, \ldots, t_1$. Hence, by Lemma 9

$$\left|\sum_{t=1}^{t_1} F((H_{1t})^*) - \sum_{t=1}^{t_1} (L) \int_{(H_{1t})^* \cap D_{i_0(k,\varepsilon)}} f(x,y) d(x,y)\right| < \varepsilon_{i_0(k,\varepsilon)} < \varepsilon/7.$$

And so

$$\left|\sum_{t=1}^{t_1} G(H_{1t}) - \sum_{t=1}^{t_1} (L) \int_{H_{1t}} f_{i_0(k,\varepsilon)}(y) dy\right| < \varepsilon/7$$

Thus, as seen in [9, proof of Theorem 2], the following holds:

$$\left|\sum_{t=1}^{t_1} G(I_{1t}) - \sum_{t=1}^{t_1} (L) \int_{I_{1t} \cap N_k} f(y) d(y)\right| < 5\varepsilon/7.$$

(ii) For I_{2t} $(t = 1, 2, ..., t_2)$: For the (**)-elementary system $(I_{2t})^*$ $(t = 1, 2, ..., t_2)$, as seen in [9, proof of Theorem 2], we have $(I_{2t})^* \cap B_k \neq \emptyset$ for $t = 1, 2, ..., t_2$, and $\mu_1(\operatorname{proj}_y(\cup_{t=1}^{t_2}(I_{2t})^*)) < \delta^*(k,\varepsilon) < \rho^*(k,\varepsilon/7)$. Further, $\operatorname{norm}(\operatorname{proj}_y((I_{2t})^*)) = \mu_1(I_{2t}) < \delta^*(k,\varepsilon) < \tau_{i_0(k,\varepsilon)}^* \leq \tau_k^* < \tau_k < 1/m_k$ and so $\operatorname{norm}(\operatorname{proj}_y((I_{2t})^*)) < 1/k$ by (7°) for $t = 1, 2, ..., t_2$. Hence, by Lemma 7

$$\left|\sum_{t=1}^{t_2} F((I_{2t})^*)\right| < \varepsilon/7, \text{ and so } \left|\sum_{t=1}^{t_2} G(I_{2t})\right| < \varepsilon/7.$$

Therefore, as seen in [9, proof of Theorem 2] we obtain

$$\left|\sum_{t=1}^{t_2} G(I_{2t}) - \sum_{t=1}^{t_2} (L) \int_{I_{2t} \cap N_k} f(y) d(y)\right| < 2\varepsilon/7.$$

290

Thus, by (i) and (ii)

$$\left|\sum_{t=1}^{t_0} G(I_t) - \sum_{t=1}^{t_0} (L) \int_{I_t \cap N_k} f(y) d(y)\right| < \varepsilon.$$

Consequently, f(y) is (D_0) integrable on $\operatorname{proj}_y(R_0)$ and so (D) integrable on $\operatorname{proj}_y(R_0)$, and the (D) integral of f(y) on $\operatorname{proj}_y(R_0)$ coincides with $F(R_0)$.

By Proposition 11, (2) and Proposition 12, as a corollary of Theorem 5 we obtain:

Theorem 6 (Fubini's Theorem). Let f(x,y) be strongly (LA) integrable on an interval $R_0 = [a, b; c, d]$ in the two-dimensional Euclidean space E_2 . Then:

(1) For almost all $y \in [c, d]$, the function f(x, y) considered as a function of x is strongly (LA) integrable on [a, b];

(1') For almost all $x \in [a, b]$, the function f(x, y) considered as a function of y is strongly (LA) integrable on [c, d];

- (2) $(SLA) \int_{a}^{b} f(x, y) dx$ is strongly (LA) integrable on [c, d];
- (2') $(SLA) \int_{c}^{d} f(x, y) dy$ is strongly (LA) integrable on [a, b];

(3)
$$(SLA) \int_c^d \left((SLA) \int_a^b f(x, y) dx \right) dy = (SLA) \int_a^b \left((SLA) \int_c^d f(x, y) dy \right) dx$$

= $(SLA) \int_{R_0} f(x, y) d(x, y).$

As a corollary of Theorems 2 and 6, by Proposition 6 we obtain:

Theorem 7. If a finitely additive interval function F(I) in an interval $R_0 = [a, b; c, d]$ in the two-dimensional Euclidean space E_2 is derivable in the strong sense at every point of R_0 , then:

(1) For almost all $y \in [c, d]$, the function $F'_s(x, y)$ considered as a function of x is special Denjoy integrable on [a, b];

(1') For almost all $x \in [a, b]$, the function $F'_s(x, y)$ considered as a function of y is special Denjoy integrable on [c, d];

- (2) $(\mathcal{D}) \int_{a}^{b} F'_{s}(x, y) dx$ is special Denjoy integrable on [c, d];
- (2') $(\mathcal{D}) \int_{c}^{d} F'_{s}(x, y) dy$ is special Denjoy integrable on [a, b];

(3)
$$F(R_0)\left(=(SLA)\int_{R_0}F'_s(x,y)d(x,y)\right) = (\mathcal{D})\int_c^d\left((\mathcal{D})\int_a^bF'_s(x,y)dx\right)dy$$
$$= (\mathcal{D})\int_a^b\left((\mathcal{D})\int_c^dF'_s(x,y)dy\right)dx,$$

where $(\mathcal{D}) \int$ denotes the special Denjoy integral.

Problem. Does Fubini's theorem hold for the strong (LA) integral in the n_0 -dimensional case when $n_0 \ge 3$?

References

- [1] J.C. Burkill: Functions of intervals, Proc. Lond. Math. Soc., (2) 22 (1924), 275-310.
- [2] S. Kempisty: Fonctions d'Intervalle Non Additives, Actualités Sci. Indust. 824. Ensembles et Fonctions III, Paris (1939), 1-62.
- [3] R.M.Mcleod: The Generalized Riemann Integral, Math. Carus Math. Monographs 20, Math. Association of America (1980).
- [4] S. Nakanishi (formerly S. Enomoto): Sur une Totalisation dans les Espaces de Plusieurs Dimensions, I, II, Osaka Math. J., 7 (1955), 69–102, 157–178.
- [5] S. Nakanishi: A new definition of the Denjoy's special integral by the method of successive approximation, Mathematica Japonica, 41 (1995), 217–230.
- [6] S. Nakanishi: Multidimensional non-absolutely convergent integrals by the method of successive approximation, I, Mathematica Japonica, 42 (1995), 403–428.
- [7] S. Nakanishi: Approach to non-absolute integration by successive approximations, Scientiae Mathematicae Japonicae, 54 (2001), 391–426.
- [8] S. Nakanishi: A structure of an increasing sequence of closed sets whose union is a multidimensional interval, Scientiae Mathematicae Japonicae, 55 (2002), 1–15.
- [9] S. Nakanishi: Non-absolute multiple integral defined constructively on the Euclidean space and iterated integral, Scientiae Mathematicae Japonicae, 58 (2003), 495–592.
- [10] P. Romanovski: Intégrale de Denjoy dans l'espace à n dimensions, Recueil Math. Moscou, 9 (1941), 281–306.
- [11] S. Saks: Theory of the Integral, Warsaw (1937).

4-15 JONANTERAMACHI, TENNOJI-KU, OSAKA, 543-0017 JAPAN E-mail address: shizu.nakanishi@nifty.ne.jp