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Abstract. The extension of classical discriminant analysis techniques in multivariate
analysis to time series data is a problem of practical interest. Discrimination between
different classes of multivariate locally stationary processes, which constitute a class of
non-stationary processes, can be characterized by differing covariance or time varying
spectral structures. For discrimination between the multivariate non-Gaussian locally
stationary processes, Kullback-Leibler discrimination information measure has been
developed. In this paper, asymptotic error rates and limiting distributions are given
for a generalized time varying spectral disparity measure that includes foregoing cri-
teria as special case. It is well known that the log-likelihood ratio based on observed
stretch gives optimal classification. It is shown that the discriminant criterion based
on such generalized disparity measure is Gaussian optimal. A non-Gaussian optimal
discriminant criterion is also proposed in view of the LAN theorem.

1. Introduction. In multivariate analysis, many methods of discriminant analysis have
been investigated in detail (e.g. Anderson, 1984). The extension of classical discriminant
analysis techniques in multivariate analysis to time series data is a problem of practical
interest. Shumway (1982) gave an extensive review of various discriminant problems in
time series. Zhang and Taniguchi (1994) discussed the parametric discriminant problems
for non-Gaussian vector linear processes, and showed that discriminant criterion based on
an integral functional of periodogram has some good properties, for example, asymptotic
normality and non-Gaussian robustness, etc. Zhang and Taniguchi (1995) have shown ro-
bustness of Chernoff information measure to peak contamination in spectra of the process
concerned. For discrimination between non-Gaussian multivariate time series, Kakizawa et
al. (1998) have introduced a disparity measure, which includes the Kullback-Leibler dis-
crimination information and the Chernoff information measure, and gave applications to
the problems of classifying earthquakes and mining explosions.
Although the analysis for stationary time series is well established, stationary time series
models are not plausible to describe the real world. Dahlhaus (1996a, 1996b, 1996c, 1997)
has introduced an important class of non-stationary processes, called locally stationary
processes, and established the asymptotic theory of statistical inference. Discrimination
between different classes of multivariate time series that can be characterized by differ-
ing covariance or time varying structures is important in applications of occurring in the
analysis of seismic records and biometrics data. Sakiyama and Taniguchi (2004) investi-
gated the problems of classifying a multivariate non-Gaussian locally stationary process
{Xt,T} into one of two categories described by two hypotheses Πi : fi(u, λ), i = 1, 2, where
fi(u, λ) are time varying spectral density matrices. They used an approximation of the
Gaussian Kullbuck-Leibler information measure as a classification statistic for this prob-
lem and showed that this statistic is consistent. The misclassification probabilities were
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also evaluated under contiguous hypotheses. In this paper, we generalize this measure to
non-linear time varying spectral measures which include the Kullbuck-Leibler information
and the Cernoff information measure. We also propose a genuine non-Gaussian optimal
discrimination criterion based on another approach.
The time series data recoded in real phenomena such as seismic record and financial time
series, are often non-stationary and non-Gaussian. To investigate the actual performance
of our discrimination criterion to such multivariate non-stationary and non-Gaussian time
series data will be increasing importance. However, this problem requires another paper.
We will make it as a future work.
This paper is organized as follows. In Section 2 we define the multivariate non-Gaussian
locally stationary processes, and introduce a nonparametric time varying spectral density
estimator, which is due to Dahlhaus (1996a, 1996b, 1997). Section 3 gives a generalized
measure of disparity which includes Kullbuck-Leibler and Chernoff information measure.
In Section 4, we derive the limiting distributions and asymptotic error rates of our discrim-
inant statistics. We also discuss conditions for non-Gaussian robustness, and show that our
discriminant criterion is Gaussian optimal. Peak robustness of our discrimination criterion
is studied, and some numerical examples are given. In Section 5, we propose a genuine
non-Gaussian optimal discrimination criterion based on the LAN property. All the proofs
of Theorems are given in Section 6.

2. Non parametric spectral estimator of multivariate locally stationary pro-
cesses. When we deal with nonstationary processes, one of the difficult problems to solve
is how to set up an adequate asymptotic theory. To meet this Dahlhaus (1996a, 1996b,
1997) introduced an important class of nonstationary processes and developed the statis-
tical inference. We give the precise definition of multivariate locally stationary processes
which is due to Dahlhaus (2000).

Definition 1. A sequence of multivariate stochastic processes Xt,T = (X(1)
t,T , . . . , X

(m)
t,T )′,

(t = 2 − N/2, . . . , 1, . . . , T, . . . , T + N/2; T, N ≥ 1) is called locally stationary with mean
vector 0 and transfer function matrix A◦ if there exists a representation

Xt,T =
∫ π

−π

exp (iλt)A◦
t,T (λ)dξ(λ),(1)

where

(i) ξ(λ) = (ξ1(λ), . . . , ξm(λ))′ is a complex valued stochastic vector process on [−π, π] with
ξa(λ) = ξa(−λ) and

cum{dξa1(λ1), . . . , dξak
(λk)} = η(

k∑
j=1

λj)
κa1,...,ak

(2π)k−1
dλ1 . . . dλk−1,(2)

for k ≥ 2, a1, . . . , ak = 1, . . . , m, where cum{. . .} denotes the cumulant of k-th order,
and η(λ) =

∑∞
j=−∞ δ(λ + 2πj) is the period 2π extension of the Dirac delta function.

(ii) There exists a constant K and a 2π-periodic matrix valued function A : [0, 1] × R →
Cm×m with A(u,−λ) = A(u, λ) and

sup
t,λ

∣∣∣∣∣A◦
t,T (λ)a,b − A

(
t

T
, λ

)
a,b

∣∣∣∣∣ ≤ KT−1(3)

for all a, b = 1, . . . , m and T ∈ N. A(u, λ) is assumed to be continuous in u.
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f(u, λ) := A(u, λ)ΩA(u, λ)∗ is called the time varying spectral density matrix of the process,
where Ω = (κa,b)a,b=1,...,m and D∗ denotes the complex conjugate of matrix D. Write

εt :=
∫ π

−π

exp(iλt)dξ(λ),(4)

then E(εt) = 0, E(εtε
′
t) = Ω and E(εtε

′
s) for t �= s is a zero matrix. We make the following

assumption.

Assumption 1. Xt,T has the MA(∞) representation

Xt,T =
∞∑

s=−∞
at,T (s)εt−s,(5)

that is,

A◦
t,T (λ) =

∞∑
s=−∞

at,T (s) exp(−iλs),(6)

where the coefficients fulfill

sup
t

∞∑
s=−∞

∣∣∣∣{at,T (s) − as

(
t

T

)}
cd

∣∣∣∣ = O(T−1)(7)

for all c, d = 1, . . .m, with continuous matrix function as(u). Then, the condition (3) is
fulfilled for

A(u, λ) =
∞∑

s=−∞
as(u) exp(−iλs).(8)

Furthermore we make the following assumption on the transfer function matrix A(u, λ).

Assumption 2. (i) The transfer function matrix A(u, λ) is 2π-periodic in λ and the pe-
riodic extension is twice differentiable in u and λ with uniformly bounded continuous
derivatives ∂2

∂u2 A, ∂2

∂λ2 A and ∂2

∂u2
∂

∂λA.

(ii) All the eigenvalues of f(u, λ) are bounded from below and above by some constants
δ1, δ2 > 0 uniformly in u and λ.

As an estimator of f(u, λ), we use the nonparametric estimator of kernel type defined by

f̂T (u, λ) =
∫ π

−π

WT (λ − µ)IN (u, µ)dµ,(9)

where WT (ω) = M
∑∞

ν=−∞ W (M(ω + 2πν)) is the weight function and M > 0 depends on
T , and IN (u, λ) is the data tapered periodogram matrix over the segment {[uT ] − N/2 +
1, [uT ] + N/2} defined as

IN (u, λ) =
1

2πH2,N

{
N∑

s=1

h
( s

N

)
X[uT ]−N/2+s,T exp{iλs}

}

·
{

N∑
r=1

h
( r

N

)
X[uT ]−N/2+r,T exp{iλr}

}∗

.(10)
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Here h : [0, 1] → R is a data taper and H2,N =
∑N

s=1 h
(

s
N

)2
. It should be noted that

IN (u, λ) is not a consistent estimator of the spectral density. To make a consistent estimator
of f(u, λ) we have to smooth it over neighbouring frequencies.
Now we impose the following assumptions on W (·) and h(·).
Assumption 3. The weighted function W : R → [0,∞] satisfies W (x) = 0 for x /∈
[−1/2, 1/2], and is a continuous and even function satisfying

∫ 1/2

−1/2
W (x)dx = 1 and∫ 1/2

−1/2 x2W (x)dx < ∞.

Assumption 4. The data taper h : R → R satisfies (i) h(x) = 0 for all x /∈ [0, 1] and
h(x) = h(1 − x), (ii) h(x) is continuous on R, twice differentiable at all x /∈ U where U is
a finite set of R, and supx/∈U |h′′(x)| < ∞. Write

Kt(x) :=
{∫ 1

0

h(x)2dx

}−1

h(x + 1/2)2, x ∈ [−1/2, 1/2],(11)

which plays a role of kernel in the time domain.

Furthermore, we assume

Assumption 5. M = M(T ) and N = N(T ), M � N � T satisfy
√

T

M2
= o(1),

N2

T
3
2

= o(1),

√
T log N

N
= o(1).(12)

The following lemmas are multivariate version of Theorem 2.2 of Dahlhaus (1996c) and
Theorem A.2 of Dahlhaus (1997) (See also Sakiyama and Taniguchi (2003)).

Lemma 1. Assume that Assumptions 1-5 hold. Then

(i)

E(IN (u, λ)) = f(u, λ) +
N2

2T 2

∫ 1/2

−1/2

x2Kt(x)2dx
∂2

∂u2
f(u, λ)

+o

(
N2

T 2

)
+ O

(
log N

N

)
,(13)

(ii)

E(f̂ (u, λ)) = f(u, λ) +
N2

2T 2

∫ 1/2

−1/2

x2Kt(x)2dx
∂2

∂u2
f(u, λ)

+
1

2M 2

∫ 1/2

−1/2

x2W (x)2dx
∂2

∂λ2
f(u, λ)

+o

(
N2

T 2
+ M−2

)
+ O

(
log N

N

)
,(14)
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(iii)
m∑

i,j=1

V ar
(
f̂i,j(u, λ)

)
=

M

N

m∑
i,j=1

fi,j(u, λ)2
∫ 1/2

−1/2

Kt(x)2dx

·
∫ 1/2

−1/2

W (x)2dx(2π + 2π{λ ≡ 0 modπ}) + o

(
M

N

)
.(15)

Hence, we have

E
∥∥∥f̂(u, λ) − f(u, λ)

∥∥∥2

= O

(
M

N

)
+ O

(
M−2 + N2T−2

)2
= O

(
M

N

)
,(16)

where ‖A‖ is the Euclidean norm of the matrix A; ‖A‖ = {tr{AA∗}}1/2.

Lemma 2. Assume that Assumptions 1-5 hold. Let φj(u, λ), j = 1, . . . , k be m × m
matrix-valued continuous function on [0, 1]× [−π, π] which satisfies the same conditions as
the transfer function matrix A(u, λ) in Assumption 2 and φj(u, λ)∗ = φj(u, λ), φj(u,−λ) =
φj(u, λ)∗. Then

LT (φj) =
√

T

{
1
T

T∑
t=1

∫ π

−π

tr

{
φj

(
t

T
, λ

)
IN

(
t

T
, λ

)}
dλ

−
∫ 1

0

∫ π

−π

tr {φj (u, λ) f (u, λ)}dλdu

}
, j = 1, . . . , k(17)

have, asymptotically, a normal distribution with zero mean vector and covariance matrix V
whose (i, j)-the element is

4π

∫ 1

0

[∫ π

−π

tr{φi(u, λ)f(u, λ)φj(u, λ)f(u, λ)}dλ

+
1

4π2

∑
a1,a2,a3,a4

∑
b1,b2,b3,b4

κb1,b2,b3,b4

∫ π

−π

∫ π

−π

φi(u, λ)a1,a2φj(u, µ)a4,a3

·A(u, λ)a2,b1A(u,−λ)a1,b2A(u,−µ)a4,b3A(u, µ)a3,b4dλdµ

]
du.(18)

Assumption 5 does not coincide with Assumption A.1 (ii) of Dahlhaus (1997). As men-
tioned in A.3 Remarks of Dahlhaus (1997), Assumption A.1 (ii) of Dahlhaus (1997) is
required because of the

√
T -unbiasedness at the boundary 0 and 1. If we assume that

{X2−N/2,T , . . . ,X0,T } and {XT+1,T , . . . ,XT+N/2,T } are available with Assumption 5, then
from Lemma 1 (i)

E (LT (φj)) =
√

TE

{
1
T

T∑
t=1

∫ π

−π

tr

{
φj

(
t

T
, λ

)
IN

(
t

T
, λ

)}
dλ

−
∫ 1

0

∫ π

−π

tr {φj (u, λ) f (u, λ)} dλdu

}

= O

(√
T

(
N2

T 2
+

log N

N
+

1
T

))
= o (1) .(19)
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3. Measures of disparity. We suppose that we have a collection of zero-mean m-
dimensional vector locally stationary time series Xt,T = (X(1)

t,T , X
(2)
t,T , . . . , X

(m)
t,T )′, t =

1, 2, . . . , T . Denote by pi(x), i = 1, 2, the probability density functions of the mT × 1
vector x = (X′

1,T ,X′
2,T , . . . ,X′

T,T )′ under two hypotheses Πi, i = 1, 2, respectively. In the
case of locally stationary processes, Πi, i = 1, 2 are, respectively, described by the time
varying spectral density matrices fi(u, λ), i = 1, 2 corresponding to mT × mT matrices
ΣT (pi), i = 1, 2. Although theory developed later transcends the usual normal theory, it
is convenient to use the normal assumption temporarily to motivate measures of disparity
between the densities pi(·), i = 1, 2.
One classical measure of disparity between two multivariate densities is the Kullback Leibler
(KL) discrimination information, defined by

K(pj; pk) = Ep

{
log

pj(x)
pk(x)

}
,(20)

where Ep denotes the expectation under the density p(·). The KL discrimination informa-
tion takes the form

K(pj ; pk) =
1
2

(
tr{ΣT (pj)ΣT (pk)−1} − log

|ΣT (pj)|
|ΣT (pk)| − mT

)
(21)

when pi(x) correspond to two hypothetical zero-mean multivariate normal distributions.
The mT×mT covariance matrices ΣT (pi) contain the m×m matrices ΣT

s,t(pi), s, t = 1, . . . , T
as blocks, where

ΣT
s,t(pi) =

1
2π

∫ π

−π

exp (iλ(s − t))A◦
s,T (λ)ΩA◦

t,T (−λ)′dλ.(22)

Parzen (1990) proposed to use the Chernoff (CH) information measure

Bα(pj ; pk) = − log Epj

{(
pj(x)
pk(x)

)α}
,(23)

as a measure of disparity between the two densities, where the measure is indexed by α,
0 < α < 1. For α = 1

2 , the Chernoff information measure is the symmetric divergence
measure. For two normal random vectors differing only in the covariance structure, the
measure (23) takes the form

Bα(pj ; pk) =
1
2

(
log

|αΣT (pj) + (1 − α)ΣT (pk)|
|ΣT (pk)| − α log

|ΣT (pj)|
|ΣT (pk)|

)
.(24)

It is of interest to note the antisymmetry property Bα(pj ; pk) = B1−α(pk; pj) and that
Bα(pj ; pk), scaled by α(1−α) converges to K(pj; pk) for α → 0 and to K(pk; pj) for α → 1.
Hence the Cernoff measure behaves like the two Kullback-Leibler measures for values of the
parameter α that are near the boundaries 0 and 1.
It should be recognized that the information measures (21) and (24) both involve mT ×mT
matrices whose dimensions tend to infinity as T → ∞. As in the case of stationary processes,
it is natural to use spectral approximations in terms of the time varying spectral density
matrices fi(u, λ), i = 1, 2. The appropriate versions of (21) and (24) are

K(fj ; fk) = lim
T→∞

T−1K(pj ; pk)

=
1
2

∫ 1

0

∫ π

−π

(
tr{fj(u, λ)f−1

k (u, λ)} − log
|fj(u, λ)|
|fk(u, λ)| − m

)
dλ

2π
du(25)
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and

Bα(fj ; fk) = lim
T→∞

T−1Bα(pj ; pk)

=
1
2

∫ 1

0

∫ π

−π

(
log

|αfj(u, λ) + (1 − α)fk(u, λ)|
|fk(u, λ)| − α log

|fj(u, λ)|
|fk(u, λ)|

)
dλ

2π
du.(26)

Note here that the time-varying spectral matrices fi(u, λ) correspond to the multivariate
densities pi(x). The advantage of (25) and (26) is that the evaluation problem is reduced
to inverting m×m matrices. Both forms (25) and (26) are functions of the matrix product
fj(u, λ)f−1

k (u, λ) and can be generalized to the following disparity measure

DH(fj ; fk) =
1
2

∫ 1

0

∫ π

−π

H(fj(u, λ)f−1
k (u, λ))

dλ

2π
du(27)

where H(·) is some matrix-valued function. To ensure that DH(fj ; fk) has the quasi-distance
property, we require DH(fj ; fk) ≥ 0, and that the equality holds if and only if fj = fk
almost everywhere. The function H(Z) must have a unique minimum at Z = Em, the
identity matrix. There are many possible choices of H(Z) such that DH(·; ·) satisfies the
quasi-distance property, but we consider only the two cases corresponding to (25) and (26):

HK(Z) = tr{Z} − log |Z| − m(28)

and
HBα(Z) = log |αZ + (1 − α)Em| − α log |Z|.(29)

Note that another possible choice is the quadratic function

HQ(Z) =
1
2
tr (Z− Em)2 .(30)

Generally, DH(·; ·) is not symmetric but can easily be made so by defining

H̃(Z) = H(Z) + H(Z−1).(31)

The general form (27) can be approximated by sums over frequencies of the form λs =
2πs/T and time ut = t/T , s, t = 1, 2, . . . T , i.e.,

DH(fj ; fk) ≈ 1
2
T−2

T∑
s,t=1

H
(
fj(ut, λs)f−1

k (ut, λs)
)
.(32)

4. Discriminant analysis. Suppose that we wish to investigate the problem of clas-
sifying a realization XT = (X′

2−N/2,T , . . . ,X′
1,T , . . . ,X′

T,T , . . . ,X′
T+N/2,T )′ into one of two

known categories Πj , j = 1, 2, where Πj is described by the time varying spectral density
matrix fj(u, λ). Let f̂T (u, λ) be the nonparametric time varying spectral density estimator
given by (9), which is based on observation to be classified. We measure the disparity
between the sample spectrum of XT and category Πj by DH(f̂T ; fj). Then the proposed
rule is to classify XT into Π1 or Π2 according to DH > 0 or DH ≤ 0, where DH is the
discriminant function defined by

DH = DH(f̂T ; f2) − DH(f̂T ; f1).(33)

In this section we examine the asymptotic properties of discriminant function (33). Assume
that the category Πj is an m-variate linear process of the form Xt,T =

∑∞
k=−∞ a(j)

t,T (k)εt−k,
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where m×m matrices a(j)
t,T (k)’s and i.i.d. m× 1 zero mean vectors εt’s satisfy Assumptions

1 and 2. The use of f̂T (u, λ) instead of the data tapered periodogram IN (u, λ) is essential,
because DH(IN ;g) does not converge in probability to DH(fj ;g) under Πj if DH(IN ;g) is
nonlinear with respect to IN (See Taniguchi and Kakizawa (2000)).
We discuss the performance of the discriminant function (33). First, we evaluate the asymp-
totics of the misclassification probabilities based on DH ;

PDH (2|1) = Pr(DH ≤ 0|Π1)(34)

and
PDH (1|2) = Pr(DH > 0|Π2).(35)

It is shown that PDH (2|1) and PDH (1|2) converge to zero as T → ∞ if f1(u, λ) �= f2(u, λ).
Next assuming that Π1 is contiguous to π2, the limit of the two misclassification probabilities
is evaluated. Then we will elucidate the asymptotic optimality and robustness
In what follows, set (j, k) = (1, 2) or (2, 1). We give the following assumption on matrix-
valued function H(Z).

Assumption 6. (i) H : Cm×m → R is real-valued holomorphic function defined on an
open set D in Cm×m.

(ii) H(Em) = 0 and H(1)(Em) = 0 (m × m zero matrix), where H(1)({·}) is the first
derivative of Z at {·} whose (a, b)-th element is ∂

∂Zab
H(Z). The m2 × m2 Hessian

matrix of H(Z), defined by

∂

∂(vec Z)′

(
∂

∂(vec Z)′
H(Z)

)′
(36)

is positive definite at Z = Em. That is, H(Z) has a unique minimum zero at Z = Em.

(iii) The m × m matrix Qj,k(u, λ) defined by

Qj,k(u, λ) = f−1
k (u, λ)

[
H(1)

(
fj(u, λ)f−1

k (u, λ)
)]′

(37)

satisfies Qj,k(u, λ)∗ = Qj,k(u, λ) and Qj,k(u,−λ) = Qj,k(u, λ)′.

Theorem 1. Under the Assumptions 1-6, suppose that f1(u, λ) �= f2(u, λ) on a set of
positive Lebesgue measure. Then under Πj, DH

P→ (−1)j+1DH(fj ; fk) and
√

T {DH + (−1)jDH(fj ; fk)} D→ N(0, V 2
H(j, k)), as T → ∞,(38)

where DH(fj ; fk) is the integral disparity (27) and

V 2
H(j, k) =

∫ 1

0

[
1
4π

∫ π

−π

tr{Qj,k(u, λ)fj(u, λ)}2dλ

+
1

64π4

∑
a,b,c,d

κa,b,c,dγ
(j,k)
a,b (u)γ(j,k)

c,d (u)

]
du,(39)

with
Γ(j,k)

H (u) =
{
γ

(j,k)
a,b (u)

}
a,b=1,...,m

=
∫ π

−π

A∗
j (u, λ)Qj,k(u, λ)Ak(u, λ)dλ.(40)
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In view of Theorem 1, the limiting forms of misclassification probabilities (34) and (35)
satisfy limT→∞ PDH (k|j) = 0 for (j, k) = (1, 2), (2, 1). This shows that the discriminant
DH is consistent. From (39), one may also approximate them as the normal integrals

PDH (k|j) ≈ Φ
(
−
√

T
DH(fj ; fk)
VH(j, k)

)
,(41)

which depend on the fourth-order cumulants unless (40) is a zero matrix. To look at
robustness, we assume that the hypothetical m-variate linear process is generated by

Xt,T =
∞∑

s=−∞
a(1)

t,T (s)εt−s(42)

under Π1 and by

Xt,T =
∞∑

s=−∞

{
a(1)

t,T (s) + T−1/2a(2)
t,T (s)

}
εt−s(43)

under Π2. Thus, the time varying spectral densities associated with Π1 and Π2 are

f1(u, λ) = A(1)(u, λ)ΩA(1)(u, λ)∗(44)

and

f2(u, λ) =
{
A(1)(u, λ) + T−1/2A(2)(u, λ)

}
Ω{

A(1)(u, λ) + T−1/2A(2)(u, λ)
}∗

,(45)

with A(i)(u, λ) =
∑∞

s=−∞ a(i)
s (u) exp{−iλs}, i = 1, 2. The quantities DH(fj ; fk) and

VH(j, k) are determined by the local property of the function H(Z) at Z = Em.

Assumption 7. The m2 × m2 Hessian matrix of H(Z) at Em is cKm, where Km is the
commutation matrix (e.g., Magnus and Neudecker (1988)) and c > 0.

Note that HK , HBα and HQ in (28), (29) and (30) satisfy Assumptions 6 and 7.

Theorem 2. Let f1 and f2, defined by (44) and (45), be the hypothetical time varying hy-
pothetical spectral density matrices of m-variate linear processes (42) and (43), respectively.
Under Assumptions 1-7, if a(2)

0 (u) = 0 (m × m zero matrix), the asymptotic misclassifi-
cation probabilities are independent of the non-Gaussinanity of the process, and are given
by

lim
T→∞

PDH (2|1) = lim
T→∞

PDH (1|2)

= Φ

⎛⎝−1
2

√
1
4π

∫ 1

0

∫ π

−π

tr{∆(u, λ)}2dλdu

⎞⎠ ,(46)

with

∆(u, λ) = {A(1)(u, λ)ΩA(2)(u, λ)∗ + A(2)(u, λ)ΩA(1)(u, λ)∗}
{A(1)(u, λ)ΩA(1)(u, λ)∗}−1.(47)
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Furthermore, if the process concerned is Gaussian, the exact Gaussian log-likelihood ratio
is

ΛT (p1, p2) ≡ 1
T

Gaussian log likelihood ratio

=
1

2T
X′

T

(
ΣT (p1)−1 − ΣT (p2)−1

)
XT − 1

2T
log

|ΣT (p2)|
|ΣT (p1)| .(48)

According to Proposition 2.5 and Lemma A.8 of Dahlhaus (2000), it is seen that, under
Πj , for each ε > 0,

E
(√

TΛT (p1, p2)
)

=
√

T

2T

{
tr
{
ΣT (pj)

(
ΣT (p1)−1 − ΣT (p2)−1

)}− log
|ΣT (p2)|
|ΣT (p1)|

}
=

√
T

4π

∫ 1

0

∫ π

−π

{
tr
{
fj(u, λ)

(
f−1
2 (u, λ) − f−1

1 (u, λ)
)}− log

|f2(u, λ)|
|f1(u, λ)|

}
dλdu

+O(T− 1
2+ε + T− 1

2 log11 T )

= (−1)j+1
√

TDHK (fj ; fk) + o(1)(49)

and

V ar
(√

TΛT (p1, p2)
)

=
1

2T
tr
{
ΣT (pj)

(
ΣT (p1)−1 − ΣT (p2)−1

)}2

=
1
4π

∫ 1

0

∫ π

−π

tr
{
fj(u, λ)

(
f−1
2 (u, λ) − f−1

1 (u, λ)
)}2

dλdu

+O(T−1 log23 T ).(50)

Therefore,

lim
T→∞

PGLR(2|1) = lim
T→∞

PGLR(1|2)

= lim
T→∞

PDH (2|1) = lim
T→∞

PDH (1|2)

= Φ

⎛⎝−1
2

√
1
4π

∫ 1

0

∫ π

−π

tr{∆(u, λ)}2dλdu

⎞⎠ ,(51)

where
PGLR(2|1) = Pr(ΛT (p1, p2) ≤ 0|Π1)(52)

and
PGLR(1|2) = Pr(ΛT (p1, p2) > 0|Π2),(53)

that is, the discriminant criterion based on DH is asymptotically Gaussian optimal.

Remark 1. Peak Robustness of Bα.
We consider a case where the time varying spectral density of XT is contaminated by a sharp
peak. In this case, we can see that Bα(fj ; fk) is robust with respect to peak, but K(fj ; fk) is
not so. Define

f̄i(u, λ) =
{

fi(u, λ) on Ω = [−π, π] − Ωε;
fi(u, λ)/εr on Ωε,

(54)
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where Ωε = [λ0, λ0 + ε] is an interval in [−π, π] for sufficiently small ε > 0 and r > 1.
Suppose that f1(u, λ) �≡ f2(u, λ) on a set of a positive Lebesgue measure. Then, under
Assumption 2, it can be shown that

lim
ε→0

|Bα(f̄j , fj , fk) + (−1)jBα(fj , fk)| = 0 for α ∈ (0, 1),(55)

lim
ε→0

|K(f̄j , fj , fk) + (−1)jK(fj , fk)| = ∞(56)

where
Bα(f̄j , fj , fk) = Bα(f̄j , fk) − Bα(f̄j , fj)(57)

and

K(f̄j , fj , fk) = K(f̄j , fk) − K(f̄j , fj)

=
1
4π

∫ 1

0

∫ π

−π

{
log

|fk(u, λ)|
|fj(u, λ)| + tr

{
f̄j(u, λ)

(
f−1
k (u, λ) − f−1

j (u, λ)
)}}

dλdu.(58)

That is, Bα(fj ; fk) is insensitive to sharp peak in the spectral density, while K(fj ; fk) is sen-
sitive. Thus, the discriminant statistic Bα(fj ; fk) is better than K(fj ; fk) if the time varying
spectral density of XT is contaminated by a sharp peak.

Numerical example. We consider the time varying AR(2) model

Xt,T = b
(1)
θ

(
t

T

)
Xt−1,T + b

(2)
θ

(
t

T

)
Xt−2,T + εt,(59)

with b
(i)
θ (u) = θ(i) exp(−2θ(i)(u + 1)), i = 1, 2, and εt are i.i.d. random variables with

probability density
p(x) = exp (−(x + 1)) , x > −1.(60)

Then the time varying spectral density is given by

fθ(u, λ) =
1
2π

∣∣∣∣ 1
1 − θ(1) exp(−2θ(1)(u + 1)) exp(iλ)

−θ(2) exp(−2θ(2)(u + 1)) exp(2iλ)

∣∣∣∣2 .(61)

Now, we give two examples for the model (59);

Example 1 (θ(1), θ(2)) = (0.8, 0) : AR(1) model.

Example 2 (θ(1), θ(2)) = (0.8, 0.2) : AR(2) model.

In Figure 1, AR(1) coefficient b
(1)
θ (u) (real line) and AR(2) coefficient b

(2)
θ (u) (dotted line)

of Example 2 are plotted. From this figure, it is seen that b
(1)
θ (u) decreases as u → 1, on

the other hand b
(2)
θ (u) is almost constant.

Figures 1 is about here.

For Examples 1 and 2, the observed stretch {Xt,T } with T = 28 are plotted in Figures 2
and 3, respectively. The time varying spectral densities of them are, respectively, given in
Figures 4 and 5.
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Figures 2 and 3 are about here.

Figures 4 and 5 are about here.

Next, in Example 1, let the time varying spectral densities associated with Π1 and Π2 be⎧⎪⎪⎨⎪⎪⎩
Π1 : f1(u, λ) = 1

2π

∣∣∣∣ 1

1−θ
(1)
1 exp(−2θ

(1)
1 (u+1)) exp(iλ)

∣∣∣∣2
Π2 : f2(u, λ) = 1

2π

∣∣∣∣ 1

1−θ
(1)
2 exp(−2θ

(1)
2 (u+1)) exp(iλ)

∣∣∣∣2 ,

(62)

respectively. We consider the following two cases;

CASE I The time varying spectral density of process concerned is not contaminated by a
sharp peak, That is, we actually observe

Yt,T = Xt,T .(63)

CASE II The time varying spectral density of process concerned is contaminated by a
sharp peak. That is, we actually observe

Yt,T = X1
t,T + X2

t,T ,(64)

where
X1

t,T = Xt,T(65)

and

X2
t,T =

∫ π

−π

{
ε−r/2 − 1

}
Aθ

(
t

T
, λ

)
exp(iλt)I(λ0,λ0+ε]dξ(λ)

≈
{

ε−r/2 − 1
}

Aθ

(
t

T
, λ0

)
exp(iλ0t) (ξ(λo + ε) − ξ(λ0))

≈
{
ε−r/2 − 1

}
Aθ

(
t

T
, λ0

)
exp(iλ0t)

· 1
2π

n∑
j=−n

εj
exp(−ij (λ0 + ε)) − exp (−ijλ0)

−ij
.(66)

For the cases II, the observed stretch {Yt,T } with T = 28, θ(1) = 0.8, λ0 = −π/4, r = 3
and ε = 0.01 are plotted in Figures 6. The time varying spectral density f̄1(u, λ) are given
in Figures 7.

Figures 6 and 7 are about here.

Finally, in Figures 8 and 9, we plot the pair graphs K(f̄1, f1, f2), K(f1, f2) and B1/2(f̄1, f1, f2),
B1/2(f1, f2) with (θ(1)

1 , θ
(1)
2 ) = (0.8, 0.9), respectively. From Figures 8 and 9, it is seen that

K(f̄1, f1, f2) diverges as ε → 0, on the other hand B1/2(f̄1, f1, f2) converges to B1/2(f1, f2)
as ε tends to 0.

Figures 8 and 9 are about here.
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5. Asymptotically non-Gaussian optimal classification. Suppose that XT =
(X1,T , . . . , XT,T )′ is a realization of a scalar-valued locally stationary process with transfer
function A◦

θ where the corresponding Aθ is uniformly bounded from above and below,
and time varying spectral density fθ(u, λ) := |Aθ(u, λ)|2 depends on a parameter vector
θ = (θ1, . . . , θq) ∈ Θ ⊂ R

q.
Let Π1 and Π2 be two categories with probability density functions p1(X) and p2(X),
respectively. We investigate the problems of classifying a locally stationary process {XT }
into one of two categories described by two hypotheses:

Π1 : f1(u, λ) = f (u, λ|θ)
Π2 : f2(u, λ) = f

(
u, λ|θT = θ +

h√
T

)
,(67)

where θ ∈ Θ ⊂ Rq and h = (h1, . . . , hq)′. We assign the observed stretch XT to category
Π1 if XT falls into region R1; otherwise we assign it to Π2, where R1 and R2 are exclusive
and exhaustive regions in RT . It is well known that the classification regions defined by

R1 =
[
XT : ΛT (p1, p2) = log

p1(XT )
p2(XT )

> 0
]

(68)

give the optimal classification (See Anderson (1984)).
Introducing the notations ∇i = ∂

∂θi
, ∇ = (∇1, . . . ,∇q)′, ∇ij = ∂

∂θi

∂
∂θj

, ∇2 = (∇ij)ij=1,...,q ,
we make the following assumption.

Assumption 8. (A1) There exists a constant K with

sup
t,λ

∣∣∣∣∇s{A◦
θ,t,T − Aθ(

t

T
, λ)}

∣∣∣∣ ≤ KT−1(69)

for s = 0, 1, 2. The components of Aθ(u, λ), ∇Aθ(u, λ) and ∇2Aθ(u, λ) are differen-
tiable in u and λ with uniformly continuous derivatives ∂

∂u
∂

∂λ .

Writing

εt =
∫ π

−π

exp (iλt)dξ(λ),(70)

we assume the followings.

Assumption 9. (B1) εt’s are i.i.d. random variables with mean 0, variance 1 and finite
fourth order moment E(ε4

t ). Furthermore the distribution is absolutely continuous
with respect to Lebesgue measure, and has the probability density p(z) > 0 on R.

(B2) p(·) satisfies
lim

|z|→∞
p(z) = 0, and lim

|z|→∞
zp(z) = 0.(71)

(B3) The continuous derivatives Dp, D2p ≡ D(Dp) and D3p ≡ D(D2p) of p(·) exist on
R, and D3p satisfies the Lipschitz condition.

(B4)

F(p) =
∫

(φ(z))2p(z)dz < ∞,(72)
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∫
(Dsφ(z))2p(z)dz < ∞, s = 1, 2,(73)

E(εtφ
2(εt)), E(ε2

t φ
2(εt)) and E(φ(z))4 < ∞(74)

and ∫
D2p(z)dz = 0, lim

|z|→∞
Dp(z)z2 = 0,(75)

where φ(z) = Dp(z)
p(z) .

Assumption 10. (C1) {Xt,T } has the MA(∞) and AR(∞) representations

Xt,T =
∞∑

j=0

a◦
θ,t,T (j)εt−j ,(76)

a◦
θ,t,T (0)εt =

∞∑
k=0

b◦θ,t,T (k)Xt−k,T ,(77)

where a◦
θ,t,T (j), b◦θ,t,T (k) ∈ R, b◦θ,t,T (0) ≡ 1 and a◦

θ,t,T (j) = a◦
θ,0,T (j) = a◦

θ(j) for t ≤
0.

(C2) Every a◦
θ,t,T (j) is continuously three times differentiable with respect to θ, and the

derivatives satisfy

sup
t,T

⎧⎨⎩
∞∑

j=0

(1 + j)|∇i1 · · ·∇isa
◦
θ,t,T (j)|

⎫⎬⎭ < ∞ for s = 0, 1, 2, 3.(78)

(C3) Every b◦θ,t,T (k) is continuously three times differentiable with respect to θ, and the
derivatives satisfy

sup
t,T

{ ∞∑
k=0

(1 + k)|∇i1 · · ·∇isb
◦
θ,t,T (k)|

}
< ∞ for s = 0, 1, 2, 3.(79)

(C4)

a◦
θ,t,T (0) = exp

{
1
2

1
2π

∫ π

−π

log(f◦
θ,t,T (λ))dλ

}
,(80)

where f◦
θ,t,T (λ) = |A◦

θ,t,T (λ)|2.

By (76) and (77) we have

a◦
θ,t,T (0)εt =

t−1∑
k=0

b◦θ,t,T (k)Xt−k,T +
∞∑

r=0

c◦θ,t,T (r)ε−r ,(81)

where

c◦θ,t,T (r) =
r∑

s=0

b◦θ,t,T (t + s)a◦
θ(r − s).(82)
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From Assumption 10 it follows that

∞∑
r=0

|c◦θ,t,T (r)| ≤
∞∑

k=t

∞∑
l=0

|b◦θ,t,T (k)||a◦
θ(l)|

≤
∞∑
l=0

|a◦
θ(l)|

1
t

∞∑
k=t

k|b◦θ,t,T (k)| = O(t−1).(83)

By Theorem 1 of Hirukawa and Taniguchi (2004), we have for all θ ∈ Θ, under Π1,
as T → ∞, the log-likelihood ratio ΛT (p1, p2) has, asymptotically, normal distribution
N (1

2h′Γ(θ)h, h′Γ(θ)h), where

Γ(θ) =
∫ 1

0

{
F(p)
4π

∫ π

−π

(∇fθ(u, λ))(∇fθ(u, λ))′

|fθ(u, λ)|2 dλ

+
1

16π2

{
E(ε2

t φ
2(εt)) − 2F(p) − 1

}
·
{∫ π

−π

∇fθ(u, λ)
fθ(u, λ)

dλ

}{∫ π

−π

∇fθ(u, λ)
fθ(u, λ)

dλ

}′}
du.(84)

Furthermore, under Π2, ΛT (p1, p2)
D→ N (− 1

2h′Γ(θ)h, h′Γ(θ)h), hence

lim
T→∞

PLR(2|1) = lim
T→∞

PLR(1|2)

= Φ
(
−1

2

√
h′Γ(θ)h

)
,(85)

where
PLR(2|1) = Pr(ΛT (p1, p2) ≤ 0|Π1)(86)

and
PLR(1|2) = Pr(ΛT (p1, p2) > 0|Π2),(87)

Since (εs, s ≤ 0) are unobservable, instead of ΛT (p1, p2) we use the “quasi-log-likelihood
ratio”

FT (p1, p2) = log
FT (θ)
FT (θT )

,(88)

with

FT (θ) =
T∏

t=1

1
a◦

θ,t,T (0)
p

{∑t−1
k=0 b◦θ,t,T (k)Xt−k,T

a◦
θ,t,T (0)

}
,(89)

for classification criterion.

Theorem 3. The discriminant criterion based on the quasi-log-likelihood ratio is asymp-
totically optimal.

Since hypotheses are often unknown, when there are training samples, the results may also
be extended to the plug-in version of DH , obtained by replacing fj with the estimator f̃j
based on the training samples.

6. Proofs. This section provides the proofs of theorems.
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Proof of Theorem 1. Let

Ĥj(u, λ) ≡ H
(
f̂T (u, λ)f−1

k (u, λ)
)
− H

(
fj(u, λ)f−1

k (u, λ)
)

−tr
{
Qj,k(u, λ)(̂fT (u, λ) − fj(u, λ))

}
,(90)

then from Lemma 1, the same argument as in Theorem 1 of Taniguchi et al. (1996), leads
to, under Πj

Ĥj(u, λ) = OP

(
M

N

)
(91)

and

H
(
f̂T (u, λ)f−1

j (u, λ)
)

= OP

(
M

N

)
.(92)

uniformly in λ and u. Since, DH is written as

DH =
1
4π

∫ 1

0

∫ π

−π

[
H
(
f̂T (u, λ)f−1

2 (u, λ)
)
− H

(
f̂T (u, λ)f−1

1 (u, λ)
)]

dλdu,(93)

it follows from (91) and (92), under Πj

√
T {DH + (−1)jDH(fj ; fk)}

=
(−1)j+1

√
T

4π

∫ 1

0

∫ π

−π

tr
{
Qj,k(u, λ)(̂fT (u, λ) − fj(u, λ))

}
dλdu + oP (1)

=
(−1)j+1

4π
ST + oP (1) (say).(94)

According to Lemma 2,

LT

(
(−1)j+1

4π
Qj,k

)
=

(−1)j+1
√

T

4π

∫ 1

0

∫ π

−π

tr {Qj,k(u, λ)(IN (u, λ) − fj(u, λ))} dλdu + O(T− 1
2 )

=
(−1)j+1

4π
LT + o(1) (say)(95)

have, asymptotically, a normal distribution with zero mean vector and covariance matrix
V 2

H(j, k). Thus, the proof of Theorem 1 is complete if we show ST −LT = op(1). From the
definition of f̂ , it follows that

ST − LT

=
√

T

∫ 1

0

∫ π

−π

tr

{
Qj,k(u, λ)

(∫ π

−π

WT (λ − µ)fj(u, µ)dµ − fj(u, λ)
)}

dλdu

+
√

T

∫ 1

0

∫ π

−π

tr

{
Qj,k(u, λ)

∫ π

−π

(IN (u, µ) − fj(u, µ))WT (λ − µ)dµ

}
dλdu

−
√

T

∫ 1

0

∫ π

−π

tr {Qj,k(u, µ) (IN (u, µ) − fj(u, µ))} dµdu

=
√

T

∫ 1

0

∫ π

−π

tr

{
Qj,k(u, λ)

(∫ π

−π

WT (λ − µ)fj(u, µ)dµ − fj(u, λ)
)}

dλdu
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+
√

T

∫ 1

0

∫ π

−π

tr {D(u, µ) (IN (u, µ) − fj(u, µ))} dµdu

= L
(1)
T + L

(2)
T (say),(96)

where
D(u, µ) =

∫ ∞

−∞

{
Qj,k

(
u, µ +

x

M

)
− Qj,k(u, µ)

}
W (x)dx.(97)

By the dominated convergence theorem,

lim
T→∞

‖D(u, µ)‖ = 0 a.e. (µ ∈ [−π, π]),(98)

therefore, from Lemma 2, V ar{L(2)
T } = o(1), which implies L

(2)
T = op(1). On the other

hand, by Assumption 3, we have∫ π

−π

f(u, µ)WT (λ − µ)dµ − f(u, λ) = O(M−2),(99)

hence L
(1)
T = O

(√
T

M2

)
= o(1).

Proof of Theorem 2. From Assumptions 6, 7 and

fj(u, λ)fk(u, λ)−1 = Em +
(−1)j

√
T

∆(u, λ) + O(T−1),(100)

it is seen that

DH(fj ; fk) =
c

8πT

∫ 1

0

∫ π

−π

tr{∆(u, λ)}2dλdu + o(T−1)(101)

and

V 2
H(j, k) =

c2

4πT

∫ 1

0

∫ π

−π

tr{∆(u, λ)}2dλdu

+
c2

64π4T

m∑
a1,a2,a3,a4=1

κa1,a2,a3,a4γa1,a2γa3,a4 + o(T−1),(102)

where γa,b is the (a, b)-th element of the m × m matrix

ΓH =
∫ 1

0

∫ π

−π

A(1)(u, λ){A(1)(u, λ)ΩA(1)(u, λ)∗}−1

{A(1)(u, λ)ΩA(2)(u, λ)∗ + A(2)(u, λ)ΩA(1)(u, λ)∗}
{A(1)(u, λ)ΩA(1)(u, λ)∗}−1A(1)(u, λ)dλdu.(103)

If ΓH = 0, substituting them into (41), then the asymptotic misclassification probabilities
are given by

lim
T→∞

PDH (2|1) = lim
T→∞

PDH (1|2)

= Φ

⎛⎝−1
2

√
1
4π

∫ 1

0

∫ π

−π

tr{∆(u, λ)}2dλdu

⎞⎠ .(104)
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Since

ΓH =
∫ 1

0

∫ π

−π

{A(2)(u, λ)∗A(1)(u, λ)∗
−1

Ω−1 + Ω−1A(1)(u, λ)−1A(2)(u, λ)}dλdu

= 2π

∫ 1

0

{
a(2)

0 (u)′a(1)
0 (u)−1

′
Ω−1 + Ω−1a(1)

0 (u)−1a(2)
0 (u)

}
du,(105)

vec ΓH = 2π

∫ 1

0

vec
{
{Km + Em}Ω−1a(1)

0 (u)−1a(2)
0 (u)

}
du

= 4π

∫ 1

0

{Em ⊗ Ω−1a(1)
0 (u)−1}vec a(2)

0 (u)du,(106)

which implies that ΓH = 0 is equivalent to a(2)
0 (u) ≡ 0.

Proof of Theorem 3. Under Π1, it is seen that

ΛT (p1, p2) − FT (p1, p2)

=
T∑

t=1

{
log p (εt) − log p

(∑t−1
k=0 b◦θT ,t,T (k)Xt−k,T +

∑∞
r=0 c◦θT ,t,T (r)ε−r

a◦
θT ,t,T (0)

)

− log p

(∑t−1
k=0 b◦θ,t,T (k)Xt−k,T

a◦
θ,t,T (0)

)
+ log p

(∑t−1
k=0 b◦θT ,t,T (k)Xt−k,T

a◦
θT ,t,T (0)

)}

=
T∑

t=1

{
qt,T φ (εt) +

q2
t,T

2
Dφ (εt) − rt,T φ

(∑t−1
k=0 b◦θ,t,T (k)Xt−k,T

a◦
θ,t,T (0)

)

−r2
t,T

2
Dφ

(∑t−1
k=0 b◦θ,t,T (k)Xt−k,T

a◦
θ,t,T (0)

)}
+ OP

(
T−1/2

)
=

T∑
t=1

{
qt,T φ (εt) +

q2
t,T

2
Dφ (εt) − rt,T φ (εt) −

r2
t,T

2
Dφ (εt)

}
+OP

(
T−1/2

)
+ oP (1) ,(107)

where

qt,T = rt,T +

∑∞
r=0 c◦θ,t,T (r)ε−r

a◦
θ,t,T (0)

−
∑∞

r=0 c◦θT ,t,T (r)ε−r

a◦
θT ,t,T (0)

= rt,T +
h′
√

T

∞∑
r=0

{
∇c◦θ∗,t,T (r)
a◦

θ,t,T (0)
+

c◦θT ,t,T (r)∇a◦
θ∗∗,t,T (0)

a◦
θ,t,T (0)a◦

θT ,t,T (0)

}
ε−r

= rt,T + O
(
T−1/2t−1

)
(108)

and

rt,T =

∑t−1
k=0 b◦θ,t,T (k)Xt−k,T

a◦
θ,t,T (0)

−
∑t−1

k=0 b◦θT ,t,T (k)Xt−k,T

a◦
θT ,t,T (0)

=
h′
√

T

{
t−1∑
k=1

∇b◦θ∗∗∗,t,T (k)
a◦

θ,t,T (0)
Xt−k,T +

t−1∑
k=0

b◦θT ,t,T (k)∇a◦
θ∗∗,t,T (0)

a◦
θ,t,T (0)a◦

θT ,t,T (0)
Xt−k,T

}
.(109)
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Here θ∗, θ∗∗ and θ∗∗∗ are points on the segment between θ and θT = θ + h/
√

T .
From (107), (108) and (109) we can see that ΛT (p1, p2) − FT (p1, p2) = oP (1) under Π1.
Similarly, we have ΛT (p1, p2)−FT (p1, p2) = oP (1) under Π2. Therefore, FT (p1, p2) has the
same limit distribution of ΛT (p1, p2) under both Π1 and Π2.
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Figure 1: The time varying coefficient functions b
(1)
θ (u) (real line) and b

(2)
θ (u) (dotted line).
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Figure 2: The observation {Xt,T } of Example 1.
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Figure 3: The observation {Xt,T } of Example 2.

Figure 4: The time varying spectral density function f(u, λ) for Example 1.
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Figure 5: The time varying spectral density function f(u, λ) for Example 2.
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Figure 6: The observation {Yt,T } which is contaminated by a sharp peak.
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Figure 7: The time varying spectral density f̄1(u, λ) which is contaminated by a sharp peak.
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Figure 8: The pair of graphs K(f̄1, f1, f2) (real line) and K(f1, f2) (dotted line).
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Figure 9: The pair of graphs B1/2(f̄1, f1, f2) (real line) and B1/2(f̄1, f1, f2) (dotted line).
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