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ABSTRACT.In this paper, we gives the Riesz theorem on probabilistic normed spaces,
studies the relations between convergence in probabilistic norm and convergence in
coordinate, proves necessary and sufficient condition of the probabilistic normed spaces
which are finite dimensional.

1 Introduction

In 1942, Menger (1) published the first paper in which was called statistical metrics.
This paper introduced the idea of replacing the distance d(p,q) between two point in a
metric space by a probabilistic distribution function Fj, ;. Serstnev (3) introduced the idea
of probabilistic normed spaces. In this space the norm of an element is replaced by a
distribution of norm.

In this paper, we introduces the concept of unit sphere, discusses the Riesz theorem
on probabilistic normed spaces, studies the relations between convergence in probabilistic
norm and convergence in coordinate, proves characteristic theorem of finite demensional
probabilistic normed spaces.

Throughout this paper, we denote by D the set of distribution functions defined on R,
i.e., F € D if F is nondecreasing left-continuous with sup,c F'(t) = 1 and inf,eg F(t) = 0.

Definition 1.1. A probabilistic normed space (shortly, PN-space) is an ordered pair (E, F),
where E is a real linear space and F is a mapping from F into D (we denote F'(z) by Fy)
satisfying the following conditions:

(PN-1)F,(t) =1 for all ¢ > 0 if and only if z =0
(PN-3)Fou(t) = Fr(ﬁ) for any « € R, # 0

(PN-4)lf Fw(tl) = ].,Fy(tg) =1, then Fm+y(t1 + tg) =1.

Definition 1.2. A Menger PN space is a PN-space that satisfies (PN-5),

(PN-5)Fypy(t1 + t2) > A(Fy(t1), Fy(t2)) for all z,y € E. t1,t2 € RT = [0, 4+00) where
A is a 2-place function on the unit square satisfying:

(1)T(0,0) =0 and T(a,1) = a

(2)T(a,b) =T(b,a)

(3)if a < cand b < d, then T(a,b) < T(c,d)

(4T (T(a,b),c) =T(a, T(b,c))
T is called a t-norm.
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2 Riesz theorem on PN-space
In this section, we shall discuss Riesz theorem on PN-space.

Lemma 2.1. Let (E, F) be a PN-space and A be a genuine subset of E. By the definition
of sup, ¢ 4 Fi, —y(t), there exists y; € A such that for any € > 0 and z; € E\A

sup Fa:1*y(t) —€< Fw1fy1 (t) < sup Fm*y(t) (21)
yeA yeA

Suppose p = inf{t > 0; F,,, _, (t) > 1 — A}

p1 = inf{t > 0;sup Fy, —,(t) > 1 — A} (2.2)
yeA
po = inf{t > 0;sup Fp,—,(t) —€ >1— A} (2.3)
yEA

where ¢ > 0 and A € (0,1). Then ps > p > p1.

Proof. Suppose tg € {t > 0; F, —y, (t) > 1=A}, by (2.1) we have to € {t > 0;8up, e 4 Firy —y(t) >
1 — A}, then p > pq, similarly have py > p.

Lemma 2.2: Let (F,F) be a PN-space and A be a genuine subset of E. Then we have
the following:

(1)sup, e 4 Flz, —y(t) is a left-continuous function at ¢ for any 1 € E\A.

(2)suppose P = inf{t > 0 : sup,c 4 Fi,—y(t —0) > 1 — A} and P1, P, be defined by
(2.2)(2.3), then P, > P = P; 4 0.

Proof. (1)Since Fy,_,(t) is left-continuous at t(¢ > 0), thus for any € > 0 there exists
0 € (0,t) such that Fy,_,(t —0) > Fy,_y(t) — €, by continuous of real number, for every
t > ¢ there exists I(t) such that

ooyt = 8) > I(t) > Fyyy () — €

we have

sup le—y(t - 5) > le—y(t - 5) > I(t) > sup Frl—y(t) —¢
yeEA yeA

Then

sup Fy, —y(t —0) > sup Fy,_,(t) — ¢
yeEA yeA

(2) Obviously P, > P. By the definition of P, we have

p = inf{t > 0;sup Fp,_y(t —0) > 1— A\t >4}
yeA

inf{t + d;sup Fy,—(t) > 1 — A\, t > 0}
yeA

inf{t > 0;sup Fyy,_,(t) >1 - A} +4
yeA

= p1+57

This completes the proof.

Definition 2.1. Let (F, F') be a PN-space and A be a genuine subset of E.
(1)We define a unit sphere N(1,A) of E by

NN ={ye B F,(1)>1-\Xe (0,1)} (2.4)



REPRESENTATION THEOREM ON PN SPACES 191

(2)We define Py : E — R* by
P\(y) = inf{t > 0; F,(t) > 1 — A} (2.5)

for each \ € (0,1). We say that Py(y) is the quasi-norm of y.
(3) We define Fy_4(t) by
Fr_a(t) =sup Fp_y(t) (2.6)
yEA

for all t € R. We say that F,_a(t) is the probabilistic distance from the point x to the set
A.

(4) The set A in E is said sequentially compact, if any infinite set of A must there exists
a convergence subsequence. The set A in F is said self-sequentially compact, if limit of
every convergence sequence in A belong to A.

Corollary 2.1: Let A be a nonempty closed set of E, then

Foa(t)=1, forallt>0if and only if x € A.

Theorem 1: Let (E, F) be a PN-space and A be a nonempty closed genuine subset of F.
Then for any y € A there exists g € F'\ A, and Ag € [0,1] such that zy € N(1,\) and
Py(xo —y) > 1 for each A € (A, 1].

Proof. Since A is a nonempty closed genuine subset of F, by corollary 2.1 there exist
x1 € E\ A, such that

Fo_a(t) <1
for all t > 0. Suppose sup;.o Fi; —A(t) = Sup;~oSupye 4 Foy —y(t) = 0,0 < 1. Let Ao =16,
for each A € (Ao, 1], we have

supsup F, _,(t) >1— X\
>0 yeA

By the definition of sup, there exist ¢y > 0, such that

sup Fp,—y(t) >1— A
yeA

for any t > tg. By Lemma 2.1 and definition of sup there exist y; € A such that

FIl*yl (t) > sup Fw17y(t) — €
yeA

for any € > 0, and all ¢ > to. Taking g = =% by Lemma 2.1 and 2.2, we have

p2

Fuo(D) = Fi(a,—y(1) =Fz1—y1(p2)>21€13Fz1—y(p2)—6
> supFp_y(p1+0)—e>1-A—e
yeA

by the left-continuity of Fy,(t) at ¢t = 1, there exists d; > 0 such that

Thus Fy, (1) > Fyy(1 — 1) > 1 — A, therefore zg € N(1, ), for any A € (Ao, 1].
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Taking 09 = z%’ by (2.3) we have

FwO,y(l — 52) = Fl [y — (y1+p2y)](1 — 52)
Fil—(yl-HDQy) (p2 - p252)
sup Fy, —y(p2 — 9)

yeA

IN

IN

1-X+e
Letting € — 0, by the left-continuity of F,,_,(t) at t = 1, we have
Fryy(1) <1,
therefore Py(zo —y) > 1, for any y € A, and xyp € N(1, ). This completes the proof.

3 Finite dimensional characterization on PN-spaces.

Throughout this section, we always assume that (F, F, A\) is a Menger PN-space, where
the t-norm A satisfy
sup A(t,t) =1
o<t<1
Definition 3.1. Let (E, F') be a PN-space
(1)The element x1,x2,- - ,x, of E is linearly dependent, if there exists ki, ko, -, kn
not all zero, such that

Fk1w1+k2w2+“'+knwn (t) = H(t)7

if finite set x1, 2, -+ , T, is not linearly dependent, it is called linearly independent.
(2)The element 1,2, - ,x, of E is called a basis of E, if x1,22, - ,x, are linearly
independent and if any element of F is a linear combination of the element x1,x2, - , xy,.

The FE is called n-dimensional, if F has a basis of n elements.

Lemma 3.1. Let (E, F,/A\) be a Menger PN-space, and the t-norm A satisfy

sup A(t,t) =1
t<1

Then we have the following
(1) For any « € F and k € R,

Py(kz) = |k|Px(x)
(2) For any u € (0, 1), there exists A € (0,1) such that for any x,y € E:
Pu(z+y) < Pa(z) + Pa(y) (3.1)
(3) For any pu € (0,1), there exists A € (0,1), and k1, k2 € R, such that for any z1, 22 € E:
P (kixy + kawo) < |ki|Px(z1) + k2| Pa(z2) (3.2)

(4) For any p € (0,1), there exists A € (0,1) such that for any z1, 9, -+ ,z, € E and
k17k27”' )kn € R.

é i || Py () < max Py () Z|k| (3.3)

i=1
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Proof. (1) By the definition of Py(z), it is easy to prove.
(2) Since supg.,q A(t,t) =1, for any p € (0, 1) there exists A > 0 such that

AL=AN1-))>1—pu

By the Menger triangle inequality, we have

Fary(Pa(z) + Paly) +2¢) 2 A(Fa(Pa(2) +€), Fy(Pa(y) + )
> A(l=X1-X)
> 1—p

for every € > 0, which implies that
P,(z +y) < Px(x) + Pa(y) + 2¢
Letting € — 0, we have
Pu(z+y) < Px(x) + Px(y) (3.4)
The conclusions (3) and (4) follow from the (1) and (2). This completes the proof.
Lemma 3.2. Let (E, F, A) be a Menger PN-space, and the t-norm A satisfy

sup A(t,t) =1
0<t<1

Then the following conclusions are equivalent:

(1) z in E covergence in probabilistic norm to a point zg. i.e., Fy_,,(t) — H(t)(as
T — x)

(2) for each A € (0,1), Px(x — z¢) — O(as © — xo)

Proof: (1) and (2) are equivalent, it follows from the following
Fp_go(€) >1— A& Py(x—xp) <e

By the same way, we can prove the following:

Lemma 3.3. Let (E, F,A) be a Merger PN-space, and the t-norm A satisfy

sup A(t,t) =1
0<t<1

Then the following conclusions are equivalent:
(1) {zn} is a Cauchy sequence of E;
(2) Px\(zp, — ) — 0(as m,m — 00)

Lemma 3.4. Let (E, F,A) be a Menger PN-space, and the t-norm A satisfy

sup A(t,t) =1

0<t<1
For any x1,x2, -+ ,x, € E, and ki,ks, -+ ,k, not all zero, then there exists m > 0 such
that . .

where Pys(x) be defined by (2.5).
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Proof. Let P, (>, kix;) = P,, P, >0 and M = max;<;<, P\(7;), by Lemma 3.1 (1)(4),
we have

which shows that —=>""  |k| < P, = P,(X"", kiz;), taking m = =, m > 0. This
completes the proof of conclusion.

Theorem 2. Let (E,, F, A) be a n-dimensional Menge PN-space, and the t-norm A satisfy

sup A(t,t) =1
0<t<1
Let {e1,ea, - ,en} be a basis of E,,. For any « € E,, and z¢ € F,, assume x = 2?21 kie;

and xg = 2?21 kgei. Then = converges in probabilistic norm to z¢ if and only if k; —
k?(z: 1?27"' 7n)-

Proof. Since z converges in probabilistic norm to zo, Fy_z,(t) — H(t), by Lemma 3.2(2),
for 1 € (0,1) we have P,(x — z9) — 0, and by Lemma 3.4 there exists m > 0 such that
P> (ki — kD)e;) > m > | |ki — k2| > 0, therefore for every i : |k; — k0| — 0, i.e.,
kl' —>k?(2= 1,2,--- ,n).

Conversely, if k; — k(i = 1,2,--- ,n) by Lemma 3.1(4), we have

n

0< P> (ki — k)e;) < max Pa(e) Yy [k — &Y
i=1

‘ T 1<i<n
i=1

This implies that P,(>"" (ki — k{)e;) — 0 or P,(z — z9) — 0, and by Lemma 3.2, z
converges in probabilistic norm to zy.

Remark 1: In Menger PN-space (E, F,A), any finite dimensional linear subspace must
are closed.

Theorem 3. Let (E, F,A) be a Meger PN-space and the ¢t-norm A satisfy

sup A(t,t) =1,

o<t<1
Then (E, F,A) is finite dimensional if and only if the unit sphere N(1,\) = {z; F,(1) >
1— Xz € E} of E is a self-sequentially compact.

Proof. Suppose (E, F,A) is finite dimensional, since bounded closed set of real number
is a self-sequentially compact, by Theorem 2, for any a sequence {z,} in N(1, ) there
exists convergent subsequence {z,, } of which limit o belong to N(1, ), then N(1, ) is a
self-sequentially compact.

Conversely, suppose N(1, ) is a self-sequentially compact, but (F, F,A) is not finite
dimensional. We choose 21 in N(1,\),z1 # 0, for any ky € R, let Ey = {kjx1;21 €
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N(1,)), k1 € R}, by Remark 1, F; is a linear closed genuine subset. By Theorem 1 for each
X € (Xo, 1] there exist x5 € E '\ Eq, and 23 € N(1,\), such that

Py(zg — 1) > 1.

In this case, x1 and x5 are linear independent, in fact, if 7 and zo are dependent,
then there exists ki, k2 € R, might as well assume ko # 0 such that Fi,zqt+kea,(t) = H(2).
Therefore, we have k1x1 + koxo = 0,29 = —,%331 € F1, which is a contradiction.

Let By = {k121 + koxo;21 € E 29 € E \ E1,k1,ks € R} by Theorem 1 there exists
x3 € B\ Eg,z3 € N(1, ), such that

Py(zg—y) >1

where y € FEs. In particular, we choose y = x1 and x2, we have P\(x3 — x3) > 1 and
Py (x3 — x2) > 1. By the same way, we can choose {z,,} € N(1,\) such that

P)\(xn — xm) >1

where n # m. By Lemma 3.3, {x,,} there exists no any convergent subsequence in E, which
is a contradiction. This completes the proof.

Theorem 4. Let (E, F,A) be a finite dimensional Menger PN-space, where the t-norm A
satisfy

sup A(t,t) =1.

0<t<1

Let A be a closed genuine subset of E. Then for each A € (Xg, 1] there exists a element
xo € N(1, ) such that

inf P —y)=1
inf, \@o — y)

Proof. Let a sequence z, € E\A. By corollary 2.1 there exists y, € A and ty > 0 such
that
1> F, —y, () > Fs—a(t) —€

for any € > 0 and all t > #o. By Theorem 1 for y, € A there exists z, = Z5¥* € E\A and
Ao € [0, 1] such that
Zn € N(1,A) and Px(x, —y) > 1 (3.6)

for each A € (Mg, 1] and any y € A, P> be defined by (2.3). Assume E is a finite demensional,
by Theorem 3 the N(1, ) is self-sequentially compact, then there exists g € N(1, A) such
that

Fop—ao(t) = H(t)  (n— o0) (3.7)

for all ¢ > 0. By Lemma 3.2, we have
Py(xp —29) =0 (n— o0)
Since g € N(1,\) : Fy, (1) > 1 — A, hence Py(xp) < 1.By null element 6 € A, we have

1> Py(zo) = Px(x0 — 0) > ireljf4 Py (zo — ) (3.8)
y

Next, we prove that inf,c4 Px(xo —y) > 1. By (3.6), we have

Fp_y(1) <1\
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Assume Fy,_,(1) > 1 — A, since t-norm A satisfy supy,.; A(t,t) = 1, for A > 0 there
exists Ay > 0, A1 < A such thatl

Al =X, 1=X)>1- A
Since Fy,_y(t) is left-continuous at ¢t = 1, there exists 6 > 0 such that
Fro—y(l=0)>1=-X >1-A
By (3.7) for (d, A1) there exists N > 0 such that
Fr—ao(8)>1—X\
for all n > N. By the Menger triangle inequality, we have
1=A>F, (1) > A(Fp—20(0), Foo—y(1 —=0)) > A1 =X, 1= X1) >1— X
which is a contradiction. Then for any y € A we have
Fro—y(1) <1—2X

which implies inf,ca Px(zo —y) > 1. This completes the proof.
By Theorem 1,2,3, easily prove the following corollary.

Corollary 4.1. Let (F, F,A) be a Menger PN-space, where the t-norm A satisfy

sup A(t,t) =1

0<t<1
if (E,F,A) be finite dimensional, then any bounded closed subset of (F,F,A) is self-
sequentially compact. Conversely, only if some sphere N (¢,\) = {x € E; F,(t) > 1 — A} be
self-sequentially compact, then E is finite dimensional.
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