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Abstract.In this paper, we gives the Riesz theorem on probabilistic normed spaces,

studies the relations between convergence in probabilistic norm and convergence in

coordinate, proves necessary and sufficient condition of the probabilistic normed spaces

which are finite dimensional.

1 Introduction

In 1942, Menger (1) published the first paper in which was called statistical metrics.
This paper introduced the idea of replacing the distance d(p, q) between two point in a
metric space by a probabilistic distribution function Fp,q. Serstnev (3) introduced the idea
of probabilistic normed spaces. In this space the norm of an element is replaced by a
distribution of norm.

In this paper, we introduces the concept of unit sphere, discusses the Riesz theorem
on probabilistic normed spaces, studies the relations between convergence in probabilistic
norm and convergence in coordinate, proves characteristic theorem of finite demensional
probabilistic normed spaces.

Throughout this paper, we denote by D the set of distribution functions defined on R,
i.e., F ∈ D if F is nondecreasing left-continuous with supt∈R F (t) = 1 and inft∈R F (t) = 0.

Definition 1.1. A probabilistic normed space (shortly, PN-space) is an ordered pair (E, F ),
where E is a real linear space and F is a mapping from E into D (we denote F (x) by Fx)
satisfying the following conditions:

(PN-1)Fx(t) = 1 for all t > 0 if and only if x = 0
(PN-2)Fx(0) = 0;
(PN-3)Fαx(t) = Fx( t

|α|) for any α ∈ R, α �= 0
(PN-4)if Fx(t1) = 1, Fy(t2) = 1, then Fx+y(t1 + t2) = 1.

Definition 1.2. A Menger PN space is a PN-space that satisfies (PN-5),
(PN-5)Fx+y(t1 + t2) ≥ �(Fx(t1), Fy(t2)) for all x, y ∈ E, t1, t2 ∈ R+ = [0, +∞) where

� is a 2-place function on the unit square satisfying:

(1)T (0, 0) = 0 and T (a, 1) = a

(2)T (a, b) = T (b, a)
(3)if a ≤ c and b ≤ d, then T (a, b) ≤ T (c, d)
(4)T (T (a, b), c) = T (a, T (b, c))

T is called a t-norm.
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2 Riesz theorem on PN-space

In this section, we shall discuss Riesz theorem on PN-space.

Lemma 2.1. Let (E, F ) be a PN-space and A be a genuine subset of E. By the definition
of supy∈A Fx1−y(t), there exists y1 ∈ A such that for any ε > 0 and x1 ∈ E\A

sup
y∈A

Fx1−y(t) − ε < Fx1−y1(t) ≤ sup
y∈A

Fx1−y(t) (2.1)

Suppose p = inf{t > 0; Fx1−y1(t) > 1 − λ}
p1 = inf{t > 0; sup

y∈A
Fx1−y(t) > 1 − λ} (2.2)

p2 = inf{t > 0; sup
y∈A

Fx1−y(t) − ε > 1 − λ} (2.3)

where ε > 0 and λ ∈ (0, 1). Then p2 ≥ p ≥ p1.

Proof. Suppose t0 ∈ {t > 0; Fx1−y1(t) > 1−λ}, by (2.1) we have t0 ∈ {t > 0; supy∈A Fx1−y(t) >

1 − λ}, then p ≥ p1, similarly have p2 ≥ p.

Lemma 2.2: Let (E, F ) be a PN-space and A be a genuine subset of E. Then we have
the following:

(1)supy∈A Fx1−y(t) is a left-continuous function at t for any x1 ∈ E\A.
(2)suppose P̄ = inf{t > 0 : supy∈A Fx1−y(t − δ) > 1 − λ} and P1, P2 be defined by

(2.2)(2.3), then P2 ≥ P̄ = P1 + δ.

Proof. (1)Since Fx1−y(t) is left-continuous at t(t > 0), thus for any ε > 0 there exists
δ ∈ (0, t) such that Fx1−y(t − δ) > Fx1−y(t) − ε, by continuous of real number, for every
t > δ there exists I(t) such that

Fx1−y(t − δ) > I(t) > Fx1−y(t) − ε

we have
sup
y∈A

Fx1−y(t − δ) ≥ Fx1−y(t − δ) > I(t) ≥ sup
y∈A

Fx1−y(t) − ε

Then
sup
y∈A

Fx1−y(t − δ) > sup
y∈A

Fx1−y(t) − ε

(2) Obviously P2 ≥ P̄ . By the definition of P̄ , we have

p = inf{t > 0; sup
y∈A

Fx1−y(t − δ) > 1 − λ, t > δ}

= inf{t + δ; sup
y∈A

Fx1−y(t) > 1 − λ, t > 0}

= inf{t > 0; sup
y∈A

Fx1−y(t) > 1 − λ} + δ

= p1 + δ,

This completes the proof.

Definition 2.1. Let (E, F ) be a PN-space and A be a genuine subset of E.
(1)We define a unit sphere N(1, λ) of E by

N(1, λ) = {y ∈ E; Fy(1) > 1 − λ, λ ∈ (0, 1)} (2.4)
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(2)We define Pλ : E → R+ by

Pλ(y) = inf{t > 0; Fy(t) > 1 − λ} (2.5)

for each λ ∈ (0, 1). We say that Pλ(y) is the quasi-norm of y.
(3) We define Fx−A(t) by

Fx−A(t) = sup
y∈A

Fx−y(t) (2.6)

for all t ∈ R. We say that Fx−A(t) is the probabilistic distance from the point x to the set
A.

(4) The set A in E is said sequentially compact, if any infinite set of A must there exists
a convergence subsequence. The set A in E is said self-sequentially compact, if limit of
every convergence sequence in A belong to A.

Corollary 2.1: Let A be a nonempty closed set of E, then

Fx−A(t) = 1, for all t > 0 if and only if x ∈ A.

Theorem 1: Let (E, F ) be a PN-space and A be a nonempty closed genuine subset of E.
Then for any y ∈ A there exists x0 ∈ E \ A, and λ0 ∈ [0, 1] such that x0 ∈ N(1, λ) and
Pλ(x0 − y) ≥ 1 for each λ ∈ (λ0, 1].

Proof. Since A is a nonempty closed genuine subset of E, by corollary 2.1 there exist
x1 ∈ E \ A, such that

Fx1−A(t) < 1

for all t > 0. Suppose supt>0 Fx1−A(t) = supt>0 supy∈A Fx1−y(t) = δ, δ ≤ 1. Let λ0 = 1− δ,
for each λ ∈ (λ0, 1], we have

sup
t>0

sup
y∈A

Fx1−y(t) > 1 − λ

By the definition of sup, there exist t0 > 0, such that

sup
y∈A

Fx1−y(t) > 1 − λ

for any t ≥ t0. By Lemma 2.1 and definition of sup there exist y1 ∈ A such that

Fx1−y1(t) > sup
y∈A

Fx1−y(t) − ε.

for any ε > 0, and all t ≥ t0. Taking x0 = x1−y1
p2

, by Lemma 2.1 and 2.2, we have

Fx0(1) = F 1
p2

(x1−y1)(1) = Fx1−y1(p2) > sup
y∈A

Fx1−y(p2) − ε

≥ sup
y∈A

Fx1−y(p1 + δ) − ε > 1 − λ − ε.

by the left-continuity of Fx0(t) at t = 1, there exists δ1 > 0 such that

Fx0(1 − δ1) > 1 − λ.

Thus Fx0(1) ≥ Fx0(1 − δ1) > 1 − λ, therefore x0 ∈ N(1, λ), for any λ ∈ (λ0, 1].
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Taking δ2 = δ
p2

, by (2.3) we have

Fx0−y(1 − δ2) = F 1
p2

[x1−(y1+p2y)](1 − δ2)

= Fx1−(y1+p2y)(p2 − p2δ2)

≤ sup
y∈A

Fx1−y(p2 − δ)

≤ 1 − λ + ε.

Letting ε → 0, by the left-continuity of Fx0−y(t) at t = 1, we have

Fx0−y(1) ≤ 1 − λ,

therefore Pλ(x0 − y) ≥ 1, for any y ∈ A, and x0 ∈ N(1, λ). This completes the proof.

3 Finite dimensional characterization on PN-spaces.

Throughout this section, we always assume that (E, F,�) is a Menger PN-space, where
the t-norm ∆ satisfy

sup
0<t<1

∆(t, t) = 1

Definition 3.1. Let (E, F ) be a PN-space
(1)The element x1, x2, · · · , xn of E is linearly dependent, if there exists k1, k2, · · · , kn

not all zero, such that
Fk1x1+k2x2+···+knxn(t) = H(t),

if finite set x1, x2, · · · , xn is not linearly dependent, it is called linearly independent.
(2)The element x1, x2, · · · , xn of E is called a basis of E, if x1, x2, · · · , xn are linearly

independent and if any element of E is a linear combination of the element x1, x2, · · · , xn.
The E is called n-dimensional, if E has a basis of n elements.

Lemma 3.1. Let (E, F,�) be a Menger PN-space, and the t-norm ∆ satisfy

sup
t<1

∆(t, t) = 1

Then we have the following
(1) For any x ∈ E and k ∈ R,

Pλ(kx) = |k|Pλ(x)

(2) For any µ ∈ (0, 1), there exists λ ∈ (0, 1) such that for any x, y ∈ E:

Pµ(x + y) ≤ Pλ(x) + Pλ(y) (3.1)

(3) For any µ ∈ (0, 1), there exists λ ∈ (0, 1), and k1, k2 ∈ R, such that for any x1, x2 ∈ E:

Pµ(k1x1 + k2x2) ≤ |k1|Pλ(x1) + |k2|Pλ(x2) (3.2)

(4) For any µ ∈ (0, 1), there exists λ ∈ (0, 1) such that for any x1, x2, · · · , xn ∈ E and
k1, k2, · · · , kn ∈ R.

Pµ(
n∑

i=1

kixi) ≤
n∑

i=1

(|ki|Pλ(xi) ≤ max
1≤i≤n

Pλ(xi)
n∑

i=1

|ki| (3.3)



REPRESENTATION THEOREM ON PN SPACES 193

Proof. (1) By the definition of Pλ(x), it is easy to prove.
(2) Since sup0<t<1 ∆(t, t) = 1, for any µ ∈ (0, 1) there exists λ > 0 such that

∆(1 − λ, 1 − λ) > 1 − µ

By the Menger triangle inequality, we have

Fx+y(Pλ(x) + Pλ(y) + 2ε) ≥ ∆(Fx(Pλ(x) + ε), Fy(Pλ(y) + ε))

≥ ∆(1 − λ, 1 − λ)

> 1 − µ

for every ε > 0, which implies that

Pµ(x + y) ≤ Pλ(x) + Pλ(y) + 2ε

Letting ε → 0, we have
Pµ(x + y) ≤ Pλ(x) + Pλ(y) (3.4)

The conclusions (3) and (4) follow from the (1) and (2). This completes the proof.

Lemma 3.2. Let (E, F,∆) be a Menger PN-space, and the t-norm ∆ satisfy

sup
0<t<1

∆(t, t) = 1

Then the following conclusions are equivalent:
(1) x in E covergence in probabilistic norm to a point x0. i.e., Fx−x0(t) → H(t)(as

x → x0)
(2) for each λ ∈ (0, 1), Pλ(x − x0) → 0(as x → x0)

Proof: (1) and (2) are equivalent, it follows from the following

Fx−x0(ε) > 1 − λ ⇔ Pλ(x − x0) < ε

By the same way, we can prove the following:

Lemma 3.3. Let (E, F,∆) be a Merger PN-space, and the t-norm ∆ satisfy

sup
0<t<1

∆(t, t) = 1

Then the following conclusions are equivalent:
(1) {xn} is a Cauchy sequence of E;
(2) Pλ(xn − xm) → 0(as n, m → ∞)

Lemma 3.4. Let (E, F,∆) be a Menger PN-space, and the t-norm ∆ satisfy

sup
0<t<1

∆(t, t) = 1

For any x1, x2, · · · , xn ∈ E, and k1, k2, · · · , kn not all zero, then there exists m > 0 such
that

m

n∑

i=1

|ki| ≤ Pµ(
n∑

i=1

kixi) (3.5)

where PM (x) be defined by (2.5).
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Proof. Let Pµ(
∑n

i=1 kixi) = Pµ, Pµ > 0 and M = max1≤i≤n Pλ(xi), by Lemma 3.1 (1)(4),
we have

1 =
1

Pµ

Pµ(
n∑

i=1

kixi) = Pµ(
n∑

i=1

ki

Pµ

xi) ≤
n∑

i=1

|ki|
Pµ

Pλ(xi) ≤ M

n∑

i=1

|ki|
Pµ

Let K = max1≤i≤n
|ki|
P µ

, K > 0, then we have

M

n∑

i=1

|ki|
Pµ

≤ MKn,

which shows that 1
nK

∑n
i=1 |ki| ≤ Pµ = Pµ(

∑n
i=1 kixi), taking m = 1

nk , m > 0. This
completes the proof of conclusion.

Theorem 2. Let (En, F,∆) be a n-dimensional Menge PN-space, and the t-norm ∆ satisfy

sup
0<t<1

∆(t, t) = 1

Let {e1, e2, · · · , en} be a basis of En. For any x ∈ En and x0 ∈ En, assume x =
∑n

i=1 kiei

and x0 =
∑n

i=1 k0
i ei. Then x converges in probabilistic norm to x0 if and only if ki →

k0
i (i = 1, 2, · · · , n).

Proof. Since x converges in probabilistic norm to x0, Fx−x0(t) → H(t), by Lemma 3.2(2),
for µ ∈ (0, 1) we have Pµ(x − x0) → 0, and by Lemma 3.4 there exists m > 0 such that
Pµ(

∑n
i=1(ki − k0

i )ei) ≥ m
∑n

i=1 |ki − k0
i | > 0, therefore for every i : |ki − k0

i | → 0, i.e.,
ki → k0

i (i = 1, 2, · · · , n).
Conversely, if ki → k0

i (i = 1, 2, · · · , n) by Lemma 3.1(4), we have

0 ≤ Pµ(
n∑

i=1

(ki − k0
i )ei) ≤ max

1≤i≤n
Pλ(ei)

n∑

i=1

|ki − k0
i |

This implies that Pµ(
∑n

i=1(ki − k0
i )ei) → 0 or Pµ(x − x0) → 0, and by Lemma 3.2, x

converges in probabilistic norm to x0.

Remark 1: In Menger PN-space (E, F,∆), any finite dimensional linear subspace must
are closed.

Theorem 3. Let (E, F,∆) be a Meger PN-space and the t-norm ∆ satisfy

sup
0<t<1

∆(t, t) = 1,

Then (E, F,∆) is finite dimensional if and only if the unit sphere N(1, λ) = {x; Fx(1) >

1 − λ, x ∈ E} of E is a self-sequentially compact.

Proof. Suppose (E, F,∆) is finite dimensional, since bounded closed set of real number
is a self-sequentially compact, by Theorem 2, for any a sequence {xn} in N(1, λ) there
exists convergent subsequence {xnk

} of which limit x0 belong to N(1, λ), then N(1, λ) is a
self-sequentially compact.

Conversely, suppose N(1, λ) is a self-sequentially compact, but (E, F,∆) is not finite
dimensional. We choose x1 in N(1, λ), x1 �= θ, for any k1 ∈ R, let E1 = {k1x1; x1 ∈
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N(1, λ), k1 ∈ R}, by Remark 1, E1 is a linear closed genuine subset. By Theorem 1 for each
λ ∈ (λ0, 1] there exist x2 ∈ E \ E1, and x2 ∈ N(1, λ), such that

Pλ(x2 − x1) ≥ 1.

In this case, x1 and x2 are linear independent, in fact, if x1 and x2 are dependent,
then there exists k1, k2 ∈ R, might as well assume k2 �= 0 such that Fk1x1+k2x2(t) = H(t).
Therefore, we have k1x1 + k2x2 = θ, x2 = −k1

k2
x1 ∈ E1, which is a contradiction.

Let E2 = {k1x1 + k2x2; x1 ∈ E, x2 ∈ E \ E1, k1, k2 ∈ R} by Theorem 1 there exists
x3 ∈ E \ E2, x3 ∈ N(1, λ), such that

Pλ(x3 − y) ≥ 1

where y ∈ E2. In particular, we choose y = x1 and x2, we have Pλ(x3 − x2) ≥ 1 and
Pλ(x3 − x2) ≥ 1. By the same way, we can choose {xn} ∈ N(1, λ) such that

Pλ(xn − xm) ≥ 1

where n �= m. By Lemma 3.3, {xn} there exists no any convergent subsequence in E, which
is a contradiction. This completes the proof.

Theorem 4. Let (E, F,∆) be a finite dimensional Menger PN-space, where the t-norm ∆
satisfy

sup
0<t<1

∆(t, t) = 1.

Let A be a closed genuine subset of E. Then for each λ ∈ (λ0, 1] there exists a element
x0 ∈ N(1, λ) such that

inf
y∈A

Pλ(x0 − y) = 1

Proof. Let a sequence zn ∈ E\A. By corollary 2.1 there exists yn ∈ A and t0 > 0 such
that

1 > Fzn−yn(t) > Fzn−A(t) − ε

for any ε > 0 and all t ≥ t0. By Theorem 1 for yn ∈ A there exists xn = zn−yn

P2
∈ E\A and

λ0 ∈ [0, 1] such that
xn ∈ N(1, λ) and Pλ(xn − y) ≥ 1 (3.6)

for each λ ∈ (λ0, 1] and any y ∈ A,P2 be defined by (2.3). Assume E is a finite demensional,
by Theorem 3 the N(1, λ) is self-sequentially compact, then there exists x0 ∈ N(1, λ) such
that

Fxn−x0(t) → H(t) (n → ∞) (3.7)

for all t > 0. By Lemma 3.2, we have

Pλ(xn − x0) → 0 (n → ∞)

Since x0 ∈ N(1, λ) : Fx0(1) > 1 − λ, hence Pλ(x0) ≤ 1.By null element θ ∈ A, we have

1 ≥ Pλ(x0) = Pλ(x0 − θ) ≥ inf
y∈A

Pλ(x0 − y) (3.8)

Next, we prove that infy∈A Pλ(x0 − y) ≥ 1. By (3.6), we have

Fxn−y(1) ≤ 1 − λ.
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Assume Fx0−y(1) > 1 − λ, since t-norm ∆ satisfy sup0<t<1 ∆(t, t) = 1, for λ > 0 there
exists λ1 > 0, λ1 ≤ λ such that1

∆(1 − λ1, 1 − λ1) > 1 − λ.

Since Fx0−y(t) is left-continuous at t = 1, there exists δ > 0 such that

Fx0−y(1 − δ) > 1 − λ1 ≥ 1 − λ.

By (3.7) for (δ, λ1) there exists N > 0 such that

Fxn−x0(δ) > 1 − λ1

for all n > N . By the Menger triangle inequality, we have

1 − λ ≥ Fxn−y(1) ≥ ∆(Fxn−x0(δ), Fx0−y(1 − δ)) ≥ ∆(1 − λ1, 1 − λ1) > 1 − λ

which is a contradiction. Then for any y ∈ A we have

Fx0−y(1) ≤ 1 − λ

which implies infy∈A Pλ(x0 − y) ≥ 1. This completes the proof.
By Theorem 1,2,3, easily prove the following corollary.

Corollary 4.1. Let (E, F,∆) be a Menger PN-space, where the t-norm ∆ satisfy

sup
0<t<1

∆(t, t) = 1

if (E, F,∆) be finite dimensional, then any bounded closed subset of (E, F,∆) is self-
sequentially compact. Conversely, only if some sphere N(t, λ) = {x ∈ E; Fx(t) > 1 − λ} be
self-sequentially compact, then E is finite dimensional.
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