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ON §0-SEQUENCES AND ¢-PRODUCTS
KEIKO CHIBA
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ABSTRACT. In this paper we shall obtain characterizations of §6-sequences and investi-
gate 60-refinability-like properties of o-products.

1. INTRODUCTION.

In 1967, J. M. W. Worrel [18] introduced the notion of -sequences and #-refinable spaces
and characterized #-refinable spaces by using pointwise W-refining sequences. After that,
H. J. K. Junnila [11, 12, 13] investigated #-refinable spaces and characterized such spaces
by using point star F-refining sequences.

In this paper we investigate d6-sequences. We introduce the notions of pointwise count-
able W-refining sequences and point star c -refining sequences, and obtain a characteriza-
tion of d0-refinability under an additional condition. Further we study dé-refinability-like
properties of o-products.

2. 00-SEQUENCES

Definition 1. A space X is called “df-refinable” [3, p. 370] (resp. O-refinable) if every
open cover G of X has a d6-sequence (resp. 6-sequence) (H,)nen of X such that each H,, is
an open cover of X and a refinement of G. Let us denote H,, < G when H,, is a refinement
of G.

A sequence (H,)nen of covers of X is called a “d6-sequence” (resp. f-sequence) of X if
for any = € X there is some n, € N such that ord(z,H,,) < w (resp. ord(z, Hn,) < w) .
Here ord(x, H,,) = [{H;x € H € H,,}| where w denotes the first infinite ordinal and |A|
denotes the cardinal number of a set A.

Definition 2. ([12]). A family £ of subsets of X is interior preserving if for each K C L,
we have Int(\ K = N{IntL|L € K}. Here IntL denotes the interior of L.

Let U be an open cover of X. For each x € X, define U, = {Ulx € U € U}.

Let U and V are open covers of X. V is called a pointwise W-refinement of U at z if
there is a finite subfamily &  of U such that V, < U . For every open cover U of X, let us
put UF = {JU'|U cu,|U'| < w}.

Concerning this, the following is known.
Theorem A ([12, Lemma 2.3]). Let U/ be an interior preserving open cover of X. Then
the following are equivalent.
(1) There is an interior preserving open pointwise W-refinement V of U.
(2) There is a closure preserving closed cover F of X such that F < U¥.

Now we shall introduce the notion of pointwise countable W-refinement and prove The-
orems 1 and 2.
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Definition 3. Let &/ and V are open covers of X. V is called a pointwise countable W-
refinement of U at z if there is a countable subfamily U  of I such that V, < U . V is called
a pointwise countable W-refinement of U/ if V is a pointwise countable W-refinement of U
at x for every z € X.

For every open cover U of X, let us put U¢ = {JU U c U, |U'| < w}.

For each « € X, we denote st(z,U) = | J{U|z € U € U}.

Theorem 1. Let U be an interior preserving open cover of X. Then the following are
equivalent.

(1) There is an interior preserving open pointwise countable W-refinement V of U.

(2) There is a closure preserving closed cover F of X such that F < U°.

The proof of Theorem 1 is similar to that of Theorem 2 below.

Theorem 2. Let U be an interior preserving open cover of X. Then the following are
equivalent.

(1) There is a sequence (Vn)nen of interior preserving open covers of X such that V, <U
for each n € N and for each x € X, there is an n such that V, is a pointwise countable
W-refinement of U at x.

(2) There is a o-closure preserving closed cover F of X such that F < U°.

Proof. The basic idea of this proof is in the proof of [12, Lemma 2.3]. (2) = (1). Let
F = UnenFn be a closed cover of X such that F < U¢ and each F,, is a closure preserving
family. For each z € X, let V,, » = [U] N [X N U(Fn N\ Fz)]. Then V,, , is open in X such
that © € V,, 5. Put V,, = {V,, ,|z € X}. Then V), is an open cover of X such that V,, < U.

(i) V, is interior preserving.

Proof. For each A C X, we have (|, c 4 Vo = [NUa] N [X N U(Fn \ Fa)] where Uy =
{UIUNA#0} =Upeally and Fa = {FIFNA#0} = U,c s Fo-
Since U is interior preserving, (U4 is open. Since F, is closure preserving, | J(F,, \ Fa)

is closed. Therefore ﬂreA Vi,z is open.

(ii) For each z € X, there exists an n such that (V) < U for some countable subfamily
U of U.

Proof. For each x € X, there exist an n and F' € F,, such that z € F. Since F,, < U°, there
is a countable subfamily & of U such that F c U .

Let V€ (Vn)z. Then V =V, , for some y € X. For each F' € F, ~ Fy, since
x € Vpy,x ¢ F'. Since z € F,F € F,. Therefore y € F. Hence y € |JU . Thus there is a
U € U such that y e U. Since U € Uy, Vy,y C U. Therefore (Vy,), < u'.

(1) = (2). Put G = U°. For each G € G, let F,, ¢ = {z € X|st(z,V,) C G} and put
Fn ={Fnc|G € G}. Then

(i) Fn,¢ is closed in X.

Proof. Let x € X \ F, . Then st(z,V,) ¢ G. Therefore there is V € V, such that
z€V,VZG. Put O=\(Vs), Then z € O. Since V), is interior preserving, O is open.

Let y € O. Theny € V. Since V € G, st(y,V,) € G. Thus y ¢ F, . Hence
OCX~ FTMG'

(ii) F = UpenFn is a cover of X.

Proof. Let € X. There is an n such that (V,), < U for some countable subfamily ¢’ of
U. Put G = UL{l. Then z € F), .
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(iii) F, is closure preserving.

Proof. For each G C G, put F = |J{F,.¢|G € G'}. Then F is closed. To show this, let
x € X NF. Then = ¢ F, ¢ for each G € G'. Therefore there are Vo € V, such that
€V, Vo € G. Put V= {Vs|G € G'}. Then V is open, z € V and V N F,, ¢ = 0 for
each GeG. Thus VNF=0. O

Worrel proved the following.
Theorem B([12, Proposition 1.4]). Let U/ be an open cover of X. Suppose there exists a
sequence (U )nen of open refinements of U satisfying: for each x € X there is a sequence of
integers ((n,r))nen such that U, 41 4 is a pointwise W-refinement of U, ) at = for each
n € N. Then U has a #-sequence of open refinements.

A family £ of sets is called monotone if the partial order of set-inclusion is a linear order
on L.
Concerning 66-sequences, we obtain the following.

Theorem 3. Let L be a monotone open cover of X such that L° = L. Then the following
holds. Suppose there is a sequence (Up)nen of open coves of X such that U, < L for each
n satisfying: for each x € X, there is a sequence of integers ({n,x))pen C N such that
L{@H_LI) s a pointwise countable W-refinement ofblfn,@ at x. Then L has a §60-sequence of
refinements.
Proof. This proof is similar to that of Theorem B in outline. Put £ = {W,|a < 7} for some
ordinal y. For each V' € |J,,cn Uy;, define a(V) = min{a|V C W, }. For each V' € |, cn U,
define “US is precise at V” by the condition: If U € US and V' C U, then a(V) = a(U).

For each n € N and each k € N, put W, = {V € UgJUS is precise at V} and
L, ={z € X|Uf is a pointwise countable W-refinement of ¢ at x}.

For each h > 2 and each s = (s(1),5(2), ..., s(h)) € N", define L, = Lyh—2),s(h—1)-

For each « € X, there is a sequence ({n,x))n,en of integers such that there is a countable
subfamily Qn(x) of (Uf, ,,)e such that (Uf, ., \)e < Qn(x) for each n.

Put Q(n,z) = |J Qn(x).

For each h > 2 and each s = (s(1),5(2),...,s(h)) € N put Hy = {x € L|s(i) = (i, z)
fori=1,2,....,h;Q(h —1,2) € Ws(h—2),s(h—1)}- Then we have

(1) {Hs|s € N" h > 2} is a cover of X.

Proof. Let x € X. Put a, = a(Q(n,x)). Since Qpy1(x) < Qn(z),Q(n+ 1,z) C Q(n,x).
Therefore a1 < ay, for each n. Thus there is a k such that ay = a,(VYn > k — 2). Put
s=((1,z),(2,2),..., (k + 1,7)) € N**1. Then we have

(*) x € Hs.

Proof. Tt is obvious that x € Ly and Q(k,x) € UGy oy = Usiry- If Q(k,xz) CU,U € U1 2>
thenz € U. Thus U € (U, ,y)e- Since (UG, 4y )e < Qr—2(x), there exists U' € Qo)
such that U  U'. Hence U C Q(k — 2,z). Therefore Q(k,z) C U C Q(k — 2,z). Thus
ar < (U) < ag—2 = a. Hence a(U) = ar = a(Q(k, x)). Therefore Ug _, ., is precise at
Q(k,z). Thus Q(k,z) € Wik—1.2),(k,x) = Ws(k—1),s(k)- Hence x € H,.

For each @ < v and n,k € N, put Vo x = U{WIW € Wy, (W) = a} and V,, =
{Va,n.klo <~}. Then V, j is an open family in X and

(2) Vni is is point countable on L, .
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Proof. Let & € L, ;. Then there exists a countable subfamily Q) of (U¢), such that
Uz < Q-

Put A = {a(Q)|Q € Q,}. Then {alx € Vyni} C A. To show this, let o < 7
and © € Vo n k. Then there is a W € W, such that z € W and a(W) = «. Since
W e (Uf)., W C Q for some Q € Q,,. Since Q € US,W C Q and W € W, 1, (W) = (Q).
Thus a € A.

For each h > 2 and each s = (s(1),5(2),...,s(h)) € N put V, = Vis(h—2),s(h—1):Us =
{U e U, |lU € UV} and O; =U; U V. Then
(i) O; is an open cover of X,
(ii) Os < L,
(iii) for each z € X, by (1), there is h > 2 and s € N” such that z € H,. Then ord(z, O,) <
w.

(i) and (ii) are obvious.
Proof of (iii). Since x € Lgp—2)s(h—1), by (2), ord(z,V,) < w. Let U € U,. Then
v ¢ U. If not, U € (Ugyy)ae Since (Usyy)a < Qu-1)(2),U C Q(h — 1,z). Since
r € Hy,Q(h — 1,2) € Wyn—2),s(h—1)- Therefore Q(h —1,2) C Vi, gn—2),s(h—1) for some
a <. Thus U C V, s(h—2),s(h—1) C [UVs. This is a contradiction because U € U,. Thus
ord(z,Us) =0

By (i) ¢ (iii), {Os|s € N*, h > 2} is a §6-sequence of open refinements of £. [J

Concerning #-sequences, the following is known.

Theorem C([12, Lemma 1.3]). Let U be an open cover of X. Then the following are
equivalent.

(1) There is a 6-sequence (Uy, )nen of refinements of U such that U, is an interior preserving
open cover of X for each n.

(2) There are a sequence (Uy,)nen of interior preserving open covers of X such that U,, < U
for each n and a closed cover {F,,|n € N} of X such that U, is point finite at each = € F,
for each n.

Concerning 66-sequences, the similar result of Theorem C holds.

Theorem 4. Let U be an open cover of X. Then the following are equivalent.

(1) There is a §0-sequence (Un)nenN of refinements of U such that U, is an interior preserving
open cover of X for each n.

(2) There are a sequence (Uy,)nen of interior preserving open covers of X such that U, < U
for each n and a closed cover {F,ln € N} of X such that U, is point countable at each
x € F, for eachn.

Proof. (1) = (2). For each n, put F, = {z € X|st(z,U,) C JU for some countable
subfamily 2" of U}. Then

(i) F, is closed in X.

Proof. Let © € X \ F),. Then st(z,U,) € UZ/{ for each countable subfamily U of U. Put
Uz = (Un)z. Then = € U, and, since U is interior preserving, U, is open. And we have
(YU, C X \F,.

Proof. Let y € Uy. If U € (Up)s, then y € U. Therefore (U,)r C (Un)y. Thus
st(z,Uy) C st(y7 ). Since st(x,Uy,) € Uit for each countable subfamily 2" of U. Therefore
st(y,Uy,) € JU for each countable subfamily & of Y. Hence y ¢ F,,.
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Therefore (U,,) and F,, satisfy the conditions in (2).
(2) = (1) is obvious. O.

Theorem 5. Let U be an open cover of X. IfU® has a §0-sequence of refinements, then U
has a §0-sequence of refinements.

Proof. Let (V,)nen be a d6-sequence of refinements of U¢. For each V' € V), there exists
a countable subfamily Uy of U° such that V- C JUy. Let Uy = {U;|i = 1,2,...},U; =
U321 Ui, Uiy € U. Put Uy, = {Ui li,j =1,2,..}. Define V,, = {VNU|U € U,V € Vy,}.
Then V, is an open cover of X and V,, < U. For each x € X, there is an n such that 1 <

ord(z, V) <w. Then 1 < ord(z, ]’/\;) < w. Thus (f)\;)neN is a d0-sequence of refinements of
Uu. O

Definition 4. Let U be a cover of X and (V,)nen a sequence of covers of X. A sequence
(Vn)n is called a pointwise W-refining sequence for U if for each x, there exists some n,
such that V), is a pointwise W-refinement of U/ at x.

By Worrell, the next characterization of #-refinable spaces was given.

Theorem D ([18], or cf. [19, 3.4. Theorem]). A space X is f-refinable (submetacompact)
if and only if every open cover of X has a pointwise W-refining sequence by open covers.

Definition 5. ([11]). Let £ and G be covers of X. L is called “point-star F-refinement”
of G at = € X if there is a finite subfamily G’ of G such that z € G and st(x,£) c UG .

A sequence (L, )nen of covers of X is called “point-star F-refining sequence” of G if for
each z € X, there is an n, € N such that £, is point-star F-refinement of G at z.

Junnila gave the next characterization of submetacompactness.

Theorem E ([18]). A space X is f-refinable (submetacompact) if and only if every open
cover of X has a point star F-refinning sequence by open covers.

Definition 6. Let U be a cover of X and (V,,)nen a sequence of covers of X. We shall
say a sequence (V,), is a pointwise countable W-refining sequence for U if for each x, there
exists some n; such that V), is a pointwise countable W-refinement of U at x.

We shall say a space X is w-d6-refinable if every open cover of X has a pointwise countable
W-refining sequences by open covers.

Definition 7. Let £ and G are covers of X. We shall say £ is called “point-star C-
refinement” of G at x € X if if there is a countable subfamily Q/ of G such that x € ﬂg/
and st(z,£) c UG’
We shall say a sequence (L,,)nen of covers of X is “point-star C’—reﬁnz'ng sequence” of G
if for each x € X, there is an n, € N such that £, is point-star C-refinement of G at .
We shall say a space X is ww-df-refinable if every open cover of X has a point star
C-refining sequences by open covers.

It is obvious that every d6-refinable space is w-d6-refinable and every w-d6-refinable
space is ww-d6-refinable. Let L(X) denote the Lindel6f number of a space X, i.e., L(X) =
min{x | k > w, each open cover G of X has a subcover G with |G | < k}.

Theorem 6. Let X be a space with L(X) < wy. Then the following are equivalent.
(i) X is d0-refinable.

(i) X is w-60-refinable.

(ii) X is ww-60-refinable.
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Proof. Tt is obvious that (i) = (ii) and (ii) = (iii). To prove that (iii) = (i), let U be an
open cover of X. We may assume that i = {Uy|a < wy}. By assumption, there exists a
sequence (Lx)ken of point star C-refining sequence by open covers of X.
For each k € N and each a < wq, define
Via = UaN(st(X ~ Uﬁ;éa Us, L)),
Vio =Ua N (Ugsa U)X N Upoy Us, Lx)) and put
Vi = {Vi,ala <wi}U {V,;a|oz <wi}.
Then
(1) Vg is an open cover of X such that Vy < U.

Proof. 1t is obvious that each set of Vj is an open set and Vi, < U. To prove that Vy is
a cover of X, let z € X. Put @ = min {8 < wi|z € Ug}. Then x € Us \ Us, Us. If
x ¢ V,;,a, then = ¢ ;. Us and thus z € Jg,, Us. Hence z € Via.
(2) Vk)ken is a d6-sequence.
Proof. Let x € X. Then there exist a k € N and a countable subset {«;]i = 1,2,...} C wy
such that z € ;2 Ua, and st(z, Li) C Uj2; Ua,-

If 2 € Vi,a, then there is an L € Ly such that z € L and L N (X N\ Uy, Us) # 0. Since
L c ;21 Uq,, o = a; for some i. Therefore {a < wil|z € Vio} C {aili = 1,2,...}. Put
o =sup{a;|i = 1,2,...}. Then {a < wy|z € V,;a} C {a|a < a*}. To show this, let a > o*.
Ifx € L €Ly, then L C Jg., Us. Thus z ¢ V,;a. Hence ord(x, Vi) < w. O

3. J0-REFINABILITY-LIKE PROPERTIES OF o-PRODUCTS

Throughout this sectuion we assume that each space is a Tj-space having at least two
points. We define o-products which were introduced by H. H. Corson [8].

Definition 8. Let S = {X,|a € Q} be spaces. “oc = o(S) is a o-product of S” means
there is a point z* = (2)acq € X = II{X,|a € Q} (called the base point of o) such that o
is the subspace of X consisting of {z € X|Q(z) is finite}. Here Q(z) = {a]a € Q, x4 # 3 }.
Let Q" = {a C Q: |a] = n} each n € w and put Q<Y = U{Q"|n € w}. Here |a| denotes the
cardinal number of a.

For a finite subset F of Q,II{X,|a € F} is said to be a finite subproduct of o.

For each a € Q<% define Y, = HpeaXa X {25 }acawa- Let p, : 0 — Y, be the map
defined by

() o fa€a
€T =
Pale zr ifaeQ\a.

Then p, is an open continuous onto map.
For each z € o, put z, = p,(x).

The following fact concerning o-products is known.

Fact. Let 0 = 0(S) and 0, = {x € 0 : |Q(x)| < n} for each n € w. Then o, is closed in o.

Several papers have investigated the results for o-products of the following type:
(*) Let P be a topological property. Let o be a o-product of spaces. If each finite subproduct
of o has property P, then ¢ has P.

First, Kombarov [15] proved that (*) holds for P being paracompactness and Lindelofness
for regular spaces. After that, it was proved that (*) holds for P being the following
properties: Lindeléfness (Chiba [6]), metacompactness (Teng [17]), subparacompactness
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and f-refinability (submetacompactness )([17]) , weak f-refinability, weak d6-refinability,
hereditarily weak 6-refinability and hereditarily weak d6-refinability ([5]).
Concerning §6-refinability (submeta-Lindeléfness), the following is known.

Theorem F ([5]). Let S = {X,|a € Q} be spaces and o = o(S). Suppose ¢ is normal. If
every finite subproduct of ¢ is df-refinable, then o is Jf-refinable.

In this paper we investigate d6-refinability and df-refinability-like properties of o-products.

Let x be an infinite cardinal. A space X is called x-paracompact if every open cover of
X with its cardinality < k has a locally finite open refinement.

A space X is called k-subparacompact if every open cover of X with its cardinality < &
has a o-locally finite closed refinement.

A space X is called k-submetacompact if every open cover of X with its cardinality < k
has a #-sequence of open refinements.

A space X is subnormal if for any disjoint closed sets A and B in X, there are disjoint
Gs-sets G and H such that A € G and B C H.

Lemma 1. (/2]). A space X is k-subparacompact if and only if for every cover of X with
its cardinality < k has a o-discrete closed refinement.

Lemma 2. ([7, Lemma 2.5]). A space X is subnormal and k-paracompact, then X is
k-subparacompact.

Theorem 7. Let S = {X,|a € Q} be spaces and 0 = o(S). Suppose o is subnormal and
k-paracompact where k = |Q|. If every finite subproduct of o is §0-refinable, then o is
00-refinable.

By Lemma 2, Theorem 7 follows from Theorem 8 below.

Theorem 8. Let S = {X,|a € Q} be spaces and o = o(S). Suppose o is k-paracompact
and k-subparacompact where k = |Q|. If every finite subproduct of o is 60-refinable, then o
is 60-refinable.

Proof. Let A= Q<% and put A = A<%. Let G = {G¢|¢{ € Z} be an arbitrary open cover of
o. For each a € A, let U, ¢ be the maximal open set in Y, satisfying p; ' (U, ¢) C G¢ and put
Uy = Uge=Uy ¢. Then {p;1(U,)|a € A} is an open cover of ¢ such that p;*(U,) C p, ' (Uy)
for each a,b € A with a C b. Since |A| = & and o is k-paracompact, there is a locally finite
open cover J = {J,|a € A} of o such that J, C p;'(U,) for each a € A. For each A € A,
let us put V) = o ~ UbeA\,\Tb. The we have:
(1) V = {Vi|X € A} is an open cover of o.
2) W CV,if \,ve A with A\ Cw.
(3) Put a) = U{ala € A}. Then ay € A and V) C p;}(Ua,).
For each A € A, define T,, = Yy, \ pa, (¢ \ Vi) and put Cx =Intp,(T,,). Then Ty, is
a closed subset of Y,, and we have
(4) T,, C U,, for each X € A.
(5) C = {Cx|A € A} is an open cover of 0. (This was essentially proved in [1], or see [4]).
Since o is x-subparacompact and |A| = &, there is a o-discrete closed cover F = |J,,cn Fn
of o, where F, is discrete in ¢ such that F, < C. We can represent F,, = {Fj |\ € A}
with F), C C\ for each A € A. For each A € A, Uy = {U,, ¢|§ € E} is an open cover of
U, . Since Yy, is d6-refinable and Ty, is closed in Y,,, there is a sequence (Hx m)men of
collections of open sets in Y,, satisfying:
(6)x. Hxm < Uy for each m.
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(T)r. Hxm covers Ty, for each m.
(8)x. For each y € T,,, there is an m(y) € N such that ord(y, Hx m(y)) < w.
Here we can represent Hy m = {Hxm,¢|€ € 2} with Hy p, ¢ C Uq, ¢ for each £ € E.
For each n € w,n € N;A € A and € € E, let H(n,m,\,§) = p;kl(HXm?g) NCyN (o~
UuzaFun) and put Hy pm = {H(n,m, X\, §)|A € A, ¢ € E}. Then we have:
(9) Hn.m is an open cover of o.
(10) Hpm < G.
(11) For each z € o, there are an n € w and an m € N such that ord(z, Hn,m) < w.

Proof of (9). Let x € 0. If x ¢ |JF,, then x € o \|JFy. By (5), € Cy for some . Then
Zay € Tay. By (), Zay € Hxm,¢ for some . Thus x € H(n,m, A, §).

If z € |JF,, then x € Fy, for some A\ € A. Since F, is discrete, © ¢ U,xxF}, . Since
Fyn C Cy,z € Cy. Therefore x € H(n,m, \,§) for some &.

Proof of (10). Let Hxme € Ham. Then Hy pp ¢ C Uq, ¢. Thus p;kl(HA,m,g) C G¢. Hence
H(n,m, \,§) C Ge.

Proof of (11). Let © € 0. Since F is a cover of o, there are an n € w and a A € A such
that x € F,, . Then ¢ U,x\F),» and z € Cy. Thus z,, € T,,. By (8)x, there is an m
such that ord(z,,, Ham) < w. Then ord(z, Hy,m) < w. To show this, let & € H(n,m, A, §).
Then z,, € Hxm,¢. Such X are at most countable.

Thus {H, m|n € w,m € N} is a 66-sequence of open refinements of G.

Remark 1 ([7, p.85, Remark]). As is well-known, paracompactness implies subparacom-

pactness. However, for each A > w, A-paracompactness does not imply A-paracompactness.
The author proved in [4] that under the assumption of o being s-paracompact, if every

finite subproduct of ¢ is normal, then o is normal. We can prove the following similarly.

Theorem 9. Let S = {X,|a € Q} be spaces and o = o(S). Suppose o is k-paracompact
where k = |Q|. If every finite subproduct of o is subnormal, then o is subnormal.

Proof. Let G = {G;|i = 1,2} be an arbitrary binary open cover of o. Let us define
AN U, 3,Uq, T, Vi, Ty, ,Cx and Uy, are similar to that of the proof of Theorem 8.

For each A € A, Uy = {U,, ;i = 1,2} is an open cover of U,,. Since Y,, is subnormal,
there are F,-sets K ;,i = 1,2 of T,,, such that T, = U?_, K, and K ; C U,, ; fori=1,2.
Let O = {Ox|X € A} be a locally finite open cover of o such that Oy C C) for each A € A.

Let us put K; = Jycp (Pal(Kai) N Oy). Then K; are F,-sets in 0, K; C G; for i = 1,2
and o0 = U7, K;. O

By Theorems 7 and 9, we obtain the following.

Theorem 10. Let S = {X,|a € Q} be spaces and o = o(S). Suppose o is k-paracompact
where k = Q. If every finite subproduct of o is subnormal and §0-refinable, then o is
00-refinable.

Lemma 3. (1) Let G be an open cover of X and (V,)neN is a pointwise countable W-
refining sequence of G. Then there exists a pointwise countable W-refining sequence (Hy,)neN
of G satisfying the following conditions: For each x € X, there exist ann, € N and a count-
able subfamily g of G such that (Hy)z < g for each n > n,.

(2) Let G be an open cover of X and (Vn)nen is a point-star C-refining sequence of G.
Then there exists a point-star C-refining sequence (Hpn)nen of G satisfying the following
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conditions: For each x € X, there exist an n, € N and a countable subfamily G of G such
that x € NG and st(x,H,) C UG for each n > n,.

Proof. Let us put H,, = Al V(= {N_,Vi|V; € V; for each i = 1,2,...,n}). Then (Hn)neN
is a desired one. [J

Theorem 11. Let S = {X,|a € Q} be spaces and o = o(S). Suppose o is k-paracompact
where k = |Q|. If every finite subproduct of o is w-60-refinable, then o is w-00-refinable.

Proof. Let G = {G¢|€ € E} be an arbitrary open cover of 0. Let us define A, A, Uy ¢, Uy, 7,
Wi, Tu,, Cx and Uy are similar to that of the proof of Theorem 8.

Since |A| = k and o is k-paracompact, there is a locally finite open cover O = {Ox|A € A}
of o such that Oy C C) for each A € A. For each A € A,Ux = {U,, ¢|¢ € E} is an open cover
of U,, . Since Yy, is w-d6-refinable and Ty, is closed in Y, , there is a sequence (Hx m)meN
of collections of open sets in Y,, satisfying:
(6)r. Hxm covers Ty, for each m.
(7)a. For each y € T,,, there are a countable subset Z, of = and an m, € N such that
H,m(y) is a partial refinement of {U,, ¢|¢ € E,} for each m > m,,.

Put H,, = {pgj(H) NOx|H € Hxm, X € A}. Then we have:
(8) H., is an open cover of o.
(9) For each x € o, there are a countable subset =, of Z and an m, € N such that H,,_(x)
is a partial refinement of {G¢|€ € =, }.

Proof of (8). Let x € 0. Then x € Oy, for some A. Therefore z,, € T,,. By (6)x, 2., € H
for some H € Hy m. Thus 2 € p; ' (H) N Oy.

Proof of (9). Let x € 0. Since O is locally finite, there is a finite subset {\;|i = 1,2,...,n}
such that z € Oy <= X € {N|i =1,2,...,n}. For each i = 1,2,...,n, since Tay, € Tay,s
there are countable subsets =; of = and m; € N for i = 1,2,...,n such that Hy, (Za,,)
is a partial refinement of {Uaxi,£|§ € g;} for every m > m,. Let us put m* =max{m,|i =
1,2,..,n} and =% = U Z;. Then H,,(z) is a partial refinement of {G¢|{ € E*}.

To show this, let € p, !} (H)NOx, H € Hxm. Then XA = \; for some ¢ = 1,2,...,n. Since
Tay, € H,H C Uy, ¢ for some &. Therefore p; ! (Ua,, ) C Ge. O

Theorem 12. Let S = {X,|a € Q} be spaces and o = o(S). Suppose o is k-paracompact
where k = Q. If every finite subproduct of o is ww-60-refinable, then o is ww-60-refinable.

Proof. Let G = {G¢|¢ € E} be an arbitrary open cover of 0. Let us define A, Ug ¢, Uq, Vi, Ty,
Cy, Oy and U, are similar to that of the proof of Theorem 11. Since Y, is ww-d6-refinable
and Ty, is closed in Y, , there is a sequence (Hx,m)men of collections of open sets in Yy,
satisfying:
(6)x. Hxm covers Ty, for each m.
(7)y. For each y € T,,, there are a countable subset Z, of = and an m,, € N such that
(). ¥ € {Ua,cl€ € Ey},
(ii). st(y, Ham) C U{Ua, ¢|€ € Ey} for each m > m,,.
Put Hy, = {p, [ (H) N OA|H € Hxm, X € A}. Then we have:
(8) Hy, is an open cover of o.
(9), For each x € o, there are a countable subset =, of Z and an m, € N such that
(i) = € N{Gelé € 2.},
(ii) st(z, Hm,) C U{Gel¢ € E,}. O
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Theorem 13. Let S = {X,|a € Q} be spaces and G an open subspace of ¢ = o(S).

Suppose G is k-submetacompact where k = |Q|. If every finite subproduct of o is hereditarily
w-00-refinable, then G is w-60-refinable.

Proof. Let G = {G¢|¢ € =} be an arbitrary open cover of G. For each a € A, let U, ¢
be the maximal open set in Y, satisfying p, ' (U,,¢) C G¢ and put U, = U,565 a,¢- Since
U = {p;'(Us)|a € A} is an open cover of G with || = &, there is a o-discrete closed
cover F = UneN Fn of G, where F,, is discrete in G such that F,, < U. We can represent
Fn ={Fynla € A} with F, ,, C U, for each a € A.

For each a € A, since U, = {U,¢|¢ € E} is an open cover of U, and U, is d6-refinable,
there is a sequence (Hq m)men of open covers of U, satisfying:
(D)q. Ham < U, for each m.
(2)q. For each y € U,, there is an m(y) € N such that ord(y, Ha,m(y)) < w.

Here we can represent Ho m = {Ha,m¢|€ € 2} with Hy e C Uge for each § € =.

For each n € w,m € Nya € A and £ € E, let H(n,m,a,&) = py (Hame) N (G~
UbeA’b#a Fy.) and put Hy m = {H(n,m, a,§)|a € A,§ € Z}. Then we have:
(3) Hn,m is an open cover of G.
4) Hpm < G.
(5) For each = € G, there are an n € w and an m € N such that ord(z, Hpm) < w.
Thus {Hp m|n € w,m € N} is a §0-sequence of refinements of G. [J

Theorem 14. Let S = {Xy|a € Q} be spaces and G an open subspace of o = o(S).

Suppose G is k-submetacompact where k = |Q|. If every finite subproduct of o is hereditarily
ww-00-refinable, then G is ww-60-refinable.

Proof. This proof is similar to that of Theorem 13. [

Corollary 1. Let S = {X,|a € Q} be spaces and o = o(S). Suppose o is k-submetacompact
where k = |Q|. If every finite subproduct of o is hereditarily w-00-refinable, then o is w-60-
refinable.

Corollary 2. LetS = {X,|a € Q} be spaces and 0 = o(S). Suppose o is k-submetacompact
where k = |Q|. If every finite subproduct of o is hereditarily ww-00-refinable, then o is ww-
00-refinable.

4. APPENDIX TO o-PRODUCTS

Let us consider the following conditions for a space X.
(S1) X has an increasing closed cover {X,|n € w}.
(S2) For each n € w, there is a closed cover V,, = {Yg|a € A,} of X,,.
(S3) For each a € A=J A, there is a continuous onto map p, : X — Y, such that
pa|Ys = identity.
(S4) For each n € w and each open set U such that X,,_1 C U, there is a discrete family
J = {Jala € A} of open sets in X such that J, DY, \U. Here X_; = 0.
(S5) K, = {Ya ~ X,,—1]a € A, } is a discrete family of closed subsets in X \ X,,_; for each
n € w. Here X_1 = 0.
(S6) There is a point finite open expansion of K,, in X for each n € w (i.e., there is a point
finite open family M,, = {M,, 4la € A,,} in X such that M, , D Y,~\ X, for each a € A,,.

new

Each normal o-product space satisfies the conditions (S7) ~ (Ss). Each o-product space
and each open subspace of it satisfies the conditions (S1) ~ (S3) and (Ss) ~ (Se).
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In [5], the author generalised the theorems of the type: “(*) Let P be a topological property.
Let o be a o-product of spaces. If each finite subproduct of ¢ has property P, then ¢ has
P.” to the theorem of the type:

(1) Suppose X satisfies the conditions (S1) ~ (S4). If each Y, has the property P, then X
has the property P.

(2) Suppose X satisfies the conditions (S1) ~ (S3) and (S5) ~ (Sg). If each Y, has the
property P, then X has the property P.

The results of metacompactness and submetacompactness of o-products are generalized to
the following by the same proof of [16] and [17],

Theorem 15. ([16]). Suppose X satisfies the conditions (S1) ~ (Ss) and (S5) ~ (Sg). If
each Y, is metacompact, then X is metacompact.

Theorem 16. ([17]). Suppose X satisfies the conditions (S1) ~ (S3) and (Ss) ~ (Sg). If
each Y, is submetacompact, then X is submetacompact.

Remark 2. Similar result hold for metaLindelofness.

Definition 9. A space X is called “discretely #-expandable” [14] if for every discrete col-
lection {F¢|¢ € E} of subsets of X, there exists a sequence (G, = {G¢nlé € E})nen of
collections of open subsets of X satisfying the following:

(i) Fe C Gg,p for each £ and each n.

(ii) For every point = of X there is n, for which z is contained in at most finite member of
Gn, (i.e., G, is point finite at x).

A space X is called “f-expandable” [14] if for every locally finite collection {F¢|{ € =} of
subsets of X, there exists a sequence (G, = {G¢ n|¢ € E})nen of collections of open subsets
of X satisfying the following;:

(i) Fe C Gg,p for each £ and each n.
(ii) For every point x of X there is an n, for which x is contained in at most finite member
of G,, (i.e., G, is point finite at x).

Theorem G ([5, Proposition 2]). Suppose X satisfies the conditions (S7) ~ (S4). Then
the following holds.

(a) If every Y, is discretely f-expandable, then X is discretely #-expandable.

(b) If every Y, is f-expandable, then X is #-expandable.

The above theorem can be generalised as follows:

Theorem 17. Suppose X satisfies conditions (S1) ~ (S3) and (Ss) ~ (Sg). Then the fol-
lowing holds.

(a) If every Y, is discretely 0-expandable, then X is discretely 0-expandable.

(b) If every Y, is 0-expandable, then X is 6-expandable.

Proof. (a). Let F = {F\|A € A} be a discrete collection of closed subsets in X. Then
Fo = {FxNY,|\ € A} is a discrete collection of closed subsets in Y, for each a € A. Since
Y, is f-expandable, there is a sequence (Lq,m )men of collections of open subsets in Y, such
that Lo,m = {Lx,a,m|A € A}, satisfying:

(1)a- FANYy C Ly q,m for each A, m.

(19)a- Lx,a;m+1 C L q,m for each A\, m.

(ii1)q. For each y € Yg, there is an m,, € N such that ord(y, La,m,) < w.

By (Se), there is a point finite open family M,, = {M, »|a € A, } in X such that Y,~X,,—1 C
M, ,, for each a € A,,. Here we may assume that M, , N X,_1 = 0.
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Let us put Hxm = U,en UaeAn (pa*(Lxam) N Mg ) and put Hy, = {Hxm|X € A}
Then H,, is a collection of open subsets in X for each m and satifies the following conditions:
(1) F\ C Hx for each A € A,m € N.

(2) For each z € X, there is an m, € N such that ord(z, Hp,) < w.

Proof of (1). Let x € Fx. Then, by (51),z € X,, \~ X,,—1 for some n € w. By (S2),z €Y,
for some a € A,,. Then, by (i)a, € L am. Since Yy N\ Xpo1 C My, @ € Ly gm N Mg, C
Hy .

Proof of (2). Let x € X. Then, by (S1),z € X,, \ X,,_1 for some n € w. Then = ¢ M,
for each I > n. Let A; = {a € Ajlx € Mg} for each | < n and put A = Uign A;. Since

M, is point finite at z for each [, A is a finite set. Let us put z, = pa(z) for each a € A.
By (i4i)q, there is an m, € N such that ord(zq, L4,m,) < w. Let m* = max{m,la € A'}.
Then ord (z, Hpx) < w.

To show this, let A, = {\ € A|lz, € Ly qm+} and put A = Uaeca’ Aa- Then, since ord
(%a, La,m,) is finite and ord (24, Lqm+) < ord (24, La,m, ), Ae is a finite set. Therefore A
is a finite set. If x € H) ,+, then x € p; (L q.m*) N My, for some A and . Since z ¢ M,
for each | > n, we have | < n. Therefore, if x € p;'(Lx,q,m) N My, for some A and I, then
ac A And, since x4 € Ly q,m=*, A € Aq.

(b). This proof is quite similar to that of (a). O

Corollary 3. (a). If every finite subproduct of o is discretely 0-expandable, then o is dis-
cretely 0-expandable.

(b)([10]). If every finite subproduct of o is 0-expandable, then o is 0-expandable.

Corollary 4. (a) If every finite subproduct of o is hereditarily discretely 0-expandable, then
o is hereditarily discretely 0-expandable.

(b) If every finite subproduct of o is hereditarily 0-expandable, then o is hereditarily 0-
expandable.

Remark 3. Almost 6-expandability in [10] is the same notion of f-expandability in [14].
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