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EXPANSIONS OF SUBALGEBRAS AND IDEALS IN
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Abstract. The notions of an expansion of subalgebras (resp., ideals), σ-primary ideals,
and residual divisions are introduced, and relate d properties are investigated.

1. Introduction

The notion of BCK-algebras was proposed by Imai and Iséki in 1966. In the same year,
Iséki introduced the notion of BCI-algebras which is a generalization of BCK-algebras.
For the general development of BCK/BCI-algebras, the ideal theory plays an important
role. In this paper, we introduce the notion of expansions of subalgebras and ideals in
BCK/BCI-algebras, and the notion of σ-primary ideals in BCK-algebras. We also define
the notion of residual division, and investigates related properties.

2. Preliminaries

We give herein the basic notions on BCK/BCI-algebras. For further information, we
refer the reader to the book [4]. By a BCI-algebra we mean an algebra (X, ∗, 0) of type
(2, 0) satisfying the axioms:

(i) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),
(ii) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),
(iii) (∀x ∈ X) (x ∗ x = 0),
(iv) (∀x, y ∈ X) (x ∗ y = y ∗ x = 0 ⇒ x = y).

We can define a partial ordering ≤ by x ≤ y if and only if x ∗ y = 0. In a BCI-algebra X ,
the following hold:
(z1) (∀x ∈ X) (x ∗ 0 = x),
(z2) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y),
(z3) (∀x ∈ X) (0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ x),
(z4) (∀x, y ∈ X) (0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)).
If a BCI-algebra X satisfies 0 ∗ x = 0 for all x ∈ X, then we say that X is a BCK-algebra.
A BCK-algebra X is said to be commutative if it satisfies the equality:

(∀x, y ∈ X) (x ∗ (x ∗ y) = y ∗ (y ∗ x)).(1)

Note that a BCI-algebra satisfying the equality (1) is a BCK-algebra (see [3]). In what
follows let X denote a BCK/BCI-algebra unless otherwise specified. A nonempty subset
A of X is called a subalgebra of X if x ∗ y ∈ A for all x, y ∈ A. A nonempty subset A of X
is called an ideal of X if it satisfies
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• 0 ∈ A,
• (∀x ∈ X)(∀y ∈ A) (x ∗ y ∈ A ⇒ x ∈ A).

Note that if x is an element of an ideal A of X and y ≤ x, then y ∈ A. An ideal A of a
BCI-algebra X is said to be closed if 0∗x ∈ A whenever x ∈ A. Note that every closed ideal
(resp., ideal) of a BCI-algebra (resp. BCK-algebra) X is a subalgebra of X . A proper
ideal I of a commutative BCK-algebra X is said to be prime if it satisfies:

(∀x, y ∈ X) (x ∧ y ∈ I ⇒ x ∈ I or y ∈ I),

where x∧y = y∗(y∗x). For any elements x, y ∈ X , let us write x∗yk for (· · · ((x∗y)∗y)∗· · · )∗y
in which y occurs k times.

For a positive integer k, the k-nil radical (see [2]) of a subset G of a BCI-algebra X is
defined to be the set of all elements of X satisfying 0 ∗ xk ∈ G, denoted by k

√
G, i.e.,

k
√

G := {x ∈ X | 0 ∗ xk ∈ G}.
Note that k

√
G does not contain G itself in general (see [2]).

3. Expansions of subalgebras and ideals

Definition 3.1. Let O(X) be a set of objects in X. An expansion of objects in X is defined
to be a function σ : O(X) → O(X) such that
(o1) (∀G ∈ O(X)) (G ⊆ σ(G)).
(o2) (∀G,H ∈ O(X)) (G ⊆ H ⇒ σ(G) ⊆ σ(H)).
Let S(X) (resp., I(X)) denote the set of all subalgebras (resp., ideals) of X. If O(X) = S(X)
(resp., O(X) = I(X)), we say that σ is an expansion of subalgebras (resp., ideals).

Lemma 3.2. [2] Let X be a BCI-algebra. If G ∈ S(X), then G ⊆ k
√

G for every positive
integer k.

Lemma 3.3. [2] Let X be a BCI-algebra. For every subsets G and H of X, if G ⊆ H

then k
√

G ⊆ k
√

H for every positive integer k.

Example 3.4. (1) The function σ0 : S(X) → S(X) (resp., σ0 : I(X) → I(X)) defined by
σ0(G) = G for all G ∈ S(X) (resp., I(X)) is an expansion of subalgebras in X.

(2) The function ν that assigns the largest subalgebra (resp., ideal) X to each subalgebra
(resp., ideal) of X is an expansion of subalgebras (resp., ideals) in X.

(3) For each ideal I of X, let

M(I) = ∩{M | I ⊆ M, M is a maximal ideal of X}.
Then M is an expansion of ideals in X.

(4) Let X be a BCI-algebra and let σk : S(X) → S(X) be defined by σk(G) = k
√

G for
all G ∈ S(X). Then σk is an expansion of subalgebras in X, where k is a positive integer.

(5) Let X be a commutative BCK-algebra and let I ∈ I(X). For each a ∈ X, the set
a−1I := {x ∈ X | a ∧ x ∈ I} is an ideal of X containing I, and if I and J are ideals of X
such that I ⊆ J then a−1I ⊆ a−1J (see [1]). Hence the function σa : I(X) → I(X) given
by σa(I) = a−1I for all I ∈ I(X) is an expansion of ideals in X.

Definition 3.5. Let σ be an expansion of ideals in a commutative BCK-algebra X. Then
an ideal G of X is said to be σ-primary if

(∀a, b ∈ X) (a ∧ b ∈ G, a /∈ G ⇒ b ∈ σ(G)).

Note that an ideal G of a commutative BCK-algebra X is σ0-primary if and only if it is
a prime ideal of X , where σ0 is the function in Example 3.4(1).
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Theorem 3.6. Let X be a commutative BCK-algebra. If σ and δ are expansions of ideals
in X such that σ(G) ⊆ δ(G) for every G ∈ I(X), then every σ-primary ideal is also δ-
primary.

Proof. Let A be a σ-primary ideal of X and let a, b ∈ X be such that a ∧ b ∈ A and a /∈ A.
Then b ∈ σ(A) ⊆ δ(A) by assumption. Hence A is a δ-primary ideal of X.

Corollary 3.7. Let σ be an expansion of ideals in a commutative BCK-algebra X. Then
every prime ideal of X is σ-primary.

Proof. Let G be a prime ideal of X . Then G is σ0-primary, and σ0(G) = G ⊆ σ(G). It
follows from Theorem 3.6 that G is a σ-primary ideal of X.

Theorem 3.8. Let α and β be expansions of subalgebras (resp., ideals) in X. Let σ :
S(X) → S(X) (resp., σ : I(X) → I(X)) be a function defined by σ(G) = α(G) ∩ β(G)
for all G ∈ S(X) (resp., I(X)). Then σ is an expansion of subalgebras (resp., ideals) in X.

Proof. For every G ∈ S(X) (resp., I(X)), we have G ⊆ α(G) and G ⊆ β(G) by (o1), and
so G ⊆ α(G) ∩ β(G) = σG). Let G,H ∈ S(X) (resp., I(X)) be such that G ⊆ H. Then
α(G) ⊆ α(H) and β(G) ⊆ β(H) by (o2), which imply that

σ(G) = α(G) ∩ β(G) ⊆ α(H) ∩ β(H) = σ(H).

Therefore σ is an expansion of subalgebras (resp., ideals) in X.

Generally, the intersection of expansions of subalgebras (resp., ideals) is an expansion of
subalgebras (resp., ideals).

Theorem 3.9. Let X be a commutative BCK-algebra and let σ be an expansion of ideals
in X. If {Ji | i ∈ D} is a directed collection of σ-primary ideals of X where D is an index
set, then the ideal J :=

⋃
i∈D

Ji is σ-primary.

Proof. Let a, b ∈ X be such that a ∧ b ∈ J and a /∈ J. Then there exists Ji such that
a ∧ b ∈ Ji and a /∈ Ji. Since Ji is σ-primary and Ji ⊆ J, it follows that b ∈ σ(Ji) ⊆ σ(J) so
that J is σ-primary.

Theorem 3.10. Let σ be an expansion of ideals in a commutative BCK-algebra X. If P
is a σ-primary ideal of X, then

(∀I, J ∈ I(X)) (I ∧ J ⊆ P, I � P ⇒ J ⊆ σ(P )),

where I ∧ J = {x ∧ y | x ∈ I, y ∈ J}.
Proof. Assume that P is a σ-primary ideal of X and let I, J ∈ I(X) be such that I ∧J ⊆ P
and I � P. Suppose that J � σ(P ). Then there exist a ∈ I \ P and b ∈ J \ σ(P ), which
imply that a ∧ b ∈ I ∧ J ⊆ P. But a /∈ P and b /∈ σ(P ). This contradicts the assumption
that P is σ-primary. Consequently, the result is valid.

Theorem 3.11. Let X be a commutative BCK-algebra. If σ is an expansion of ideals in
X, then the function Eσ : I(X) → I(X) defined by

Eσ(G) := ∩{H ∈ I(X) | G ⊆ H, and H is σ-primary}
for all G ∈ I(X) is an expansion of ideals in X.

Proof. Clearly, G ⊆ Eσ(G) for all G ∈ I(X). Let I, J ∈ I(X) be such that I ⊆ J. Then

Eσ(I) = ∩{H ∈ I(X) | I ⊆ H and H is σ-primary}
⊆ ∩{H ∈ I(X) | J ⊆ H and H is σ-primary}
= Eσ(J).
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Hence Eσ is an expansion of ideals in X .

For any ideals P and Q of a commutative BCK-algebra X , the residual division of P
and Q is defined to be the ideal

P : Q =
⋂

x∈Q

x−1P = {y ∈ X | x ∧ y ∈ P for all x ∈ Q}.

Theorem 3.12. Let σ be an expansion of ideals in a commutative BCK-algebra X and let
P be a σ-primary ideal of X. Then

(i) if I is an ideal of X which is not contained in σ(P ), then P : I = P.
(ii) if J is any ideal of X, then P : J is σ-primary.

Proof. (i) Obviously, P ⊆ P : I. Also we have I ∧ (P : I) ⊆ P by the definition of P : I.
Since I � σ(P ), it follows from Theorem 3.10 that P : I ⊆ P. Therefore P : I = P.

(ii) Let a, b ∈ X be such that a∧ b ∈ P : J and a /∈ P : J. Then a∧x /∈ P for some x ∈ J.
But (a ∧ x) ∧ b = (a ∧ b) ∧ x ∈ P, and so b ∈ σ(P ) ⊆ σ(P : J). Thus P : J is σ-primary.
This completes the proof.
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