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Abstract. Let C be a closed convex subset of a Banach space which satisfies Opial’s
condition. We first prove that if T : C → C is asymptotically nonexpansive in the
intermediate sense, the Ishikawa iteration process with errors defined by x1 ∈ C, xn+1 =
αnxn + βnT nyn + γnun, and yn = α′

nxn + β′
nT nxn + γ′

nvn converges weakly to some
fixed point of T , which generalizes the result due to Tan and Xu. Further, we show that
if S and T are both comact and asymptotically nonexpansive in the intermediate sense,
the iterations {xn} and {yn} defined by x1 ∈ C, xn+1 = αnxn + βnSnyn + γnun, and
yn = α′

nxn + β′
nT nxn + γ′

nvn converge strongly to the same common fixed point of S
and T , which generalizes the result due to Rhoades.

1. Introduction

Let C be a closed convex subset of a Banach space X and let T be a mapping of C into
itself. Then T is said to be asymptotically nonexpansive [4] if there exists a sequence {kn}
of positive numbers with lim

n→∞ kn = 1 such that

‖T nx − T ny‖ ≤ kn ‖x − y‖
for all x, y ∈ C and n ∈ N , where N denotes the set of all positive integers. In particular,
if kn = 1 for all n ∈ N , T is said to be nonexpansive. The weaker definition (cf. Kirk [7])
requires that

lim n→∞ sup
y∈C

(‖T nx − T ny‖ − ‖x − y‖) ≤ 0

for each x ∈ C, and that T N is continuous for some N ∈ N . Consider a definition somewhere
between these two. T is said to be asymptotically nonexpansive in the intermediate sense
[1] provided T is uniformly continuous and

lim n→∞ sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ≤ 0.

Recall that a Banach space X is said to be uniformly convex if the modulus of convexity
δX = δX(ε), 0 < ε ≤ 2, of X defined by

δX(ε) = inf
{

1 − ‖x + y‖
2

∣∣∣ x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}

satisfies the inequality δX(ε) > 0 for every ε ∈ (0, 2]. A Banach space X is said to satisfy
Opial’s condition [9] if for any sequence {xn} in X , xn ⇀ x implies that

lim n→∞ ‖xn − x‖ < lim n→∞ ‖xn − y‖
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for all y ∈ X with y �= x.
Recently, for a mapping T of C into itself, Tan and Xu [14] considered the following

modified Ishikawa iteration process (cf. Ishikawa [5]) in C defined by


x1 ∈ C,

xn+1 = (1 − αn)xn + αnT nyn,

yn = (1 − βn)xn + βnT nxn,

(1.1)

where {αn} and {βn} are two real sequences in [0, 1]. They proved that if X is a uniformly
convex Banach space which satisfies Opial’s condition, C is a bounded closed convex subset

of X , and T is an asymptotically nonexpansive mapping of C into itself such that
∞∑

n=1
(kn−1)

converges, then for any x1 in C, the sequence {xn} defined by (1.1) converges weakly to
some fixed point of T under the assumptions that {αn} is bounded away from 0 and 1 and
{βn} is bounded away from 1. We consider a more general iterative process (cf. Xu [15])
emphasizing the randomness of errors as follows:


x1 ∈ C,

xn+1 = αnxn + βnT nyn + γnun,

yn = α′
nxn + β′

nT nxn + γ′
nvn,

(1.2)

where {αn}, {βn}, {γn}, {α′
n}, {β′

n}, {γ′
n} are real sequences in [0, 1] satisfying

αn + βn + γn = α′
n + β′

n + γ′
n = 1 for all n ∈ N ,(1.3)

∞∑
n=1

γn < ∞ and
∞∑

n=1

γ′
n < ∞,(1.4)

and {un}, {vn} are two sequences in C. If γn = γ′
n = 0 for all n ∈ N , then the iteration

process (1.2) reduces to the Ishikawa iteration process [5], while setting β′
n = 0 and γ′

n = 0
for all n ∈ N , (1.2) reduces to the Mann iteration process with errors, which is a generalized
case of the Mann iteration process [8].

In this paper, we first prove a weak convergence theorem of the Ishikawa (and Mann)
iteration process with errors defined by (1.2) for a non-Lipschitzian self-mapping, which
generalizes the result due to Tan and Xu [14]. Next, let S, T be compact and asymptotically
nonexpansive mappings of C into itself in the intermediate sense. Then we shall show a
strong convergence theorem for the iterations {xn} and {yn} defined by


x1 ∈ C,

xn+1 = αnxn + βnSnyn + γnun,

yn = α′
nxn + β′

nT nxn + γ′
nvn,

(1.5)

where {αn}, {βn}, {γn}, {α′
n}, {β′

n}, {γ′
n} are real sequences in [0, 1] satisfying (1.3) and

(1.4) and {un}, {vn} are two sequences in C, which generalize the result due to Rhoades
[11]. Further, we prove a weak convergence theorem for (1.5) without the compactness of
S and T .

2. Weak Convergence Theorems

We first begin with the following:

Theorem 2.1 ([1]). Suppose a Banach space X has the uniform τ-Opial property, C is
a norm-bounded, sequentially τ-compact subset of X, and T : C → C is asymptotically
nonexpansive in the weak sense. If {yn} is a sequence in C such that lim

n→∞ ‖yn − z‖ exists
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for each fixed point z of T , and if {yn − T kyn} is τ-convergent to 0 for each k ∈ N , then
{yn} is τ-convergent to a fixed point of T .

Lemma 2.2 ([14]). Let {an} and {bn} be two sequences of nonnegative real numbers such

that
∞∑

n=1
bn < ∞ and

an+1 ≤ an + bn

for all n ∈ N . Then lim
n→∞ an exists.

Lemma 2.3 ([12]). Let X be a uniformly convex Banach space, let 0 < b ≤ tn ≤ c < 1
for all n ∈ N , and let {xn} and {yn} be sequences of X such that lim n→∞ ‖xn‖ ≤ a,
lim n→∞ ‖yn‖ ≤ a and lim n→∞ ‖tnxn + (1 − tn)yn‖ = a for some a ≥ 0. Then, it holds
that lim

n→∞ ‖xn − yn‖ = 0.

In this paper, the iterations defined by (1.2) and (1.5) are always assumed that {αn},
{βn}, {γn}, {α′

n}, {β′
n}, {γ′

n} are real sequences in [0, 1] satisfying (1.3) and (1.4) and {un},
{vn} are bounded sequences in C. Our Theorem 2.11 carries over Theorem 3.2 of Tan and
Xu [14] to a more general Ishikawa type process and a non-Lipschitzian self-mapping.

Lemma 2.4. Let C be a closed convex subset of a uniformly convex Banach space X and
let S, T be mappings of C into itself satisfying that F (S)∩F (T ) �= ∅. For z ∈ F (S)∩F (T ),
put

cn = sup
x∈C

(‖Snx − z‖ − ‖x − z‖) ∨ sup
x∈C

(‖T nx − z‖ − ‖x − z‖) ∨ 0

for all n ∈ N . Suppose that
∞∑

n=1
cn < ∞ and the sequence {xn} is defined by (1.5). Then

lim
n→∞ ‖xn − z‖ exists.

Proof. Since {un} and {vn} are bounded, let

M = sup
n∈N

‖un − z‖ ∨ sup
n∈N

‖vn − z‖ (< ∞).

Since

‖Snyn − z‖ ≤ ‖yn − z‖ + cn(2.1)

= ‖α′
nxn + β′

nT nxn + γ′
nvn − z‖ + cn

≤ α′
n ‖xn − z‖ + β′

n ‖T nxn − z‖ + γ′
n ‖vn − z‖ + cn

≤ α′
n ‖xn − z‖ + β′

n{‖xn − z‖ + cn} + γ′
n ‖vn − z‖ + cn

≤ (1 − γ′
n) ‖xn − z‖ + γ′

n ‖vn − z‖ + 2cn,

we have

‖xn+1 − z‖ ≤ ‖αnxn + βnSnyn + γnun − z‖
≤ αn ‖xn − z‖ + βn ‖Snyn − z‖ + γn ‖un − z‖
≤ αn ‖xn − z‖ + βn{(1 − γ′

n) ‖xn − z‖ + γ′
n ‖vn − z‖ + 2cn}

+ γn ‖un − z‖
≤ (1 − (γn + βnγ′

n)) ‖xn − z‖ + γ′
nM + 2cn + γnM

≤ ‖xn − z‖ + (γ′
n + γn)M + 2cn.

By Lemma 2.2, we readily see that lim
n→∞ ‖xn − z‖ exists.
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Lemma 2.5. Let C be a closed convex subset of a uniformly convex Banach space X and
let T be a mapping of C into itself such that F (T ) �= ∅. Put

cn = sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ∨ 0

for all n ∈ N . Suppose that
∞∑

n=1
cn < ∞ and the sequence {xn} defined by (1.2) satisfies

either
1. a ≤ αn, βn ≤ b, 0 ≤ β′

n ≤ b for some a, b ∈ (0, 1), or
2. a ≤ βn ≤ 1, a ≤ α′

n, β′
n ≤ b for some a, b ∈ (0, 1).

Then both {T nxn − xn} and {xn − yn} converge strongly to 0.

Proof. Take z ∈ F (T ) and let r = lim
n→∞ ‖xn − z‖ which exists by Lemma 2.4. Note that

dn ≡ max{γ′
n, γn/a} → 0 as n → ∞. Since {un} and {vn} are bounded, let

M = sup
n∈N

‖un − z‖ ∨ sup
n∈N

‖vn − z‖ (< ∞).

Now, we assume (1). Since ‖T nyn − z‖ ≤ ‖xn − z‖+dnM +2cn by the same calculation as

(2.1) and
∥∥∥∥ αnxn

αn + γn
+

γnun

αn + γn
− z

∥∥∥∥ ≤ ‖xn − z‖ + dnM , we get lim n→∞ ‖T nyn − z‖ ≤ r

and

lim n→∞

∥∥∥∥ αnxn

αn + γn
+

γnun

αn + γn
− z

∥∥∥∥ ≤ r.

On the other hand,

r = lim
n→∞ ‖xn+1 − z‖

= lim
n→∞ ‖αnxn + βnT nyn + γnun − z‖

= lim
n→∞

∥∥∥∥βn(T nyn − z) + (1 − βn)
(

αnxn

αn + γn
+

γnun

αn + γn
− z

)∥∥∥∥ .

By Lemma 2.3, it holds that lim
n→∞

∥∥∥∥T nyn − αnxn

αn + γn
− γnun

αn + γn

∥∥∥∥ = 0, and so we obtain

lim
n→∞ ‖T nyn − xn‖ = 0 by virtue of sup

n∈N
‖xn − un‖ < ∞. Since

‖T nxn − xn‖ ≤ ‖T nxn − T nyn‖ + ‖T nyn − xn‖
≤ ‖xn − yn‖ + cn + ‖T nyn − xn‖
= ‖xn − α′

nxn − β′
nT nxn − γ′

nvn‖ + ‖T nyn − xn‖ + cn

≤ β′
n ‖T nxn − xn‖ + γ′

n ‖xn − vn‖ + ‖T nyn − xn‖ + cn,

we have

(1 − b) ‖T nxn − xn‖ ≤ (1 − β′
n) ‖T nxn − xn‖(2.2)

≤ γ′
n ‖xn − vn‖ + ‖T nyn − xn‖ + cn

≤ γ′
nM ′ + ‖T nyn − xn‖ + cn,

where M ′ = sup
n∈N

‖xn − vn‖ (< ∞). We easily have

lim
n→∞ ‖T nxn − xn‖ = 0(2.3)

from (2.2). Next, assuming (2), we have

‖xn+1 − z‖ = ‖αnxn + βnT nyn + γnun − z‖
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≤ αn ‖xn − z‖ + βn ‖T nyn − z‖ + γn ‖un − z‖
≤ αn ‖xn − z‖ + βn{‖yn − z‖ + cn} + γnM

≤ (1 − βn) ‖xn − z‖ + βn ‖yn − z‖ + cn + γnM

and hence
‖xn+1 − z‖ − ‖xn − z‖

βn
+ ‖xn − z‖ ≤ ‖yn − z‖ +

cn

a
+

γn

a
M.

So, using ‖yn − z‖ ≤ ‖xn − z‖ + cn + dnM obtained by (2.1), we have

r ≤ lim n→∞ ‖yn − z‖ ≤ lim n→∞ ‖yn − z‖ ≤ lim n→∞{‖xn − z‖ + cn + dnM} = r.

Hence

r = lim
n→∞ ‖yn − z‖

= lim
n→∞ ‖α′

nxn + β′
nT nxn + γ′

nvn − z‖

= lim
n→∞

∥∥∥∥β′
n(T nxn − z) + (1 − β′

n)
(

α′
nxn

α′
n + γ′

n

+
γ′

nvn

α′
n + γ′

n

− z

)∥∥∥∥ .

Further, it holds that lim n→∞ ‖T nxn − z‖ ≤ r from ‖T nxn − z‖ ≤ ‖xn − z‖ + cn and

lim n→∞

∥∥∥∥ α′
nxn

α′
n + γ′

n

+
γ′

nvn

α′
n + γ′

n

− z

∥∥∥∥ ≤ r

similarly to the arguement above. So, using Lemma 2.3 and sup
n∈N

‖xn − vn‖ < ∞, we also

have (2.3). Finally, we have lim
n→∞ ‖xn − yn‖ = 0 immediately by (1.2) and (2.3).

Lemma 2.6. Let C be a closed convex subset of a uniformly convex Banach space X and
let T be a mapping of C into itself satisfying that F (T ) �= ∅. Put

cn = sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ∨ 0

for all n ∈ N . Suppose that
∞∑

n=1
cn < ∞ and the sequence {xn} defined by (1.2) satisfies

either
1. a ≤ αn, βn ≤ b, 0 ≤ β′

n ≤ b for some a, b ∈ (0, 1), or
2. a ≤ βn ≤ 1, a ≤ α′

n, β′
n ≤ b for some a, b ∈ (0, 1).

Then {xn − Txn} converges strongly to 0.

Proof. Since

‖xn − xn+1‖ ≤ ‖xn − T nxn‖ + ‖T nxn − xn+1‖
≤ (αn + 1) ‖xn − T nxn‖ + βn ‖T nxn − T nyn‖ + γn ‖T nxn − un‖
≤ (αn + 1) ‖xn − T nxn‖ + βn(‖xn − yn‖ + cn) + γn ‖un − T nxn‖ ,

we have lim
n→∞ ‖xn − xn+1‖ = 0 by Lemma 2.5. Further, since

‖xn − Txn‖ ≤ ‖xn − xx+1‖ +
∥∥xn+1 − T n+1xn+1

∥∥
+

∥∥T n+1xn+1 − T n+1xn

∥∥ +
∥∥T n+1xn − Txn

∥∥
≤ 2 ‖xn − xx+1‖ +

∥∥xn+1 − T n+1xn+1

∥∥ + cn+1 +
∥∥T n+1xn − Txn

∥∥ ,

we have lim
n→∞ ‖xn − Txn‖ = 0 by Lemma 2.5 and the uniform continuity of T .
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Theorem 2.7. Let C be a bounded closed convex subset of a uniformly convex Banach space
X which satisfies Opial’s condition and let T be an asymptotically nonexpansive mapping
of C into itself in the intermediate sense. Put

cn = sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ∨ 0

for all n ∈ N . Suppose that
∞∑

n=1
cn < ∞ and the sequence {xn} defined by (1.2) satisfies

either
1. a ≤ αn, βn ≤ b, 0 ≤ β′

n ≤ b for some a, b ∈ (0, 1), or
2. a ≤ βn ≤ 1, a ≤ α′

n, β′
n ≤ b for some a, b ∈ (0, 1).

Then {xn} converges weakly to some fixed point of T . Further, the two limits of {xn} and
{yn} coincide.

Proof. The existence of a fixed point of T follows form Kirk [7]. By Lemma 2.6 we have

lim
n→∞ ‖xn − T mxn‖ = 0

for all m ∈ N . Now, we can apply Theorem 2.1 with the weak topology instead of τ -
topology and get the conclusion. Further, the two limits of {xn} and {yn} coincide by
Lemma 2.5.

As a direct consequence, taking β′
n = γ′

n = 0 for n ∈ N in Theorem 2.7, we have the
following result, which carries over a more general Mann type process and a non-Lipschitzian
self-mapping.

Theorem 2.8. Let X be a uniformly convex Banach space which satisfies Opial’s condition
and let C be a bounded closed convex subset of X. Let T be an asymptotically nonexpansive
mapping of C into itself in the intermediate sense. Put

cn = sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ∨ 0

for all n ∈ N . Suppose that
∞∑

n=1
cn < ∞ and a sequence {xn} is defined by x1 ∈ C and

xn+1 = αnxn + βnT nxn + γnun,

where {αn}, {βn}, {γn} are sequences in [0, 1] satisfying a ≤ αn, βn ≤ b for some a, b ∈
(0, 1), αn + βn + γn = 1 for all n ∈ N ,

∞∑
n=1

γn < ∞ and {un} is a sequence in C. Then

{xn} converges weakly to some fixed point of T .

Next, we consider the weak convergence of the sequence {xn} defined by (1.5).

Lemma 2.9. Let C be a closed convex subset of a uniformly convex Banach space X. Let
S, T be asymptotically nonexpansive mappings of C into itself in the intermediate sense with
F (S) ∩ F (T ) �= ∅. Put

cn = sup
x,y∈C

(‖Snx − Sny‖ − ‖x − y‖) ∨ sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ∨ 0

for all n ∈ N . Suppose that
∞∑

n=1
cn < ∞ and the sequence {xn} defined by (1.5) satisfies

a ≤ αn, α′
n, βn, β′

n ≤ b for some a, b ∈ (0, 1). Then, we have lim
n→∞ ‖Snxn − xn‖ = 0 and

lim
n→∞ ‖T nxn − xn‖ = 0. Further, it holds that lim

n→∞ ‖xn − Sxn‖ = 0, lim
n→∞ ‖xn − Txn‖ = 0,

and lim
n→∞ ‖xn − yn‖ = 0.
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Proof. Take z ∈ F (S)∩F (T ) and put r = lim
n→∞ ‖xn − z‖ which exists by Lemma 2.4. Note

that dn ≡ max{γ′
n, γn/a} → 0 as n → ∞. Since {un} and {vn} are bounded, let

M = sup
n∈N

‖un − z‖ ∨ sup
n∈N

‖vn − z‖ (< ∞).

Since ‖Snyn − z‖ ≤ ‖xn − z‖ + dnM + 2cn by (2.1) and
∥∥∥∥ αnxn

αn + γn
+

γnun

αn + γn
− z

∥∥∥∥ ≤

‖xn − z‖+dnM , we get lim n→∞ ‖Snyn − z‖ ≤ r and lim n→∞

∥∥∥∥ αnxn

αn + γn
+

γnun

αn + γn
− z

∥∥∥∥ ≤
r, and so we obtain

lim
n→∞ ‖Snyn − xn‖ = 0(2.4)

as in the proof of Lemma 2.5. Since

‖xn − z‖ ≤ ‖xn − Snyn‖ + ‖Snyn − z‖
≤ ‖xn − Snyn‖ + ‖yn − z‖ + cn

and

‖yn − z‖ ≤ ‖α′
nxn + β′

nT nxn + γ′
nvn − z‖

≤ α′
n ‖xn − z‖ + β′

n ‖T nxn − z‖ + γ′
n ‖vn − z‖

≤ α′
n ‖xn − z‖ + β′

n{‖xn − z‖ + cn} + γ′
n ‖vn − z‖

≤ (1 − γ′
n) ‖xn − z‖ + cn + γ′

nM

≤ ‖xn − z‖ + cn + γ′
nM,

we have

r ≤ lim n→∞{‖xn − Snyn‖ + ‖yn − z‖ + cn}
= lim n→∞ ‖yn − z‖
≤ lim n→∞ ‖yn − z‖
≤ lim n→∞{‖xn − z‖ + cn + γ′

nM} = r

and thus

r = lim
n→∞ ‖yn − z‖

= lim
n→∞ ‖α′

nxn + β′
nT nyn + γ′

nvn − z‖

= lim
n→∞

∥∥∥∥β′
n(T nxn − z) + (1 − β′

n)
(

α′
nxn

α′
n + γ′

n

+
γ′

nvn

α′
n + γ′

n

− z

)∥∥∥∥ .

It is easily that lim n→∞ ‖T nxn − z‖ ≤ r and lim n→∞

∥∥∥∥ α′
nxn

α′
n + γ′

n

+
γ′

nvn

α′
n + γ′

n

− z

∥∥∥∥ ≤ r. So,

using Lemma 2.3 and sup
n∈N

‖xn − vn‖ < ∞, we have

lim
n→∞ ‖T nxn − xn‖ = 0.(2.5)

On the other hand, from ‖xn+1 − xn‖ ≤ βn ‖Snyn − xn‖ + γn ‖un − xn‖, we have

lim
n→∞ ‖xn+1 − xn‖ = 0

by (2.4). Since

‖xn − Txn‖ ≤ ‖xn − xx+1‖ +
∥∥xn+1 − T n+1xn+1

∥∥
+

∥∥T n+1xn+1 − T n+1xn

∥∥ +
∥∥T n+1xn − Txn

∥∥
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≤ 2 ‖xn − xx+1‖ +
∥∥xn+1 − T n+1xn+1

∥∥ + cn +
∥∥T n+1xn − Txn

∥∥ ,

we have lim
n→∞ ‖xn − Txn‖ = 0 by lim

n→∞ ‖xn − xn+1‖ = 0, the uniform continuity of T and

(2.5). Set M ′ = sup
n∈N

‖xn − vn‖. Since

‖Snxn − xn‖ ≤ ‖Snxn − Snyn‖ + ‖Snyn − xn‖
≤ ‖xn − yn‖ + cn + ‖Snyn − xn‖
= ‖xn − α′

nxn − β′
nT nxn − γ′

nvn‖ + cn + ‖Snyn − xn‖
≤ β′

n ‖T nxn − xn‖ + γ′
n ‖xn − vn‖ + cn + ‖Snyn − xn‖

≤ b ‖T nxn − xn‖ + γ′
nM ′ + cn + ‖Snyn − xn‖ ,

we obtain lim
n→∞ ‖Snxn − xn‖ = 0 by (2.4) and (2.5). Therefore, we have

lim
n→∞ ‖xn − Sxn‖ = 0

similarly to the arguement above. Finally, since ‖xn − yn‖ ≤ b ‖T nxn − xn‖ + γ′
nM ′, we

obtain lim
n→∞ ‖xn − yn‖ = 0.

Theorem 2.10. Let C be a bounded closed convex subset of a uniformly convex Banach
space X satisfying Opial’s condition. Let S, T be asymptotically nonexpansive mappings of
C into itself in the intermediate sense with F (S) ∩ F (T ) �= ∅. Put

cn = sup
x,y∈C

(‖Snx − Sny‖ − ‖x − y‖) ∨ sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ∨ 0

for all n ∈ N . Suppose that
∞∑

n=1
cn < ∞ and the sequence {xn} defined by (1.5) satisfies

a ≤ αn, α′
n, βn, β′

n ≤ b for some a, b ∈ (0, 1). Then {xn} converges weakly to a common
fixed point of S and T . Further, the two limits of {xn} and {yn} coincide.

Proof. We have lim
n→∞ ‖xn − Txn‖ = 0 from Lemma 2.9 and so lim

n→∞ ‖xn − T mxn‖ = 0 for

all m ∈ N by the uniform continuity of T . Hence, by Theorem 2.1 there exists z1 ∈ F (T )
such that xn ⇀ z1. Similarly, there exists z2 ∈ F (S) such that xn ⇀ z2. Hence, z1 = z2 ∈
F (S)∩F (T ) by the uniqueness of limits. Further, the two limits of {xn} and {yn} coincide
by Lemma 2.9.

As a direct consequence of Theorem 2.7 and Theorem 2.10 we improve Theorem 3.2 due
to Tan and Xu [14] to a more general Ishikawa type process (1.2) instead of (1.1).

Theorem 2.11. Let X be a uniformly convex Banach space which satisfies Opial’s con-
dition and let C be a bounded closed convex subset of X. Let T be an asymptotically

nonexpansive self-mapping of C such that
∞∑

n=1

(kn − 1) converges. Suppose that the sequence

{xn} defined by (1.2) satisfies either
1. a ≤ αn, βn ≤ b, 0 ≤ β′

n ≤ b for some a, b ∈ (0, 1),
2. a ≤ βn ≤ 1, a ≤ α′

n, β′
n ≤ b for some a, b ∈ (0, 1), or

3. a ≤ αn, α′
n, βn, β′

n ≤ b for some a, b ∈ (0, 1).
Then {xn} converges weakly to some fixed point of T .

Proof. We may assume that kn ≥ 1 for all n ∈ N . Note that
∞∑

n=1
cn ≤

∞∑
n=1

(kn − 1) sup
x,y∈C

‖x − y‖ < ∞.

The conclusion now follows easily from Theorem 2.7 and Theorem 2.10.
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3. Strong Convergence Theorems

The following Theorem 3.4 and Theorem 3.6 carry over Theorem 3 due to Rhoades [11]
to a more general Ishikawa type process and a non-Lipschitzian self-mapping.

Theorem 3.1. Let C be a closed convex subset of a uniformly convex Banach space E and
let T be an asymptotically nonexpansive mapping of C into itself in the intermediate sense
with a fixed point. Put

cn = sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ∨ 0

for all n ∈ N . Suppose that
∞∑

n=1
cn < ∞, the sequence {xn} defined by (1.2) satisfies either

1. a ≤ αn, βn ≤ b, 0 ≤ β′
n ≤ b for some a, b ∈ (0, 1), or

2. a ≤ βn ≤ 1, a ≤ α′
n, β′

n ≤ b for some a, b ∈ (0, 1)
and T (C) ∪ {un} is contained in a compact subset of C. Then {xn} converges strongly to
some fixed point of T .

Proof. By Mazur’s theorem [3], co({x1}∪T (C)∪{un}) is a compact subset of C containing
{xn}. Then, there exist a subsequence {xnk

} of {xn} and a point z ∈ C such that xnk
→ z.

By the boundedness of {un}, lim
n→∞ γn = 0 and Lemma 2.5, we have

‖xnk+1 − xnk
‖ ≤ βnk

(‖T nkynk
− T nkxnk

‖ + ‖T nkxnk
− xnk

‖)
+ γnk

‖unk
− xnk

‖
≤ βnk

(‖xnk
− ynk

‖ + cnk
+ ‖T nkxnk

− xnk
‖)

+ γnk
‖unk

− xnk
‖

→ 0 (k → ∞).

Therefore, from the uniform continuity of T and Lemma 2.5, we obtain

‖z − Tz‖ ≤ ‖z − xnk+1‖ +
∥∥xnk+1 − T nk+1xnk+1

∥∥
+

∥∥T nk+1xnk+1 − T nk+1xnk

∥∥ +
∥∥T nk+1xnk

− Tz
∥∥

≤ ‖z − xnk+1‖ +
∥∥xnk+1 − T nk+1xnk+1

∥∥ + ‖xnk+1 − xnk
‖

+ cnk+1 +
∥∥T nk+1xnk

− Tz
∥∥

→ 0 (k → ∞),

which implies that z is a fixed point of T . By Lemma 2.4 lim
n→∞ ‖xn − z‖ exists, and so we

have lim
n→∞ ‖xn − z‖ = 0.

Theorem 3.2. Let C be a compact convex subset of a uniformly convex Banach space E
and let T be an asymptotically nonexpansive mapping of C into itself in the intermediate
sense. Put

cn = sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ∨ 0

for all n ∈ N . Suppose that
∞∑

n=1
cn < ∞ and the sequence {xn} defined by (1.2) satisfies

either
1. a ≤ αn, βn ≤ b, 0 ≤ β′

n ≤ b for some a, b ∈ (0, 1), or
2. a ≤ βn ≤ 1, a ≤ α′

n, β′
n ≤ b for some a, b ∈ (0, 1).

Then {xn} converges strongly to some fixed point of T .
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Proof. The existence of a fixed point follows from Schauder’s fixed point theorem. So, we
have the desired result by Theorem 3.1 immediately.

As a direct consequence of Theorem 3.2, we have the following result.

Corollary 3.3. Let C be a compact convex subset of a uniformly convex Banach space E
and let T be an asymptotically nonexpansive mapping of C into itself with {kn} satisfying

kn ≥ 1 and
∞∑

n=1
(kn − 1) < ∞. Suppose that the sequence {xn} defined by (1.2) satisfies

either
1. a ≤ αn, βn ≤ b, 0 ≤ β′

n ≤ b for some a, b ∈ (0, 1), or
2. a ≤ βn ≤ 1, a ≤ α′

n, β′
n ≤ b for some a, b ∈ (0, 1).

Then {xn} converges strongly to some fixed point of T .

Theorem 3.4. Let C be a closed convex subset of a uniformly convex Banach space E
and let T be a compact and asymptotically nonexpansive mapping of C into itself in the
intermediate sense with a fixed point. Put

cn = sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ∨ 0

for all n ∈ N . Suppose that
∞∑

n=1
cn < ∞, the sequence {xn} defined by (1.2) satisfies either

1. a ≤ αn, βn ≤ b, 0 ≤ β′
n ≤ b for some a, b ∈ (0, 1), or

2. a ≤ βn ≤ 1, a ≤ α′
n, β′

n ≤ b for some a, b ∈ (0, 1).
Then {xn} converges strongly to some fixed point of T .

Proof. {xn} is bounded by Lemma 2.4 and T is compact, so that there exist a subsequence
{xni} of {xn} and a point z ∈ C such that Txni → z. It is easily follows from the continuity
of T and Lemma 2.6 that z is a fixed point of T and xni → z. Therefore, {xn} converges
strongly to z by Lemma 2.4.

Next, we consider the strong convergence of the sequence {xn} defined by (1.5).

Theorem 3.5. Let C be a closed convex subset of a uniformly convex Banach space E and
let S, T be an asymptotically nonexpansive mapping of C into itself in the intermediate sense
with F (S) ∩ F (T ) �= ∅. Put

cn = sup
x,y∈C

(‖Snx − Sny‖ − ‖x − y‖) ∨ sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ∨ 0

for all n ∈ N . Suppose that
∞∑

n=1
cn < ∞, the sequence {xn} defined by (1.5) satisfies

a ≤ αn, α′
n, βn, β′

n ≤ b for some a, b ∈ (0, 1), and S(C) ∪ {un} is contained in a compact
subset of C. Then {xn} converges strongly to a common fixed point of S and T .

Proof. By Mazur’s theorem [3], co({x1}∪S(C)∪{un}) is a compact subset of C containing
{xn}. Then, there exist a subsequence {xnk

} of {xn} and a point z ∈ C such that xnk
→ z.

By the boundedness of {un}, lim
n→∞ γn = 0 and Lemma 2.9, we have

‖xnk+1 − xnk
‖ ≤ βnk

(‖Snkynk
− Snkxnk

‖ + ‖Snkxnk
− xnk

‖)
+ γnk

‖unk
− xnk

‖
≤ βnk

(‖xnk
− ynk

‖ + cnk
+ ‖Snkxnk

− xnk
‖)

+ γnk
‖unk

− xnk
‖

→ 0 (k → ∞).
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Therefore, from the uniform continuity of S and Lemma 2.9, we obtain

‖z − Sz‖ ≤ ‖z − xnk+1‖ +
∥∥xnk+1 − Snk+1xnk+1

∥∥(3.1)

+
∥∥Snk+1xnk+1 − Snk+1xnk

∥∥ +
∥∥Snk+1xnk

− Sz
∥∥

≤ ‖z − xnk+1‖ +
∥∥xnk+1 − Snk+1xnk+1

∥∥ + ‖xnk+1 − xnk
‖

+ cnk+1 +
∥∥Snk+1xnk

− Sz
∥∥

→ 0 (k → ∞),

which implies that z is a fixed point of S. Further, z is a fixed point of T by the same
argument of (3.1). By Lemma 2.4, lim

n→∞ ‖xn − z‖ exists, and so we have lim
n→∞ ‖xn − z‖ =

0.

Theorem 3.6. Let C be a closed convex subset of a uniformly convex Banach space X.
Let S, T be asymptotically nonexpansive mappings of C into itself in the intermediate sense
with F (S) ∩ F (T ) �= ∅. Put

cn = sup
x,y∈C

(‖Snx − Sny‖ − ‖x − y‖) ∨ sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ∨ 0

for all n ∈ N . Suppose that S is compact,
∞∑

n=1
cn < ∞ and the sequence {xn} defined by

(1.5) satisfies a ≤ αn, α′
n, βn, β′

n ≤ b for some a, b ∈ (0, 1). Then {xn} converges strongly
to a common fixed point of S and T .

Proof. {xn} is bounded by Lemma 2.4 and S is compact, so that there exist a subsequence
{xni} of {xn} and a point z ∈ C such that Sxni → z. Therefore, we have the conclusion
by the same argument of the proof of Theorem 3.5.

As a direct consequence of Theorem 3.4 and Theorem 3.6, we improve Theorem 3 due
to Rhoades [11] to a more general Ishikawa type process (1.2) instead of (1.1).

Corollary 3.7. Let C be a closed convex subset of a uniformly convex Banach space X.
Let T be a completely continuous and asymptotically nonexpansive mapping of C into itself

with {kn} satisfying kn ≥ 1 and
∞∑

n=1
(kn − 1) < ∞. Suppose that the sequence {xn} defined

by (1.2) satisfies either
1. a ≤ αn, βn ≤ b, 0 ≤ β′

n ≤ b for some a, b ∈ (0, 1),
2. a ≤ βn ≤ 1, a ≤ α′

n, β′
n ≤ b for some a, b ∈ (0, 1), or

3. a ≤ αn, α′
n, βn, β′

n ≤ b for some a, b ∈ (0, 1).
Then {xn} converges strongly to some fixed point of T .
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