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Abstract. This paper considers sequential point estimations of the mean vector of
a multivariate normal distribution under a LINEX loss function. It is shown that a
sequential procedure with the sample mean as an estimate is asymptotically improved
by the procedure with another estimate.

1 Introduction This paper considers a sequential point estimation of the mean vector
of a multivariate normal distribution under a LINEX (Linear Exponential) loss function.
The LINEX loss function was first proposed by Varian (1975) when it is appropriate to use
asymmetric loss functions. Zellner (1986) showed that the sample mean vector is inadmis-
sible for estimating the normal mean vector with known covariance matrix. Furthermore,
he showed that the inadmissibility holds even though the covariance matrix is unknown.
The purpose of this paper is to show that the same phenomena occur in sequential settings,
that is, the sequential procedure with sample mean vector is asymptotically improved by
that with another estimate.

Let X1, X2, · · · be independent and identically distributed (i.i.d.) p-dimensional normal
random vectors with unknown mean vector µ and unknown covariance matrix Σ (Np(µ,Σ)).
We consider two sequential point estimation problems of µ under the LINEX loss function.
One is the minimum risk problem and the other is the bounded risk problem. For the
univariate case, see Chattopadhyay (1998) and Takada (2000) for these problems. Nagao
(2002) considered its extension to a linear regression problem. For another multivariate
sequential estimation problems, see Woodroofe (1977) and Nagao and Srivastava (2002).

Zellner (1986) showed that for fixed sample size n, the sample mean vector Xn =
(Xn1, . . . , Xnp)′ is inadmissible under the LINEX loss function,

L(δ, µ) =
n∑

i=1

bi{exp (ai(δi − µi)) − ai(δi − µi) − 1}(1)

where δ = (δ1, . . . , δp)′ is an estimate of µ = (µ1, . . . , µp)′ and ai �= 0, bi > 0, i = 1, . . . , p.
If Σ is known, then the sample mean vector is dominated by

δn = Xn − λ

2n
,(2)

where λ = (a1σ11, . . . , apσpp)′ and Σ = (σij). The sample mean vector is also inadmissible
even though Σ is unknown, and is dominated by

δ̂n = Xn − λ̂n

2n
,(3)
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where λ̂n = (a1s11,n, . . . , apspp,n)′ and Sn = (sij,n) = 1
n−1

∑n
i=1(Xi − Xn)(Xi − Xn)′.

The minimum risk problem is as follows. Consider the problem of estimating µ with the
LINEX loss function for estimation error and cost c > 0 for each observation. If Σ were
known, we would estimate µ by δn given by (2) for sample size n. Then the risk would be

Rn = Eθ {L(δn, µ) + cn}
=

τ

2n
+ cn,

where θ = (µ,Σ) and τ =
∑n

i=1 a2
i biσii. Then the risk would be minimized at nc =

√
τ
2c

with Rnc = 2cnc. Unfortunately, Σ is unknown and hence the best fixed sample size
procedure with n = nc can not be used. However, motivated by the formula for nc, we
propose the following stopping time

Tc = inf{n ≥ m; n > �n

√
τ̂n

2c
},(4)

where m ≥ 2 is the initial sample size, τ̂n =
∑n

i=1 a2
i bisii,n and {�n} is a sequence of

constants such that

�n = 1 +
�

n
+ o

(
1
n

)
as → ∞.(5)

So we consider a sequential estimation procedure with the stopping time Tc that estimates
µ by δ̂Tc in (3) where n is replaced by Tc. Then the risk of the procedure is

RTc = Eθ

{
L(δ̂Tc , µ) + cTc

}
.(6)

and the regret is RTc −Rnc . We also consider another sequential estimation procedure with
the same stopping time Tc that estimates µ by the sample mean vector XTc , and compare
two procedures.

The bounded risk problem is defined as follows. For a preassigned positive constant W ,
we want to determine the sample size n and the estimator δn such that for all θ

EθL(δn, µ) ≤ W.(7)

If Σ were known, we would estimate µ by δn given by (2) for a sample size n. Since

EθL(δn, µ) =
τ

2n
,

(7) is satisfied if and only if n ≥ nW = τ
2W . Unfortunately, Σ is unknown and hence the

best fixed sample size procedure with n = nW can not be used. However, the formula for
nW suggests us the following stopping time

TW = inf{n ≥ m; n > �n
τ̂n

2W
},(8)

where τ̂n and �n are the same as in (4). So we consider a sequential procedure which takes
TW observations and estimate µ by δ̂TW in (3) where n is replaced by TW . We also consider
another sequential estimation procedure with the same stopping time TW that estimates µ
by the sample mean vector XTW , and compare two procedures.

Section 2 provides Woodroofe’s (1977) results needed in later sections. Section 3 treats
the minimum risk problem. The bounded risk problem is considered in Section 4.
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2 Preliminaries Let

Wk =
1√

k(k + 1)

{
k∑

i=1

Xi − kXk+1

}
, k ≥ 1.

Then W1, W2, . . . are i.i.d. Np(0, Σ) and (n − 1)Sn =
∑n−1

i=1 WiW
′
i . Hence

(n − 1)τ̂n =
n−1∑
k=1

Uk,

where

Uk =
p∑

i=1

a2
i biW

2
ki

and W ′
k = (Wk1, . . . , Wkp). It is easy to see that the expectation of Uk is τ and the variance

of Uk is 2σ2, where σ2 =
∑p

i=1

∑p
j=1 σ2

ija
2
i bia

2
jbj .

It is noted that the stopping times considered are of the form

Na = ta + 1,(9)

where

ta = inf{n ≥ m − 1;
n∑

i=1

Ui < anαL(n)}.

For the stopping time Tc in (4), a = 2c, α = 3 and

L(n) =
(n + 1)2

n2�2
n+1

= 1 +
2(1 − �)

n
+ o

(
1
n

)
as n → ∞,(10)

for the stopping time TW in (8), a = 2W , α = 2 and

L(n) =
n + 1
n�n+1

= 1 +
1 − �

n
+ o

(
1
n

)
as n → ∞.(11)

Let β = 1/(α − 1) and na = τβa−β . Then na = nc for Tc and na = nW for TW . It
is well known that ta/na → 1 a.e. and that (ta − na)/

√
na converges in distribution to

N(0, 2β2σ2τ−2) as a → 0 (see Bhattacharya and Mallik, 1973). Hence we have the following
Proposition.

Proposition 1 As a → 0, Na/na → 1 a.e. and

N∗
a =

Na − na√
na

converges in distribution to N(0, 2β2σ2τ−2).

Let F denote the distribution function of Uk. Then it is easy to see that

F (x) ≤ Bxp/2, for all x > 0

for some B > 0. Then Lemma 2.3 and Theorem 2.3 of Woodroofe (1977) give the following
Propositions.
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Proposition 2 For 0 < ε < 1,

Pθ(Na ≤ εna) = O

(
n
− (m−1)p

2β
a

)
as a → 0.

Proposition 3 If (m − 1)p/2 > β, then N∗2
a are uniformly integrable.

Propositions 1 to 3 give the following result. See Theorem 3.1 of Woodroofe (1977).

Proposition 4 If (m − 1)p/2 > 2β, then

lim
a→0

Eθ

{
(Na − na)2

Na

}
= 2β2σ2τ−2.

Let

Ra = atαaL(ta) −
ta∑

i=1

Ui.

Then Ra converges in distribution to a distribution H as a → 0. We denote the mean of H
by ν. See Theorem 2.2 of Woodroofe (1977) for the explicit form of ν. Let ν = ν1 for Tc and
ν = ν2 for TW . Theorem 2.4 of Woodroofe (1977) and (9) yield the following asymptotic
expansion of the expectation of Na, in which L0 = 2(1 − �) for Tc and L0 = 1 − � for TW .

Proposition 5 If (m − 1)p/2 > β, then

Eθ(Na) = na + 1 + βτ−1ν − βL0 − αβ2σ2τ−2 + o(1) as a → 0.

Let N = Na. Since the event {N = n} is independent of Xn,

EθL(δ̂N , µ) =
p∑

i=1

biEθ

{
exp

(
− a2

i

2N
(Sii,N − σii)

)
+

a2
i Sii,N

2N
− 1

}

=
p∑

i=1

biEθ

{
exp

(
− a2

i

2N
(Sii,N − σii)

)
+

a2
i (Sii,N − σii)

2N
− 1

}

+Eθ

( τ

2N

)
(12)

Lemma 1 If (m − 1)p/2 > 2β, then

EθL(δ̂N , µ) = Eθ

( τ

2N

)
+ o(n−2

a ) as a → 0.

Proof. From (12) it is enough to show that as a → 0,

Eθ

{
exp

(
− a2

i

2N
(Sii,N − σii)

)
+

a2
i (Sii,N − σii)

2N
− 1

}
= o(n−2

a ).(13)

Let C = {N > εna} ∩ {|Sii,N − σii| ≤ δ} for some 0 < ε < 1 and δ > 0. Let C′ be the
compliment of C. Note that

Pθ(C′) ≤ Pθ(N ≤ εna) + Pθ

(
sup

n>εna

|Sii,n − σii| > δ

)
.

From the fact that {(Sii,n − σii)q} is a reversed submartingale for any q > 1 and Proposition
2, it follows that

Pθ(C′) = O

(
n
− (m−1)p

2β
a

)
as a → 0.(14)
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Divide the left side of (13) into two parts such that∫
C

{
exp

(
− a2

i

2N
(Sii,N − σii)

)
+

a2
i (Sii,N − σii)

2N
− 1

}
dPθ

+
∫

C′

{
exp

(
− a2

i

2N
(Sii,N − σii)

)
+

a2
i (Sii,N − σii)

2N
− 1

}
dPθ

= I + II (say)

Then

I =
∫

C

1
2

(
a2

i (Sii,N − σii)
2N

)2

exp(∆N )dPθ

=
(

a4
i

8n3
a

) ∫
C

(na

N

)3

N(Sii,N − σii)2 exp(∆N )dPθ,

where

|∆N | ≤ a2
i

2N
|Sii,N − σii| ≤ a2

i δ

2m

on C. Note that N/na → 1 a.e., ∆N → 0 a.e. and
√

N(Sii,N −σii) converges in distribution
to N(0, 2σ2

ii) by Anscombe’s theorem (Anscombe, 1952) as a → 0. Then (na/N)3N(Sii,N −
σii)2 exp(∆N ) converges in distribution to 2σ2

iiχ
2
1 as a → 0, where χ2

1 denotes the chi-
squared random variable with one degree of freedom. It is easy to see that (na/N)3N(Sii,N−
σii)2 exp(∆N ) is uniformly integrable on C. Hence it follows that

I = O(n−3
a ) as a → 0,

which means that in order to prove (13), it is sufficient to show that

II = o(n−2
a ) as a → 0.(15)

By Hölder inequality,

0 ≤ II ≤ exp
(

a2
i σii

2m

)
Pθ(C′) +

a2
i

2m

∫
C′

|Sii,N − σii|dPθ

≤ exp
(

a2
i σii

2m

)
Pθ(C′) +

a2
i

2m
K1/rPθ(C′)1/s,

where r > 1 and s > 1 with (1/r) + (1/s) = 1, and K = E|Sii,N − σii|r, which is finite for
any r > 1. Hence it follows from (14) that

II = O

(
n
− p(m−1)

2βs
a

)
as a → 0.

The condition of the lemma implies that there exists s > 1 such that p(m − 1)/(2βs) > 2,
from which (15) follows.

Next we consider the risk of the procedure with XN as an estimate of µ.

Lemma 2 If (m − 1)p/2 > 2β, then

EθL(XN , µ) =
(∑p

i=1 a4
i biσ

2
ii

8

)
n−2

a + Eθ

( τ

2N

)
+ o(n−2

a ) as a → 0.
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Proof. It follows that

EθL(XN , µ) =
p∑

i=1

biEθ

{
exp

(
a2

i σii

2N

)
− 1

}

=
p∑

i=1

biEθ

{
exp

(
a2

i σii

2N

)
− 1 − a2

i σii

2N

}
+ Eθ

( τ

2N

)
.

Hence it is sufficient to show that as a → 0,

Eθ

{
exp

(
a2

i σii

2N

)
− 1 − a2

i σii

2N

}
=

a4
i σ

2
ii

8
n−2

a + o(n−2
a ).(16)

The left hand of (16) is equal to

Eθ

{
1
2

(
a2

i σii

2N

)2

exp(∆′
N )

}
=

a4
i σ

2
ii

8n2
a

Eθ

{(na

N

)2

exp(∆′
N )

}
,

where |∆′
N | ≤ (a2

i σii)/(2N ) ≤ (a2
i σii)/(2m). So (16) follows if it is shown that

Eθ

{(na

N

)2

exp(∆′
N )

}
= 1 + o(1) as a → 0.(17)

For any 0 < ε < 1, rewrite the left side of (17) as∫
N<εna

(na

N

)2

exp(∆′
N )dPθ +

∫
N≥εna

(na

N

)2

exp(∆′
N )dPθ .

The first part is bounded by(na

m

)2

exp
(

a2
i σii

2m

)
Pθ(N < εna) = o(1) as a → 0

by Proposition 2 and the condition of the lemma. Since (na/N)2 exp(∆′
N ) converges to 1

a.e. as a → 0 and is uniformly integrable on {N ≥ εna},∫
N≥εna

(na

N

)2

exp(∆′
N )dPθ = 1 + o(1) as a → 0.

Hence (17) is proved.

3 Minimum risk problem Now we consider the minimum risk problem. Noting that
a = 2c, na = nc, α = 3, β = 1/2, and L0 = 2(1−�), Proposition 5 gives the following result.

Theorem 1 If m > 1 + p−1, then

Eθ(Tc) = nc + � + (2τ)−1ν1 − 3σ2(2τ)−2 + o(1) as c → 0.

First we consider the sequential estimation procedure with δ̂Tc as an estimate of µ. It
follows from (6) and Lemma 1 that if m > 1 + 2p−1, then

RTc − Rnc = Eθ

{
τ

2Tc
+ cTc − 2cnc

}
+ o(c)

= cEθ

{
(Tc − nc)2

Tc

}
+ o(c) as c → 0.

Hence Proposition 4 yields the following.
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Theorem 2 If m > 1 + 2p−1, then

RTc − Rnc

c
=

σ2

2τ2
+ o(1) as c → 0.

Next we consider the sequential estimation procedure with XTc as an estimate of µ, the
risk of which is denoted by R′

Tc
. Then it follows from Lemma 2 that if m > 1 + 2p−1, then

R′
Tc

− Rnc =
c
∑p

i=1 a4
i biσ

2
ii

4τ
+ Eθ

{
τ

2Tc
+ cTc − 2cnc

}
+ o(c)

=
c
∑p

i=1 a4
i biσ

2
ii

4τ
+ cEθ

{
(Tc − nc)2

Tc

}
+ o(c) as c → 0.

Hence we get the following result.

Theorem 3 If m > 1 + 2p−1, then

RTc − Rnc

c
=

∑p
i=1 a4

i biσ
2
ii

4τ
+

σ2

2τ2
+ o(1) as c → 0.

Comparing Theorems 2 and 3, it turns out that the sequential estimation procedure
with the sample mean as an estimate is asymptotically inadmissible

4 Bounded risk problem In this section we consider the bounded risk problem, for
which it is noted that a = 2W , na = nW , α = 2, β = 1, and L0 = 1 − �. Then by
Proposition 5 we get the following result.

Theorem 4 If m > 1 + 2p−1, then

Eθ(TW ) = nW + � + τ−1ν2 − 2σ2τ−2 + o(1) as W → 0.

First we consider the sequential estimation procedure with δ̂TW as an estimate of µ. It
follows from Lemma 1 that if m > 1 + 4p−1, then as W → 0,

EθL(δ̂TW , µ) =
2W 2

τ
Eθ

(
n2

W

TW

)
+ o(W 2)

=
2W 2

τ

{
Eθ

[
(TW − nW )2

TW

]
+ Eθ (nW − TW )

}
+ W + o(W 2).

Proposition 4 and Theorem 4 give the following result.

Theorem 5 If m > 1 + 4p−1, then

EθL(δ̂TW , µ) = W +
2W 2

τ

{
4σ2

τ2
− ν2

τ
− �

}
+ o(W 2) as W → 0.

It is easy to see that σ2 ≤ τ2. Note that ν2 > 0. Then the following corollary is obtained.

Corollary 1 If m > 1 + 4p−1 and � ≥ 4, then

EθL(δ̂TW , µ) ≤ W + o(W 2) as W → 0.
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This corollary shows that the sequential estimation procedure asymptotically satisfies
the requirement (7).

Next we consider the sequential estimation procedure with XTW as an estimate of µ. It
follows from Lemma 2 that if m > 1 + 4p−1, then

EθL(XTW , µ) =
W 2

∑p
i=1 a4

i biσ
2
ii

2τ2
+

2W 2

τ
Eθ

(
n2

W

TW

)
+ o(W−2)

=
2W 2

τ

{∑p
i=1 a4

i biσ
2
ii

4τ
+ Eθ

[
(TW − nW )2

TW

]
+ Eθ (nW − TW )

}
+W + o(W 2) as W → 0.

Hence we have the following result.

Theorem 6 If m > 1 + 4p−1, then as W → 0,

EθL(XTW , µ) = W +
2W 2

τ

{∑p
i=1 a4

i biσ
2
ii

4τ
+

4σ2

τ2
− ν2

τ
− �

}
+ o(W 2)

Comparing Theorems 5 and 6, it turns out that the sequential estimation procedure
with the sample mean needs more observations to achieve (7) asymptotically.
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