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ON THE CATEGORICAL ALGEBRAS OF FIRST-ORDER LOGIC∗
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Received November 11, 2003

Abstract. A category Fol of sets of formulas of first-order languages with finitary
relations and with equality is constructed. An adjunction 〈F, U, η, ε〉 : HSet → Fol,
where HSet denotes the category of families of sets indexed by subsets of the natural
numbers “respecting inclusions” is then obtained. It gives rise to an algebraic theory T
over HSet. It is then shown that the Eilenberg-Moore category of T-algebras in HSet
has a subcategory isomorphic to the category

−−→
Lfω corresponding to the variety Lfω

of all ω-dimensional locally finite cylindric algebras. Moreover, its subcategory with
objects all largest locally finite subalgebras of full ω-dimensional cylindric set algebras
is the category of algebras that was used in the categorical algebraization of a version
of the institution of first-order logic without terms presented in previous work by the
author.

1 Introduction This paper continues the exploration of the connections between the
algebraization of well-known logics using the modern categorical algebraization process (see
[13, 14, 15, 16]) and their algebraization using the traditional methods. The categorical
process is a generalization using the institution framework [6, 7], of the very well-known
universal algebraic algebraization framework of Blok and Pigozzi (see [2, 3]) that can handle
more effectively logics with multiple signatures and quantifiers. The hope and the aim is
that, by showing that the modern method leads to the same or equivalent results with
the traditional methods and by comparing the two processes, many of the advantages and
disadvantages of each will be revealed and this will eventually lead to an improved version of
the modern technique and to its wider applicability to less known logical systems. The first
step in this direction was accomplished with the categorical algebraization of equational
logic in [17] and the subsequent investigation [18] of the relation of the category of algebras
on which the equivalent algebraic institution semantics was based with classes of algebras
of clones that had been given in the literature using more traditional constructions. The
next step is undertaken in the present work where the relation between the category of
algebras used in the categorical algebraization of first-order logic without terms of [19] is
compared with the class of all locally finite ω-dimensional cylindric algebras (see [8, 9, 10])
and a subclass of the class of all full cylindric set algebras of dimension ω. These classes
were discovered during the efforts to create an equivalent algebraic semantics for first-order
logic without terms in the traditional approach. The algebraic theory that was used in
[19] corresponds to a variety strictly larger than the variety generated by the locally finite
cylindric algebras but its subcategory that was used as the category of algebras on which the
algebraization was based is a subcategory of the category of locally finite cylindric algebras
of dimension ω. It should be noted that that the word “sub”, where used above, should be
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taken in the categorical sense of the existence of an injective functor, not in the literally
sense of an embedding.

2 The Algebraic Theory We recall some of the basic constructions introduced in [19].
We refer the reader to [4] and [11] for all unexplained categorical notation and to [12] for
more details on the correspondence between algebraic theories and varieties of algebras.

In what follows, by Set will be denoted the category of all small sets, by ω the set of
natural numbers, N ⊆f ω will mean that N is a finite subset of ω and Pf(ω) will denote the
set of all finite subsets of ω.

By a hierarchy of sets or, simply, an h-set A, we mean a family of sets A = {AN : N ∈
Pf(ω)}, such that AN ∩AM = AN∩M , for every N, M ⊆f ω. By a morphism of h-sets or,
simply, an h-set morphism f : A → B, we mean a family of set maps f = {fN : AN →
BN : N ∈ Pf(ω)}, such that the following diagram commutes, for every N ⊆ M ⊆f ω,

AN BN
�

fN

AM BM
�fM

�
i

�
i

where by i : AN ↪→ AM and i : BN ↪→ BM we denote the inclusion maps.
Given two chain set morphisms f : A → B and g : B → C we define their composite

gf : A → C to be the collection of maps gf = {gNfN : AN → CN : N ∈ Pf(ω)}. With this
composition the collection of h-sets with h-set morphisms between them forms a category.
It is called the category of h-sets and denoted by HSet.

The construction of this category as the underlying category of the institution of first-
order logic was inspired by a well known formalization of first order logic in which all the
relation symbols are ranked (see, e.g., [1]).

By L is denoted the set of symbols {¬,∧} ∪ {∃k : k ∈ ω}, which will be used as
connectives and quantifiers, respectively, in the construction of the formulas below. Given
a set X, by X will be denoted an isomorphic copy of X constructed in some canonical way.
x will denote the copy of x ∈ X in the set X.

Given X ∈ |HSet|, the h-set of X-formulas

FmL(X) = {FmL(X)N : N ∈ Pf(ω)} ∈ |HSet|

is defined by letting FmL(X)N be the smallest set satisfying vi ≈ vj ∈ FmL(X)N , for all
i, j ∈ N, x ∈ FmL(X)N , for every x ∈ XN , ¬φ, φ1 ∧ φ2 ∈ FmL(X)N , for all φ, φ1, φ2 ∈
FmL(X)N , and, finally, ∃kφ ∈ FmL(X)N , for every φ ∈ FmL(X)N∪{k}.

Given two h-sets X and Y, any h-set morphism f from X into the h-set FmL(Y ) may
be extended to an h-set morphism f∗ from FmL(X) into FmL(Y ). This is done as follows:
For X, Y ∈ |HSet|, f : X → FmL(Y ) ∈ Mor(HSet), define f∗ : FmL(X) → FmL(Y ),
with f∗

N : FmL(X)N → FmL(Y )N , for every N ⊆f ω, by recursion on the structure of
X-formulas by f∗

N (vi ≈ vj) = vi ≈ vj , for all i, j ∈ N, f∗
N (x) = fN (x), for every x ∈ XN ,

f∗
N (¬φ) = ¬f∗

N (φ), f∗
N (φ1 ∧ φ2) = f∗

N(φ1) ∧ f∗
N(φ2), for all φ, φ1, φ2 ∈ FmL(X)N , and,

finally, f∗
N (∃kφ) = ∃kf∗

N∪{k}(φ), for every φ ∈ FmL(X)N∪{k}.
In the sequel, we write f : X ⇁ Y to denote an HSet-morphism f : X → FmL(Y ).

Given two such maps f : X ⇁ Y, g : Y ⇁ Z, their composition g ◦ f : X ⇁ Z is defined
to be the HSet-morphism

g ◦ f = g∗f.
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It is shown in [19] that the composition ◦ is associative.
Now define jX : X ⇁ X, given by jXN : XN → FmL(X)N , with

jXN (x) = x, for all x ∈ XN .

Given f : X ⇁ Y and g : Z ⇁ X we have f ◦ jX = f and jX ◦ g = g.
Therefore Fol, having collection of objects |HSet| and collection of morphisms

Fol(X, Y ) = {f : X ⇁ Y : f ∈ HSet(X, FmL(Y ))},
for all X, Y ∈ |HSet|, with composition ◦ and X-identity jX , is a category.

Now, define a functor F : HSet → Fol by F (X) = X , for all X ∈ |HSet|, and, given
f : X → Y ∈ Mor(HSet), F (f) = jY f : X ⇁ Y.

Next, define a functor U : Fol → HSet by U(X) = FmL(X), for all X ∈ |Fol|,
and, given f : X ⇁ Y ∈ Mor(Fol), U(f) = f∗ : FmL(X) → FmL(Y ), the extension of
f : X → FmL(Y ) to X-formulas.

Finally, define natural transformations η : IHSet → UF by ηX : X → FmL(X), with
ηX = jX , for all X ∈ |HSet|, and ε : FU → IFol by εX : FmL(X) ⇁ X, with εX = iFmL(X),
for all X ∈ |Fol|.

Y FmL(Y )�
ηY

X FmL(X)�ηX

�

f

�

(jY f)∗

FmL(Y ) Y�
εY

FmL(X) X�εX

�

jFmL(Y )f
∗

�

f

The functors F : HSet → Fol and U : Fol → HSet are adjoints with unit η and counit ε.
To create the algebraic theory, we set T = UF and µ = UεF . T : HSet → HSet is a

functor, since it is the composite of two functors, and µ : TT → T is a natural transfor-
mation, since ε is a natural transformation. Furthermore, the triangular identities of the
adjunction induce the commutativity of the following diagrams, that are the prerequisites
for T = 〈T, η, µ〉 to be an algebraic theory in HSet.

T

iT
�

�
�
��

T TT�ηT
T�T (η)

�

µ iT
�

�
�

��
TT T�

µ

TTT TT�T (µ)

�

µT

�

µ

Moreover, there exists a unique functor K : HSetT → Fol from the Kleisli category of the
theory T to Fol, called the Kleisli comparison functor of the adjunction, that makes the F -
and the U -paths of the following triangles commute

HSetT Fol�K

HSet

FT

�
�

�	
F

�
�
�


HSetT Fol�K

HSet

UT
�

�
��

U
�

�
��

Since the Kleisli category of an algebraic theory has, by definition, as objects the same
objects with the underlying category of the theory and as morphisms from an object X to
an object Y all the morphisms in the underlying category from X to T (Y ), with composition
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◦K given by g ◦K f = µY T (g)f, for all f : X → T (Y ), g : Y → T (Z) ∈ Mor(HSet), it is
easy to see that in this case HSetT = Fol and K = IFol. Hence Fol is the category of all
free algebras of the algebraic theory T in HSet.

A T-algebra X = 〈X, ξ〉 in HSet is now a pair consisting of an h-set X together with an
HSet-morphism ξ : FmL(X) → X, such that the two diagrams on the left below commute

X FmL(X)�jX

iX
�

�
�
��

X
�

ξ

FmL(X) X�
ξ

FmL(FmL(X)) FmL(X)�(jXξ)∗

�

i∗FmL(X)

�

ξ

X Y�
h

FmL(X) FmL(Y )�(jY h)∗

�

ξ

�

ζ

The h-set X is called the carrier of X and the morphism ξ is called the structure map of X.
Moreover, given two T-algebras X = 〈X, ξ〉 and Y = 〈Y, ζ〉, a T-algebra homomorphism
h : X → Y is an HSet-morphism h : X → Y, such that the third diagram above commutes.
The category with collection of objects the collection of all T-algebras and with morphisms
all T-algebra homomorphisms between them is known as the Eilenberg-Moore category of
T-algebras in HSet and is denoted by HSetT.

3 Connections with Cylindric Algebras The definition of a cylindric algebra from
[8] is recalled next. For motivation and further details on the structure and other issues of
the theory of cylindric algebras see [8] and [9].

Definition 1 A cylindric algebra of dimension α, where α is any ordinal, is an algebra
A = 〈A,+, ·,−, 0, 1, cκ, dκλ〉κ,λ<α, where 0, 1, dκλ are nullary, −, cκ are unary and +, · are
binary satisfying the following postulates, for all x, y ∈ A, κ, λ, µ < α,

1. 〈A,+, ·,−, 0, 1〉 is a Boolean algebra,

2. cκ0 = 0

3. x ≤ cκx, i.e., x + cκx = cκx,

4. cκ(x · cκy) = cκx · cκy

5. cκcλx = cλcκx

6. dκκ = 1

7. if κ 
= λ, µ, then dλµ = cκ(dλκ · dκµ)

8. if κ 
= λ, then cκ(dκλ · x) · cκ(dκλ · −x) = 0.

The class of all cylindric algebras is denoted by CA and the class of all cylindric algebras of
dimension α by CAα The elements dκλ are called the diagonal elements and the operations
cκ are called the cylindrifications.

By the dimension set of x ∈ A, in symbols ∆Ax, or simply ∆x, is meant the set of all
κ for which cκx 
= x.

A cylindric algebra A is said to be locally finite of dimension α if it is of dimension α
and |∆x| < ω, for every x ∈ A. The class of all locally finite cylindric algebras of dimension
α is denoted by Lfα. The corresponding category is denoted by −−→Lfα.

The goal in what follows is to construct an injection from −−→Lfω into HSetT and to
investigate the relationship between the two categories.
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Let A = 〈A,+, ·,−, 0, 1, cκ, dκλ〉κ,λ<α be a locally finite cylindric algebra of dimension
ω. Let A† = {A†

N : N ∈ Pf(ω)} be defined by setting A†
N = {a ∈ A : ∆a ⊆ N}. We then

have
a ∈ A†

N ∩ A†
M iff ∆a ⊆ N and ∆a ⊆ M

iff ∆a ⊆ N ∩ M

iff a ∈ A†
N∩M .

Thus A†
N ∩ A†

M = A†
N∩M and A† is an h-set. Next, define a map ξA† : FmL(A†) → A† by

recursion on the structure of an A†-formula, by letting ξA†
N

: FmL(A†)N → A†
N be given

by

• ξA†
N

(vi ≈ vj) = dij ,

• ξA†
N

(a) = a, for all a ∈ A†
N ,

• ξA†
N

(¬φ) = −ξA†
N

(φ),

• ξA†
N

(φ1 ∧ φ2) = ξA†
N

(φ1) · ξA†
N

(φ2),

• ξA†
N

(∃kφ) = ckξA†
N∪{k}(φ).

It is not difficult to verify that ξA† = {ξA†
N

: N ∈ Pf(ω)} is an h-set morphism.
The following lemma shows that the pair 〈A†, ξA†〉 forms a T-algebra in HSet.

Lemma 2 Let A ∈ −−→Lfω. Then A† = 〈A†, ξA†〉 ∈ |HSetT|.

Proof:
It suffices to show that the following diagrams commute:

A† FmL(A†)�ηA†

iA†
�

�
�
��

A†
�

ξA†

FmL(A†) A†�
ξA†

FmL(FmL(A†)) FmL(A†)�(ηA†ξA†)∗

�

i∗FmL(A†)

�

ξA†

Verification of the commutativity of the triangle is straightforward and will be omitted. For
the rectangle induction on the structure of an FmL(A†)-term is needed. Only the cases of
the terms vi ≈ vj and ∃kφ will be presented. The remaining cases may be handled similarly.
We have

ξA†
N

((ηA†ξA†)∗N (vi ≈ vj)) = ξA†
N

(dij)
= dij

= ξA†
N

(vi ≈ vj)
= ξA†

N
(i∗FmL(A†)N

(vi ≈ vj)).

and
ξA†

N
((ηA†ξA†)∗N (∃kφ)) = ξA†

N
(∃k(ηA†ξA†)∗N∪{k}(φ))

= ckξA†
N∪{k}((ηA†ξA†)∗N∪{k}(φ))

= ckξA†
N∪{k}(i

∗
FmL(A†)N∪{k}

(φ))

= ξA†
N

(∃ki∗FmL(A†)N∪{k}
(φ))

= ξA†
N

(i∗FmL(A†)N
(∃kφ)).

�
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Suppose, next, that A,B ∈ Lfω and h : A → B ∈ −−→Lfω(A,B). Define h† = {h†
N : N ⊆f

ω}, by h†
N = h �A†

N
. It is now shown that h† ∈ HSetT(A†,B†), i.e., that the following

rectangle commutes:

A† B†�
h†

FmL(A†) FmL(B†)�(ηB†h†)∗

�

ξA†

�

ξB†

We only verify the case of the A†-terms a, φ1 ∧ φ2 and ∃kφ.

ξB†
N

((ηB†h†)∗N (a)) = ξB†
N

(h†
N (a))

= h†
N(a)

= h†
N(ξA†

N
(a)),

ξB†
N

((ηB†h†)∗N (φ1 ∧ φ2)) = ξB†
N

((ηB†h†)∗N (φ1) ∧ (ηB†h†)∗N (φ2))
= ξB†

N
((ηB†h†)∗N (φ1)) · ξB†

N
((ηB†h†)∗N (φ2))

= h†
N (ξA†

N
(φ1)) · h†

N(ξA†
N

(φ2))
= h†

N (ξA†
N

(φ1) · ξA†
N

(φ2))
= h†

N (ξA†
N

(φ1 ∧ φ2)),

ξB†
N

((ηB†h†)∗N (∃kφ)) = ξB†
N

(∃k(ηB†h†)∗N∪{k}(φ))
= ckξB†

N∪{k}((ηB†h†)∗N∪{k}(φ))
= ckh†

N∪{k}(ξA†
N∪{k}(φ))

= h†
N(∃kξA†

N∪{k}(φ))
= h†

N(ξA†
N

(∃kφ)).

In this way, an embedding P : −−→Lfω → HSetT may be defined by

P (A) = A†, for every A ∈ Lfω,

and, given h ∈ −−→Lfω(A,B), P (h) ∈ HSetT(A†,B†), by P (h) = h† = {h �A†
N

: N ⊆f ω}.

It is clear that P (−−→Lfω) 
= HSetT, since, for instance, the free T-algebra in HSet with
universe the h-set FmL(∅), with ∅N = ∅, for all N ⊆f ω, does not satisfy

ξFmL(∅)N
(vi ≈ vi) = ξFmL(∅)N

(vj ≈ vj), for i, j ∈ N, i 
= j.

whereas every T-algebra of the form P (A) for some A ∈ Lfω, does satisfy this identity.

The above remark also depicts one of the differences of the modern systematic universal
and categorical algebraization processes as compared to the more traditional ad-hoc process.
One does not need to discover the identities that define the equivalent category of algebras
as long as an appropriate adjunction generates a supercategory. Then a subcategory can be
specified that provides the required deductive equivalence with the deductive mechanism
of the original π-institution. Quite similar to this mechanism is the mechanism generating
the equivalent algebraic semantics via the Leibniz operator in the Blok-Pigozzi theory [2]
and the generation of the equivalent algebraic semantics in the semantical algebraization
process of the Budapest school [1]. The main difference is that the algebraic signature is
fixed in advance in both of these settings whereas in the present setting the algebraic clone
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is generated directly out of a formalization of the logic that includes its substitutions or
signature morphisms.

In [19] a special full subcategory Q ≤ HSetT was used as the category of algebras of
an equivalent algebraic institution semantics for the institution of first-order logic without
terms. The objects of that category were termed relation algebras and were defined as
follows: Given a set A, Rel(A) denotes the h-set whose N -th level RelN (A) consists of all
relations r ⊆ Aω that depend only on the individual variables indexed by elements in N .
Given such a set A, we define A∗ = 〈Rel(A), ξA〉, where ξA : FmL(Rel(A)) → Rel(A) ∈
Mor(HSet) is determined by ξAN : FmL(Rel(A))N → RelN (A), defined by recursion on the
structure of Rel(A)-formulas as follows:

• ξAN (vi ≈ vj) = {
a ∈ Aω : ai = aj}, for all i, j ∈ N,

• ξAN (x) = x, for every x ∈ RelN (A),

• ξAN (¬φ) = Aω − ξAN (φ), for all φ ∈ FmL(Rel(A))N ,

• ξAN (φ1 ∧ φ2) = ξAN (φ1) ∩ ξAN (φ2), for all φ1, φ2 ∈ FmL(Rel(A))N ,

• ξAN (∃kφ) = {
b ∈ Aω : ai = bi ∀i 
= k and 
a ∈ ξAN∪{k}(φ)}.
It is shown in [19] that ξA is indeed an HSet-morphism and that A∗ is a T-algebra.

It is not difficult to see that A∗ is in P (|−−→Lfω|). In fact, if Rel(A) is the largest fi-
nite dimensional subalgebra of the full ω-dimensional cylindric set algebra with universe
Rel(A) = P(Aω), then P (Rel(A)) = A∗. Thus, although the algebraic theory T in HSet
used in [19] to algebraize the institution of first-order logic without terms “corresponds” [12]
to a variety strictly larger than the variety of cylindric algebras, the subcategory Q of the
category of all T-algebras, used as the category of algebras of the algebraic counterpart of
the institution, corresponds to the full subcategory of the category of all cylindric algebras
consisting of the largest finite dimensional subalgebras of the full ω-dimensional cylindric
set algebras over all possible relational universes.

4 A Direction for Investigation The main logic that has been studied heavily in the
literature and for which a categorical algebraization process has not yet been investigated is
the full first-order logic with terms. Many institutions for this logic have been presented in
the literature (see, e.g., [7]) and an attempt to provide an algebraic counterpart for that logic
by extending the theory of cylindric algebras has been presented in [5]. It would be very
interesting to investigate the possibility of a categorical algebraization of first-order logic,
as expressed by a possibly modified version of the institutions presented in the literature,
and then explore the connections between the algebraic theory used in the algebraization
and the variety of algebras introduced in [5].
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