A CHARACTERIZATION OF FULLY BOUNDED DUBROVIN VALUATION RINGS

Santi Irawati, Hidetoshi Marubayashi, Shigeru Kobayashi and Guangming Xie

Received October 10, 2003

ABSTRACT. Let R be a Dubrovin valuation ring. It is shown that R is fully bounded iff for any prime ideal P of R which is different from the Jacobson radical of R, P is Goldie prime and either it is lower limit or there is a Goldie prime ideal P_1 such that the prime segment $P_1 \supset P$ is Archimedean.

1. Introduction. A ring is called *right bounded* if any essential right ideal contains a non-zero (two-sided) ideal. Similarly, we can define a *left bounded ring*. A ring is just called *bounded* if it is both right bounded and left bounded.

Let S be a ring. We say that S is *fully bounded* if S/P is bounded for any prime ideal P of S. We write J(S) for the Jacobson radical of S and Spec(S) for the set of all prime ideals of S.

Let R be a Dubrovin valuation ring of a simple Artinian ring Q (see [7, chap. II] for the definition and elementary properties of Dubrovin valuation rings). A prime ideal P of R is called *Goldie prime* if R/P is a prime Goldie ring.

We denote by G-Spec(R) the set of all Goldie prime ideals of R. Now let $P_1, P \in$ G-Spec(R) with $P_1 \supset P$. The pair $P_1 \supset P$ is called a *prime segment* if there are no Goldie primes properly between P_1 and P.

Let $P \in \text{G-Spec}(R)$ with $P \neq J(R)$ and set $P_1 = \cap \{P_\lambda \mid P_\lambda \in \text{G-Spec}(R) \text{ with } P_\lambda \supset P \}$. Then, in [2], they have shown that the following four cases only occur:

(1) P is lower limit, i.e., $P = P_1$. Otherwise, $P_1 \supset P$ is a prime segment.

(2) $P_1 \supset P$ is Archimedean ([1, Theorem 6(a)]).

(3) $P_1 \supset P$ is simple ([1, Theorem 6(b)]).

(4) $P_1 \supset P$ is exceptional, i.e., there exists a non-Goldie prime ideal C such that $P_1 \supset C \supset P$ ([1, Theorem 6(c)]).

With this classification, we shall prove that R is fully bounded iff (1) and (2) only hold (Theorem 2.5). (Note that R/J(R) is bounded, because it is a simple Artinian ring). For any regular element c in J(R), we define $P(c) = \cap \{P_{\lambda} \mid P_{\lambda} \in G\text{-Spec}(R) \text{ with } c \in P_{\lambda}\}$, a Goldie prime ideal ([1, Proposition 1]). R is called *locally invariant* if cP(c) = P(c)c for any regular element c in J(R). This concept was defined by Gräter [5] in order to study the approximation theorem in the case where R is a total valuation ring. We shall show that R is fully bounded if and only if it is locally invariant, by using Theorem 2.5 (Proposition 2.6).

If Q is of finite dimensional over its center, then R is always fully bounded. In the end of the paper, we shall give several examples of fully bounded Dubrovin valuation rings of Q with infinite dimension over the center.

²⁰⁰⁰ Mathematics Subject Classification. 16W60.

Key words and phrases. fully bounded, Dubrovin valuation ring, locally invariant.

2. Fully bounded Dubrovin valuation rings.

Throughout this section, R will denote a Dubrovin valuation ring of a simple Artinian ring Q. For any $P \in \text{Spec}(R)$, set $C(P) = \{c \in R \mid c \text{ is regular mod } P\}$. If $P \in G$ - $\operatorname{Spec}(R)$, then C(P) is localizable and we denote by R_P the localization of R at P. Before starting the lemmas, we note the following: There is a one-to-one correspondence between G-Spec(R) and the set of all overrings of R, which is given by $P \longrightarrow R_P$ with $P = J(R_P)$ and $S \longrightarrow J(S)$ ($P \in G$ -Spec(R) and S is an overring of R). Furthermore, for any $P, P_1 \in$ G-Spec(R), $P \supset P_1$ iff $R_P \subset R_{P_1}$ ([7, §6] and [1, §2]). We will freely use these properties throughout the paper.

Lemma 2.1. Let S be an order in Q and A be an S-ideal such that $O_r(A) = T = O_l(A)$, where $O_r(A) = \{q \in Q \mid Aq \subseteq A\}$ and $O_l(A) = \{g \in Q \mid gA \subseteq A\}$. Suppose that A = aTfor some $a \in A$. Then A = Ta.

Proof. $T = O_l(A) = aTa^{-1}$ implies A = Ta.

Lemma 2.2. Let R be a Dubrovin valuation ring of Q and $P \in G$ -Spec(R). Suppose that P is lower limit, i.e., $P = \cap \{P_{\lambda} \mid P_{\lambda} \in G\text{-Spec}(R) \text{ with } P_{\lambda} \supset P \}$. Then $R_P = \bigcup R_{P_{\lambda}}$ and $C(P) = \bigcup C(P_{\lambda})$.

Proof. Since $P_{\lambda} \supset P$, it follows that $R_P \supset R_{P_{\lambda}}$ so that $R_P \supseteq S = \bigcup R_{P_{\lambda}}$. Suppose that $R_P \supset S$. Then for any P_{λ} , $P_{\lambda} = J(R_{P_{\lambda}}) \supseteq J(S) \supset J(R_P) = P$ implies $P = \cap P_{\lambda} \supseteq J(S)$ $\supset P$, a contradiction. Hence $R_P = \bigcup R_{P_{\lambda}}$ and so $C(P) = \bigcup C(P_{\lambda})$ follows.

Lemma 2.3. Let R be a Dubrovin valuation ring of Q and $P \in G$ -Spec(R). Then (1) Spec(R_P) = { $P_1 | P_1 \in Spec(R)$ with $P \supseteq P_1$ }.

(2) Let P_1 and P_2 be in Spec(R) with $P \supseteq P_1 \supset P_2$. Then $P_1 \supset P_2$ is a prime segment of R if and only if it is a prime segment of R_P .

Proof. (1) Let $P_1 \in \text{Spec}(R_P)$.

Case 1. If P_1 is Goldie prime, then $(R_P)_{P_1}$ is an overring of R_P (and so of R) with $J((R_P)_{P_1})$ $= P_1$, i.e., $P_1 \in \operatorname{Spec}(R)$ and $P = J(R_P) \supseteq P_1$.

Case 2. If P_1 is non-Goldie prime, then we can construct an exceptional prime segment of R_P , say, $P_2 \supset P_1 \supset P_0$ by [1, Theorem 6]. By case 1, $P \supseteq P_2$ and $P_2, P_0 \in G$ -Spec(R). It easily follows from note before Lemma 2.1 that there are no Goldie primes properly between P_2 and P_0 , which implies $P_2 \supset P_0$ is a prime segment of R. As in [1], let $K(P_2)$ $= \{a \in P_2 \mid P_2 a P_2 \subset P_2\}$. Then $K(P_2) = P_1$ by [1, Corollary 7] and so $P_2 \supset P_0$ is an exceptional prime segment of R with $K(P_2) = P_1$, i.e., P_1 is non-Goldie prime of R with $P \supset P_1$. Conversely, let $P_1 \in \operatorname{Spec}(R)$ with $P \supseteq P_1$. Then from note before Lemma 2.1 and the method we have just done, we can easily see that $P_1 \in \operatorname{Spec}(R_P)$ and that $P_1 \in$ G-Spec(R) iff $P_1 \in G$ -Spec (R_P) . (2) This is clear from (1).

Lemma 2.4. Let R be a Dubrovin valuation ring of Q and $P_1 \supset P$ be an Archimedean prime segment. Then for any $c \in P_1 \setminus P$, the following hold: (1) $R_{P_1}cR_{P_1} = aR_{P_1} = R_{P_1}a$ for some $a \in P_1$.

(2) If c is a regular element, then $cR_{P_1} = R_{P_1}c$ and $cP_1 = P_1c$.

Proof. Firstly note that $P_1 \supset P$ is an Archimedean prime segment of R_{P_1} by Lemma 2.3 and [1, Corollary 7].

(1) Let $\tilde{R}_{P_1} = R_{P_1}/P$, a Dubrovin valuation ring of $\overline{R_P} = R_P/P$ (see [7, (6.6)]) such that $J(\tilde{R}_{P_1}) = \tilde{P}_1 = P_1/P$ and $\tilde{P}_1 \supset (\tilde{0})$ is Archimedean. Here for any $a \in R_{P_1}$ we write \tilde{a} for the image of a in \tilde{R}_{P_1} . If $\tilde{P}_1 = \tilde{P}_1^2$, then $\tilde{0} \neq \tilde{R}_{P_1}\tilde{c}\tilde{R}_{P_1} = \tilde{a}\tilde{R}_{P_1} = \tilde{R}_{P_1}\tilde{a}$ for some $a \in P_1$ by [2, (2.1)]. If $\tilde{P}_1 \supset \tilde{P}_1^2$, then \tilde{R}_{P_1} is a Noetherian Dubrovin valuation ring and so any ideal of \tilde{R}_{P_1} is power of \tilde{P}_1 . Thus $\tilde{R}_{P_1}\tilde{c}\tilde{R}_{P_1} = \tilde{a}\tilde{R}_{P_1} = \tilde{R}_{P_1}\tilde{a}$ for some $a \in P_1$, because \tilde{P}_1 is principal. Hence, in both cases, $R_{P_1}cR_{P_1} + P = aR_{P_1} + P = R_{P_1}a + P$. However, since $\tilde{a} \in C_{\tilde{R}_{P_1}}(\tilde{0}) = \{\tilde{b} \in \tilde{R}_{P_1} \mid \tilde{b} \text{ is regular in } \tilde{R}_{P_1}\}$, it follows that $a \in C_{R_{P_1}}(P)$ and so a is a regular element by [7, (22.6)]. Thus we have $aR_{P_1}a^{-1} \subseteq aR_Pa^{-1} = R_P$. It follows that aR_{P_1} and P are both left $aR_{P_1}a^{-1}$ and right R_{P_1} -ideals. Hence $aR_{P_1} \supset P$ by [7, (6.4)] and similarly $R_{P_1}a \supset P$. Since $R_{P_1}cR_{P_1} = R_{P_1}a$ follows. (2) By (1), $P_1 \supseteq R_{P_1}cR_{P_1} = R_{P_1}a = aR_{P_1}$ for some $a \in P_1$. Suppose that $cR_{P_1} \subset R_{P_1}cR_{P_1}$.

(2) By (1), $P_1 \supseteq R_{P_1}cR_{P_1} = R_{P_1}a = aR_{P_1}$ for some $a \in P_1$. Suppose that $cR_{P_1} \subset R_{P_1}cR_{P_1}$. Then, by [7, (6.3)], there is a $b \in R_{P_1}cR_{P_1}$ such that $cR_{P_1} \subseteq bP_1 \subseteq aP_1$, because $Q_l(cR_{P_1}) = cR_{P_1}c^{-1}$ and $P_1 = J(R_{P_1})$. So $R_{P_1}a^{-1}cR_{P_1} \subseteq P_1$. On the other hand, $R_{P_1}cR_{P_1} = aR_{P_1}$ implies that $R_{P_1}a^{-1}cR_{P_1} = R_{P_1}$, a contradiction. Hence, $cR_{P_1} = R_{P_1}cR_{P_1}$ and similarly $R_{P_1}c = R_{P_1}cR_{P_1}$ so that $cR_{P_1} = R_{P_1}c$. Since $cR_{P_1}c^{-1} = R_{P_1}$ and $J(R_{P_1}) = P_1$, we have $cP_1c^{-1} = P_1$ and so $cP_1 = P_1c$.

We are now ready to prove the main result of the paper.

Theorem 2.5. Let R be a Dubrovin valuation ring of a simple Artinian ring Q. Then R is fully bounded if and only if for any $P \in \text{Spec}(R), P \neq J(R)$, the following hold: (1) $P \in \text{G-Spec}(R)$.

(2) P is either lower limit or there is a $P_1 \in \text{Spec}(R)$ such that $P_1 \supset P$ is an Archimedean prime segment.

Proof. Suppose that R is fully bounded.

(1) Assume that there is a non-Goldie prime ideal C. Then we have an exceptional prime segment, say, $P_1 \supset C \supset P_2$ by [1, Theorem 6]. R is an n-chain ring by [7, (5.11)] and so is $\overline{R} = R/C$. This implies that \overline{R} has a finite Goldie dimension, say, $m \leq n$. Thus there are non-zero uniform right ideals $\overline{U_i}$ of \overline{R} such that $\overline{U_1} \oplus \ldots \oplus \overline{U_m}$ is an essential right ideal of \overline{R} . Since \overline{R} is a prime ring, $\overline{U_i} \cap \overline{P_1} \supseteq \overline{U_i} \ \overline{P_1} \neq \overline{0}$ and so there are non-zero $\overline{u_i} \in \overline{U_i} \cap \overline{P_1}$, where $u_i \in P_1$. Set $I = u_1 R + \ldots + u_m R$. Then I = aR for some $a \in I$, because R is Bezout (cf. [7, (5.11)] and $\overline{I} = \overline{u_1}\overline{R} \oplus \ldots \oplus \overline{u_m}\overline{R} = \overline{aR}$ is an essential right ideal of \overline{R} . We claim that $\overline{P_1} \supset \overline{I}$. On the contrary, suppose that $\overline{P_1} = \overline{I}$, i.e., $P_1 = aR + C$. Note that $O_l(C) = R_{P_1}$ $= O_r(C)$ by [2, (2.2)] so that C is an ideal of R_{P_1} . If C is a principal right ideal of R_{P_1} , say, $C = cR_{P_1}$ for some $c \in C$, then $P_1 = aR_{P_1} + cR_{P_1} = bR_{P_1}$ for some $b \in P_1$. It follows from Lemma 2.1 that $P_1 = bR_{P_1} = R_{P_1}b$ and so $P_1 \supset P_1^2 \supset C$, which contradicts to the fact that there are no ideals properly between P_1 and C (cf. [1, Theorem 6]). If C is not a principal right ideal of R_{P_1} , then $CP_1 = C$ by [7, (6.9)] and so $P_1 = P_1^2 = aP_1 + CP_1$ $= aP_1 + C$. Thus we have a = ap + d for some $p \in P_1$ and $d \in C$ and $a(1-p) = d \in C$. It follows that $a \in C$, because 1 - p is a unit of R_{P_1} , which shows $\overline{I} = \overline{0}$, a contradiction. We have shown that $\overline{P_1} \supset \overline{I}$ and \overline{I} is an essential right ideal of \overline{R} . Hence \overline{R} is not bounded, because there are no ideals properly between P_1 and C. Therefore, any prime ideal of R is Goldie prime.

(2) Let $P \in G$ -Spec(R) and suppose that P is not lower limit. Then there is a $P_1 \in G$ -Spec(R) such that $P_1 \supset P$ is a prime segment, which is not exceptional by (1). Suppose

that this is simple. For any $c \in P_1 \cap C(P)$, it follows that $\overline{cP_1}$ is an essential right ideal of $\overline{R} = R/P$, which is a Dubrovin valuation ring of R_P/P (cf. [7, (5.12)]). Suppose that $\overline{cP_1} = \overline{P_1}$, i.e., $cP_1 + P = P_1$. Since cP_1 and P are both left $cR_{P_1}c^{-1}$ and right R_{P_1} -ideals (note $cR_{P_1}c^{-1} \subseteq cR_Pc^{-1} = R_P$), we have either $cP_1 \supset P$ or $cP_1 \subseteq P$ by [7, (6.4)]. The latter case is impossible and so $cP_1 \supset P$. Thus $cP_1 = P_1$ and $c^{-1} \in O_l(P_1) = R_{P_1}$ follows. This is a contradiction, because $c \in P_1$. Hence we have shown that $\overline{P_1} \supset \overline{cP_1}$ and $\overline{cP_1}$ is an essential right ideal. Therefore, \overline{R} is not bounded, because there are no ideals properly between $\overline{P_1}$ and $(\overline{0})$. Hence either P is lower limit or there is a $P_1 \in G$ -Spec(R) such that $P_1 \supset P$ is an Archimedean prime segment.

Conversely, suppose that the conditions (1) and (2) hold and let $P \in \text{Spec}(R)$. Then P is Goldie prime by (1). Firstly, assume that P is lower prime, i.e., $P = \bigcap\{P_{\lambda} \mid P_{\lambda} \in G\text{-Spec}(R) \text{ with } P_{\lambda} \supset P\}$. Then $C(P) = \bigcup C(P_{\lambda})$ by Lemma 2.2. So, for any $c \in C(P)$, we have $c \in C(P_{\lambda})$ for some λ . Then $cR \supset P_{\lambda}$, because cR and P_{λ} are both left cRc^{-1} and right R-ideals. Hence $\overline{cR} \supset \overline{P_{\lambda}} \neq \overline{0}$ in $\overline{R} = R/P$, showing that \overline{R} is bounded. Secondly, suppose that the prime segment $P_{1} \supset P$ is Archimedean and let $c \in C(P)$. Then, as before, $\overline{cP_{1}}$ is an essential right ideal of $\overline{R} = R/P$ and so $cP_{1} \cap C(P) \neq \emptyset$. Let $d \in cP_{1} \cap C(P)$. Then, by Lemma 2.4 (2) and $[7,(22.7)], cR \supseteq cP_{1} \supseteq dR_{P_{1}} = R_{P_{1}}d$ and $dR_{P_{1}} \supset P$ follows. Therefore, $\overline{R} = R/P$ is bounded and hence R is fully bounded.

As an application of Theorem 2.5, we have the following:

Proposition 2.6. Let R be a Dubrovin valuation ring of a simple Artinian ring Q. Then R is locally invariant if and only if it is fully bounded.

Proof. Suppose that R is locally invariant. In order to prove that it is fully bounded, on the contrary, assume that R is not fully bounded. Then there are prime ideals P, P₁ such that either the prime segment $P_1 \supset P$ is simple or $P_1 \in \text{G-Spec}(R)$, P is a non-Goldie prime ideal and there are no ideals properly between P_1 and P. In either case, we shall prove that there is a regular element $c \in P_1 \setminus P$. Let c_1 be any element in $P_1 \setminus P$. If c_1R is an essential right ideal. Then $c = c_1$ is regular. If c_1R is not an essential right ideal, then there is a right ideal I such that $cR \oplus I$ is essential. So it follows from Goldie's theorem that $(cR \oplus I)P_1$ is also an essential right ideal which is contained in P₁ but not in P. So there is a regular element $c \in (c_1R \oplus I)P_1$ but not in P by [8, (3.3.7), Corollary]. Now let $c \in P_1 \setminus P$ such that c is regular. Then $cP_1 = P_1c$, because $P_1 = P(c)$. Since $P_1 \supseteq cP_1 =$ $P_1c \supset P$, we have $cP_1 = P_1$, which implies $c^{-1} \in O_l(P_1) = R_{P_1}$. Hence $R_{P_1} = cR_{P_1} \subseteq P_1$, a contradiction. Therefore, R is fully bounded.

Suppose that R is fully bounded. Let $c \in J(R)$ such that c is regular. By the assumption and Theorem 2.5, $P(c) = \cap \{P_{\lambda} \mid P_{\lambda} \in \text{Spec}(R) \text{ such that } P_{\lambda} \ni c \}$, which is Goldie prime by [1, Proposition 1]. Suppose that P(c) is upper limit, i.e., $P(c) = \cup \{P_{\mu} \mid P_{\mu} \in \text{G-Spec}(R) \}$ with $P_{\mu} \subset P(c) \}$. Then there is a P_{μ} with $P_{\mu} \ni c$. This contradicts the choice of P(c). Hence $P(c) \supset P = \cup \{P_{\mu} \mid P(c) \supset P_{\mu} \}$ is a prime segment which must be Archimedean by Theorem 2.5. Since $c \in P(c) \setminus P$ and c is regular, we have cP(c) = P(c)c by Lemma 2.4. Hence R is locally invariant.

We say that R is *invariant* if $cRc^{-1} = R$ for any regular element c in R and that it is of rank n if there are exactly n Goldie prime ideals. From Lemma 2.4, we have

Proposition 2.7. Suppose that R is Archimedean and is of rank one. Then it is invariant.

Proof. Let c be any regular element and let c_1 be any regular element in J(R). Then we have $cRc^{-1} = cc_1R(cc_1)^{-1} = R$ by Lemma 2.4, because $c_1, cc_1 \in J(R)$.

We will give sevaral examples of fully bounded Dubrovin valuation rings.

Example 2.8. Any Dubrovin valuation ring of a simple Artinian ring with finite dimension over its center is fully bounded.

Example 2.9. Any invariant valuation ring of a division ring is fully bounded (see [9, Remarks to examples 2.1 and 2.4] for invariant valuation rings of division rings with infinite dimensions over the centers).

In order to give more general examples, we recall the skew polynomial ring $Q[x, \sigma]$ over Q in an indeterminate x, where $\sigma \in \operatorname{Aut}(Q)$. Since $Q[x, \sigma]$ is a principal ideal ring, the maximal ideal $P = xQ[x, \sigma]$ is localizable, i.e., $T = Q[x, \sigma]_P = \{f(x)c(x)^{-1} \mid f(x) \in Q[x, \sigma] \}$ and $c(x) \in C(P) \}$, the localization of $Q[x, \sigma]$ at P, is a Notherian Dubrovin valuation ring with J(T) = xT. Since Q is a simple Artinian ring, $C(P) = \{c(x) \in Q[x, \sigma] \mid c(x) = c_0 + c_1x + \ldots + c_nx^n \text{ such that } c_0 \text{ is a unit in } Q\}$. For any $t = f(x)c(x)^{-1} \in T$, where $f(x) = f_0 + f_1x + \ldots + f_lx^l$ and $c(x) = c_0 + c_1x + \ldots + c_nx^n$, the map $\varphi: T \longrightarrow Q$ defined by $\varphi(t) = f_0c_0^{-1}$ is an ring epimorphism. Now let R be a Dubrovin valuation ring of Q. Then, by [9, (1.6)], $\tilde{R} = \varphi^{-1}(R)$, the complete inverse image of R by φ , is a Dubrovin valuation ring of $Q(x, \sigma)$ ($Q(x, \sigma)$ stands for the quotient ring of $Q[x, \sigma]$). Furthermore, let $P = p\tilde{R}$ ($p \in \operatorname{Spec}(R)$). Then $P \in \operatorname{Spec}(\tilde{R})$ and $\tilde{R}/P \cong R/p$ by [9, (1.6)] and its proof. Thus it follows from [9, (1.6)] that \tilde{R} is fully bounded iff R is fully bounded. Hence we have

Example 2.10. With notation above, suppose that R is a fully bounded Dubrovin valuation ring of Q and that σ is of infinite order ([9, Examples 2.1 ~ 2.6, 2.7 and 2.8]). Then \tilde{R} is a fully bounded Dubrovin valuation ring of $Q(x, \sigma)$ and $Q(x, \sigma)$ is of infinite dimensional over the center.

Finally, we give a few remarks on non-fully bounded total valuation rings: An example of a total valuation ring with a simple segment was first constructed by Mathiak ([6]). See [3] for other examples of total valuation rings with simple segments. Dubrovin constructed an example of a total valuation ring with an exceptional prime segment ([4]).

References

- H.H.Brungs, H.Marubayashi and E.Osmanagic, A classification of prime segments in simple Artinian rings, Proc. A.M.S. 128 (2000), 3167-3175.
- H.H.Brungs, H.Marubayashi and A.Ueda, A classification of primary ideals of Dubrovin valuation rings, Houston J. of Math. 29(2003), 595-608.
- [3] H.H.Brungs and G.Törner, Extensions of chain rings, Math. Z. 185(1984), 93 104.
- [4] N.I.Dubrovin, The rational closure of group rings of left orderable groups, Math. Sbornik 184(7) (1993), 3 - 48.
- [5] Gräter, Lokalinvariante prüferringe, Results in Mathematics 9 (1986), 10 32.
- [6] K.Mathiak, Bewertungen nichtkommutativen Korper, J. Algebra 48 (1977), 217 235.
- [7] H.Marubayashi, H.Miyamoto and A.Ueda, Non-commutative Valuation Rings and Semihereditary Orders, Kluwer Academic Publishers 1997.

- [8] J.C.McConnell and J.C.Robson, Noncommutative Noetherian Rings, Pure and Applied Mathematics, A Wiley-Interscience Publication, 1987.
- [9] G.Xie, S.Kobayashi, H.Marubayashi, N.Popescu and C.Vraciu, Non- commutative valuation rings of the quotient Artinian ring of a skew polynomial ring, to appear in Algebras and Representation Theory.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF MALANG, JALAN SURABAYA NO. 6, MALANG (65145), JAWA TIMUR, INDONESIA E-mail address: santira99@yahoo.com

DEPARTMENT OF MATHEMATICS, NARUTO UNIVERSITY OF EDUCATION, 748, NAKASHIMA, Takashima, Naruto-cho, Naruto-shi, 772-8502 E-mail address: {marubaya, skoba, e0220104}@naruto-u.ac.jp