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��������� Let X be a nowhere-zero C∞ complex vector field defined near the origin in �2.
We may suppose that X has the form of ∂

∂t
+ ir(t, x) ∂

∂x
, where r(t, x) is a real-valued C∞

function. Up to now the investigations on local integrability for vector fields X satisfying
r(0, x) = 0 have been focused. This paper treats the vector field X of the form of

∂

∂t
+ i

�
td + a(x)

� ∂

∂x
,

where d is a positive integer and a(x) a real-valued C∞ function satisfying a(0) = 0. Under
certain assumptions on a(x), the following properties are shown:

Property A. Every C1 solution u of the equation Xu = 0 in a neighborhood of the origin
which satisfies that u(0, x) is constant is identically constant.

Property B. Every C2 solution u of the equation Xu = 0 in a neighborhood of the origin
which satisfies u(t, x) − u(−t, x) = o(t2)(t → 0) is identically constant.

1. Introduction

Let X be a nowhere-zero C∞ complex vector field defined near the origin in R
2. It is said

that X is locally integrable at the origin if there exist a neighborhood ω of the origin and
function u satisfying Xu = 0 in ω such that du �= 0. We may suppose that X has the form
of ∂

∂t + i
(
td +a(x)

)
∂
∂x , where r(t, x) is a real-valued C∞ function. X is locally integrable at

the origin if r(t, x) � 0 in a neighborhood of the origin. There are several studies on local
integrability for non-solvable vector fields X([3],[4],[5],[7],[8],[9],[10], · · · ).

On the other-hand, Nirenberg [6](see also [2]) gave an example of X of the form of

∂

∂t
+ it

(
1 + tρ(t2, x)

) ∂

∂x

such that the Xu = 0 admits only constant solutions in any neighborhood of the ori-
gin, where ρ(t, x) is a real-valued C∞ function satisfying some conditions. (Incidentally,
L.Hölmander[1] gave an example of X (satisfying r(0, x) = 0 ) such that the Xu = 0 ad-
mits a C∞ solution in a neighborhood ω0 of the origin which vanishes for t � 0 with the
supp u = {(t, x); t � 0} ∩ ω0.)
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Up to now the investigations on local integrability for vector fields X satisfying r(0, x) = 0
have been focused. In this paper we present an operator X of the form of

∂

∂t
+ i

(
td + a(x)

) ∂

∂x

which has the following properties:

Property A. Every C1 solution u of the equation Xu = 0 in a neighborhood of the origin
which satisfies that u(0, x) is constant is identically constant.

Property B. Every C2 solution u of the equation Xu = 0 in a neighborhood of the origin
which satisfies u(t, x) − u(−t, x) = o(t2)(t → 0) is identically constant.

2. Theorems

Let cn and dn be real constants satisfying

0 < dn+1 < cn < dn < 1(n = 1, 2, · · · ), lim
n→∞ dn = 0,

or
−1 < cn < dn < cn+1 < 0(n = 1, 2, · · · ), lim

n→∞ cn = 0.

We assume:
(a.1) a(x) ∈ C∞((−1, 1)).
(a.2) a(x) ≡ 0 in [cn, dn](n = 1, 2, · · · ) and a(x) > 0 in (−1, 1) \ ∪∞

n=1[cn, dn].
(a.3) d is a positive integer.

Then we obtain the following:

Theorem A. Let X be ∂
∂t + i

(
td + a(x)

)
∂
∂x . Then every C1 solution u of the equation

Xu = 0 in a neighborhood of the origin which satisfies that u(0, x) is constant is identically
constant.

Theorem B. Let X be ∂
∂t + i

(
td + a(x)

)
∂
∂x . Then every C2 solution u of the equation

Xu = 0 in a neighborhood of the origin which satisfies u(t, x) − u(−t, x) = o(t2)(t → 0) is
identically constant.

Remark 1. Whatever a positive integer d, the vector field X ≡ ∂
∂t +itd ∂

∂x has the property
such as stated in Theorem A but does not have the one such as stated in Theorem B:

u ≡ td+1

d+1 + ix is a non-constant solution of Xu = 0 which satisfies u(t, x) − u(−t, x) =
o(t2)(t → 0).

Remark 2. Whatever an even number d, we know that the equation Xu = ∂u
∂t + i

(
td +

a(x)
)

∂u
∂x = 0 has a smooth solution u in a neighborhood of the origin such that ux �=

0. So, there exists a non-constant solution u annihilated by X which does not satisfy
u(t, x) − u(−t, x) = o(t2)(t → 0).
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3. Proof

Proof of Theorem A. Suppose the contrary. Then we may suppose that Xu = 0 has a
C1 solution u in a neighborhood of the origin ω such that ∂u

∂x �≡ 0. Noting that the
operator X = ∂

∂t + i
(
td + a(x)

)
∂
∂x is elliptic in {(t, x); td + a(x) �= 0}, we find that u ∈

C∞(ω ∩ {(t, x); td + a(x) �= 0}).
Differentiating the Xu = 0 with respect to x and setting v = ux, we obtain

∂v

∂t
+ i

(
td + a(x)

)∂v

∂x
+ ia′(x)v = 0 in ω ∩ {(t, x); td + a(x) �= 0}.

Taking a sufficiently large integer n such that [cn, dn] ⊂ ω ∩ {(t, x) : t = 0}, we have

( ∂

∂t
+ itd

∂

∂x

)
v = 0

in ω ∩ (−∞,∞) × [cn, dn] ∩ {(t, x); t �= 0}.
Since v(0, x) = ux(0, x) = 0 in [cn, dn], at first, we find that v must vanish identically in

ω ∩ (−∞,∞) × [cn, dn].
On the other hand, we may suppose that there exists a point P0 ∈ ω∩{(t, x); td +a(x) �=

0} such that v (P0) �= 0. We take a simply connected domain D ⊂ ω with a smooth
rectifiable boundary such that D does not intersect with {(t, x); td + a(x) �= 0}, P0 ∈ D,
and D ∩ (−∞,∞) × (cn, dn) �= ∅.

Since X is elliptic in D, we find that there exists a smooth function Z such that dZ �= 0
satisfying XZ = 0 in D. Then X = XZ ∂

∂Z
. We also find that there exists a smooth solution

w satisfying ∂w
∂Z

= ia′(x)

XZ
in D. Thus we see that

∂
(
v exp w

)
∂Z

= 0 holds in D. Therefore, from
v = 0 in ω ∩ (−∞,∞) × [cn, dn], we can conclude that v vanishes identically in D, which
contradicts v(P0) �= 0.

Proof of Theorem B. Suppose the contrary. Then we may suppose that the Xu = 0 has
a C2 solution u in a neighborhood of the origin ω such that ∂u

∂x �≡ 0. Differentiating the
Xu = 0 with respect to x and setting v = ux, we have

(1)
∂v

∂t
+ i

(
td + a(x)

)∂v

∂x
+ ia′(x)v = 0 in ω.

By taking the odd part of equation Xu = 0 with respect to t,

(2)
( ∂

∂t
+ itd

∂

∂x

)
uo = −ia(x)ue

x,

where uo denotes the odd part of u with respect to t and ue the even one. Taking a
sufficiently large integer N such that [cn, dn] ⊂ ω ∩ {(t, x) : t = 0} for every n > N , we see
the following

Lemma 1.
ue

x(0, x) �≡ 0 in [cn, dn]

for every n > N.

Proof. Suppose that exists a positive integer m > N such that

ue
x(0, x) ≡ 0 in [cm, dm].
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From (1), we have ( ∂

∂t
+ itd

∂

∂x

)
v = 0

in ω ∩ (−∞,∞) × [cm, dm].
Since v(0, x) = ux(0, x) = ue

x(0, x) = 0 in [cm, dm], we find that v must vanish identically
in ω ∩ (−∞,∞) × [cm, dm] and hence we can conclude that v vanishes identically in ω, by
making use of the same method such as used in Theorem A. This yields a contradiction.

From now on we take n such that n > N and fix it. By Lemma 1, there exist real
constants a′

n, b′n(a′
n < 0 < b′n), c′n, d′n(cn � c′n < d′n � dn) such that 
ue

x(t, x) �= 0 or
�ue

x(t, x) �= 0 holds in [a′
n, b′n] × [c′n, d′n]. We arbitrarily take positive constants ε1, ε2 such

that ε1 < ε2 < b′n. We have the following

Lemma 2.
− i

∫∫
[ε1,ε2]×[c′n,d′

n]

a(x)ue
x dtdx =

∫ ε2

ε1

−itd
(
uo(t, d′n) − uo(t, c′n)

)
dt+

∫ d′
n

c′n

(
uo(ε2, x) − uo(ε1, x)

)
dx.

Proof. Setting v(x, y) = x − itd+1

d+1 and making use of (2), we have

− i

∫∫
[ε1,ε2]×[c′n,d′

n]

a(x)ue
x dtdx =

− i

∫∫
[ε1,ε2]×[c′n,d′

n]

a(x)ue
xvx dtdx =

∫∫
[ε1,ε2]×[c′n,d′

n]

(
uo

t + itduo
x Bigr)vx dtdx =

∫∫
[ε1,ε2]×[c′n,d′

n]

(
uo

t vx − uo
xvt

)
dtdx =

∫∫
[ε1,ε2]×[c′n,d′

n]

d
(
uo(t, x)dv(t, x)

)
=

∮
∂[ε1,ε2]×[c′n,d′

n]

uo(t, x)dv(t, x) =
∮

∂[ε1,ε2]×[c′n,d′
n]

uo(t, x)vt(t, x)dt + uo(t, x)vx(t, x)dx =

∫ ε2

ε1

−itd
(
uo(t, d′n) − uo(t, c′n)

)
dt +

∫ d′
n

c′n

(
uo(ε2, x) − uo(ε1, x)

)
dx.

By this Lemma 3 we obtain the following

Lemma 4. There exist positive constants C1, C2, C3 and C4 which are independent of ε1

and ε2 such that

C1

∫ d′
n

c′n

a(x) dx � C2
εd+3
2 − εd+3

1

ε2 − ε1
+ C3(ε1 + ε2) + C4ε

2
1.
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Proof. We see ∣∣∣
∫∫

[ε1,ε2]×[c′n,d′
n]

a(x)ue
x dtdx

∣∣∣ �

∣∣∣ ∫∫
[ε1,ε2]×[c′n,d′

n]
a(x)
ue

xdtdx
∣∣∣ +

∣∣∣ ∫∫
[ε1,ε2]×[c′n,d′

n]
a(x)�ue

xdtdx
∣∣∣

√
2

.

Now 
ue
x(t, x) �= 0 or �ue

x(t, x) �= 0 in [a′
n, b′n] × [c′n, d′n]. Hence, when 
ue

x �= 0, we see

∣∣∣
∫∫

[ε1,ε2]×[c′n,d′
n]

a(x)
ue
xdtdx

∣∣∣ =
∫∫

[ε1,ε2]×[c′n,d′
n]

a(x)
∣∣
ue

x

∣∣dtdx �

min
[a′

n,b′n]×[c′n,d′
n]

∣∣
ue
x

∣∣ ∫∫
[ε1,ε2]×[c′n,d′

n]

a(x)dtdx =

min
[a′

n,b′n]×[c′n,d′
n]

∣∣
ue
x

∣∣(ε2 − ε1)
∫ d′

n

c′n

a(x)dx,

and when �ue
x �= 0, in the similar way we have

∣∣∣
∫∫

[ε1,ε2]×[c′n,d′
n]

a(x)�ue
xdtdx

∣∣∣ �

min
[a′

n,b′n]×[c′n,d′
n]

∣∣�ue
x

∣∣(ε2 − ε1)
∫ d′

n

c′n

a(x)dx.

Therefore we find that there exists a positive constant C1 which is independent of ε2 and
ε1 such that ∣∣∣

∫∫
[ε1,ε2]×[c′n,d′

n]

a(x)ue
x dtdx

∣∣∣ � C1(ε2 − ε1)
∫ d′

n

c′n

a(x)dx.

Now, by the assumption that u ∈ C2 and uo = o(t2), we see that the function uo(t,x)
t2 ∈

C0(ω). Hence we find that there exist positive constants Ci(i = 2, 3, 4) which are indepen-
dent of ε2 and ε1 such that

∣∣∣
∫ ε2

ε1

−itd
(
uo(t, d′n) − uo(t, c′n)

)
dt

∣∣∣ � C2

∫ ε2

ε1

(d + 3)td+2 dt = C2(εd+3
2 − εd+3

1 )

and ∣∣∣
∫ d′

n

c′n

(
uo(ε2, x) − uo(ε1, x)

)
dx

∣∣∣ � C3(ε2
2 − ε2

1) + C4ε
2
1(ε2 − ε1).

Lemma 4 is thus obtained, by applying Lemma 3.
Finally, letting ε2 → 0 in Lemma 4, we get the the contradiction that

0 <

∫ d′
n

c′n

a(x) dx = 0.
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1. L. Hölmander, Linear Partial Differential Operators (p.225), Springer-Verlag, (1969).
2. H. Ninomiya, A note on the Nirenberg example, Funkcialaj Ekvacioj (Serio Internacia) 39(3) (1996),

339–402.
3. H. Ninomiya, A necessary condition of local integrability for a nowhere-zero complex vector field in �2,

Scientiae Mathematicae 2(1) (1999), 1-9.
4. H. Ninomiya, A necessary and sufficient condition of local integrability, J. of Math. of Kyoto Univ.

39(4) (1999), 685-696.
5. H. Ninomiya, On a necessary condition of local integrability for complex vector field in �

2, Scientiae
Mathematicae Japonicae 54(2) (2001), 311-322.

6. L. Nirenberg, Lectures on linear partial differential equations, Reg.Conf. Series in Math. 17 A.M.S.
(1973).
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