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NOTES ON INTERPOLATION THEOREM BETWEEN B? AND BMO

YASUO KOMORI

Recieved November 26, 2002

ABSTRACT. We show that the sharp function f* belongs to B? (the dual of Beurling
algebra) if and only if f belongs to CMOP (central mean oscillation). We also show
the interpolation theorem between BP and BMO.

1 Introduction The John-Nirenberg space BMO is characterized by the sharp function
f* (see Section 2). Matsuoka [4] obtained the estimates of f* on B? and CMOP. In this
paper, we refine his results and show that f is in CMOP if and only if f* is in BP. Applying
our theorem, we obtain the interpolation theorem between BP and BMO. Our theorem is
applicable to Calderén-Zygmund operators.

2 Definitions The following notation is used: For a set £ C R™ we denote the charac-
teristic function of E by xg and |E| is the Lebesgue measure of E.

We denote a ball of radius R centered at origin by B(0, R) and for any ball @), we denote
the radius of @ by rad(Q).

First we define some function spaces which we shall consider in this paper.

Definition 1. Let 1 < p < oo and let

B = { e L (B : [ fllo = swp(d— [ @) < oo
r>1\B(0, R)| Jp(0,r)

Definition 2. Let 1 < p < oo and let

CMOP = {f e 12 (R") : |fllcaron =

loc
1 1/p
w3 71 /BM) f(@) = ma(f)Pde) " < oo},

where

1

Remark . BP C CMOP.
About basic properties of BP and CMOP, see for example [1] and [2].

Definition 3. We define

1
BMO = {1 € LL(R"): | fllowo = sup /Q |F(2) ~ foldz < oo},
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where the supremum is taken over all balls ) C R™ and

1
fo= 5 /Q f(2)dz

Definition 4. For any f € L}, ., the sharp function f* is defined by
fix) = sup / [f(y) — faldy,
w€(2|(Q|
where the supremum is taken over all balls @ containing x.

Remark . BMO C CMOP and | f*||z~ = || f|lBroO-

3 Results Matsuoka [4] obtained the following:
Theorem A . Let 1 <p < oo. Then

£ B < Cpllfll o,

where Cy, is a positive constant depending only on p and n.

Theorem B . Let 1 < p < oo. Then

I fllcaror < Cpll £ 5,

lim / x)[Pdx = 0.
R—o0 |13 () R ‘ B(0 1{)

Our results are the following:

Theorem 1. Let 1 < p < co. Then

1B < Coll fllerton

Theorem 2. Let 1 <p<oo. If f € LY | then

loc?

I fllcaror < Cpll£* 115

Applying our theorems, we obtain the next interpolation theorem. Matsuoka [3], [4]
proved the following:

Theorem C . Suppose 1 < py < oo, and let T be a sublinear operator such that

T is bounded from BP° to BP°* and
T is bounded from L to L°.

Then T is bounded from BP to BP where py < p < 0.
Our result is the following:
Theorem 3. Suppose 1 < pg < 00, and let T be a sublinear operator such that

(%) T is bounded from BP° to CMOP° and
T is bounded from L*° to BMO.

Then T is bounded from BP to CMOP where py < p < 00.

Remark . The condition (*) is natural, because Calderén-Zygmund operators satisfy ()
(see [2]).
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4 Lemmas To prove our theorems we need some lemmas. First we show the boundedness
of the maximal function.

Definition 5. The Hardy-Littlewood maximal function M f is defined by
1
M) =sup o [ 17wy,
Q 1QJq

where the supremum is taken over all balls Q containing x.

Lemma 1 ([1], [2]). Let 1 <p < co. Then

1M fl| B> < CpllflBr-
Next we define Beurling algebra AP.
Definition 6. Let 1 < p < oo and let
AP = {fi I£llae = I - xBonloe + > 2P - XBo.2nB0.2-1) e < 00}7
k=1
where 1/p+1/p' = 1.
Next we define atom and some Hardy space.

Definition 7. Let 1 < p < co. We say a function a(x) is a central (1, p)-atom if a satisfies
the following:

supp(a) C B(0,R) for some R >1,

(# |a(x)|pdx)1/p <1
|B(0, R)| Jpo,r) ~ |B(0,R)|’

/a(a:)dx =0.

Definition 8. Let 1 < p < co. We define the Hardy space H AP by

oo

HAP = {f Cf(x) = chaj(x), a;’s are central (1,p)-atoms andz le;| < oo},
j=1 Jj=1

and the norm || f||ga» be the infimum of Z?’;l lc;| over all representations of f.
Chen and Lau [1] and Garcia-Cuerva [2] obtained the following duality theorems.
Lemma 2.
(AP)* = BY | where 1/p+1/p =1.
Lemma 3.
(HAP)* = CMOY, where 1/p+1/p' =1.
H AP is characterized by the grand maximal function.

Lemma 4. If f € HAP then Mf € AP and ||f||mar = || Mf] ar.
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See [2] for the definition of M and the proof of this lemma.
The next lemma is trivial.

Lemma 5.

1 1/p
191~ (G J o @)

1 1/p
+sup (5 / F@prdr) "
k>3 N2 B(0,2k)\ B(0,2F-1)

The following lemma is proved in [5], p. 146.

Lemma 6. Suppose that f € LT and a is a central (1,p')-atom. Then

loc

|/f(x)a(ac)dx‘ < C’/fﬁ(x)./\/la(x)da:

5 Proof of Theorem 1 By Lemma 5, it suffices to show the following two inequalities.

1
(I —_— Fia)Pde < Coll fII%nroms
1B(0,4)] /B0, Pl lenmor
1
(I) — / fAx)Pde < Cpl|f|%pson,  Where k> 3.
28 JB(0,26 )\ B(0,25-1)

We shall prove only (II). The proof of (I) is similar.
We write

1 1
P sw o[- soldyt s [ 17) - foldy
zeQ,rad(Q)>2+-3 Q) Q reQ,rad(Q)<2+k—3 Q) Q
= 1) + 13 (x).
First we estimate f4()(z) on B(0,2F)\ B(0,2*1).

If z € B(0,2%)\ B(0,2" 1), 2 € Q and rad(Q) > 2*~3, then there exists a ball such that
@ C B(0,R) and R <10 -rad(Q). So we have

i 170 saldy < s [ 1)~

and we obtain f*1)(z) < Cy||fllcaror.

Next we estimate f42)(z) on B(0,2%) \ B(0,2*1).

We define

g(z) = (f(x) — mars1(f)) 'XB(o,2k+1)\B(0,2’c—2)(x)-
Suppose that z € B(0,2%) \ B(0,2""1),z € Q and rad(Q) < 2¥~3. Then
fy) = fo=9y) —g9q forall yecQ.
So we have
¥ (z) < 2Mg ().

By Lemma 1, we obtain

1

7 |, PO @ < Gyl Mgl < Cylal,
B(0,2k)\B(0,2k—1)

Cp p
= 9(k+1)n /3(072“1) |f(z) — morra (f)[Pdx < Op”fHCMop-
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6 Proof of Theorem 2 By the definition of H AP and Lemma 3, it suffices to show
|/f(9c)a(x)dac| < G|l f¥Br for any central (1,p')-atom.

By Lemma 6, Lemma 2 and Lemma 4, we have

\/f(x)a(w)dx\ < C/f“(x)Ma(w)dx < Cpll e lIMall 4o < Gyl £l 8-
7 Proof of Theorem 3 We have

T F¥llsr0 < CpollT fllerroro < |Ifll5ro

by Theorem 1, and we have

||(Tf)ﬁ||L°° = |Tfllsamo < C|f|L=-

So we obtain

by Theorem C, and we have

(Tf) s> < Cpllfllp»  where po < p < oo,

IT fllenor < Coll(Tf)llme < Cyllfll 5o
by Theorem 2.
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