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KADEC-KLEE PROPERTY IN MUSIELAK-ORLICZ FUNCTION

SPACES EQUIPPED WITH THE LUXEMBURG NORM

TINGFU WANG�, YUN'AN CUIy, AND ZHANG TAO
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Abstract. In this paper, a criterion for Musielak-Orlicz function spaces equipped with

Luxemburg to have Kadec-Klee property are given.

$ 1: Introduction

In the following, (T;
P
; �) denotes a non-atomic �-�nite separable measure space, R

denotes the set of reals, L0(�) denotes the space of all (�-equivalence classes of )
P
-

measurable real functions de�ned on T . Let X be a Banach space and X� be its dual space.

The unit sphere of X is denoted by S(X).
Satisfactory criteria of some geometric properties of Musielak-Orlicz space have been

obtained in many papers ( see [1], [3], [7] and [8] ). But, more important property, namely

Kadec-Klee property was not characterized. In this paper, we will try to characterize this
property.

De�nition 1. A Banach space X is said to be locally uniformly convex if for any sequence

fxng � S(X) and some x 2 S(X) with lim
n!1

kxn + xk = 2 there holds lim
n!1

kxn � xk = 0 .

De�nition 2. A Banach space X is said to have the Kadec-Klee property if for any

sequence fxng � S(X) with xn
w
! x 2 S(X) we have xn ! x.

It is clear that a Banach space that is locally uniformly convex has the Kadec-Klee
property .

De�nition 3. A map � : T � R ! [0;1) is said to be a Musielak-Orlicz function if it

satis�es the following conditions:

(1) �(t; u) is vanishing only at zero, convex and even for �-a.e. t 2 T ;

(2) �(�; u) is locally integrable for any u 2 R ;

Let us �rst remark that if � is a Musielak-Orlicz function then � is of the form

�(t; u) =

jujZ
0

p(t; s)ds;

where p(t; u) is the right-hand derivatives of �(t; u) for a �xed t 2 T .

For any Musielak-Orlicz function �, we de�ne its complementary function 	 in the sense
of Young, i.e.,

	(t; v) = supfjvju� �(t; u) : u > 0g:

Given a Musielak-Orlicz function � we de�ne on L0(�) a modular I� by the formula
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I�(x) =

Z
T

�(t; x(t))d�:

The Musielak-Orlicz function space generated by a Musielak-Orlicz function � is de�ned
to be the set of all x 2 L0(�) for which I�(�x) <1 for some � > 0 depending on x and it
is denoted by L�(�) . This space endowed with the Luxemburg norm

kxk = inf
n
k > 0 : I�

�x
k

�
� 1
o

or with the equivalence norm, called the Orlicz norm

kxk
0

� = sup

8<
:
Z
T

x(t)y(t)d� : I	(y) � 1

9=
; :

The Amemiya formula for the Orlicz norm is the following:

kxk
0

� = inf

�
1

k
(1 + I�(kx)) : k > 0

�

(see [1] and [2] ).

We de�ne the subspace E�(�) of L�(�) by the following formula:

E�(�) =
�
x 2 L0(�) : I�(�x) <1 for any � > 0

	
:

To simplify notions, we put L� = fL�(�); k�kg, E� = fE�(�); k�kg, L
0
� =

n
L�(�); k�k

0

�

o

and E0
� =

n
E�(�); k�k

0

�

o
.

De�nition 4. We say that a Musielak-Orlicz function � satis�es the �2-condition
(� 2 �2 for short) if there exist a constant K � 2, a set T0 of measure zero and a

P
-

measurable function h : T ! (0;1) such that
R
T

h(t)d� <1 and the inequality

�(t; 2u) � K�(t; u) + h(t)

holds for any u 2 R and t 2 TnT0 ([2] and [1] ).

De�nition 5. A Musielak-Orlicz function � is called to be strictly convex if �(t; u) is
strictly convex for a.e. t 2 T , i.e.,

�

�
t;
u+ v

2

�
<

1

2
(�(t; u) + �(t; v))

for all u; v 2 R and u 6= v .

For more details on Musielak-Orlicz space, we refer to [1] , [3] , [4] and [2] .

$2: RESULTS

We start with some auxiliary lemmas.

Lemma 1. E0
� is separable (see [1] ).

Lemma 2. E� = L� if and only if � 2 �2 ( see [1] ).

Lemma 3. The modular convergence and the norm convergence are equivalent in L� if

and only if � 2 �2 ( see [1] ).

Lemma 4. L	 = (E0
�)

� (see [1] ).
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Lemma 5. L� is a locally uniformly convex if and only if � 2 �2 and �(t; �) is strictly

convex for a.e. t 2 T (see [8] ).

Lemma 6. Let H be a measurable subset of T . If f(t) > 0 and g(t) > 0 are integrable

on H , then for any � > 0 there exist H1;H2 � H with �H1 = �H2 =
1
2
�H and H1\H2 = �

such that ������
Z
H1

f(t)d�+

Z
H2

g(t)d��

Z
H

f(t) + g(t)

2
d�

������ <
�

2
:

Proof. Put

e(1)n =

�
t 2 H :

n� 1

�H
� � f(t) <

n

�H
�

�
;

e(2)n =

�
t 2 H :

n � 1

�H
� � g(t) <

n

�H
�

�

and

en;k = e(1)n \ e
(2)

k

for n; k = 1; 2; � � � .

Divide en;k into two subsets e0n;k and e00n;k such that en;k = e0n;k [ e00n;k , e0n;k \ e00n;k = �

and �e0n;k = �e00n;k . Set

H1 =

1[
n;k=1

e0n;k ; H2 =

1[
n;k=1

e00n;k :

Then H1 [H2 = H; H1 \H2 = � and �H1 = �H2 =
1
2
�H . Hence������

Z
H1

f(t)d��

Z
H

f(t)

2
d�

������ =
1

2

������
Z
H1

f(t)d��

Z
H2

f(t)d�

������

�
1

2

1X
n;k=1

�������
Z

e0
n;k

f(t)d��

Z
e00
n;k

f(t)d�

�������
�

�

2

1X
n;k=1

�e0n;k

�H
=

�

2

�H

2

1

�H
=

�

4
:

In the same way, we can aslo get������
Z
H1

g(t)d��

Z
H

g(t)

2
d�

������ <
�

4
:

So, we have ������
Z
H1

f(t)d�+

Z
H2

g(t)d��

Z
H

f(t) + g(t)

2
d�

������ <
�

2
:

Theorem. A Musielak-Orlicz function space L� has the Kadec-Klee property if and only

if � 2 �2 and � is strictly convex .

Proof. Necessity. Suppose that � =2 �2 . By Lemma2 , there is a x0 2 S(L0�)nE� .

Hence there exists �0 > 0 such that I�(�x0) =1 when � > �0 .
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Put Tn = ft 2 T : jx0(t)j � ng . Then I�(�x0�T=Tn) = 1 when � > �0 . This means

that x0�TnTn � �0:

for any n 2 N , where �0 =
1
2�0

. For convenience, we put

Tm
n = ft 2 T : n � jx0(t)j < mg:

Take n0 = 0. There exists n1 2 N such thatx0�Tn1n0
 � �0

2
:

Notice that

lim
m!1

x0�Tmn1
 = x0�TnTn1

 � �0:

So, there exists n2 > n1 such that x0�Tn2n1
 � �0

2
:

In such a way, we get a sequence fnig of natural numbers such thatx0�Tni+1ni

 � �0

2
; i = 1; 2; � � �:

Put xi = x0�TnT
ni+1
ni

. Then

(1) kxik ! kx0k as i!1 .

(2) xi
w
! x0 as i ! 1 . It is well known that for any Musielak-Orlicz function �, we

have

(L�)
�
= L0	 + S;

where S is the space of all singular functionas over E� , i.e.' 2 S if and only if h'; xi = 0
for any x 2 E� (see [10]).

Look at xi � x0 2 E� . We have '(xi � x0) = 0 , where ' 2 S . Let y 2 S(L	) . It
easily follows from

R
T

x0(t)y(t)d� <1 that hy; xi � x0i =
R

T
ni+1
ni

x0(t)y(t)d�! 0 as i!1 .

(3) kxi � x0k =
x0�Tni+1ni

 � �0
2
; i = 1; 2; � � � .

This contradiction shows that � 2 �2 .

Suppose that if � is not strictly convex. Then there exists T0 2
P

with �(T0) > 0 such
that �(t; �) is a�ne in some intervals if t 2 T0 . Let (wi) be the set of all rational numbers.

De�ne

Ak = ft 2 T0 : �(t; �) is linear on [ak; bk] g , where ak , bk 2 (wk) is rational numbers for

some k .

Since T0 = [kAk , there exists l 2 N such that �(Al) > 0 . This mean there exist

a; b 2 (0;1) with a < b and G � T with �G > 0 such that �(t; u) is linear on [a; b] for any
�xed t 2 G .

Since 0 <�(t; b � a) < 1 , there exists � > 0 such that �G� < 1
2
�G , where G� =

ft 2 G : �(t; b� a) < �g . Put T 0
1 = GnG� . Then �T 0

1 > 0 . Without loss of generality,
we may assume that

0 <

Z
T 0
1

�(t;
a+ b

2
)d� < 1:
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Take c � b such that Z
T 0
1

�(t;
a + b

2
)d�+

Z
TnT 0

1

�(t; c)d� � 1:

Take a subset H � TnT 0
1 such that

Z
T 0
1

�(t;
a+ b

2
)d�+

Z
H

�(t; c)d� = 1:

By Lemma 6 , there exist T 1
1 ; T

1
2 � T 0

1 with T 0
1 = T 1

1 [ T 1
2 ; T

1
1 \ T 1

2 = � and �T 1
1 = �T 1

2

such that �������
Z
T 1
1

�(t; a)d� +

Z
T 1
2

�(t; b)d��

Z
T 0
1

�(t; a) + �(t; b)

2
d�

�������
<

1

2
:

Suppose that the sequence of sets fTn�1
1 ; Tn�1

2 ; ���; Tn�1
2n�1

g is well de�ned . Every set Tn�1
i

we divide into two subsets such that Tn�1
i = Tn

2i�1[T
n
2i; T

n
2i�1\T

n
2i = � and �Tn

2i�1 = �Tn
2i

(i = 1; 2; � � �; 2n�1) .

In such a way , we get a partition fTn
1 ; T

n
2 ; � � �; T

n
2ng of T

0
1 with

�(Tn
i ) = 2�n�T 0

1 ; Tn
2i�1 \ Tn

2i = �

such that �������
Z

Tn
2i�1

�(t; a)d�+

Z
Tn
2i

�(t; b)d��

Z

Tn�1
i

�(t; a) + �(t; b)

2
d�

�������
<

1

22n�1

for i = 1; 2; � � �; 2n . De�ne

xn = a�
T1;n

+ b�
T2;n

+ c�
H
;

where T1;n =
2n�1S
k=1

Tn
2k�1 , T2;n =

2nS
k=1

Tn
2k (n = 1; 2; � � �) .

Then

jI�(xn)� 1j =

�������
2n�1X
k=1

0
B@
Z

Tn
2k�1

�(t; a)d�+

Z
Tn
2k

�(t; b)d�

1
CA+

Z
H

�(t; c)d�� 1

�������

=

�������
2n�1X
k=1

0
B@
Z

Tn
2k�1

�(t; a)d�+

Z
Tn
2k

�(t; b)d��

Z

Tn�1
k

�(t; a) + �(t; b)

2
d�

1
CA
�������

�

2n�1X
k=1

21�2n = 2�n

for all n 2 N . Hence lim
n!1

I�(xn) = 1 . Notice that I�(xn) � kxnk when kxnk � 1 and

I�(xn) � kxnk when kxnk � 1 . Therefore , we have lim
n!1

kxnk = 1 .
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Using Lemma 1 and Lemma 4, there exists a subsequence fxnig � fxng and x 2 L� for

which fxnig converges weakly star to x , i:e:; xni
E0	
! x . Next , we will show

xni
w
! x:

Since � 2 �2 , we get L� = E� . Hence (L�)
�
= L0	 . Since (T;

P
; �) denotes

a non-atomic �-�nite separable measure space, there exists an ascending sequence of set

(Tn)
1
n=1 such that

1S
n=1

Tn = T . Let � > 0 be given. Then there exists a n0 2 N such thatc�TnTn < �

5ckyk0
	

when n > n0 . For any y 2 L0	 , there exists n1 > n0 such that for

F = ft 2 Tn1 : jy(t)j > n1g we have kc�Fk <
�

5ckyk0
	

. By �(�; u) is locally integrable for

any u 2 R , we have y�Tn1nF 2 E0
	 . Hence there exists i0 2 N such that

������
Z
T

(xni(t)� x(t))y(t)�
Tn1

nF
d�

������ <
�

5
;

when i > i0 . So������
Z
T

(xni(t)� x(t))y(t)d�

������ =
������
Z
T

(xni(t)� x(t))y(t)�
TnTn1

d�

������+
������
Z
T

(xni(t)� x(t))y(t)�Tn1nFd�

������ +
������
Z
T

(xni(t)� x(t))y(t)�Fd�

������

�

������
Z
T

(xni(t)� x(t))y(t)�
Tn1

nF
d�

������+
������
Z
T

xni(t)y(t)�TnTn1
d�

������+
������
Z
T

x(t)y(t)�
TnTn1

d�

������ +
������
Z
T

xni(t)y(t)�F d�

������ +
������
Z
T

x(t)y(t)�
F
d�

������
�

�

5
+
xni�TnTn1

 kyk0	 +
x�

TnTn1

 kyk0	 + kxni�F k kyk
0

	 + kx�
F
k kyk

0

	

�
�

5
+
c�

TnTn1

 kyk0	 +
c�

TnTn1

 kyk0	 + kc�
F
k kyk

0

	 + kc�
F
k kyk

0

	

�
�

5
+
�

5
+
�

5
+
�

5
+
�

5
= �;

whenever i > i0 . This means that xni
w
! x as i!1 .

So, we have kxk � lim
i!1

kxnik = 1 . Furthermore, we havekxk = 1 .

In fact, put y(t) = p(t; a)�T 0
1
+ p(t; c)�H . Then y 2 L0	 and

kyk
0
= kyk

0
kxnk � jhxn; yij =

������
Z
T

xn(t)y(t)d�

������

=

Z
Tn;1

ap(t; a)d�+

Z
Tn;2

bp(t; b)d�+

Z
H

cp(t; c)d�
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=

Z
Tn;1

�(t; a)d�+

Z
Tn;1

	(t; p(t; a))d�+

Z
Tn;2

�(t; b)d�

+

Z
Tn;2

	(t; p(t; b))d�+

Z
H

�(t; c)d�+

Z
H

	(t; p(t; c))d�

= I�(xn) + I	(y)! 1 + I	(y) � kyk
0

	 :

This means that hxn; yi ! kyk
0

	 . Hence hx; yi = kyk
0

	 , that is kxk � 1 .

Obviously, I�(xn � xm) � inf
�
�(t; b � a) : t 2 T 1

0

	 �T 10
2

�
��T 10
2

. This assures us that
fxnig is not Cauchy sequence . Hence L� has not the Kadec-Klee property .

This contradiction shows that �(t; u) must be is strictly convex if L� has the Kadec-Klee

property .
Su�ciency. Under this conditions, we get that L� is locally uniformly convex thanks to

Lemma 5. Of course, L� has then the Kadec-Klee property .
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