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Abstract

We consider the following problem: 1) There are demand points and possible construction

sites in an urban area with some barriers. We adopt rectilinear distance. 2) We construct

two facilities, one is welcome facility and the other obnoxious facility We call welcome

facility as A and obnoxious facility as B. Two facilities A and B can be constructed at

the same site or constructed separately, that is, at two different sites. We assume that

each construction cost of A and B is a random variable with fuzzy mean respectively and

construction cost of both facilities simultaneously as a same site is also random variable with

fuzzy mean. These are distributed according to normal distributions with fuzzy means. 3)

The probability that total construction cost becomes below budget f should not be less than

the fixed probability level. α and further the possibility that this chance constraint holds

should be not less than the fixed level β. Under this possibility chance constraint f should

be minimized. 4) We consider three criteria, (a) maximum distance from the construction

site of A to all demand points to be minimized, (b) minimum distance from the construction

site of B to all demand points to be maximized, (c) budget to be minimized. Since usually

there exists no site optimizing three criteria at a time, we seek non-dominated solution

after definition of non-domination. Finally, we conclude results and discuss further research

problems.

1 Introduction There are huge amount of papers regarding facility location problem

after Weber has published his paper [8] (so called Weber problem). Hamacher et al. ( [2])

tried to classify these papers by introducing similar codes to classify queueing and scheduling

models . For rectilinear distance, we should refer to [1] as a classic but successful model

and an efficient algorithm due to geometrical approach. Further for a discrete location

problem, refer to review paper [7]. In this paper we consider multi-facility case as one

possibility based on rectilinear distance. That is, two types of facilities, welcome facility

, the other obnoxious one are constructed. We call welcome facility as A and obnoxious

facility as B. Two facilities A and B can be constructed at the same site or constructed

separately at two different sites. Construction costs of A and B are random variables with
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fuzzy means. Section 2 formulates the facility location problem with the tri-criteria under

above prominent features. Section 3 proposes a solution procedure to seek non-dominated

solutions after the definition of non-domination. Finally, section 4 summarizes the results

and discusses further research problem.

2 Problem formulation We consider the following problem:

(1) There are m demand points : Di = (ai, bi) for i = 1, 2, ...,m and r possible construction

sites, FPj for j = 1, 2, ..., n in an urban area X = {(x, y)|0 ≤ x ≤ p0.0 ≤ y ≤ q0} with some

rectangular barriers

Bk = {(x, y)|B1
k < x < B2

k, B3
k < y < B4

k}, k = 1, 2, ..., s Facilities A and B can be

constructed in these blocks . Barrier means we cannot pass it inside and so in some case we

must make a detour. We adopt rectilinear distance which is used often in an urban area.

That is, rectilinear distance between points P = (a, b) and Q = (c, d) is |a − c| + |b − d|.
(2) We construct two facilities, one is welcome facility (that is, maximum distance to demand

points should be minimized), the other is obnoxious one (that is, minimum distance to

demand points should be maximized). We call welcome one as A and obnoxious one as

B and two facilities A, B can be constructed at the same site or constructed separately,

that is, at two different sites. For each possible construction site FPj , we assume that each

construction cost of A, B is a random variable CAj , CBj with fuzzy mean respectively and

construction cost of both facilities simultaneously at a same site is also random variable CSj

with fuzzy mean . CAj is distributed according to the normal distribution with fuzzy mean

M1j and variance σ2
1j , CBj according that with fuzzy mean M2j and variance σ2

2j , and CSj

according to fuzzy mean M3j and variance σ2
3j . We assume that they are independent each

other.縲 Note that if two facilities are constructed at different sites, the total construction

cost is the sum of the construction cost of A and that of B. Each mean Muj is a L fuzzy

number with L(
t − muj

σuj
), u = 1, 2, 3.

(3) The probability that total construction cost becomes below budget f should be not less

than the fixed probability level α and f should be minimized where we assume that α > 1
2 .

For A, B, separately constructed case at j, this probabilistic condition is

Pr{CAj ≤ f} ≥ α ⇔ Pr{CAj − m1j

σ1j
≤ f − m1j

σ1j
} ≥ α ⇔ f ≥ m1j + Kασ1j

where Kα is a α percentile points of the cumulative distribution function of the standard

normal distribution since
CAj − m1j

σ1j
is a random variable according to the standard normal

distribution. Similarly done, for the case of separate construction of B, we have the following

deterministic equivalent condition as f ≥ m2j + Kασ2jand for the case that both A and

B are constructed at the same site , corresponding deterministic equivalent condition is
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f ≥ m3j + Kασ3j . Summarizing we have

f ≥ m1j+Kασ1j(A : site j), f ≥ m2j+Kασ2j(B : site j), f ≥ m3j+Kασ3j(bothA, B : site j)

but if A, B are constructed at different possible sites FPi, FPj respectively, the budget

constraint is
f ≥ (m1i + m2j) + Kα

√
σ2

1i + σ2
2j + 2σ1i2j

where σ1i2j is a covariance between CAi and CBj since CAi + CBj is a random variable

according to the normal distribution with mean (m1j +m2j) and variance σ2
1i +σ2

2j +2σ1i2j .

(4) We consider three criteria, that is, maximum distance from the construction site of

A to all demand points to be minimized, minimum distance from the construction site of

B to all demand points to be maximized and budget to be minimized. Let d(i, j) be the

distance between demand point Di, i = 1, 2, ...,m and possible construction site FPj , j =

1, 2, ..., n. These are calculated using some algorithm (for example, matrix algorithm using

path algebra) of the shortest path problem on the following networks N(V,E) (refer to [4]):

V = {D1, D2., · · · , Dm, (B1
1 , B3

1), (B1
1 , B4

1), (B2
1 , B3

1), (B2
1 , B4

1), · · · (B1
i , B3

i ), (B1
i , B4

i ), (B2
i , B3

i ), (B2
i , B4

i ),

· · · (B1
s , B3

s ), (B1
s , B4

s ), (B2
s , B3

s ), (B2
s , B4

s ), FP1, FP2, · · · , FPn}(= {v1, v2, · · · , vm, vm+1, · · · , vm+4s,

vm+4s+1, · · · , vm+4s+n})
and E consists of edges corresponding to visible pairs between two vertices in V where length

of each edge is a rectilinear distance between corresponding pair of verticies . Two points

P 1, P 2 are called visible each other if there exists a route connecting two points using only

horizontal line segment and vertical line segment not passing through some barriers without

detours. .Otherwise we call P 1andP 2 as invisible. In an invisible case we cannot connect

two points by horizontal line segment and vertical line segment without detour like Figure

1.)

4

◦P 1 ◦P 2

,,

Barrier

Fig.1 An invisible point pair

For each edge, the rectilinear distance between corresponding vertices is attached as a

length. Then the first criterion is dA(j) = max{d(i, j)|i = 1, 2, ...,m} and dA(j) should

be minimized about j=1,2,...,n. The second criterion is dB(j) = min{d(i, j)|i = 1, 2, ...,m}
and dB(j) should be maximized about j=1,2,...,n. The third criterion is minimum budget

F under the above deterministic equivalent inequality, that is,

F = min{m1jA + m2jB + Kα

√
σ2

1jA
+ σ2

2jB
+ 2σ1jA2jB ,m3jC + Kασ3jC}

3
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where jA: the site of facility A, jB : the site of facility B if separately constructed and JC

is the site that both A, B are constructed at the same site jC . However if we assume that

m1i + m2j + Kα

√
σ2

1i + σ2
2j + 2σ1i2j > max{m3i + Kασ3i,m3j + Kασ3j}

for any pair of (i, j), F = min{m3i + Kασ|i = 1, 2, ..., n}. Since usually there exists no site

optimizing tri-criteria at a time and so we seek some non-dominated solutions for the above

model (1)-(4) after definition of non-domination in the next section.

3 Solution Procedure First we define a solution vector V X = (V X
1 , V X

2 , V X
3 ) corre-

sponding to a solution X where X is denoted as X = (jX
A , jX

B ) where JX
A , jX

B are construction

sites of A and that of B respectively. Therefore

V X
1 = max{d(i, jX

A )|i = 1, 2, ...,m}, V X
2 = min{d(i, jX

B )|i = 1, 2, ...,m}

V X
3 =

{
m1jX

A
+ m2jX

B
+

√
σ2

1jX
A

+ σ2
2jX

B

+ σ2
12jX

A jX
B

(jX
A �= jX

B )

m3jX
A

+ KασjX
A

(jX
A = jX

B )

Non-dominated Solution

For solutions X1, X2, if

V X1
1 ≤ V X2

1 , V X1
2 ≥ V X2

2 , V X1
3 ≤ V X2

3 and V X1 �= V X2 , then we call X1 dominates X2.

If there exists no solution dominating solution X, then X is called non-dominated solution.

We seek some non-dominated solutions. Note that usually min{dA(j)|j = 1, 2, ..., n} ≤
max{d(i, jC)|i = 1, 2, ...,m} and max{dB(j)|j = 1, 2, ..., n} ≥ min{d(i, jC)|i = 1, 2, ...,m}
hold where jC is the minimizer of min{M3j + Kασ3j |j = 1, 2, ..., n}.
Therefore first we check whether it holds that min{dA(j)|j = 1, 2, ..., n} = max{d(i, jC)|i =

1, 2, ...,m}. and max{dB(j)|j = 1, 2, ..., n} = min{d(i, jC)|i = 1, 2, ...,m}.. If so, the optimal

solution is to construct both facilities A, B at the same possible site jC as a multi-facility.

Otherwise (usually this case holds), we seek some non-dominated solution as below (5)-(7).

(5) First of all, above solution constructing the multi-facility at possible site FPjc is a non-

dominated solution (if minimizer jC is not unique, we must check the non-domination and

choose non-dominated one or ones.

(6) We find the minimizer jA of min{dA(j)|j = 1, 2, ..., n} and maximizer jB of

max{dB(j)|j = 1, 2, ..., n}.Then solution that facility A is constructed at jA and B at jB

is a non-dominated solution. Of course, if jA or jB is not unique, we check these solutions

about non-domination and choose non-dominated one or ones.

(7)We consider the weighted convex sum of dA(j) and dB(j) , that is, W (j) = w1dA(j) +

w2dB(j), w1, w2 > 0, w1 + w2 = 1 and find the minimizer jW Then a solution that both A

and B are constructed at the site jW as a multi-facility is non-dominated one. Again if jW

is not unique, then check the non-domination and choose non-dominated one or ones.

.
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1 Introduction There are huge amount of papers regarding facility location problem

after Weber has published his paper [8] (so called Weber problem). Hamacher et al. ( [2])

tried to classify these papers by introducing similar codes to classify queueing and scheduling

models . For rectilinear distance, we should refer to [1] as a classic but successful model

and an efficient algorithm due to geometrical approach. Further for a discrete location

problem, refer to review paper [7]. In this paper we consider multi-facility case as one

possibility based on rectilinear distance. That is, two types of facilities, welcome facility

, the other obnoxious one are constructed. We call welcome facility as A and obnoxious

facility as B. Two facilities A and B can be constructed at the same site or constructed

separately at two different sites. Construction costs of A and B are random variables with

88



5

4 Conclusion This paper considered construction of two facilities simultaneously at dif-

ferent site or at a same site as a multi-facility under the stochastic construction costs.

Here we considered a finite possible construction sites but following are left further research

problems.

(8) As for more suitable criteria, we should consider environmental load, especially for

obnoxious facility.
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              CHARACTERIZATIONS OF ω-LIKE CLOSED SETS
                 AND SEPARATION AXIOMS IN TOPOLOGICAL
                                                   SPACES

1

(ωρ1, ωρ2)-T ρ
1/2-separation axioms (cf. Definition 5.3(I)(i), Theorem 5.11, Theorem 5.13,

Theorem 5.15), where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf. Definition 1.3). Throughout the present
paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).

1 Introduction and preliminaries Throughout the present paper, (X, τ) repre-
sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
Cl(A), Int(A) and Ker(A) denote the closure, interior and kernel of A with respect to
the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
Int(A):=∪{U |U ⊂ A and U ∈ τ} and Ker(A):=∩{V |A ⊂ V and V ∈ τ}. A subset B
of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).

∗2010 Math. Subject Classification — : 50A05.
Key words and phrases — : ω-closed sets, ω◦-closed sets, ω◦−-closed sets, g-closed sets, separation axiom
T1/2

H. Maki, N. Rajesh and S. Shanthi

Received August 30, 2018

Abstract. One of the aim of the present paper is introduce the concept of ωρ-closed 
sets in topological space (X, τ ) (cf. Definition 1.4) and study topological prop-erties of 
their classes of sets, where ρ : SO(X, τ ) → P (X) is a function defined by ρ(V ) :=  V, 
ρ(V ) :=  Int(V ) or ρ(V ) :=  Int(Cl(V )) for every semi-open set V of (X, τ ). 
Furthermore, their relation ships with other generalied closed sets are investigated (cf. 
Remark 2.2). Using some analogous concept of the Jankovic-Reilly decomposition of sets 
([2]), the concept of ωρ-closed sets is completely characterized (cf. Theorem 4.8(iii)). In 
Section 5 and Section 6, some new separation axioms are introduced and investigated (i.e.

Scientiae Mathematicae Japonicae 83, No.1（2020）（91-116） 91



2 H.Maki, N.Rajesh, S.Shanthi

We use the following notation and definition.

Notation 1.2 (•1) ωC(X, τ) := {A| A is ω-closed in (X, τ)};
(•1�) ωO(X, τ) := {B| B is ω-open in (X, τ)};
(•2) wωC(X, τ) := {A| A is weakly ω-closed in (X, τ)};
(•2�) wωO(X, τ) := {B| B is weakly ω-open in (X, τ)}.

Definition 1.3 Let EX be a subfamily of P (X). The following function ρ : EX → P (X)
is used on the present paper: for every set U ∈ EX and a topological space (X, τ),

(i) ρ := ◦ : EX → P (X) defined by ◦(U) := Int(U);
(ii) ρ := ◦− : EX → P (X) defined by ◦ − (U) := Int(Cl(U));
(iii) ρ := ◦ − ◦ : EX → P (X) defined by ◦ − ◦(U) := Int(Cl(Int(U)));
(iv) ρ := −◦ : EX → P (X) defined by − ◦ (U) := Cl(Int(U));
(v) ρ := − ◦ − : EX → P (X) defined by − ◦ −(U) := Cl(Int(Cl(U)));
(vi) ρ := id : EX → P (X) defined by id(U) := U.

We define some related classes of ω-like closed sets (cf. Definition 1.4, Notation 1.5).

Definition 1.4 Let A and B be subsets of a topological space (X, τ). And, let
ρ : SO(X, τ) → P (X) be a function such that ρ ∈ {id, ◦,−◦,− ◦ −, ◦−, ◦ − ◦} (cf.
Definition 1.3 above for EX := SO(X, τ)). A subset A is said to be ωρ-closed in (X, τ),
if Cl(A) ⊂ ρ(U) holds whenever A ⊂ U and U ∈ SO(X, τ). The complemet X \B of an
ωρ-closed set B is called an ωρ-open set of (X, τ).

We have the following equivalent expression: a subset A is ωid-closed (resp. ωid-open) in
(X, τ) if and only if A is ω-closed (resp. ω-open) in (X, τ).

Notation 1.5 (i) For each function ρ : SO(X, τ) → P (X) with ρ ∈ {id, ◦,−◦,− ◦
−, ◦−, ◦−◦} (cf. Definition 1.3 above for EX := SO(X, τ)), we use the following notation:

(•3ρ) ωρC(X, τ) := {A| A is ωρ-closed in (X, τ)});
(•3�ρ) ωρO(X, τ) := {U | U is ωρ-open in (X, τ)} (cf. Definition 1.4 above).
(ii) (•4) psC(X, τ) := {A| A is ps-closed in (X, τ)};
(•4�) psO(X, τ) := {U | U is ps-open in (X, τ)}.

The concept of ps-closed sets of (ii) above (cf. [3, Definition 2.1]) is defined as follows:
a subset A is called a ps-closed set of (X, τ) if pCl(A) ⊂ U whenever A ⊂ U and
U ∈ SO(X, τ); and its complement X \ A is called a ps-open set of (X, τ).

(iii) We note that ωidC(X, τ) = ωC(X, τ) and ωidO(X, τ) = ωO(X, τ) (cf. Nota-
tions 1.2, 1.5(i)).

(iv) (•5) C(X, τ) := {F | F is closed in (X, τ),i.e., X \ F ∈ τ};
(•6) PC(V, τ) := {F | F is preclosed in (X, τ),i.e., X \ F ∈ PO(X, τ)}.

The purposes of the present paper are to characterlize the ω-like closed sets of a
topological space (cf. Theorem 2.1, Theorem 3.7, Proposition 4.4, Theorem 4.8) and
to investigate the (ωρ1, ωρ2)-T ρ

1/2 separation axioms where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf.
Theorem 5.11, Theorem 5.13, Theorem 5.15). Moreover, in Section 6, it is shown that
the digital line (Z, κ) is ω◦−-T1 except Zκ (cf. Definition 2.3, Theorem 6.1(iv)).

2 Properties on ω-like closed sets For the families in Notation 1.5(•3ρ), (•4), (•6)
and Notation 1.2 (•1), (•2), we have the following properties.
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paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).
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sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
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the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
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of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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Characterizations of ω-like closed sets and separation axioms in topological spaces 3

Theorem 2.1 (i) ω◦C(X, τ) ⊂ ωC(X, τ) ⊂ ω−◦C(X, τ).
(ii) ω−◦C(X, τ) = ω−◦−C(X, τ) = P (X).
(iii) ω◦C(X, τ) ⊂ ω◦−C(X, τ) ⊂ ω−◦C(X, τ).
(iv) ω◦−C(X, τ) = ω◦−◦C(X, τ).
(v) ([3, Corollary 2.6 (iv), Table 1]) psC(X, τ) = PC(X, τ).
(vi) ([26],[27],[3]) C(X, τ) ⊂ ωC(X, τ) ⊂ wωC(X, τ).
(vii) wωC(X, τ) = PC(X, τ).

Proof. (i) - (iv) They are proved by definitions.
(vii) Proof of the equality wωC(X, τ) = psC(X, τ): let A ∈ wωC(X, τ). For

any subset U ∈ SO(X, τ) such that A ⊂ U , we have that Cl(Int(A)) ⊂ U and so
pCl(A) = A ∪ Cl(Int(A)) ⊂ U ; and so we see pCl(A) ⊂ U . Thus, we have that
wωC(X, τ) ⊂ psC(X, τ). Conversely, supppose that A ∈ psC(X, τ). Let U ∈ SO(X, τ)
such that A ⊂ U . Then, pCl(A) = A ∪ Cl(Int(A)) ⊂ U and hence Cl(Int(A)) ⊂ U .
Therefore, A is wωC(X, τ). We proved that psC(X, τ) ⊂ wωC(X, τ).

Thus we show the required equality using (v). �

Remark 2.2 By Theorem 2.1 above, the following diagram of implications is obtained.
All implications in the following diagram are not reversible (cf. Example 2.4 (i) - (v)
below); and two concepts of C(X, τ) and ω◦C(X, τ) are independent (cf. Example 2.4(vi)
below).

A ∈ C(X, τ) A ∈ wωC(X, τ) = psC(X, τ) = PC(X, τ)
� �

�↑ �↓ A ∈ ωC(X, τ)
� �

A ∈ ω◦C(X, τ) A ∈ ω−◦C(X, τ) = ω−◦−C(X, τ) = P (X)
↓ �
A ∈ ω◦−C(X, τ) = ω◦−◦C(X, τ)

The concept of the digital line (Z, κ) is initiatived by E.D. Khalimsky and sometimes
it is called the Khalimsky line ([10, in 1990]).

Definition 2.3 ([10, in 1990] and references there;[11, in 1991;p.905]; e.g.,[17, in
2014;Section 3]). The digital line or so called Khalimsky line (Z, κ) is the set Z of
all integers, equipped with the topology κ having {{2m − 1, 2m, 2m + 1}| m ∈ Z} as a
subbase. The digital plane or Khalimsky plane is the Cartesian product of 2-copies of the
digital line (Z, κ); this topological space is denoted by (Z2, κ2) (cf. [12, in 1994;Definition
4])

Example 2.4 (i) An ω-closed set need not be ω◦-closed (i.e., ω◦C(X, τ) �← ωC(X, τ)):
we give two examples as follows.

(i-1) Let (X, τ) := (Z, κ) be the digital line (cf. Definition 2.3 above) and A := {2m},
where m ∈ Z. Then, by definition of the topology κ,A := {2m} is closed and so
A ∈ ωC(Z, κ). We show A �∈ ω◦C(Z, κ). Indeed, there exists a semi-open set U :=
{2m, 2m + 1} such that A ⊂ U ; and so we have that Int(U) = {2m + 1} and Cl(A) =
{2m} �⊂ {2m + 1} = Int(U). This shown that the set A is not ω◦-closed in (Z, κ).

(i-2) We can give an example on the Euclidean line (X, τ) := (R, �). Let A := {x, y},
where x and y are distinct point of (R, �). There exists a semi-open set U := {t ∈ R|x ≤
t < z} ∪ {t ∈ R|z < t ≤ y}, where z is a point with a relation x < z < y. Then, A ⊂ U
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and Cl(A) = {x, y} �⊂ Int(U), because Int(U) = {t ∈ R|x < t < z} ∪ {t ∈ R|z < t < y};
and so A �∈ ω◦C(R, �). And A is closed and so A ∈ ωC(R, �).

(ii) A wω-closed set (=preclosed set; cf. Theorem 2.1 (v)(vii)) need not be ω-closed
(i.e., ωC(X, τ) �← wωC(X, τ) ): let (X, τ) := (Z2, κ2) be the digital plane (cf. Defini-
tion 2.3 above) and A := {x, y} a subset of (Z2, κ2), where x = (2m, 2s) and y = (2m +
1, 2s) for some integers m and s. Then, first we show that Cl(Int(A)) = Cl(∅) = ∅ ⊂ A;
and so A ∈ PC(Z2, κ2) and hence A ∈ wωC(Z2, κ2) (cf. Theorem 2.1(iii)). We note that
the subset A of the present example (ii) is a preclosed set which is not closed in (Z2, κ2).

Secondly, we show that A �∈ ωC(Z2, κ2). Indeed, we take a subset U := A ∪ {(2m +
1, 2s + 1)}; then U is semi-open in (Z2, κ2). Indeed since κ2 := κ × κ, we see that
Cl(Int(U)) = Cl({(2m + 1, 2s + 1)}) = {2m, 2m + 1, 2m + 2} × {2s, 2s + 1, 2s + 2} ⊃ U
hold and so U ⊂ Cl(Int(U)) (i.e., U ∈ SO(Z2, κ2)). Finally, we have that A ⊂ U
and Cl(A) �⊂ U . Indeed, Cl(A) = Cl({x}) ∪ Cl({y}) = A ∪ {(2m + 2, 2s)} �⊂ U hold,
because {x} = {(2m, 2s)} is closed and Cl({y}) = Cl({(2m + 1, 2s)} = {(2m, 2s), (2m +
1, 2s), (2m+2, 2s)} holds in (Z2, κ2). Therefore, A is not ω-closed in (Z2, κ2). Moreover,
we have a digital geometric example in Remark 4.5(ii).

(iii) An ω◦−-closed set need not be ω◦-closed (i.e., ω◦C(X, τ) �← ω◦−C(X, τ) ): let
(X, τ) be a topological space defined by X := {a, b, c} and τ := {∅, {a}, {a, b}, X}.
Then, we have SO(X, τ) = {∅, {a}, {a, b}, {a, c}, X}. Let A := {a, c} and U ∈ SO(X, τ)
with A ⊂ U ; and so U = {a, c} or X. Then, Cl(A) = X ⊂ Int(Cl(U)), because
Int(Cl(U)) = X for each subset U ; hence we show A ∈ ω◦−C(X, τ). Moreover, we show
that the subset A is not ω◦-closed in (X, τ). Indeed, the subset A is a semi-open set with
Cl(A) = X �⊂ Int(A) = {a}. In addtion, in Remark 4.5(ii) below, we have a geometric
example of the present topic.

(iv) An ω−◦-closed set need not be ω◦−-closed (i.e., ω◦−C(X, τ) �← ω−◦C(X, τ) ):
let A := {2m + 1, 2m + 2, 2m + 3, 2m + 4} be a subset of (Z, κ). Since A ∈ P (Z) =
ω−◦C(Z, κ) (cf. Theorem 2.1(ii)), we should show A �∈ ω◦−C(Z, κ). Indeed, let U := A;
and Cl(Int(U)) = Cl({2m+1, 2m+2, 2m+3}) = {2m, 2m+1, 2m+2, 2m+3, 2m+4} ⊃ U
and so U ∈ SO(Z, κ) such that A ⊂ U . For this semi-open set U , we have that :

• Cl(A) = {2m, 2m + 1, 2m + 2, 2m + 3, 2m + 4} and;
• Int(Cl(U)) = {2m + 1, 2m + 2, 2m + 3}.

Thus, it is shown that Cl(A) �⊂ Int(Cl(U)), i.e., A is not ω◦−-closed set in (Z, κ).
(v) An ω-closed set need not be a closed set (i.e., C(X, τ) �← ωC(X, τ) ): such example

is shown by [26].
(vi) Two families C(X, τ) and ω◦C(X, τ) are independent.
· Proof of ω◦C(X, τ) �← C(X, τ) : the subset A := {2m} of (Z, κ) in (i)(i-1) is a closed

singleton, where m ∈ Z, and it is not ω◦-closed in (Z, κ) (cf. (i)(i-1)).
· Proof of C(X, τ) �← ω◦C(X, τ): let (X, τ) be a topological space defined by X :=

{a, b, c} and τ := {∅, {a}, {b, c}, X}. Let A := {b} be a not closed singleton. Let U
be a semi-open set containing A; then U = {b, c} or X and so Int(U) = U . Then,
Cl(A) = {b, c} ⊂ Int(U) = U hold and so we show that A ∈ ω◦C(X, τ).

3 More characterizations of wω-closed sets and related Janković Reilly de-
compositions In the present section, we give more characterizations of wω-closed
sets (resp. ps-closed sets) by Theorem 3.7 (i)(1)(2)(3) (resp. (i) (4)(5)(6)(7)) below, even
if we know that wω(X, τ) = psC(X, τ) = PC(X, τ) hold for a topological space (X, τ) (cf.
Theorem 2.1 (v)(vii)). They are done by an analogy of the Janković Reilly decomposition
method; and so we recall them as follows (cf. Theorem 3.1, Notation 3.2, Lemma 3.4,
Lemma 3.6 below).
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sents a nonempty topological space on which no separation axioms are assumed unless
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And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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Theorem 3.1 (i) ([9, Lemma 2]) Every singleton {x} of a topological space (X, τ) is
either preopen (i.e., {x} ⊂ Int(Cl({x}))) or nowhere dense (i.e., Int(Cl({x})) = ∅).

(ii) (Janković Reilly decompostion;[2, p. 40, line +10]; cf. Theorem 3.3 below) Any
topological space (X, τ) has the following decomposition:

X = X1

⋃
X2 with X1

⋂
X2 = ∅, where X1 and X2 are defined respectively by:

(1a) X1 := {x ∈ X| {x} is nowhere dense in (X, τ)};
(1b) X2 := {x ∈ X| {x} is preopen in (X, τ)}.

The decomposition X = X1∪X2(disjoint union) of Theorem 3.1 is usefull and it is called
the Janković Reilly decomposition of X (e.g., [2, p. 40, line +10]). Moreover, we use the
following convenient notation, because we want to investigate more decompositions.

Notation 3.2 For a subset E of (X, τ), we define the following subsets of E:
(•2a) END := {x| x ∈ E and {x} is nowhere dense in (X, τ)},

(i.e., END = X1 ∩ E and X1 = XND, cf. (1a) of Theorem 3.1(ii) above);
(•2b) EPO := {x| x ∈ E and {x} is preopen in (X, τ)},

(i.e., EPO = X2 ∩ E and X2 = XPO, cf. (1b) of Theorem 3.1(ii) above);
(•2c) ESC := {x| x ∈ E and {x} is semi-closed in (X, τ)};
(•2d) EωO := {x| x ∈ E and {x} is ω-open in (X, τ)};
(•2e) Eτ := {x| x ∈ E and {x} in open in (X, τ)};
(•2f) EC := {x| x ∈ E and {x} in closed in (X, τ)};
(•2g) ERO := {x| x ∈ E and {x} in regular-open in (X, τ), i.e., {x} = Int(Cl({x}))}.
By using Notation 3.2 (•2a),(•2b) above, the Janković Reilly decomposition in Theo-
rem 3.1(ii) is stated as follows.

Theorem 3.3 (Theorem 3.1(ii) above, [9, Lemma 2]) For any subset E of (X, τ),
E = EPO ∪ END and EPO ∩ END = ∅ hold.

Lemma 3.4 (i) For any subset E of (X, τ), E = ESC ∪ EωO holds.
(ii) For a topological space (X, τ) and a subset E of (X, τ),

(1) XPO ∩ XSC = (XPO)SC = XRO and XND ∩ XωO=(XND)ωO ⊂ Xτ hold, and
(2) EPO ∩ ESC = (EPO)SC = ERO and END ∩ EωO=(END)ωO ⊂ Eτ hold.

(iii) Suppose one of the following properties:
(a) END = ∅ and ERO = ∅; (b) Eτ = ∅ and (EPO)ωO = ∅.

Then, ESC ∩EωO = ∅ holds; and so the union ESC ∪EωO of (i) is a disjoint union under
the assumptions (a) or (b) above.

Proof. (i) Let x ∈ E. We consider the following two cases.
Case 1. {x} is not semi-closed in (X, τ): for this case, we show that x ∈ EωO. Indeed,

X is a unique semi-open set containing X \ {x}. Thus, X \ {x} is ω-closed in (X, τ) and
so {x} is an ω-open set (i.e., x ∈ EωO).

Case 2. {x} is semi-closed: for this case, it is shown that x ∈ ESC , by definition.
Therefore, using two cases, we have E ⊂ ESC ∪ EωO; the converse inequality is

trivial, by the definition of (•2c) and (•2d) in Notation 3.2. Thus we show the equality:
E = ESC ∪ EωO.

(ii) They are shown by using definitions.
(iii) In general, by using Theorem 3.1 (i.e., Theorem 3.3), it is shown that: ESC ∩

EωO ={(EPO ∪ END)SC} ∩ {(EPO ∪ END)ωO}= {(EPO)SC ∪ (END)SC} ∩ {(EPO)ωO ∪
(END)ωO}. We prove that ESC ∩EωO = ∅ holds under one of our assumptions (a), (b).
Case 1. we assume (a): for this case, we show that ESC ∩EωO ⊂ (EPO)SC ∪ (END)SC ⊂
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(EPO)SC ∪ END = ERO ∪ END = ∅ (cf. (ii)(2) above and the assumption (a)).
Case 2. we assume (b): for this case, we show that ESC ∩EωO ⊂ (EPO)ωO∪ (END)ωO ⊂
(EPO)ωO ∪ Eτ = ∅(cf. (ii)(2) above and the assumption (b)). �
Remark 3.5 (i) The property (X = XSC ∪ XωO) of Lemma 3.4 (i) above does not
imply a disjoint union in general. For example, let (X, τ) be a topological space defined
by X := {a, b, c} and τ := {∅, {a}, {b, c}, X}. Then, a sigleton {a} is semi-closed and
ω-open; and so a ∈ XSC ∩ XωO.

(ii) For the digital line (Z, κ), we have the following datum on the subsets defined
Lemma 3.4: ZPO = {2m + 1|m ∈ Z}=Zκ (e.g. [6, Theorem 2.1(i)(a)]), ZND = {2m|m ∈
Z}; and so we have the decomposition Z = ZPO ∪ ZND. On the other hands, we have
that ZSC = Z, ZωO = {2m + 1|m ∈ Z}; for a nonempty set E, END = {2m ∈ E|m ∈ Z}
and ERO = {2m + 1 ∈ E|m ∈ Z}=Eκ and (EPO)ωO = EPO.

We need the following lemma in order to prove Theorem 3.7 below; Lemma 3.6 (iii) and
(iv) are applied; we recall the definitions of sKer(•) and pKer(•): for a subset A of (X, τ),
sKer(A) :=

⋂{U | U ∈ SO(X, τ) and A ⊂ U} and pKer(A) :=
⋂{V | V ∈ PO(X, τ) and

A ⊂ V }.
Lemma 3.6 (cf. [4, Proposition 2.1]) Let B be a subset of (X, τ). Then, we have
following properties.

(i) [4, Proposition 2.1] (sCl(B))PO ⊂ sKer(B).
(ii) [26, Proposition 2.2.18] (Cl(B))PO ⊂ sKer(B).
(iii) (Cl(Int(B)))PO ⊂ sKer(B).
(iv) (pCl(B))PO ⊂ sKer(B).
(v) (sKer(B))SC ⊂ B ⊂ sKer(B).
(vi) ((Cl(B))PO)C ⊂ pKer(B).
(vi)’ ((sCl(B))PO)C ⊂ pKer(B).
(vi)” ((pCl(B))PO)C ⊂ pKer(B).

Proof. (iii) Since Cl(Int(B)) ⊂ Cl(B) holds and EPO ⊂ FPO holds if E ⊂ F in
general, we have that (Cl(Int(B)))PO ⊂ (Cl(B))PO; and so, by (ii), it is shown that
(Cl(Int(B)))PO ⊂ sKer(B) holds.

(iv) This is proved by using (ii), because pCl(E) ⊂ Cl(E) holds for any subset E of
(X, τ).

(v) We prove only the implication (sKer(B))SC ⊂ B. Let x ∈ (sKer(B))SC and
assume that x �∈ B. Since X \ {x} ∈ SO(X, τ) and B ⊂ X \ {x}, it is shown that
sKer(B) ⊂ X \ {x}. Then we have that {x} ⊂ sKer(B) ⊂ X \ {x}; and hence this is a
contradiction.

(vi) Let x ∈ ((Cl(B))PO)C . Suppose that x �∈ pKer(B). There exists a set V ∈
PO(X, τ) such that B ⊂ V and x �∈ V . Taking the set X \ V , then X \ V is preclosed in
(X, τ) and x ∈ X \ V . Then, we have that:
{x} ∪ Cl(Int({x})) = pCl({x}) ⊂ pCl(X \ V )=X \ V ; and so
(· 1) Cl(Int({x})) ⊂ X \ V . Since x ∈ Cl(B) and B ⊂ V , (·2) x ∈ Cl({x}) ⊂ Cl(V ).
Since x ∈ XPO, we have that (·3) {x} ⊂ Int(Cl({x})); and so we have that: (·4) the set
Int(Cl({x})) is an open set containing x such that x ∈ Cl(V ).

By (·2) and (·4), it is shown that: (·5) Int(Cl({x})) ∩ V �= ∅. By using (·1) and an
assumption that x ∈ XC , it is shown that Int(Cl({x})) ∩ V ⊂ Cl(Int(Cl({x}))) ∩ V =
Cl(Int({x}))∩ V ⊂ (X \ V )∩ V = ∅. Therefore, we have that Int(Cl({x}))∩ V =∅; this
contradicts the property (·5) above.

(vi)’ (resp. (vi)”) Since sCl(B) ⊂ Cl(B) (resp. pCl(B) ⊂ Cl(B)) holds for every
set B of (X, τ), (vi)’ (resp.(vi)”) is obtaned by (vi). �
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(ωρ1, ωρ2)-T ρ
1/2-separation axioms (cf. Definition 5.3(I)(i), Theorem 5.11, Theorem 5.13,

Theorem 5.15), where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf. Definition 1.3). Throughout the present
paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).

1 Introduction and preliminaries Throughout the present paper, (X, τ) repre-
sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
Cl(A), Int(A) and Ker(A) denote the closure, interior and kernel of A with respect to
the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
Int(A):=∪{U |U ⊂ A and U ∈ τ} and Ker(A):=∩{V |A ⊂ V and V ∈ τ}. A subset B
of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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Finally, we have the following characterizations of weakly ω-closed sets (i.e., wω-closed
sets) and ps-closed sets as follows.

Theorem 3.7 (i) (cf. Theorem 2.1(v)(vi)) For a subset B of (X, τ), the following
properties are equivalent:

(1) B is wω-closed in (X, τ);
(2) (Cl(Int(B)))ND ⊂ B;
(3) Cl(Int(B)) ⊂ sKer(B);
(4) B is ps-closed in (X, τ) (i.e., B is (SO(X, τ), PO(X, τ))id-closed);
(5) (pCl(B))ND ⊂ B;
(6) pCl(B) ⊂ sKer(B);
(7) B is preclosed in (X, τ).
(ii) For a topological space (X, τ), wωO(X, τ) forms a generalized topology of X in

the sense of Lugojan ([15]) such that τ ⊂ ωO(X, τ) ⊂ wωO(X, τ) = PO(X, τ).

Proof. (i) (1)⇒(2) Let x ∈ (Cl(Int(B)))ND. Suppose that x �∈ B. The singleton {x}
is semi-closed, because {x} is nowhere dense (i.e., Int(Cl({x})) = ∅) and so X \ {x} is
a semi-open set containing B. By (1), Cl(Int(B)) ⊂ X \ {x}. We have a contradiction
that x ∈ X \ {x}.
(2)⇒(3) Using Theorem 3.3, Lemma 3.6(iii) and (2), we have Cl(Int(B))-
=(Cl(Int(B)))PO ∪ (Cl(Int(B)))ND ⊂ sKer(B) ∪ B = sKer(B).
(3)⇒(1) Let U ∈ SO(X, τ) such that B ⊂ U . By definition of the concept of sKer(·)
and (3), it is shown that sKer(B) ⊂ U and so Cl(Int(B)) ⊂ U . Therefore, the set B is
wω-closed in (X, τ).
(4)⇒(5) Let x ∈ (pCl(B))ND. Suppose that x �∈ B. The singleton {x} is semi-closed
and so X \ {x} is a semi-open set containing B. By (4), pCl(B) ⊂ X \ {x}. We have a
contradiction that x ∈ X \ {x}.
(5)⇒(6) Using Theorem 3.3, Lemma 3.6(iv) and the assumption (5), we have that:
pCl(B)=(pCl(B))PO ∪ (pCl(B))ND ⊂ sKer(B) ∪ B = sKer(B).
(6)⇒(4) Let U ∈ SO(X, τ) such that B ⊂ U . By definition of the concept of sKer(·)
and (6), it is shown that sKer(B) ⊂ U and so pCl(B) ⊂ U . Therefore, the set B is
ps-closed in (X, τ).
(6)⇒(7) It follow from definition and (6) that the set B is a ps-closed set. Indeed, let
U ∈ SO(X, τ) such that B ⊂ U ; and so pCl(B) ⊂ sKer(B) ⊂ U ; thus B ∈ psC(X, τ).
Using Theorem 2.1 (v), B is preclosed.
(7)⇒(1) and (1)⇒ (4) They are obtained by using Theorem 2.1 (v),(vii).

(ii) These properties are obviously obtained by properties on PC(X, τ), because
wωC(X, τ) = PC(X, τ) holds (cf.(i)). However, we attempt to prove them from the
Janković Reilly decompositions method point of view. Let {Bi| i ∈ Γ} be a family of wω-
closed sets in (X, τ) and let B :=

⋂{Bi| i ∈ Γ}. We have Cl(Int(B)) ⊂ Cl(Int(Bi)) for
each i ∈ Γ and so (Cl(Int(B)))ND ⊂ ⋂{(Cl(Int(Bi)))ND| i ∈ Γ} ⊂ ⋂{Bi| i ∈ Γ} = B
(cf. (i) (1)⇒(2)). Namely, by the equivalente property (2)⇔(1) in (i), the set B is wω-
closed in (X, τ). It is obvious that ∅ ∈ wωO(X, τ) and X in wωO(X, τ). Thus, it is
shown that wωO(X, τ) is a generalized topology of X in the sense of Lugojan ([15]). �

Remark 3.8 Using Janković Reilly decomposition method (cf. Theorem 3.3), we show
an alternative proof of Theorem 2.1(v), i.e., psC(X, τ) = PC(X, τ) hold (cf. [3, Corollary
2.6 (iv), Table 1]). First we show that psC(X, τ) ⊂ PC(X, τ). Let A ∈ psC(X, τ) and
x ∈ pCl(A). We claim that x ∈ A. We recall that pCl(A) = (pCl(A))PO ∪ (pCl(A))ND.
When x ∈ (pCl(A))PO, {x} is preopen and so {x} ∩ A �= ∅ (i.e., x ∈ A). When x ∈
(pCl(A))ND, it is obtained that x ∈ A, by Theorem 3.7 (i)(4)⇒(5). Therefore, for both
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cases, we have x ∈ A whenever x ∈ pCl(A), i.e., A ∈ PC(X, τ) and so psC(X, τ) ⊂
PC(X, τ). The converse implication is obvious.

In the end of the present Section 3, we apply Lemma 3.4 (i) to an alternative charac-
terization of the ω-closed sets; the equivalent property (3) ⇔ (4) in Theorem 3.9 below
is shown by using Lemma 3.4(i).

Theorem 3.9 (Sheik John [26] for (1) ⇔ (2) ⇔ (3)) For a subset B of (X, τ), the
following properties are equivalent:

(1) B is ω-closed in (X, τ);
(2) (Cl(B))ND ⊂ B;
(3) Cl(B) ⊂ sKer(B);
(4) (a) (Cl(B))SC ⊂ B and (b) (Cl(B))ωO ⊂ sKer(B) hold.

Proof. (3)⇒(4) First we claim that (sKer(B))SC ⊂ B. Indeed, let x ∈ (sKer(B))SC and
assume that x �∈ B. Since the set X \ {x} ∈ SO(X, τ) and B ⊂ X \ {x}, sKer(B) ⊂
X \{x}. Then, we have that {x} ⊂ X \{x} and so this is a contradiction. Thus, we show
that (sKer(B))SC ⊂ B. By using (3), it is shown that (Cl(B))SC ⊂ (sKer(B))SC ⊂ B;
and so (a) is proved. The property (b) is obtained by (3), because (Cl(B))ωO ⊂ Cl(B) ⊂
sKer(B) hold.

(4)⇒(3): Using Lemma 3.4 (i) and (4), we have that Cl(B)=(Cl(B))SC∪(Cl(B))ωO ⊂
B ∪ sKer(B)=sKer(B). That is, Cl(B) ⊂ sKer(B) holds. �

4 Some properties of ωρ-closed sets, where ρ ∈ {◦, ◦−} After some charac-
teriations of ωρ-closedness (cf. Proposition 4.4), we add a complete characterization of
the ωρ-closedness, where ρ : SO(X, τ) → P (X) is a function such that ρ ∈ {◦, ◦−} (cf.
Theorem 4.8(iii)).

Theorem 4.1 (i) The union of two ω◦-closed (resp. ω◦−-closed) sets is ω◦-closed (resp.
ω◦−-closed).

(ii) If A is ω◦-closed (resp. ω◦−-closed) and A ⊂ B ⊂ Cl(A), then B is ω◦-closed
(resp. ω◦−-closed).

(iii) If A is ω◦-closed (resp. ω◦−-closed), then Cl(A)\A does not contain any nonempty
semi-closed (resp. semi-closed and semi-open set).

Proof. (i) Let A,B ∈ ω◦C(X, τ) (resp. A,B ∈ ω◦−C(X, τ)) and U ∈ SO(X, τ) such
that A ∪ B ⊂ U . Then, it follows from assumptions that Cl(A ∪ B) = Cl(A) ∪ Cl(B) ⊂
Int(U) (resp. Cl(A ∪ B) ⊂ Int(Cl(U))), because Cl(A) ⊂ Int(U) and Cl(B) ⊂ Int(U)
hold (resp. Cl(A) ⊂ Int(Cl(U)) and Cl(B) ⊂ Int(Cl(U)) hold). Thus, we show that
A ∪ B ∈ ω◦C(X, τ) (resp. A ∪ B ∈ ω◦−C(X, τ)).

(ii) Let U ∈ SO(X, τ) such that B ⊂ U . Then, by assumptions, it is shown that
Cl(B) = Cl(A), A ⊂ U and so Cl(B) ⊂ Int(U) (resp. Cl(B) ⊂ Int(Cl(U))), i.e.,
B ∈ ω◦C(X, τ) (resp. B ∈ ω◦−C(X, τ)).

(iii) Case 1. A ∈ ω◦C(X, τ): suppose that Cl(A) \ A contains a semi-closed set F .
Since A ⊂ X \ F and X \ F ∈ SO(X, τ), Cl(A) ⊂ Int(X \ F ) holds. Thus, we have
that Cl(F ) = X \ (Int(X \ F )) ⊂ X \ Cl(A) and so Cl(A) ⊂ X \ Cl(F ). We have that
F ⊂ Cl(F )∩Cl(A) ⊂ (X \Cl(A))∩Cl(A), because F ⊂ Cl(A) holds; and hence F = ∅.

Case 2. A ∈ ω◦−C(X, τ): suppose that Cl(A) \ A contains a semi-closed and semi-
open set F . Since A ⊂ X \ F and X \ F ∈ SO(X, τ), Cl(A) ⊂ Int(Cl(X \ F )) holds.
Thus, we have that Cl(Int(F )) = X \ (Int(Cl(X \ F ))) ⊂ X \ Cl(A) and so Cl(A) ⊂
X \ Cl(Int(F )). Then, we have that F ⊂ Cl(Int(F )) ∩ Cl(A) ⊂ (X \ Cl(A)) ∩ Cl(A),
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1

(ωρ1, ωρ2)-T ρ
1/2-separation axioms (cf. Definition 5.3(I)(i), Theorem 5.11, Theorem 5.13,

Theorem 5.15), where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf. Definition 1.3). Throughout the present
paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).

1 Introduction and preliminaries Throughout the present paper, (X, τ) repre-
sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
Cl(A), Int(A) and Ker(A) denote the closure, interior and kernel of A with respect to
the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
Int(A):=∪{U |U ⊂ A and U ∈ τ} and Ker(A):=∩{V |A ⊂ V and V ∈ τ}. A subset B
of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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because F ⊂ Cl(A) and F is semi-open; and hence F = ∅. �

Moreover, as continuation of Notation 3.2, we prepare the following notation.

Notation 4.2 For a subset E of (X, τ), we define the following families: (cf. Defin-
tion 1.4)
(•3a) Eω◦O := {x| x ∈ E and {x} is ω◦-open set of (X, τ)};
(•3b) Eω◦−O := {x| x ∈ E and {x} is ω◦−-open set of (X, τ)};
(•3c) EPC := {x| x ∈ E and {x} is preclosed in (X, τ)}.

Lemma 4.3 For a topological space (X, τ) and a subset E of (X, τ), we have the
following properties (cf. Notation 3.2, Notation 4.2).

(i) X = XSC ∪ Xω◦O and E = ESC ∪ Eω◦O hold.
(ii) X = (XSC ∩ Xτ ) ∪ Xω◦−O and E = (ESC ∩ Eτ ) ∪ Eω◦−O hold.
(iii) X = (XSC ∩ XPO) ∪ Xω◦−O and E = (ESC ∩ EPO) ∪ Eω◦−O hold.

Proof. (i) First, let x ∈ X. Suppose that x �∈ XSC . We claim that x ∈ Xω◦O. Indeed,
let U be any semi-open set containing X \ {x}. Then, U = X, because X \ {x} is not
semi-open and so X is a unique semi-open set containing X \ {x}. Thus, Cl(X \ {x}) ⊂
U = X = Int(U), i.e., X \ {x} is ω◦-closed, i.e. x ∈ Xω◦O. Therefore, we have that
X = XSC ∪ Xω◦O holds. And, for the final property that E = ESC ∪ Eω◦O, the proof is
obvious, because of the facts that ESC=E ∩XSC and Eω◦O=E ∩Xω◦O for any subset E
of (X, τ).

(ii) First, let x ∈ X and suppose that x ∈ X \(XSC∩Xτ ). We claim that x ∈ Xω◦−O.
Let U ∈ SO(X, τ) such that X \ {x} ⊂ U . Then, U = X or U = X \ {x}.

Case 1. x �∈ XSC : by similar argument of the proof of (i), it is shown that X \ {x} �∈
SO(X, τ) and so U = X and Cl(X \ {x}) ⊂ X = Int(Cl(U)).

Case 2. x �∈ Xτ : for this case, if U = X, then Cl(X \ {x}) ⊂ X = Int(Cl(X)) =
Int(Cl(U)); if U = X \ {x}, then X \ {x} �=Cl(X \ {x})=X-
=Int(X)=Int(Cl(X \ {x})) = Int(Cl(U)).

By both cases, X \ {x} is ω◦−-closed in (X, τ), i.e., x ∈ ω◦−O(X, τ) under the
assumption that the point x satiesfies Case 1 or Case 2 above. Therefore, we show that,
for a point x ∈ X, x ∈ XSC ∩Xτ or x ∈ Xω◦−O, i.e., X ⊂ (XSC ∩Xτ )∪Xω◦−O holds; and
hence we have the required first equality. Since EE = E ∩ XE holds where the symbol
E ∈ {SC, τ, ω◦−O}, we have the final equality using the firsr property above.

(iii) By using (ii) above and the following fact that Eτ ⊂ EPO holds, it is shown that
E = (ESC ∩ Eτ ) ∪ Eω◦−O ⊂ (ESC ∩ EPO) ∪ Eω◦−O hold. Hence, we have the required
equalities. �

We have the following property: (•) For a subset A of (X, τ), (Cl(A))τ ⊂ A holds.
Indeed, let x ∈ (Cl(A))τ . Suppose that x �∈ A. Since A ⊂ X \ {x} and {x} is open, i.e.,
X \ {x} is closed, we have that Cl(A) ⊂ Cl(X \ {x}) = X \ {x}; and so we have that
x ∈ Cl(A) ⊂ X \ {x}; this contradicts x �∈ X \ {x}. (�)

For an ωρ-closed set A, where ρ ∈ {◦, ◦−}, we have an analogouse form of the property
(•) above and Theorem 3.7 (cf. Proposition 4.4 and Remark 4.5 below).

Proposition 4.4 (i) If A is an ω◦−-closed set of (X, τ), then
((Cl(A))PC)SO ⊂ A (cf. Notations 3.2(•2e),4.2(•3d); Remark 4.5 (i), (ii)).

(ii) If A is an ω◦-closed set of (X, τ), then (Cl(A))SC ⊂ A (cf. Remark 4.5 (iii),(iv)).
(iii) If A is an ω◦−-closed set of (X, τ), then ((Cl(A))SC)SO ⊂ A (cf. Remark 4.5

(vii),(viii)).
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(iv) If A is an ω◦−-closed set of (X, τ), then ((Cl(A))ND)SO ⊂ A (cf. Remark 4.5
(v),(vi)).

Proof. (i) First, we recall that (EPC)SO = EPC ∩ ESO holds for any set E ⊂ X. Let
x ∈ ((Cl(A))PC)SO. Suppose that x �∈ A. Since A ⊂ X \{x} and X \{x} is preopen (i.e.,
X \ {x} ⊂ Int(Cl(X \ {x}))), the set Int(Cl(X \ {x})) is a semi-open set containing A.
Since A is ω◦−-closed, we have that Cl(A) ⊂ Int(Cl({Int(Cl(X \{x}))})) = Int(Cl(X \
{x})) = X \ Cl(Int({x})) ; and so x ∈ X \ Cl(Int({x})), i.e., (∗) x �∈ Cl(Int({x})).
On the other hand, it follows from the assumption (x ∈ ((Cl(A))PC)SO ⊂ XSO) for the
point x that {x} ⊂ Cl(Int({x})) holds; this contradicts the property (∗) above.

(ii) Let x ∈ (Cl(A))SC . And suppose that x �∈ A. Then, A ⊂ X \ {x} and X \ {x} ∈
SO(X, τ), we have Cl(A) ⊂ Int(X \ {x}); and so x ∈ Int(X \ {x}) = X \ Cl({x}), i.e.,
x �∈ Cl({x}); this contradicts the property: E ⊂ Cl(E) for any subset E.

(iii) Let x ∈ ((Cl(A))SC)SO such that x �∈ A. Since A ⊂ X \ {x} and X \ {x} ∈
SO(X, τ) and A is ω◦−-closed, we have that Cl(A) ⊂ Int(Cl(X\{x}))=X\Cl(Int({x})).
Since X\x ∈ XSC , Int(Cl(X\{x})) ⊂ X\{x} and so x ∈ X\{x}; this is a contradiction.

(iv) It is known that END ⊂ ESC holds for any set E of a topological space (X, τ).
Then, for the given ω◦−-closed set A, by (iii) above, it is obtained that ((Cl(A))ND)SO ⊂
((Cl(A))SC)SO ⊂ A. �

Remark 4.5 (i) The converse of Proposition 4.4 (i) is not true from the following
example. Let A := {2m+1} be a subset of the digital line (Z, κ). First, we claim that A
is not ω◦−-closed in (Z, κ). Indeed, the set A is semi-open; and, take U := A ∈ SO(Z, κ);
then, we have that Cl(A) = {2m, 2m+1, 2m+2} �⊂ Int(Cl(U))={2m+1}; and so A is not
ω◦−-closed in (Z, κ). Finally, we show that ((Cl(A))PC)SO=({2m, 2m + 2})SO=∅ ⊂ A
hold.

(ii) Let A := {0} ∪ {2s + 1 ∈ Z| s ∈ Z} be an open set of (Z, κ). Then, A
is an example of the ω◦−-closed set which satisfies Proposition 4.4(i)). Indeed, let
U ∈ SO(Z, κ) such that A ⊂ U . Since A ∈ κ ⊂ SO(Z, κ), we have that Cl(A) =
Z=Int(Z)=Int(Cl(A)) ⊂ Int(Cl(U)); and so A is ω◦−-closed in (Z, κ). Moreover,
(((Cl(A))PC)SO=(ZPC)SO=({2s| s ∈ Z})SO=∅ ⊂ A hold in (Z, κ). On the other
hand, the present set A is an example which is not ω◦-closed in (Z, κ). Indeed, take
U := A ∈ SO(Z, κ); and so Cl(A)=Z �⊂ Int(U)=A; by Definition 1.4, A is not ω◦-
closed. Moreover, since (Cl(A))SC=Z �⊂ A holds, the set A is not ω◦-closed in (Z, κ) (cf.
Proposition 4.4(ii)).

(iii) The converse of Proposition 4.4 (ii) is not true from the following example. Let
A := {2m, 2m + 1, 2m + 2} be a subset of (Z, κ) and the semi-open set U := A. It is
shown that Cl(A) = A �⊂ Int(U)={2m + 1}; and so A is not ω◦-closed. On the other
hands, (Cl(A))SC=ZSC ∩ Cl(A)=Z ∩ A=A hold in (Z, κ).

(iv) Using contraposition of Proposition 4.4(ii), we can find any examples of non-ω◦-
closed sets. For example, the subset A := {2m + 1} given by (i) above is not ω◦-closed
in (Z, κ). Indeed, (Cl(A))SC=ZSC ∩ Cl(A)=Z ∩ Cl(A)={2m, 2m + 1, 2m + 2} �⊂ A; and
so A is not ω◦-closed in (Z, κ).

(v) We have an example of an ω◦−-closed set A which satisfies Proposition 4.4 (iii).
We consider the ω◦−-closed set A of (ii) above, say A := {0}∪{2s+1 ∈ Z| s ∈ Z}. Indeed,
since (Cl(A))SC=ZSC=Z, we have that (((Cl(A))SC)SO=ZSO={2s+1 ∈ Z| s ∈ Z} ⊂ A.

(vi) The converse of Proposition 4.4 (iii) is not true. Let A := {2s+1 ∈ Z| s ∈ Z}\{1}
be an open set of (Z, κ). Then, we have that Cl(A)=Z \ {1} and so ((Cl(A))SC)SO= -
(Cl(A))SO=(Z \ {1})SO=A, because any singleton {x} is semi-closed, any odd singleton
{2s + 1} is semi-open and any even singleton {2s} is not semi-open in (Z, κ), where
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(ωρ1, ωρ2)-T ρ
1/2-separation axioms (cf. Definition 5.3(I)(i), Theorem 5.11, Theorem 5.13,

Theorem 5.15), where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf. Definition 1.3). Throughout the present
paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).

1 Introduction and preliminaries Throughout the present paper, (X, τ) repre-
sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
Cl(A), Int(A) and Ker(A) denote the closure, interior and kernel of A with respect to
the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
Int(A):=∪{U |U ⊂ A and U ∈ τ} and Ker(A):=∩{V |A ⊂ V and V ∈ τ}. A subset B
of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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Remark 2.2). Using some analogous concept of the Jankovic-Reilly decomposition of sets 
([2]), the concept of ωρ-closed sets is completely characterized (cf. Theorem 4.8(iii)). In 
Section 5 and Section 6, some new separation axioms are introduced and investigated (i.e.
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s ∈ Z. And, the set A is not ω◦−-closed in (Z, κ). Indeed, there exists a semi-open
set U := A such that A ⊂ U ; and so Cl(A)=Z \ {1} �⊂ {z ∈ Z|z ≤ −1} ∪ {z ∈ Z|3 ≤
z}=Int(Z \ {1})=Int(Cl(A)); and hence the set A is not ω◦−-closed in (Z, κ).

(vii) The converse of Propositon 4.4(iv) is not true. The following subset A :=
{2m−2, 2m−1, 2m+1, 2m+2} of (Z, κ) is an example of non-ω◦−-closed sets. Indeed, we
know that A ∈ SO(Z, κ) such that A ⊂ A; and so Cl(A)=A∪{2m} �⊂ {2m−1, 2m, 2m+
1}=Int(Cl(A)); thus A is not ω◦−-closed. Moreover, ((Cl(A))ND)SO=({2m−2, 2m, 2m+
2})SO=∅ ⊂ A hold.

(viii) (cf. Proposition 4.4(iv)) For the ω◦−-closed set A :={0}∪ {2s+1| s ∈ Z} of (ii)
above, we check the following property: ((Cl(A))ND)SO ⊂ A. Indeed, ((Cl(A))ND)SO -
=(ZND)SO=({2s| s ∈ Z})SO=∅ ⊂ A hold.

We define some analogouse concepts of the sets Ker(•) and sKer(•) (cf. Defini-
tion 4.6) and we characterize the ωρ-closedness of a subset, where ρ : SO(X, τ) → P (X)
is a function such that ρ ∈ {◦, ◦−} (cf. Theorem 4.8(iii) below).

Definition 4.6 For a subset A of (X, τ) and a function ρ : SO(X, τ) → P (X) with
ρ ∈ {id, ◦−, ◦}, we define the following subsets:

(·) sρKer(A) :=
⋂{W | W ∈ SO(X, τ) and A ⊂ ρ(W )};

(·)’ sρKer
′
(A) :=

⋂{ρ(W )| W ∈ SO(X, τ) and A ⊂ ρ(W )};
(·)” sρKer1(A) :=

⋂{ρ(W )| W ∈ SO(X, τ) and A ⊂ W}.
We note that sidKer(A)=sidKer

′
(A)=sidKer1(A)=sKer(A) hold.

Proposition 4.7 (i) For any subset A of a topological space (X, τ), we have the fol-
lowing properties:
(i-1) s◦Ker1(A) ⊂ s◦Ker�(A) ⊂ s◦Ker(A);
(i-2) s◦−Ker(A) ⊂ s◦Ker(A);
(i-3) A ⊂ s◦Ker(A).

(ii) (ii-1) There exists a subset A of (Z, κ) such that s◦−Ker(A) � A.
(ii-2) There exists a subset A of (Z, κ) such that s◦Ker1(A) � A and
s◦−Ker1(A) � A.

Proof (i) (i-1) Let ρ := ◦ throughout the present proof of (i-1).
Proof of s◦Ker1(A) ⊂ s◦Ker�(A): let x be any point such that x �∈ s◦Ker�(A). Then, by
Definition 4.6(·)’, there exists a subset W ∈ SO(X, τ) such that x �∈ ρ(W ) = Int(W ) and
A ⊂ ρ(W ) = Int(W ); and so x �∈ s◦Ker1(A) (cf. Definition 4.6(·)”), because ρ(W ) ⊂ W
holds for ρ = ◦.

Proof of s◦Ker�(A) ⊂ s◦Ker(A): let x be any point such that x �∈ s◦Ker(A). Then,
by Definition 4.6(·), there exists a subset W ∈ SO(X, τ) such that x �∈ W and A ⊂ ρ(W );
and so x �∈ s◦Ker�(A), because ρ(W ) ⊂ W and so x �∈ ρ(W ) holds for ρ = ◦.

(i-2) Let x be any pont such that x �∈ s◦Ker(A). Then, by Definition 4.6(·), there
exists a subset W ∈ SO(X, τ) such that x �∈ W and A ⊂ Int(W ); and so x �∈ s◦−Ker(A)
(cf. Definition 4.6(·)), because A ⊂ Int(W ) ⊂ Int(Cl(W )) holds.

(i-3) Let x be any point such that x �∈ s◦Ker(A). Then, by Definition 4.6(·), there
exists a subset W ∈ SO(X, τ) such that x �∈ W and A ⊂ Int(W ); and so x �∈ A, because
Int(W ) ⊂ W .

(ii) (ii-1) We prepare the following notation: Kρ
A(X, τ) := {S| S ∈ SO(X.τ) and

A ⊂ ρ(S)}, where ρ : SO(X, τ) → P (X) be a function and a subset A of a topological
space (X, τ). Then, (∗) sρKer(A)=

⋂{W | W ∈ Kρ
A(X, τ)} holds.

Let (X, τ) be the digital line (Z, κ) and ρ := ◦−. Let A := {0} ∪ {2s + 1| s ∈ Z}
and W0 := A \ {0}. Then, since A ⊂ ρ(W0) = Int(Cl(W0)) = Z, A ⊂ ρ(A) = Z and
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W0, A ∈ SO(Z, κ), we have that W0 ∈ Kρ
A(Z, κ) and A ∈ Kρ

A(Z, κ). Therefore, we have
that s◦−Ker(A) ⊂ W0 � A holds for the set A.

(ii-2) Let ρ ∈ {◦, ◦−} and let A := {−5, 0, 1, 5} be a subset of (Z, κ). Then, A ∈
SO(Z, κ) and ρ(A) = {−5, 1, 5} for the function ρ ∈ {◦, ◦−}. We are able to take the
set W := A as a semi-open set W in the set sρKer1(A) :=

⋂{ρ(W )| W ∈ SO(Z, κ) and
A ⊂ W}, then it is obtained that sρKer1(A) ⊂ ρ(A) = {−5, 1, 5} � {−5, 0, 1, 5} = A;
and hence sρKer1(A) � A for the present set A and ρ ∈ {◦, ◦−}. �

Theorem 4.8 Let A be a subset of (X, τ).
(i) If A is ω◦-closed in (X, τ), then Cl(A) ⊂ s◦Ker(A) (cf. Remark 4.9 (i) below).
(ii) If A is ω◦−-closed in (X, τ), then (Cl(A))PO ⊂ s◦−Ker(A) (cf. Remark 4.9 (ii)

below).
(iii) A is an ωρ-closed set of (X, τ) if and only if Cl(A) ⊂ sρKer1(A) holds, where

ρ : SO(X, τ) → P (X) is a function such that ρ ∈ {◦, ◦−}.
Proof (i) Throughout the present proof, let ρ := ◦ : SO(X, τ) → P (X) be the function
defined by ρ(U) := Int(U) for every set U ∈ SO(X, τ). Let x ∈ Cl(A). Suppose that
x �∈ sρKer(A). There exists a subset V ∈ SO(X, τ) such that x �∈ V and A ⊂ ρ(V )
(cf. Definition 4.6 (i)). Since A is ω◦-closed and ρ(V ) = Int(V ) ∈ τ ⊂ SO(X, τ), we
have that Cl(A) ⊂ Int(ρ(V )) = Int(Int(V )) ⊂ V and so x ∈ V ; and hence this is a
contradiction.

(ii) Throughout the present proof, let ρ := ◦− : SO(X, τ) → P (X) be the function
defined by ρ(U) := Int(Cl(U)) for every set U ∈ SO(X, τ). Let x ∈ (Cl(A))PO. Suppose
that x �∈ s◦−Ker(A). There exists a subset V ∈ SO(X, τ) such that x �∈ V and A ⊂ ρ(V )
(cf. Definition 4.6 (i)). Since A is ω◦−-closed and ρ(V )) ∈ τ ⊂ SO(X, τ), we have that
Cl(A) ⊂ Int(Cl(ρ(V )))) = Int(Cl(Int(Cl(V )))) ⊂ Cl(V ) and so x ∈ Cl(V ). Thus,
it is proved that (∗1): Int(Cl({x})) ∩ V �= ∅, because x ∈ Cl(V ), x ∈ Int(Cl({x}))
and Int(Cl({x})) ∈ τ . On the other hands, since x ∈ X \ V and X \ V ∈ SC(X, τ)
hold, we have that {x} ∪ Int(Cl({x})) = sCl({x}) ⊂ sCl(X \ V ) = X \ V ; and so
Int(Cl({x})) ⊂ X \ V ; and hence we have that Int(Cl({x})) ∩ V ⊂ (X \ V ) ∩ V = ∅;
this contradicts (∗1) above.

(iii) (Necessity) Let x ∈ Cl(A). Suppose that x �∈ sρKer1(A) (cf. Definition 4.6(·)”).
There exists a subset V ∈ SO(X, τ) such that x �∈ ρ(V ) and A ⊂ V . Since A is ωρ-closed,
we have that Cl(A) ⊂ ρ(V ); and so x ∈ ρ(V ); and hence this is a contradiction.

(Sufficiency) Assume that Cl(A) ⊂ sρKer1(A). Let V ∈ SO(X, τ) such that A ⊂ V .
Then, by definition, it is shown that sρKer1(A) ⊂ ρ(V ) holds, where sρKer1(A) :=⋂{ρ(W )| W ∈ SO(X, τ) and A ⊂ W}. Therefore, Cl(A) ⊂ ρ(V ) hold, whenever V ∈
SO(X, τ) and A ⊂ V ; thus A is ωρ-closed in (X, τ) (cf. Definition 4.6(·)”). �

Remark 4.9 (i) The converse of Theorem 4.8(i) is not true from the same example
given by Remark 4.5(iii). Namely, let A := {2m, 2m + 1, 2m + 2} be a subset of the
digital line (Z, κ), where m ∈ Z; then A is not ω◦-closed in (Z, κ) (cf. Remark 4.5 (iii)).
And, it is obtained that Cl(A) ⊂ s◦Ker(A) holds, because Cl(A) = A for the present
set A and B ⊂ s◦Ker(B) holds, in general, for every set B of a topological space (X, τ).

(ii) The converse of Theorem 4.8(ii) is not true from the same example given by
Remark 4.5(i). Indeed, let A := {2m + 1} be a subset of the digital line (Z, κ), where
m ∈ Z; then A is not ω◦−-closed in (Z, κ). And, we note that (Cl(A))PO = ({2m, 2m +
1, 2m + 2})PO = A. If W ∈ SO(Z, κ) and A ⊂ Int(Cl(W )), then A ⊂ W ; and so we
show that A ⊂ s◦−Ker(A). Therefore, we have that (Cl(A))PO ⊂ s◦−Ker(A) holds in
(Z, κ).
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1/2-separation axioms (cf. Definition 5.3(I)(i), Theorem 5.11, Theorem 5.13,

Theorem 5.15), where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf. Definition 1.3). Throughout the present
paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).

1 Introduction and preliminaries Throughout the present paper, (X, τ) repre-
sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
Cl(A), Int(A) and Ker(A) denote the closure, interior and kernel of A with respect to
the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
Int(A):=∪{U |U ⊂ A and U ∈ τ} and Ker(A):=∩{V |A ⊂ V and V ∈ τ}. A subset B
of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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Remark 4.10 Using the concepts of (Cl(•))PO, it is possible to define the following
ωρ-like closed sets, where ρ : SO(X, τ) → P (X) is a function such that ρ ∈ {◦, ◦−}:
(·1) a subset A of (X, τ) is said to be ωρ

(PO)-closed, if (Cl(A))PO ⊂ ρ(V ) holds whenever
A ⊂ V and V ∈ SO(X, τ).
(·2) ωρ

(PO)C(X, τ) := {A| A is ωρ
(PO)-closed in (X, τ)}, where ρ ∈ {◦, ◦−}. Then, we

prove the following properties:
(·3) ωρ

(PO)C(X, τ)=P (X) holds (i.e. every set is ωρ
(PO)-closed in (X, τ)). Namely, let A

be a set of (X, τ). Then (Cl(A))PO ⊂ ρ(W ) holds whenever A ⊂ W and W ∈ SO(X, τ),
where ρ ∈ {◦, ◦−}.
(·4) (Cl(A))PO ⊂ s◦Ker1(A) ⊂ s◦−Ker1(A) hold (cf. Definition 4.6 (i)”).

Proof of (·3). Let A be a subset of (X, τ). By Lemma 3.6 (ii), it is well known that,
(∗1) (Cl(A))PO ⊂ sKer(A) holds. Let W ∈ SO(X, τ) such that A ⊂ W . Take a point
x ∈ (Cl(A))PO (i.e., x ∈ Cl(A) and {x} ⊂ Int(Cl({x}))).

Case 1. ρ = ◦: we suppose that x �∈ ρ(W ) = Int(W ). Since x ∈ X \ Int(W ) =
Cl(X \W ), Cl(X \W ) is semi-closed and x ∈ Int(Cl({x})), we have that Int(Cl({x})) =
{x}∪ Int(Cl({x})) = sCl({x}) ⊂ sCl(Cl(X \W )) = Cl(X \W ); and so Int(Cl({x})) ⊂
X \ Int(W ). Thus, we show that (∗2) Int(Cl({x})) ∩ Int(W ) = ∅. On the other hands,
we use the property that (∗) (Cl(A))PO ⊂ sKer(A); and so x ∈ sKer(A). Then, for the
given set W ∈ SO(X, τ) such that A ⊂ W , we show that x ∈ sKer(A) ⊂ W ; and so
x ∈ W . Since x ∈ W ⊂ Cl(Int(W )) and x ∈ Int(Cl({x})) ∈ τ , it is obtained that (∗3)
Int(Cl({x}))∩Int(W ) �= ∅; and hence (∗3) contradicts (∗2) above. Therefore, we proved
that the property that x ∈ ρ(W ) = Int(W ) holds for any point x ∈ (Cl(A))PO. Namely,
(Cl(A))PO ⊂ ρ(W ) = Int(W ) holds for any set W ∈ SO(X, τ) such that A ⊂ W .

Case 2. ρ = ◦−: by the result for Case 1 above, it is obtained that (Cl(A))PO ⊂
Int(W ) ⊂ Int(Cl(W )) = ρ(W ) holds for any set W ∈ SO(X, τ) such that A ⊂ W . (�).

Proof of (·4). Let A ∈ P (X). First, we recall that (cf. Definiton 4.6) s◦Ker1(A) =⋂{Int(S)| S ∈ K1,A}, where K1,A := {S�|S� ∈ SO(X, τ) and A ⊂ S�}. Then, by (· 3)
for ρ = ◦, it is obtained that (Cl(A))PO ⊂ Int(W ) holds for any set W ∈ K1,A; and
hence (Cl(A))PO ⊂ ⋂{Int(W )| W ∈ K1,A} = s◦Ker1(A) holds. And, we prove the
last implication:(∗) s◦Ker1(A) ⊂ s◦−Ker1(A) for any subset A of (X, τ). Indeed, let
x �∈ s◦−Ker1(A). There exists a set W ∈ SO(X, τ) such that x �∈ Int(Cl(W )) and A ⊂
W . Since x �∈ Int(W ), A ⊂ W and W ∈ SO(X, τ), we have that x �∈ ⋂{Int(W �)|W � ∈
SO(X, τ) and A ⊂ W �} = s◦Ker1(A). (�)
5 (ω, ω)-T ρ

1/2 spaces and related separation axioms, where ρ ∈ {id, ◦, ◦−} We
recall that, by definition due to Levine [14], a topological space (X, τ) is said to be T1/2

if every generalized closed set (shortly, g.closed set) is closed in (X, τ). And, by Dunham
[5], it is shown that (X, τ) is T1/2 if and only if every singleton {x} is closed or open in
(X, τ), where x ∈ X (cf. [5], e.g., [7]). Moreover, it is well known that the separation
axiom T1/2 is placed between the axioms T0 and T1 ([14]).

In order to introduce the concept of (ω, ω)-T ρ
1/2 spaces (cf. Definition 5.3) and related

separation axioms, we prepare the concept of a general form of ”g.closed sets” (cf. Defi-
nition 5.2). The purpose of the present section is to prove Theorem 5.11, Theorem 5.13
and Theorem 5.15.

Throughout the present paper, let (EX , E ′
X) be an ordered pair of two families EX

and E �
X of subsets in a topological space (X, τ) such that

(•1) {∅, X} ⊂ EX and {∅, X} ⊂ E �
X .

Notation 5.1 (i) (e.g., [18, in 1996; (2.1)], [16, in 1999;Definition 2.1], [20, in 2003;Defini-
ton 3.2]) Let A be a subset of (X, τ) and (EX , E ′

X) be an ordered pair satisfying (•1) above.
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(•2) EX -Cl(A) :=
⋂{F | A ⊂ F and X \ F ∈ EX};

(•2)’ E ′
X -Cl(A) :=

⋂{F | A ⊂ F and X \ F ∈ E ′
X}.

(ii) ([26, in 2002]) (•3) ωCl(A) := ωO(X, τ)-Cl(A) (cf. (i)(•2) above for the case
where EX = ωO(X, τ)) ([27, in 1995], [28, in 2000;Defintion 3.1]));
(•4) ωμCl(A) :=ωμO(X, τ)-Cl(A), where μ : SO(X, τ) → P (X) is a function such that
μ ∈ {id, ◦, ◦−} and A ⊂ X (cf. (i)(•2) above for the case where EX = ωμO(X, τ),
Notation 1.5(•3μ)′).

Definition 5.2 (I) Let ρ1 : SO(X, τ) → P (X) and ρ2 : SO(X, τ) → P (X) be two
functions such that ρ1 ∈ {id, ◦, ◦−} and ρ2 ∈ {id, ◦, ◦−}; and ρ : ωρ1O(X, τ) → P (X)
be a function such that ρ ∈ {id, ◦, ◦−}.

A subset A of a topological space (X, τ) is said to be:
(ωρ1, ωρ2)-gρ.closed in (X, τ), if ωρ2Cl(A) ⊂ ρ(V ) holds whenever V ∈ ωρ1O(X, τ) with
A ⊂ V (cf. Notation 1.5(•3’ρ)); this may be called as (ωρ1, ωρ2)-generalized closed set
with degree ρ. Sometimes, an ”(ωid, ωid)-gid.closed” set is said simply to be ”(ω,
ω)-g.closed”.

(II) (cf. [18, Definition 2.10] for ρ = id) Let ρ : EX → P (X) be a function with
ρ ∈ {id, ◦, ◦−}. A subset A of (X, τ) is said to be:
(EX , E ′

X)-gρ.closed in (X, τ), if E ′
X -Cl(A) ⊂ ρ(V ) holds whenever A ⊂ V and V ∈ EX ;

this may be called as (EX , E ′
X)-generalized closed with degree ρ .

We note that: a subset A is (ωρ1, ωρ2)-gρ.closed in (X, τ) if and only if A is -
(ωρ1O(X, τ),ωρ2O(X, τ))-gρ.closed in (X, τ) in the sense of Definition 5.2 (II) for EX := -
ωρ1O(X, τ), E ′

X :=ωρ2O(X, τ)). The above pairs (ωρ1, ωρ2) and (ωρ1O(X, τ),ωρ2O(X, τ))
imply the ordered pairs.

First, using Definition 5.2 above, we define the concept on (ωρ1,ωρ2)-T ρ
1/2 spaces and

also it’s general forms (EX ,E ′
X)-T ρ

1/2 spaces. Especially, the concept of (EX ,E ′
X)-T id

1/2

spaces is defined in [18, in 1996;Definition 2.19].

Definition 5.3 (I) Let ρ1 : SO(X, τ) → P (X) and ρ2 : SO(X, τ) → P (X) be two
functions such that ρ1 ∈ {id, ◦, ◦−} and ρ2 ∈ {id, ◦, ◦−}; and let ρ : ωρ1O(X, τ) → P (X)
be a function such that ρ ∈ {id, ◦, ◦−}.

For the fixed functions ρ1, ρ2 and ρ, a topological space (X, τ) is said to be:
(i) (ωρ1,ωρ2)-T ρ

1/2, if A is ωρ2-closed (cf. Definition 1.4;i.e., X \A ∈ ωρ2O(X, τ)) for
every (ωρ1,ωρ2)-gρ.closed set A, (cf. Definition 5.2(I));

(ii) weak (ωρ1,ωρ2)-T ρ
1/2, where ρ2 �= id, if ωρ2Cl(A) = A holds for every (ωρ1,ωρ2)-

gρ.closed set A, where ωρ2Cl(A):=ωρ2O(X, τ)-Cl(A) (cf. Definition 5.2(I), Notation 5.1).
(II) Let (EX , E ′

X) be an ordered pair and let ρ : EX → P (X) be a fixed function such
that ρ ∈ {id, ◦, ◦−}. A topological space (X, τ) is said to be:

(i) an (EX ,E ′
X)-T ρ

1/2 space, if X \A ∈ E ′
X holds for every (EX ,E ′

X)-gρ.closed set A (cf.
[18, Definition 2.19] for ρ = id).

(ii) a weak (EX ,E ′
X)-T ρ

1/2 space, if E ′
X -Cl(A) = A holds for every (EX ,E ′

X)-gρ.closed
set A (cf. Definition 5.2(II), Notation 5.1).

We investigate some relations between ”weak (EX ,E ′
X)-T ρ

1/2 spaces” and ”(EX ,E ′
X)-

T ρ
1/2 spaces” (cf. Lemma 5.5), applying the following Lemma 5.4 due to Noiri and Popa

([20, in 2003;Lemma 3.3], [21, in 2000]).
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              CHARACTERIZATIONS OF ω-LIKE CLOSED SETS
                 AND SEPARATION AXIOMS IN TOPOLOGICAL
                                                   SPACES

1

(ωρ1, ωρ2)-T ρ
1/2-separation axioms (cf. Definition 5.3(I)(i), Theorem 5.11, Theorem 5.13,

Theorem 5.15), where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf. Definition 1.3). Throughout the present
paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).

1 Introduction and preliminaries Throughout the present paper, (X, τ) repre-
sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
Cl(A), Int(A) and Ker(A) denote the closure, interior and kernel of A with respect to
the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
Int(A):=∪{U |U ⊂ A and U ∈ τ} and Ker(A):=∩{V |A ⊂ V and V ∈ τ}. A subset B
of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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Lemma 5.4 ([20, in 2003;Lemma 3.3], [21, in 2000]) For a minmal structure mX on a
nonempty set X (i.e., ∅ ∈ mX , X ∈ mX and mX ⊂ P (X)), the following are equivalent:
(1) mX has property, say (B)mX

: if the union of any family of subsets belonging to mX

belongs to mX ;
(2) if mX-Int(V ) = V , then V ∈ mX ;
(3) if mX-Cl(F ) = F , then X \ F ∈ mX .

Lemma 5.5 Let (X, τ) be a topological space and (EX , E �
X) an ordered pair of given

familes EX and E �
X such that {∅, X} ⊂ EX ∩ E �

X .
For each function ρ : EX → P (X) with ρ ∈ {id, ◦, ◦−}, we have the following proper-

ties.
(i) Every (EX , E �

X)-T ρ
1/2 space (X, τ) is weak (EX , E �

X)-T ρ
1/2.

(ii) Suppose that E �
X has property (B)E′

X
: the union of any family of subsets belonging

to E �
X belongs to E �

X (cf. Lemma 5.4). Then, every weak (EX ,E �
X)-T ρ

1/2 space (X, τ) is
(EX ,E �

X)-T ρ
1/2.

Proof. (i) Let A be an (EX , E �
X)-gρ closed set in (X, τ). Then, by assumption, it is

obtained that X \A ∈ E �
X ; and so E �

X -Cl(A) :=
⋂{F | A ⊂ F and X \F ∈ E �

X} = A hold.
Therefore, (X, τ) is weak (EX ,E �

X)-T ρ
1/2.

(ii) Let A be an (EX ,E �
X)-gρ closed set in (X, τ). Since (X, τ) is weak (EX ,E �

X)-T ρ
1/2,

we have E �
X -Cl(A) = A. Since (B)E′

X
is supposed, by Lemma 5.4, it is obtained that

X \ A ∈ E �
X . Therefore, (X, τ) is (EX ,E �

X)-T ρ
1/2. �

Remark 5.6 (i) The following properties on a topological space (X, τ) are equivalent
for a fixed function ρ : EX → P (X) with ρ ∈ {id, ◦, ◦−} and a fixed function ρ1 :
SO(X, τ) → P (X) with ρ1 ∈ {id, ◦, ◦−}:

(1) (X, τ) is (ωρ1,ωid)-T ρ
1/2 (cf. Definition 5.3(I)(i);

(2) (X, τ) is weak (ωρ1O(X, τ),ωO(X, τ))-T ρ
1/2 (cf. Definition 5.3(II)(ii));

(3) (X, τ) is (ωρ1O(X, τ),ωO(X, τ))-T ρ
1/2 (cf. Definition 5.3(II)(ii)).

Indeed, they are obtained by definitions and the well known fact that, for a subset A of
(X, τ), X \ A ∈ ωO(X, τ) if and only if ωCl(A) = A holds, where ωCl(A):=ωO(X, τ)-
Cl(A). By [26], ωO(X, τ) has property (B)ωO(X,τ); and so the equivalences are obtained
by Lemma 5.5.

(ii) The concept of an (ωid,ωid)-T id
1/2 space is called an (ω,ω)-T1/2 space or an ω-T1/2

space.

Lemma 5.7 (i) The following properties on a topological space (X, τ) are equivalent:
let EX and E �

X be two families satisfying the condition that {∅, X} ⊂ EX ∩ E �
X .

(1) (X, τ) is weak (EX , E �
X)-T ◦

1/2;
(2) (∗1): if x ∈ X, then X \ {x} ∈ EX or E �

X-Cl(X \ {x}) = X \ {x} hold;
(3) (X, τ) is weak (EX , E �

X)-T id
1/2.

(ii) Every weak (EX , E �
X)-T ◦−

1/2 topological space (X, τ) is weak (EX , E �
X)-T ρ

1/2, where
ρ ∈ {id, ◦}.

(iii) Suppose that (∗2): if x ∈ X, then X \{x} ∈ EX ∩SC(X, τ) or E �
X-Cl(X \{x}) =

X \ {x} hold. Then, (X, τ) is weak (EX , E �
X)-T ◦−

1/2.

Proof. (i) (1)⇒(2) We suppose that X \ {x} �∈ EX . Let U ∈ EX be any set such that
X \ {x} ⊂ U . Then we have that U = X only; and so E �

X -Cl(X \ {x}) ⊂ E �
X -Cl(X) =

X = Int(U). Thus, we have that X \ {x} is (EX , E �
X)-g◦.closed (cf. Definition 5.2(II)).
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By assumption (cf. Defintion 5.3(II)(ii)), it is shown that E �
X -Cl(X \ {x}) = X \ {x}

holds. Therefore, we have (∗1).
(2)⇒ (3) Let A be an (EX , E �

X)-gid.closed set. We claim that E �
X -Cl(A) = A. Let

x ∈ E �
X -Cl(A); and we suppose that x �∈ A; and so A ⊂ X \ {x}.

Case 1. E �
X -Cl(X \ {x}) = X \ {x}: for this case, we have that x ∈ E �

X -Cl(A) ⊂ E �
X -

Cl(X \ {x}) = X \ {x}; and so x ∈ X \ {x}; this is a contradiction.
Case 2. X \ {x} ∈ EX : for this case, since A ⊂ X \ {x}, where X \ {x} ∈ EX , and

A is (EX , E �
X)-gid.closed, we have that x ∈ E �

X -Cl(A) ⊂ X \ {x} (cf. Definition 5.2(II));
and so x ∈ X \ {x}; this is also a contradiction.

By all cases, we have contradictions; and so we prove that E �
X -Cl(A) ⊂ A holds. Since

A ⊂ E �
X -Cl(A), we have the required equality E �

X -Cl(A) = A; and hence (X, τ) is weak
(EX , E �

X)-T id
1/2 (cf. Defintion 5.3(II)).

(3)⇒(1) Let A be an (EX , E �
X)-g◦.closed set of (X, τ). Then, by Definition 5.2(II), it

is shown that the set A is (EX , E �
X)-gid.closed. Using the assumption (3), we have that

E �
X -Cl(A) = A; and so (X, τ) is (EX , E �

X)-T ◦
1/2 (cf. Definition 5.3(II)).

(ii) We prove the property (∗1) of (i) above. Indeed, we suppose that X \ {x} �∈ EX .
Let U ∈ EX be any set such that X \ {x} ⊂ U . Then we have that U = X only; and so
E �

X -Cl(X \{x}) ⊂ E �
X -Cl(U)=E �

X -Cl(X) = X = Int(Cl(U)). Thus, we have that X \{x}
is (EX , E �

X)-g◦−.closed (cf. Definition 5.2(II)). It is shown that E �
X -Cl(X \{x}) = X \{x}

holds, because (X, τ) is weak (EX , E �
X)-T ◦−

1/2. Therefore, we have (∗1); and so (X, τ) is
(EX , E �

X)-T ρ
1/2, where ρ ∈ {id, ◦} (cf. (i) above).

(iii) Let A be an (EX , E �
X)-g◦−.closed set. We claim that E �

X -Cl(A) = A. Indeed, let
x ∈ E �

X -Cl(A). And we suppose that x �∈ A; and so A ⊂ X \ {x}.
Case 1. E �

X -Cl(X \ {x}) = X \ {x}: for this case, we have that x ∈ E �
X -Cl(A) ⊂ E �

X -
Cl(X \ {x}) = X \ {x}; and so x ∈ X \ {x}; this is a contradiction.

Case 2. X \ {x} ∈ EX ∩ SC(X, τ): for this case, since A ⊂ X \ {x}, X \ {x} ∈
EX and A is (EX , E �

X)-g◦−.closed, we have that x ∈ E �
X -Cl(A) ⊂ Int(Cl(X \ {x})) =

X \ Cl(Int({x})). We have that x ∈ X \ Cl(Int({x})). Namely, we have that {x} �⊂
Cl(Int({x})),i.e., {x} is not semi-open in (X, τ). This contradicts one of the assumptions:
X \ {x} ∈ SC(X, τ) (i.e., {x} is semi-open in (X, τ)).

Thus, for both cases, we have contradictions; and so we show that E �
X -Cl(A) ⊂ A;

and so A = E �
X -Cl(A); and hence (X, τ) is weak (EX , E �

X)-T ◦−
1/2. �

Remark 5.8 The following diagram shows the implications in Lemma 5.7 above: under
the assumption that {∅, X} ⊂ EX ∩ E �

X .
weak (EX , E �

X)-T id
1/2 � (∗1) of Lemma 5.7(i)(2)

�
weak (EX , E �

X)-T ◦−
1/2 ↓ ↑

↑ �
(∗2) of Lemma 5.7(iii) weak (EX , E �

X)-T ◦
1/2

We investigate the following properties on ”(EX , E �
X)-T ρ

1/2”, corresponding to Lemma 5.7
above.

Lemma 5.9 (i) Let ρ : EX → P (X) be a fixed function such that ρ ∈ {id, ◦, ◦−}.
Suppose that (X, τ) is an (EX , E �

X)-T ρ
1/2 topological space. Then,

(∗1’): if x ∈ X then X \ {x} ∈ EX or {x} ∈ E �
X .

(ii) Suppose that E �
X has property (B)E′

X
(cf. Lemma 5.5(ii)). If (∗1’) of (i) above holds,

then (X, τ) is (EX , E �
X)-T ρ

1/2, where ρ ∈ {id, ◦}. And, every (EX , E �
X)-T ◦−

1/2 topological
space is (EX , E �

X)-T id
1/2 and (EX , E �

X)-T ◦
1/2.
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1

(ωρ1, ωρ2)-T ρ
1/2-separation axioms (cf. Definition 5.3(I)(i), Theorem 5.11, Theorem 5.13,

Theorem 5.15), where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf. Definition 1.3). Throughout the present
paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).

1 Introduction and preliminaries Throughout the present paper, (X, τ) repre-
sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
Cl(A), Int(A) and Ker(A) denote the closure, interior and kernel of A with respect to
the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
Int(A):=∪{U |U ⊂ A and U ∈ τ} and Ker(A):=∩{V |A ⊂ V and V ∈ τ}. A subset B
of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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Abstract. One of the aim of the present paper is introduce the concept of ωρ-closed 
sets in topological space (X, τ ) (cf. Definition 1.4) and study topological prop-erties of 
their classes of sets, where ρ : SO(X, τ ) → P (X) is a function defined by ρ(V ) :=  V, 
ρ(V ) :=  Int(V ) or ρ(V ) :=  Int(Cl(V )) for every semi-open set V of (X, τ ). 
Furthermore, their relation ships with other generalied closed sets are investigated (cf. 
Remark 2.2). Using some analogous concept of the Jankovic-Reilly decomposition of sets 
([2]), the concept of ωρ-closed sets is completely characterized (cf. Theorem 4.8(iii)). In 
Section 5 and Section 6, some new separation axioms are introduced and investigated (i.e.
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(iii) Suppose that E �
X has property (B)E′

X
and that (∗2’): if x ∈ X then X \ {x} ∈

EX ∩ SC(X, τ) or {x} ∈ E �
X . Then, (X, τ) is (EX , E �

X)-T ◦−
1/2.

Proof. (i) Let {x} be a singleton in (X, τ). We suppose that X \ {x} �∈ EX . Let
U ∈ EX be any set such that X \ {x} ⊂ U . Then, U = X holds only; and so E �

X -
Cl(X \ {x}) ⊂ EX -Cl(U) = EX -Cl(X) = X = ρ(U), where ρ ∈ {id, ◦, ◦−}. Thus, we
have that X\{x} is (EX , E �

X)-gρ.closed (cf. Definition 5.3(II)). By assumption, it is shown
that X \ (X \ {x}) ∈ E �

X and so {x} ∈ E �
X .

(ii) First, suppose that (∗1’) holds. For a singleton {x} such that {x} ∈ E �
X , it is

shown that E �
X -Cl(X \ {x}) = X \ {x} holds (cf. Notation 5.1(I)(i)). Then, the given

assumption (∗1’) implies the assumption (∗1) of Lemma 5.7(i)(2), i.e., X \ {x} ∈ EX or
E �

X -Cl(X \ {x}) = X \ {x} hold. Thus, by Lemma 5.7(i), (X, τ) is weak (EX , E �
X)-T ρ

1/2,
where ρ ∈ {id, ◦}; and, by Lemma 5.5(ii), (X, τ) is (EX , E �

X)-T ρ
1/2, where ρ ∈ {id, ◦}.

Finally, suppose that (X, τ) is (EX , E �
X)-T ◦−

1/2. Then, by (i) above, it is shown that the
property (∗1’) holds; and so, by the first property of the present (ii), the space (X, τ) is
(EX , E �

X)-T ρ
1/2, where ρ ∈ {id, ◦}.

(iii) Let {x} ∈ E �
X . It is shown that E �

X -Cl(X \ {x}) = X \ {x} holds; and so
the assumption (∗2’) implies the assumption (∗2) of Lemma 5.7(iii), i.e., X \ {x} ∈
EX ∩ SC(X, τ)) or E �

X -Cl(X \ {x}) = X \ {x}) hold. Thus, by Lemma 5.7(iii) and
Lemma 5.5(ii), it is shown that (X, τ) is (EX , E �

X)-T ◦−
1/2. �

Remark 5.10 The following diagram is shown by the above implications in Lemma 5.9:
under the assumption (B)E′

X
;

(EX , E �
X)-T id

1/2

�
(EX , E �

X)-T ◦−
1/2 ↓ ↑
�

(EX , E �
X)-T ◦

1/2

Using Lemma 5.7 for EX := ωρ1O(X, τ) and E �
X := ωρ2O(X, τ), the concept of

”weak (ωρ1, ωρ2)-T ρ
1/2 spaces” is characterized by the following Theorem 5.11, where ρ1 :

SO(X, τ) → P (X) and ρ2 : SO(X, τ) → P (X) are functions such that ρ1 ∈ {id, ◦, ◦−}
and ρ2 ∈ {id, ◦, ◦−} and ρ : ωρ1O(X, τ) → P (X) is a function such that ρ ∈ {id, ◦, ◦−};
(cf. Definition 5.3 (I)(ii)).

Theorem 5.11 Let ρ1 : SO(X, τ) → P (X) and ρ2 : SO(X, τ) → P (X) be two
functions such that ρ1 ∈ {id, ◦, ◦−} and ρ2 ∈ {id, ◦, ◦−}.

(i) The following properties are equivalent:
(1) a topological space (X, τ) is weak (ωρ1, ωρ2)-T ◦

1/2;
(2) (∗1): if x ∈ X then {x} is ωρ1-closed (cf. Definition d75) (i.e., X \ {x} ∈

ωρ1O(X, τ)) or ωρ2Cl(X \ {x}) = X \ {x};
(3) (X, τ) is weak (ωρ1, ωρ2)-T id

1/2.
(ii) Every weak (ωρ1, ωρ2)-T ◦−

1/2 topological space is weak (ωρ1, ωρ2)-T ρ
1/2, where ρ ∈

{id, ◦}.
(iii) Suppose that (∗2): if x ∈ X then X \{x} ∈ ωρ1O(X, τ)∩SC(X, τ) or ωρ2Cl(X \

{x}) = X \ {x}. Then, (X, τ) is weak (ωρ1, ωρ2)-T ◦−
1/2. �

Remark 5.12 The following diagrams are obtained by Theorem 5.11(i) and (ii) above:
for fixed functions ρ1 ∈ {id, ◦, ◦−} and ρ2 ∈ {id, ◦, ◦−} (cf. Remark 5.8),
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weak (ωρ1, ωρ2)-T id
1/2 � {x} ∈ ωρ1C(X, τ) or

� ωρ2Cl(X \ {x}) = X \ {x}(∀x ∈ X)
↓ ↑ weak (ωρ1, ωρ2)-T ◦−

1/2

�
weak (ωρ1, ωρ2)-T ◦

1/2

In Definition 5.3 (II)(i), especially we consider the case where EX := ωρ1O(X, τ)
(ρ1 : SO(X, τ) → P (X) is a function such that ρ1 ∈ {id, ◦, ◦−}) and E �

X :=ωO(X, τ);
and so we have the following propeties on ”(ωρ1, ω)-T ρ

1/2” spaces using Lemma 5.9 above
and Definition 5.3 (II)(i), where ρ : ωρ1O(X, τ) → P (X) is a function such that ρ ∈
{id, ◦, ◦−}. We note that the family E �

X := ωO(X, τ) has property (B)E′
X

(cf. Remark 5.6
above;[26]).

Theorem 5.13 For a fixed function ρ1 : SO(X, τ) → P (X) with ρ1 ∈ {id, ◦, ◦−}, we
have the following properties.

(i) The following properties are equivalent:
(1) a topological space (X, τ) is (ωρ1, ω)-T id

1/2;
(2) if x ∈ X then {x} is ωρ1-closed or {x} is ω-open;
(3) (X, τ) is (ωρ1, ω)-T ◦

1/2.
(ii) Every (ωρ1, ω)-T ◦−

1/2 topological space is (ωρ1, ω)-T id
1/2 and (ωρ1, ω)-T ◦

1/2.
(iii) Suppose that if x ∈ X then {x} is ωρ1-closed and semi-open (i.e. X \ {x} ∈

ωρ1O(X, τ) and {x} ∈ SO(X, τ)), or {x} is ω-open, then (X, τ) is (ωρ1, ω)-T ◦−
1/2. �

Remark 5.14 The following diagram is obtained by Theorem 5.13(i) and (ii) above:
(ωρ1, ω)-T id

1/2 � {x} ∈ ωρ1C(X, τ) ∪ ωO(X, τ) (∀x ∈ X)
�

(ωρ1, ω)-T ◦−
1/2 ↓ ↑

�
(ωρ1, ω)-T ◦

1/2

In Defintion 5.3(II)(i), especially we consider the case where EX := ωρ1O(X, τ)
(ρ1 : SO(X, τ) → P (X) is function such that ρ1 ∈ {id, ◦, ◦−}), E �

X := ω◦O(X, τ) (resp.
E �

X := ω◦−O(X, τ)) and a function ρ : SO(X, τ) → P (X) with ρ ∈ {id, ◦, ◦−}; and so we
have the following properties on ”(ωρ1, ω◦)-T ρ

1/2” (resp. ”(ωρ1, ω◦−)-T ρ
1/2”) spaces, using

Lemma 5.9 and Definition 5.3 (I) above.

Theorem 5.15 For fixed functions ρ1 : SO(X, τ) → P (X) with ρ1 ∈ {id, ◦, ◦−} and
μ : SO(X, τ) → P (X) with μ ∈ {◦, ◦−}, we have the following properties.

(i) For a fixed function ρ : ωρ1O(X, τ) → P (X) with ρ ∈ {id, ◦, ◦−}, if (X, τ) is
(ωρ1, ωμ)-T ρ

1/2, then {x} ∈ ωρ1C(X, τ) ∪ ωμO(X, τ) for each singleton {x} of (X, τ).
(ii) Suppose that ωμO(X, τ) has property (B)ωμO(X,τ) for μ ∈ {◦, ◦−}. Then, the

following properties are equivalent:
(1) (X, τ) is (ωρ1, ωμ)-T id

1/2;
(2) if x ∈ X then {x} ∈ ωρ1C(X, τ) ∪ ωμO(X, τ);
(3) (X, τ) is (ωρ1, ωμ)-T ◦

1/2.
(iii) Suppose that ωμO(X, τ) has property (B)ωμO(X,τ) for μ ∈ {◦, ◦−}. Then, every

(ωρ1, ωμ)-T ◦−
1/2 topological space is (ωρ1, ωμ)-T id

1/2 and (ωρ1, ωμ)-T ◦
1/2.
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1

(ωρ1, ωρ2)-T ρ
1/2-separation axioms (cf. Definition 5.3(I)(i), Theorem 5.11, Theorem 5.13,

Theorem 5.15), where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf. Definition 1.3). Throughout the present
paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).

1 Introduction and preliminaries Throughout the present paper, (X, τ) repre-
sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
Cl(A), Int(A) and Ker(A) denote the closure, interior and kernel of A with respect to
the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
Int(A):=∪{U |U ⊂ A and U ∈ τ} and Ker(A):=∩{V |A ⊂ V and V ∈ τ}. A subset B
of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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their classes of sets, where ρ : SO(X, τ ) → P (X) is a function defined by ρ(V ) :=  V, 
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Remark 2.2). Using some analogous concept of the Jankovic-Reilly decomposition of sets 
([2]), the concept of ωρ-closed sets is completely characterized (cf. Theorem 4.8(iii)). In 
Section 5 and Section 6, some new separation axioms are introduced and investigated (i.e.

108



Characterizations of ω-like closed sets and separation axioms in topological spaces 19

(iv) Suppose that ωμO(X, τ) has property (B)ωμO(X,τ) for μ ∈ {◦, ◦−}. Then, if
{x} ∈ (ωρ1C(X, τ) ∩ SO(X, τ)) ∪ ωμO(X, τ) for each x ∈ X, then (X, τ) is (ωρ1, ωμ)-
T ◦−

1/2. �

(•) In the end of the present section, we define the concepts of ω◦-Ti spaces, ω◦−-Ti

spaces and ω-Ti spaces for each integer i ∈ {1, 0} (cf. Definition 5.16 (II) below). The
following Definition 5.16 (I) (i.e., EX -Ti separation axioms, where i ∈ {0, 1}) are well
known by many authors; for examples, they are defined on a generalized topology, say
λ, due to [1, in 2002] and they are investigated on (X, λ) by [24, in 2011; for i=1],[25, in
2016;Definition 1.7 (for i=1), Definition 1.8 (for i=1/2), Defintion 3.1 (for i=3/4)]. We
give Definition 5.16 (I) in order to explain the concepts of ωρ-Ti(i ∈ {0, 1}) accurately
(cf. Definiton 5.16 (II)).

Let X ×X be the direct product of X and �(X) := {(x, x)| x ∈ X} the diagonal set
of X; and (X × X) \ �(X) := {(x, y) ∈ X × X|x �= y}.
Definition 5.16 (I)([1], [24],[25]) A topological space (X, τ) is said to be:

(i) EX -T1, if for each (x, y) ∈ (X ×X) \�(X) there exist subsets U and V belonging
to EX such that x ∈ U but y �∈ U and y ∈ V but x �∈ V ;

(ii) EX -T0, if for each (x, y) ∈ (X × X) \ �(X) there exists a subset U belonging to
EX such that x ∈ U and y �∈ U or y ∈ U and x �∈ U (i.e., U ∈ EX contains exactly one of
two points).

(II) For each integer i ∈ {0, 1} and a function ρ : SO(X, τ) → P (X) with ρ ∈
{id, ◦, ◦−}, a topological space (X, τ) is said to be ωρ-Ti , if (X, τ) is ωρO(X, τ)-Ti (in
the sense of (I) for EX = ωρO(X, τ)) (cf. Notation 1.5 (i)). Sometimes, the separation
axiom ωid-Ti is denoted by ω-Ti, where i ∈ {0, 1}.

The followng properties are well known; (ii) is obtained by using (i) below and
Lemma 5.4.

Theorem 5.17 (i) The following properties (1) and (2) are equivalent:
(1) a topological space (X, τ) is EX-T1;
(2) for each singleton {x}, EX-Cl({x}) = {x} holds.
(ii) Suppose that EX has property (B)EX

. Then, (1), (2) above and the following
property (3) are equivalent.

(3) For each singleton {x}, X \ {x} ∈ EX holds. �

We investigate some relations among ωρ1-Ti spaces for a function ρ1 : SO(X, τ) →
P (X) with ρ1 ∈ {id, ◦, ◦−} and a fixed number i with i ∈ {0, 1/2, 1}.
Theorem 5.18 (i) Every Ti space is ω-Ti for each i ∈ {0, 1/2, 1}, where a symbol
ω-T1/2 means the separation axiom: (ω, ω)-T id

1/2 (cf. Definition 5.3 (I)(∗1)).
(ii) Every ω◦-Ti space is ω-Ti and ω◦−-Ti for each i ∈ {0, 1} (cf. Theorem 5.13(ii) for

the case where i = 1/2).

Proof (i) Since τ ⊂ ωO(X, τ), the case where of i ∈ {0, 1} is proved by Definition 5.16
for EX := ωO(X, τ). By [5, Theorem 2.5], it is shown that if (X, τ) is T1/2 then every
singleton {x} of (X, τ) is open or closed; and so it is ω-open or ω-closed. Then, the proof
of the case where of i = 1/2 is obtained by Theorem 5.13(i) for ρ1 = id.

(ii) Since ω◦O(X, τ) ⊂ ωO(X, τ) and ω◦O(X, τ) ⊂ ω◦−O(X, τ) holds (cf. Theo-
rem 2.1), the proof of (ii) is obtained by Definition 5.16. �
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We investigate some relations among ωρ1-T0 spaces, ωρ1-T1 spaces and (ωρ1, ωρ1)-
T ρ

1/2 spaces, where ρ1 : SO(X, τ) → P (X) is a function such that ρ1 ∈ {id, ◦, ◦−} and
ρ = id : ωρ1O(X, τ) → P (X) (cf. Definition 5.3(I) and Definition 5.16 (II)).

Theorem 5.19 We have the following diagram of implications.
(i) ω-T1 ⇒ (ω, ω)-T id

1/2(= ω-T1/2) ⇒ ω-T0.
(ii) Let μ : SO(X, τ) → P (X) be a function such that μ ∈ {◦, ◦−}. Supose that

ωμO(X, τ) has property property (B)ωμO(X,τ). Then,
ωμ-T1 ⇒ (ωμ, ωμ)-T id

1/2.
(iii) Let b : SO(X, τ) → P (X) be a fixed function such that b ∈ {◦, ◦−}. Then,

(ωb, ωb)-T id
1/2 ⇒ ωb-T0.

Proof (i) ·(ω-T1 ⇒ (ω, ω)-T id
1/2): Suppose that (X, τ) is ω-T1, i.e., ωO(X, τ)-T1. By

Theorem 5.17(i) for EX := ωO(X, τ), it is shown that ωO(X, τ)-Cl({x}) = {x} for each
singleton {x} of (X, τ); and so, by Theorem 5.17(ii) for EX := ωO(X, τ), it is shown
that every singleton {x} is ω-closed (i.e., X \ {x} ∈ ωO(X, τ)), because ωO(X, τ) has
property (B)ωO(X,τ) (cf. Remark 5.6(i)). Using Theorem 5.13(i) for ρ1 = id, we have
that the space (X, τ) is (ω, ω)-T id

1/2 (cf. Remark 5.6(ii)).
·((ω, ω)-T id

1/2 ⇒ ω-T0): Suppose that (X, τ) is (ω, ω)-T id
1/2. By Theorem 5.13(i) for

ρ1 = id, every singleton {x} is ω-closed or ω-open. For a pair of distinct points x and y,
we consider the following cases:

Case 1. {x} ∈ ωO(X, τ) and {y} ∈ ωO(X, τ): for this case, {x} is the required set
belonging to EX := ωO(X, τ) such that x ∈ {x} and y �∈ {x}.

Case 2. {x} ∈ ωO(X, τ) and {y} ∈ ωC(X, τ): for this case, {x} ∈ EX := ωO(X, τ)
such that x ∈ {x} and y �∈ {x}.

Case 2’. {x} ∈ ωC(X, τ) and {y} ∈ ωO(X, τ): for this case, {y} ∈ EX := ωO(X, τ)
such that y ∈ {y} and x �∈ {y}.

Case 3. {x} ∈ ωC(X, τ) and {y} ∈ ωC(X, τ): for this case, X\{y} ∈ EX := ωO(X, τ)
such that x ∈ X \ {y} and y �∈ X \ {y}.
Therefore (X, τ) is ω-T0 (cf. Definition 5.16(II) for ρ = id).

(ii) Let x ∈ X. By Theorem 5.17(ii) for EX := ωμO(X, τ), it is shown that the
singleton {x} is ωμ-closed (i.e., X \ {x} ∈ ωμO(X, τ)); and so, by Theorem 5.15(ii) for
the case where ρ1 = μ, (X, τ) is (ωμ, ωμ)-T id

1/2.
(iii) Let (X, τ) be an (ωb, ωb)-T id

1/2 space, where b ∈ {◦, ◦−}. Let x �= y be two points
of X. Then, by Theorem 5.15(i) for EX := ωbO(X, τ) and ρ1 = μ = b, it is shown that,
the singleton {x} is ωb-closed or {x} is ωb-open. Then, (X, τ) is ωb-T0. �

6 An example satisfying a separation axiom: ”ω◦−-T1 except a subset A” of
(Z, κ) In the last section, we prove the following properties: Theorem 6.1 on some
separation axioms of the digital line (Z, κ).

Theorem 6.1 Let (Z, κ) be the digital line and Zκ := {2s + 1|s ∈ Z}. We have the
following properties of (Z, κ).

(i) (Z, κ) is (ω, ω)-T id
1/2.

(ii) (Z, κ) is not ω◦-T0.
(iii) (Z, κ) is not ω◦−-T0.
(iv) (Z, κ) is ω◦−-T1 except Zκ.
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(ωρ1, ωρ2)-T ρ
1/2-separation axioms (cf. Definition 5.3(I)(i), Theorem 5.11, Theorem 5.13,

Theorem 5.15), where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf. Definition 1.3). Throughout the present
paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).

1 Introduction and preliminaries Throughout the present paper, (X, τ) repre-
sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
Cl(A), Int(A) and Ker(A) denote the closure, interior and kernel of A with respect to
the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
Int(A):=∪{U |U ⊂ A and U ∈ τ} and Ker(A):=∩{V |A ⊂ V and V ∈ τ}. A subset B
of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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In the end of the present section, we prove the Theorem 6.1 above, after recalling of
definitions (i.e., Definitions 6.2, 6.3) and preparing some propositions (i.e., Propositions
6.4,6.5).

Definition 6.2 Suppose that |X| > 1. Let A be a proper subset of X. A topological
space (X, τ) is said to be:

EX-T1 except A, if the following properties (1) and (2) are satisfied:
(1) for every ordered pair (x, y) ∈ (X \ A) × (X \ A) such that x �= y, there exists a

set V ∈ EX such that x ∈ V and y �∈ V and there exists a set V1 ∈ EX such that x �∈ V1

and y ∈ V1;
(2) for every ordered pair (a, b) ∈ A × A such that a �= b, there does not exist any

subsets V ∈ EX and V1 ∈ EX such that a ∈ V and b �∈ V , and b ∈ V1 and a �∈ V1.

Put EX := ω◦−O(X, τ) in Defintion 6.2; then we have the following definition.

Definition 6.3 Suppose that |X| > 1 and A is a proper subset of X. A topologcal
space (X, τ) is said to be ω◦−-T1 except A, if the space (X, τ) is ω◦−O(X, τ)-T1 except
A in the sense of Definition 6.2.

Proposition 6.4 Let (Z, κ) be the digital line and {2m} and {2s+1} be two singletons
of (Z, κ), where m, s ∈ Z.

(i) {2m} ∈ ωC(Z, κ), {2m} �∈ ωO(Z, κ); {2s + 1} �∈ ωC(Z, κ), {2s + 1} ∈ ωO(Z, κ).
(ii) {2m} �∈ ω◦−C(Z, κ), {2m} ∈ ω◦−O(Z, κ); {2s + 1} �∈ ω◦−C(Z, κ), {2s + 1} �∈

ω◦−O(Z, κ).
(iii) For every singleton {x} of (Z, κ), {x} �∈ ω◦C(Z, κ) and {x} �∈ ω◦O(Z, κ).

Proof. (i) It is well known that {2m} is not open and it is closed in (Z, κ) and {2s + 1}
is open and it is not closed in (Z, κ). Since ωO(Z, κ) = κ holds by [17, Theorem 4.6],
and hence we have that {2m} ∈ ωC(Z, κ) \ωO(Z, κ) and {2s+1} ∈ ωO(Z, κ) \ωC(Z, κ)
hold.

(ii) · Proof of {2m} �∈ ω◦−C(Z, κ): there exists a semi-open set V := {2m, 2m + 1}
such that {2m} ⊂ V and Cl({2m}) = {2m} �⊂ Int(Cl(V )), because of Int(Cl(V )) =
Int({2m, 2m + 1, 2m + 2}) = {2m + 1}; and so {2m} is not ω◦−-closed in (Z, κ) (i.e.,
{2m} �∈ ω◦−C(Z, κ)).

· Proof of {2m} ∈ ω◦−O(Z, κ): let E := Z\{2m}. Let V be a semi-open set containing
E; then V = E or V = Z. Since Cl(E) = Z and Int(Cl(E)) = Z hold, we have that
Cl(E) ⊂ Int(Cl(V )); and so E := Z \ {2m} is ω◦−-closed in (Z, κ). Hence {2m} is
ω◦−-open (i.e., {2m} ∈ ω◦−O(Z, κ)).

· Proof of {2s + 1} �∈ ω◦−C(Z, κ): there exists a semi-open set V := {2s + 1} such
that {2s + 1} ⊂ V and Cl({2s + 1}) = {2s, 2s + 1, 2s + 2} �⊂ Int(Cl(V )), because of
Int(Cl(V )) = Int({2s, 2s + 1, 2s + 2}) = {2s + 1}; and so {2s + 1} is not ω◦−-closed in
(Z, κ) (i.e., {2s + 1} �∈ ω◦−C(Z, κ)).

· Proof of {2s + 1} �∈ ω◦−O(Z, κ): let E := Z \ {2s + 1}. Let V := E; and so
V is a semi-open set containing E. Since Cl(E) = E and Int(Cl(V )) = Int(E) =
Z\{2s, 2s+1, 2s+2} hold, we have that Cl(E) = E �⊂ Int(Cl(V )); and so E := Z\{2s+1}
is not ω◦−-closed in (Z, κ). Hence {2s + 1} �∈ ω◦−O(Z, κ).

(iii) Let x = 2m or x = 2s + 1, where m ∈ Z and s ∈ Z.
· Proof of {2m} �∈ ω◦C(Z, κ): by using the properties for (Z, κ) of Theorem 2.1(iii)

(i.e., ω◦C(Z, κ) ⊂ ω◦−C(Z, κ)) and the corresponding property of the present (ii) (i.e.,
{2m} �∈ ω◦−C(Z, κ)), it is shown that {2m} �∈ ω◦C(Z, κ).

· Proof of {2m} �∈ ω◦O(Z, κ): by using the property for (X, τ) of Theorem 2.1(i) (i.e.,
ω◦C(X, τ) ⊂ ωC(X, τ)) and definitions, it is shown that ω◦O(X, τ) ⊂ ωO(X, τ) holds
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in general. By using the corresponding property of the proof of (i), it is obtained that
{2m} �∈ ω◦O(Z, κ).

· Proof of {2s + 1} �∈ ω◦C(Z, κ): by using the property for (Z, κ) of Theorem 2.1(iii)
(i.e., ω◦C(Z, κ) ⊂ ω◦−C(Z, κ)) and the corresponding property of the present (ii) (i.e.,
{2s + 1} �∈ ω◦−C(Z, κ)), it is shown that {2s + 1} �∈ ω◦C(Z, κ).

· Proof of {2s + 1} �∈ ω◦O(Z, κ): by using the same property for (Z, κ) of The-
orem 2.1(iii) (cf. Proof of {2m} �∈ ω◦O(Z, κ)) and the corresponding property of the
present (ii) (i.e., {2s + 1} �∈ ω◦−O(Z, κ)), it is shown that {2s + 1} �∈ ω◦O(Z, κ). �
Proposition 6.5 (i) (i-1) If U ∈ ω◦O(Z, κ) and 2m ∈ U for some integer m, then
{2m − 1, 2m, 2m + 1} ⊂ U .

(i-2) If U ∈ ω◦O(Z, κ) and 2s + 1 ∈ U for some integer s, then {2s − 1, 2s, 2s +
1, 2s + 2, 2s + 3} ⊂ U .

(i-3) ω◦O(Z, κ) = {∅, Z} holds.
(ii) (ii-1) If V ∈ ω◦−O(Z, κ) and 2s+1 ∈ V for some integer s, then {2s− 1, 2s, 2s+

1, 2s + 2, 2s + 3} ⊂ V .
(ii-2) The following properties on a nonempty subset V are equivalent:

(1) V ∈ ω◦−O(Z, κ) and 2s + 1 ∈ V for some integer s;
(2) V = Z holds.

(ii-3) ω◦−O(Z, κ) = {E| E ⊂ ZF} ∪ {∅, Z} holds, where ZF :={2m| m ∈ Z}. Espe-
cially, ZF ∈ ω◦−O(Z, κ) holds.

(ii-4) Every nonempty subset of Zκ is not ω◦−-open in (Z, κ)(i.e., {2m+1| m ∈ E} �∈
ω◦−O(Z, κ), where E ⊂ Z with E �= ∅). Especially, Zκ �∈ ω◦−O(Z, κ) holds.

Proof. (i) (i-1) Since {2m} ∈ SC(Z, κ) and so Z \ {2m} is a semi-open set. And, it
follows from assumptions that Z \ {2m} contains the set Z \U which is ω◦-closed. Then,
Cl(Z \ U) ⊂ Int(Z \ {2m})=Z \ {2m}; and so we have that Z \ Int(U) ⊂ Z \ {2m},
i.e., 2m ∈ Int(U). There exists the smallest open set {2m − 1, 2m, 2m + 1} containing
2m such that {2m − 1, 2m, 2m + 1} ⊂ Int(U) ⊂ U (e.g., [17, Definition 3.3 and its near
part]).

(i-2) Since Z = ZSC ∪ Zω◦O (cf. Lemma 4.3(i)), we consider the following cases:
{2s + 1} ∈ SC(Z, κ) or {2s + 1} ∈ ω◦O(Z, κ). By Proposition 6.4(iii), {2s + 1} �∈
ω◦O(Z, κ); and so we consider the case where {2s + 1} ∈ SC(Z, κ). Since Z \ {2s + 1}
is a semi-open set containing Z \ U and the set Z \ U is an ω◦-closed set, we have that
Cl(Z\U) ⊂ Int(Z\{2s+1}) = Z\Cl({2s+1}) = Z\{2s, 2s+1, 2s+2}. Thus, we have
that {2s, 2s+1, 2s+2} ∈ Int(U). Since 2s ∈ Int(U) (resp. 2s+2 ∈ Int(U)), the minimal
open set containing 2s (resp. 2s+2) is included in Int(U),i.e., {2s−1, 2s, 2s+1} ⊂ Int(U)
(resp. {2s + 1, 2s + 2, 2s + 3} ⊂ Int(U).

(i-3) Let U ∈ ω◦O(Z, κ) such that U �= ∅. Then, by (i-1) and (i-2) above, it is shown
that there exists an odd point, say 2u + 1 ∈ U , where u ∈ Z. We claim that Z ⊂ U .
Indeed, let z ∈ Z be a point.

Case 1. z = 2s, where s ∈ Z: for the present case, if 2s < 2u + 1, then we can
take the following sequence of points, say {zi}k

i=1, where k := 2(u − s + 1) and zi :=
2u + 2 − i (1 ≤ i ≤ k), where ; then, z1 = 2u + 1 ∈ U and zk = 2s = z; and by using
(i-1) and (i-2) above, we show inductively, that zi ∈ U (2 ≤ i ≤ k) and hence z ∈ U . If
2s > 2u+1, then we can take the following sequence of points, say {z�i}k�

i=1, k� := 2(s−u)
and z�i := 2u + i (1 ≤ i ≤ k�); then, z�1 = 2u + 1 ∈ U and z�k� = z; and by a similar
arguments of the above case, it is shown that z�i ∈ U (2 ≤ i ≤ k�); and so z ∈ U . Thus,
we proved that z = 2s ∈ U holds for any cases.

Case 2. z = 2t + 1, where t ∈ Z: for the present case, let z �= 2u + 1. If z < 2u + 1,
then we can constract the following sequence of points, say {xi}k

i=1, where k := u− t+1,
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(ωρ1, ωρ2)-T ρ
1/2-separation axioms (cf. Definition 5.3(I)(i), Theorem 5.11, Theorem 5.13,

Theorem 5.15), where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf. Definition 1.3). Throughout the present
paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).

1 Introduction and preliminaries Throughout the present paper, (X, τ) repre-
sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
Cl(A), Int(A) and Ker(A) denote the closure, interior and kernel of A with respect to
the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
Int(A):=∪{U |U ⊂ A and U ∈ τ} and Ker(A):=∩{V |A ⊂ V and V ∈ τ}. A subset B
of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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and xi := 2u + 1 − 2(i − 1)(1 ≤ i ≤ k); then x1 = 2u + 1 ∈ U and xk = z; and by using
(i-2) above, we show inductively, that xi ∈ U(2 ≤ i ≤ k); and so z ∈ U . If 2u + 1 < z,
then we can constract the following sequence of points, say {x�

i}k′
i=1, where k� := t−u+1,

and x�
i := 2u + 1 + 2(i− 1)(1 ≤ i ≤ k�); then x�

1 = 2u + 1 ∈ U and x�
k′ = z; and by using

(i-2) above, we show inductively, that x�
i ∈ U(2 ≤ i ≤ k�); and so z ∈ U .

Therefore, we prove that Z ⊂ U and so U = Z.
(ii) (ii-1) · Proof of {2s, 2s+2} ⊂ V . Since Z\{2s+1} is a semi-open set containing

Z \ V and Z \ V is ω◦−-closed, we have that Cl(Z \ V ) ⊂ Int(Cl(Z \ {2s + 1}))=Z \
{2s, 2s + 1, 2s + 2}. Thus, we have that {2s, 2s + 1, 2s + 2} ⊂ Int(V ).
Since 2s ∈ Int(V ) (resp. 2s + 2 ∈ Int(V )) and the set {2s − 1, 2s, 2s + 1} (resp. {2s +
1, 2s + 2, 2s + 3}) is the ninimal open set containing the point 2s (resp. 2s + 2), we have
that {2s− 1, 2s, 2s + 1} ⊂ V (resp. {2s + 1, 2s + 2, 2s + 3} ⊂ V ). Therefore, we show the
required property that {2s − 2 + j|1 ≤ j ≤ 5} ⊂ V .

(ii-2) (1)⇒(2) In order to prove that Z ⊂ V , let z ∈ Z be a point. First, it is claimed
that:
(∗1) if z = 2m + 1 for some integer m, then z ∈ V .

Proof of (∗1): (Case 1) z := 2m + 1 and z < 2s + 1; for the present case, we apply
(ii-1) for the point 2s + 1 ∈ V and V ∈ ω◦−O(X, τ). And, it is shown inductively that
there exists a finite sequence of points {yi}k

i=1 such that:
(∗2)i yi ∈ V (1 ≤ i ≤ k), where yi := 2s + 1 − 2i and k := s − m.
Indeed, by (ii-1) above for the odd point 2s + 1 ∈ V , it is shown that {2s − 1, 2s, 2s +
1, 2s + 2, 2s + 3} ⊂ V . Thus, 2s − 1 ∈ V ; and so y1 = 2s + 1 − 2 ∈ V . Then, we show
that (∗2)i holds for i = 1. In order to prove (∗2)i by finite induction on i (1 ≤ i ≤ k),
suppose that yr ∈ V , where 1 < r < k and yr := 2s+1− 2r. Since yr is odd and yr ∈ V ,
by (ii-1) above, it is shown that {yr − 2, yr − 1, yr, yr + 1, yr + 2} ⊂ V . Thus, we have
that yr+1 = 2s + 1 − 2(r + 1) = 2s + 1 − 2r − 2 = yr − 2 ∈ V , i.e., we have that (∗2)i

holds for i = r + 1. Then, by finte induction on i (1 ≤ i ≤ k), it is shown that yk ∈ V ;
and hence z = 2m + 1 = 2s + 1− 2(s−m) = ys−m = yk ∈ V . Thus, we show that z ∈ V
for the present Case 1.
(Case 1’). z = 2m+1 ∈ Z and 2s+1 < z: for the present case, we apply (ii-1) above for
the point 2s + 1 ∈ V and V ∈ ω◦−O(X, τ). By an argument similar to that in the proof
of Case 1 above, it is shown inductively that there exists a sequence of points {y�

i}k′
i=1

such that :
(∗2)�i y�

i ∈ V holds for each integer i with 1 ≤ i ≤ k�, where y�
i := (2s + 1) + 2i and

k� := m − s. Thus, we show that z ∈ V for the present Case 1’.
Finally, it is claimed that:
(∗3) if z = 2m for some integer m, then z ∈ V .

Proof of (∗3): by (∗1) above, it is shown that 2u+1 ∈ V for any odd point 2u+1 ∈ Z.
Then, take the odd point z + 1 = 2m + 1; and so 2m + 1 ∈ V . Here, by using (ii-1)
above for the point 2m+1 ∈ V and V ∈ ω◦−O(Z, κ), it is shown that {2m−2, 2m, 2m+
1, 2m + 2, 2m + 3} ⊂ V ; and so z := 2m ∈ V .

Therefore, we conclude that z ∈ V for any point z ∈ Z (i.e., Z = V ).
(2)⇒(1) Suppose V = Z. By definitions, it is obvious that Z ∈ ω◦−O(Z, κ) and

there exists an odd point 2s + 1 ∈ V = Z, where s ∈ Z.
(ii-3) First, we prove that:

(∗4) ω◦−O(Z, κ) ⊂ {E| E ⊂ ZF} ∪ {∅, Z}. Indeed, let V ∈ ω◦−O(Z, κ) such that
V �∈ {∅, Z}. Then, by (ii-2) above, it is shown that 2s + 1 �∈ V holds for every integer
s ∈ Z, i.e., V ⊂ ZF :={2m| m ∈ Z}. Thus, we proved (∗4). Secondly, we prove that:
(∗5) {E| E ⊂ ZF} ∪ {∅, Z} ⊂ ω◦−O(Z, κ) holds. Let V ⊂ ZF with V �∈ {∅, Z}. Then,
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V = {2m| m ∈ A}, where A ⊂ Z. In order to prove hat Z \ V ∈ ω◦−C(Z, κ), let U be a
semi-open set such that Z \ V ⊂ U . Since Zκ={2s + 1|s ∈ Z} ⊂ Z \ V , it is shown that
Z=Cl(Zκ) ⊂ Cl(Z \ V ) ⊂ Cl(U); and so Z = Cl(U) and Cl(Z \ V ) = Z = Int(Cl(U))
hold. Thus, we prove that Z \ V is ω◦−-closed, i.e., V ∈ ω◦−O(Z, κ).
Finally, by (∗5) above, it is especially shown that ZF ∈ ω◦−O(Z, κ).

(ii-4) Let denote V := {2m + 1| m ∈ A}, where A ⊂ Z with A �= ∅. Then, V �∈
{E| E ⊂ ZF} ∪ {∅, Z} ;and so, by (ii-3) above, V �∈ ω◦−O(Z, κ). Especially, Zκ �∈
ω◦−O(Z, κ). �

Remark 6.6 The converse of Proposition 6.5(ii)(ii-1) is not true. Indeed, Let V :=
{2s − 1, 2s, 2s + 1, 2s + 2, 2s + 3} be a subset of (Z, κ), where s ∈ Z. Then, there exists
a semi-open set W := Z \ V such that Z \ V ⊂ W and Cl(Z \ V )=Cl(W ) = W �⊂
Int(Cl(W )). Then, Z \ V �∈ ω◦−C(Z, κ),i.e., V �∈ ω◦−O(Z, κ) holds, even if 2s + 1 ∈ V
and {2s − 1, 2s, 2s + 1, 2s + 2, 2s + 3} ⊂ V .

Proof of Theorem 6.1:
Proof of (i) It is well known that (Z, κ) is T1/2 and so it is (ω, ω)-T id

1/2 (cf. [5,
Theorem 2.5], Theorem 5.18 (i)).

Proof of (ii) Let x := 2m ∈ Z and U be any ω◦-open set such that x ∈ U . By
Proposition 6.5(i)(i-3), it is shown that U = Z and so 2m + 1 ∈ U . Thus, there exists a
pair of distinct points 2m and 2m + 1 of (Z, κ) which does not satisfy the condition of
the ω◦-T0 (cf. Definition 5.16 for EZ := ω◦O(Z, κ)).

Proof of (iii) Let x := 2s + 1 and y := 2s + 3 be two points of (Z, κ), where
s ∈ Z. And, let V (resp. V1) be any ω◦−-open set containing the point x (resp. y). By
Proposition 6.5(ii)(ii-2)(1)⇒(2), it is shown that V = Z (resp. V1 = Z), and so y ∈ V
(resp. x ∈ V ). Thus, (Z, κ) is not ω◦−-T0 (cf. Definition 5.16).

Proof of (iv) First, we recall that Zκ := {2u + 1| u ∈ Z}. Let (x, y) ∈ (Z \ Zκ) ×
(Z \ Zκ) be an ordered pair of points such that x �= y. Since x = 2m for some integer
m, there exists a set V ∈ ω◦−O(Z, κ) (cf. Proposition 6.4(ii)), where V := {2m}, such
that x ∈ V and y �∈ V . And, since y = 2s for some integer s with s �= m, there exists
a set V1 ∈ ω◦−O(Z, κ), where V1 := {2s}, such that x �∈ V1 and y ∈ V1. Thus, one
of the properties of ω◦−-T1-ness except Zκ is satiesfied (cf. (1) of Definition 6.2 and
Definition 6.3).

Finally, let (a, b) ∈ Zκ × Zκ be any ordered pair of points a and b such that a �= b.
Let Va (resp. Wb) be any ω◦−-open set such that a ∈ Va (resp. b ∈ Wb). Then, by
Proposition 6.5(ii)(ii-2) (1)⇒(2), it is shown that Va = Z; and so b ∈ V (resp. Wb = Z
and so a ∈ Wb). Thus, the property (2) for A := Zκ in Definition 6.2 of ω◦−-T1-ness
except Zκ is satisfied.

Therefore, the digital line (Z, κ) is ω◦−-T1 except Zκ. �
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ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
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Abstract. Let Φ be a subset of L∞ containing H∞ and TΦ the family of Toeplitz
operators {Tφ}φ∈Φ. In this paper, we study invariant subspaces of TΦ and their prop-
erties. Moreover, we provide a concrete description of nontrivial invariant subspaces
of TΦ for some Φ.

1 Introduction Let Γ be the unit circle centered at the origin in the complex plane,
and H2(Γn) be the Hardy space on Γn. In [5], the second author showed that H2(Γ) has
a certain rigidity (see Theorem 2.1 stated below), and pointed out that H2(Γ2) does not
have this property. The purpose of this paper is to study this phenomenon with examples.

We introduce notions in this paper. Let L2(Γn) be the usual L2 space with respect to
the normalized Lebesgue measure on Γn. Let P be the orthogonal projection from L2(Γn)
onto H2(Γn). For φ ∈ L∞(Γn), we define

Tφf = P (φf) (f ∈ H2).

Then Tφ is called the Toeplitz operator with symbol φ. For a subset Φ in L∞(Γn), TΦ

denotes the set of Toeplitz operators whose symbols are in Φ, that is, we set

TΦ = {Tφ : φ ∈ Φ}.

The collection of all closed subspaces of H2(Γn) invariant under every Tφ ∈ TΦ is denoted
by LatTΦ. Throughout this paper, we assume that H∞ ⊆ Φ ⊆ L∞.

This paper consists of five sections. In Section 2, we consider one variable Hardy space
and recall results in [5]. In Section 3, we introduce some classes of functions in order to
study LatTΦ. In Section 4, we study LatTΦ for some Φ’s. In Section 5, we show that
LatTΦ is nontrivial for some Φ, and present examples of invariant subspaces of Tz and Tw.

2 A certain rigidity of H2(Γ) The following theorem was given in [5], which shows
that H2(Γ) has a certain rigidity.

Theorem 2.1 ([5]). If Φ = H∞(Γ) ∪ {φ} for φ ∈ L∞(Γ) \ H∞(Γ), then LatTΦ =
{⟨0⟩, H2(Γ)}.

The original proof is based on the theory of uniform algebras. We shall give another
proof to this theorem.

Proof. In this proof, we will write H2 = H2(Γ), H∞ = H∞(Γ) and so on. Suppose that
M ∈ LatTΦ and M is nontrivial. Then, M is an invariant subspace of H2. Hence, there
exists a non-constant inner function q such that M = qH2 by Beurling’s theorem. We note
that TφM ⊂ M is equivalent to that

PH2φqH2 ⊂ qH2.
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Hence, for any function h ∈ H2, there exists a function gh ∈ H2 such that PH2(φqh) = qgh.

Then we have that PH2(φqh − qgh) = 0, and which is equivalent to that φqh − qgh ∈ H2
0 ,

where H2
0 = L2 ⊖H2. Therefore we have that

(2.1.1) φqh ∈ M⊕H2
0 (h ∈ H2).

In particular, for h = 1, there exist g1 ∈ H2 and k ∈ H2
0 such that

(2.1.2) φq = qg1 + k.

Put N = H2 ⊖M. Multiplying both sides of (2.1.2) by h ∈ H∞, we obtain

φqh = {PM + PN + (IL2 − PH2)}(qg1h+ kh)

= (qg1h+ PMkh)⊕ PNkh⊕ (IL2 − PH2)kh.

Then, by (2.1.1), we note that

PNkh = PNφqh = 0.

Let D be the open unit disc in the complex plane. Now, setting

k =

∞∑
j=1

cjz
j , kn =

n∑
j=1

cjz
j and sλ =

1

1− λz
(λ ∈ D),

we have that

∥PNknsλ∥ = ∥PNknsλ − PNksλ∥
≤ ∥knsλ − ksλ∥
≤ ∥sλ∥∞∥kn − k∥
→ 0

as n → ∞. On the other hand,

PNknsλ = PNT ∗
kn
sλ

= PNkn(λ)sλ

→ PNk(λ)sλ

as n → ∞. Therefore PNk(λ)sλ = 0 for any λ ∈ D. If k(λ) ̸= 0 for some λ, then PN sλ = 0.
However,

PN sλ =
1− q(λ)q

1− λz
̸= 0.

Hence k(λ) = 0 for all λ ∈ D. Then we see that φq = qg1 in (2.1.2), and which implies
φ = g1 ∈ H2. This contradicts that φ ∈ L∞ \H∞.

From Theorem 2.1, in H2(Γ), LatTΦ has only trivial invariant subspaces if Φ contains
H∞(Γ) properly. On the other hand, in the case ofH2(Γ2), LatTΦ may not be {⟨0⟩, H2(Γ2)}
even if Φ properly contains H∞(Γ2). The following is an example.

Example 2.2. We set M = zH2(Γ2)+wH2(Γ2). Then M ∈ LatTΦ for Φ = H∞(Γ2)∪{zw}.
We will see more examples in Section 5.
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3 MΦ, MΦ and KΦ
M We focus on the structure of H2(Γ2), so that we will write L2 =

L2(Γ2), H2 = H2(Γ2) and so on, if no confusion occurs. In this section, some classes of
functions which play important roles in this paper are introduced.

Definition 3.1. Let φ be a function in L∞. For M ∈ LatTφ, we put

Mφ = {f ∈ M : φf ∈ M} and Mφ = M⊖Mφ.

Moreover, let Φ be a subset of L∞. For M ∈ LatTΦ, we put

MΦ =
∩
φ∈Φ

Mφ and MΦ = M⊖MΦ.

Example 3.1. Mz = zM and Mz = M ⊖ zM. Further, if Φ = H∞ ∪ {z, w}, then
MΦ = zwM and MΦ = M⊖ zwM.

We are mainly interested in the case where Φ is a subset of L∞ which contains H∞

properly. We shall give some general facts on MΦ and MΦ.

Proposition 3.2. Let Φ be a subset of L∞ which contains H∞ properly. Then MΦ is an
invariant subspace in H2.

Proof. It suffices to show that Mφ is an invariant subspace for any φ ∈ Φ. If f ∈ Mφ then
φf ∈ M. It follows from this that zφf ∈ M, that is, zf ∈ Mφ. Hence Mφ is invariant
under multiplication by z. Moreover, if fn ∈ Mφ and fn → f (n → ∞), then f ∈ M and
φfn → φf (n → ∞) in M. Hence we have that f ∈ Mφ, that is, Mφ is closed. These
conclude that M is an invariant subspace in H2.

In order to give the next theorem on MΦ, we need a lemma.

Lemma 3.3. Let Φ be a subset of L∞ which contains H∞ properly. Suppose that M ∈
LatTΦ. For any f ∈ H∞, we define Qf = PMΦTf |MΦ . Then

Qfg = QfQg (f and g ∈ H∞).

Proof. It follows from Proposition 3.2 that

Qfg −QfQg = PMΦTfgPMΦ − PMΦTfPMΦTgPMΦ

= PMΦTf (PM − PMΦ)TgPMΦ

= PMΦTfPMΦ
TgPMΦ

= 0.

Theorem 3.4. Let Φ be a subset of L∞ which contains H∞ properly. If M ∈ LatTΦ then
dimMΦ = ∞.

Proof. Suppose dimMΦ = n < ∞. Then, by Lemma 3.3, there exists a finite Blaschke
product b1(z) such that Qb1(z) = 0. Hence we have b1(z)MΦ ⊂ MΦ. Further, it follows
from Proposition 3.2 that b1(z)MΦ ⊂ MΦ, that is,

b1(z)φM ⊂ M (φ ∈ Φ).

Similarly, there exists a finite Blaschke product b2(w) such that

b2(w)φM ⊂ M (φ ∈ Φ).
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M ∈ LatTΦ and M is nontrivial. Then, M is an invariant subspace of H2. Hence, there
exists a non-constant inner function q such that M = qH2 by Beurling’s theorem. We note
that TφM ⊂ M is equivalent to that

PH2φqH2 ⊂ qH2.
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Hence, for any function h ∈ H2, there exists a function gh ∈ H2 such that PH2(φqh) = qgh.

Then we have that PH2(φqh − qgh) = 0, and which is equivalent to that φqh − qgh ∈ H2
0 ,

where H2
0 = L2 ⊖H2. Therefore we have that

(2.1.1) φqh ∈ M⊕H2
0 (h ∈ H2).

In particular, for h = 1, there exist g1 ∈ H2 and k ∈ H2
0 such that

(2.1.2) φq = qg1 + k.

Put N = H2 ⊖M. Multiplying both sides of (2.1.2) by h ∈ H∞, we obtain

φqh = {PM + PN + (IL2 − PH2)}(qg1h+ kh)

= (qg1h+ PMkh)⊕ PNkh⊕ (IL2 − PH2)kh.

Then, by (2.1.1), we note that

PNkh = PNφqh = 0.

Let D be the open unit disc in the complex plane. Now, setting

k =

∞∑
j=1

cjz
j , kn =

n∑
j=1

cjz
j and sλ =

1

1− λz
(λ ∈ D),

we have that

∥PNknsλ∥ = ∥PNknsλ − PNksλ∥
≤ ∥knsλ − ksλ∥
≤ ∥sλ∥∞∥kn − k∥
→ 0

as n → ∞. On the other hand,

PNknsλ = PNT ∗
kn
sλ

= PNkn(λ)sλ

→ PNk(λ)sλ

as n → ∞. Therefore PNk(λ)sλ = 0 for any λ ∈ D. If k(λ) ̸= 0 for some λ, then PN sλ = 0.
However,

PN sλ =
1− q(λ)q

1− λz
̸= 0.

Hence k(λ) = 0 for all λ ∈ D. Then we see that φq = qg1 in (2.1.2), and which implies
φ = g1 ∈ H2. This contradicts that φ ∈ L∞ \H∞.

From Theorem 2.1, in H2(Γ), LatTΦ has only trivial invariant subspaces if Φ contains
H∞(Γ) properly. On the other hand, in the case ofH2(Γ2), LatTΦ may not be {⟨0⟩, H2(Γ2)}
even if Φ properly contains H∞(Γ2). The following is an example.

Example 2.2. We set M = zH2(Γ2)+wH2(Γ2). Then M ∈ LatTΦ for Φ = H∞(Γ2)∪{zw}.
We will see more examples in Section 5.

COMMON INVARIANT SUBSPACES OF A FAMILY OF TOEPLITZ OPERATORS S. Kuwahara, T. Nakazi and M. Seto

3 MΦ, MΦ and KΦ
M We focus on the structure of H2(Γ2), so that we will write L2 =

L2(Γ2), H2 = H2(Γ2) and so on, if no confusion occurs. In this section, some classes of
functions which play important roles in this paper are introduced.

Definition 3.1. Let φ be a function in L∞. For M ∈ LatTφ, we put

Mφ = {f ∈ M : φf ∈ M} and Mφ = M⊖Mφ.

Moreover, let Φ be a subset of L∞. For M ∈ LatTΦ, we put

MΦ =
∩
φ∈Φ

Mφ and MΦ = M⊖MΦ.

Example 3.1. Mz = zM and Mz = M ⊖ zM. Further, if Φ = H∞ ∪ {z, w}, then
MΦ = zwM and MΦ = M⊖ zwM.

We are mainly interested in the case where Φ is a subset of L∞ which contains H∞

properly. We shall give some general facts on MΦ and MΦ.

Proposition 3.2. Let Φ be a subset of L∞ which contains H∞ properly. Then MΦ is an
invariant subspace in H2.

Proof. It suffices to show that Mφ is an invariant subspace for any φ ∈ Φ. If f ∈ Mφ then
φf ∈ M. It follows from this that zφf ∈ M, that is, zf ∈ Mφ. Hence Mφ is invariant
under multiplication by z. Moreover, if fn ∈ Mφ and fn → f (n → ∞), then f ∈ M and
φfn → φf (n → ∞) in M. Hence we have that f ∈ Mφ, that is, Mφ is closed. These
conclude that M is an invariant subspace in H2.

In order to give the next theorem on MΦ, we need a lemma.

Lemma 3.3. Let Φ be a subset of L∞ which contains H∞ properly. Suppose that M ∈
LatTΦ. For any f ∈ H∞, we define Qf = PMΦTf |MΦ . Then

Qfg = QfQg (f and g ∈ H∞).

Proof. It follows from Proposition 3.2 that

Qfg −QfQg = PMΦTfgPMΦ − PMΦTfPMΦTgPMΦ

= PMΦTf (PM − PMΦ)TgPMΦ

= PMΦTfPMΦ
TgPMΦ

= 0.

Theorem 3.4. Let Φ be a subset of L∞ which contains H∞ properly. If M ∈ LatTΦ then
dimMΦ = ∞.

Proof. Suppose dimMΦ = n < ∞. Then, by Lemma 3.3, there exists a finite Blaschke
product b1(z) such that Qb1(z) = 0. Hence we have b1(z)MΦ ⊂ MΦ. Further, it follows
from Proposition 3.2 that b1(z)MΦ ⊂ MΦ, that is,

b1(z)φM ⊂ M (φ ∈ Φ).

Similarly, there exists a finite Blaschke product b2(w) such that

b2(w)φM ⊂ M (φ ∈ Φ).
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Hence b1(z)φ and b2(w)φ belong to H2 for all φ ∈ Φ. Therefore we have

φ ∈ b1(z)H
2 ∩ b2(w)H

2 ⊂ H2.

However, this is a contradiction.

Next, we introduce a kind of complement of M in our problem.

Definition 3.2. For M ∈ LatTΦ and φ ∈ Φ, put

K = {f : f ∈ L2 ⊖H2}

and

Kφ
M = {k ∈ K : k = φf − g for some f and g ∈ M},

where f denotes the complex conjugate of f . Moreover, we set

KΦ
M =

∪
φ∈Φ

Kφ
M.

If φ ∈ H∞ and k ∈ Kφ
M, then there exist f and g ∈ M such that k = φf − g. However,

it follows from K ∩M = ⟨0⟩ that k = 0, that is, Kφ
M = ⟨0⟩ for φ ∈ H∞, so that we may

define

KΦ
M =

∪
φ∈Φ\H∞

Kφ
M.

Remark 3.5. In H2(Γ),

K = {f : f ∈ L2(Γ)⊖H2(Γ)} = H2
0 (Γ)

and we have already dealt with Kφ
M in the proof of Theorem 2.1 (see (2.1.1)), implicitly.

Next, we study the properties of KΦ
M used in the rest of this paper.

Lemma 3.6. Let M be a closed subspace in H2, and Φ be a subset of L∞ which contains
H∞.

(1) M ∈ LatTΦ if and only if φM ⊂ M+Kφ
M for all φ ∈ Φ.

(2) If M ∈ LatTΦ, then (IL2 − PM)φMφ = Kφ
M for all φ ∈ Φ.

Proof. (1) First we show the ‘if’ part. For any φ ∈ Φ and f ∈ M, there exist g ∈ M and
k ∈ Kφ

M such that φf = g + k. From this equality, we have Tφf = g ∈ M. Hence we see
that M ∈ LatTΦ. Next, we show the ‘only if’ part. Suppose that M is in LatTΦ. For any
φ ∈ Φ and f ∈ M, there exist g ∈ M, h ∈ H2 ⊖M and k ∈ K such that

φf = g + h+ k.

From this equality, we have P (φf) = g + h. Since P (φf) and g are in M, h must be 0.
Therefore we see that φf = g + k and that k ∈ Kφ

M by the definition of Kφ
M.

(2) Since M contains Mφ, for any f ∈ Mφ there exist g ∈ M and k ∈ Kφ
M such that

φf = g + k̄ by (1). Then we see

(IL2 − PM)φf = (IL2 − PM)(g + k̄) = k̄.
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Therefore we have (IL2 − PM)φMφ ⊂ Kφ
M. On the other hand, for any k ∈ Kφ

M there
exist f and g ∈ M such that φf = g + k̄ by the definition of Kφ

M. In particular, we can
write f = f1 + f2, where f1 ∈ Mφ and f2 ∈ Mφ. Since φf1 ∈ M, we have

k̄ = (IL2 − PM)k̄

= (IL2 − PM)(φf − g)

= (IL2 − PM)(φf1 + φf2 − g)

= (IL2 − PM)φf2,

and which implies Kφ
M ⊂ (IL2 − PM)φMφ. Hence we have

(IL2 − PM)φMφ = Kφ
M.

Thus we obtain (2).

4 Properties of LatTΦ In this section, we study properties of LatTΦ for some Φ as the
union of H∞ and some set. First we set Φ the union of H∞ and the complex conjugate of
functions in H∞.

Proposition 4.1. If Φ = H∞ ∪H∞, then LatTΦ = LatTL∞ .

Proof. It is obvious that LatTL∞ ⊂ LatTΦ. To prove the converse inclusion, suppose that
M ∈ LatTΦ. Then, since Th1h2

= Th2
Th1 for any h1, h2 ∈ H∞, we see that Th1h2

M ⊂ M.

We note that L∞ is the algebra generated by H∞ and H∞ in the w∗-topology. So for any
φ ∈ L∞ we can choose a net {φα} ⊂ L∞ converging in w∗-topology to φ, where each φα

is a linear combination of products of functions in H∞ and H∞ and satisfies TφαM ⊂ M.
For any f and g ∈ H2 we have

lim
α∈A

⟨Tφα
f, g⟩ = lim

α∈A

∫

Γ2

φαfgdµ =

∫

Γ2

φfgdµ = ⟨Tφf, g⟩.

In particular, for any f ∈ M and g ∈ H2 ⊖M we see that

⟨Tφf, g⟩ = lim
α∈A

⟨Tφα
f, g⟩ = 0.

Hence Tφf is in M. Therefore we have TφM ⊂ M and so we conclude that LatTΦ ⊂
LatTL∞ .

Proposition 4.2. Suppose that F is a non-constant function in H∞∩qH∞ for some inner
function q. Let Φ = H∞ ∪ {F}. If M is in LatTΦ, then MΦ = MF ⊇ qM.

Proof. If F ∈ H∞ ∩ qH∞ then there exists f ∈ H∞ such that F = qf . Hence FqM =
fM ⊂ M, and trivially, qM ⊂ M. Therefore we have that qM ⊂ MF .

Next, we consider examples when Φ consists of all functions in H∞ and the complex
conjugate of an inner function.

Theorem 4.3. Let Φ = H∞ ∪ {q} for some non-constant inner function q. Suppose that
M ∈ LatTΦ. Then the following statements hold.

(1) MΦ = qM and MΦ = M⊖ qM.

(2) MΦ ⊂ (H2)Φ and MΦ ⊂ (H2)Φ.
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Abstract. Let Φ be a subset of L∞ containing H∞ and TΦ the family of Toeplitz
operators {Tφ}φ∈Φ. In this paper, we study invariant subspaces of TΦ and their prop-
erties. Moreover, we provide a concrete description of nontrivial invariant subspaces
of TΦ for some Φ.

1 Introduction Let Γ be the unit circle centered at the origin in the complex plane,
and H2(Γn) be the Hardy space on Γn. In [5], the second author showed that H2(Γ) has
a certain rigidity (see Theorem 2.1 stated below), and pointed out that H2(Γ2) does not
have this property. The purpose of this paper is to study this phenomenon with examples.

We introduce notions in this paper. Let L2(Γn) be the usual L2 space with respect to
the normalized Lebesgue measure on Γn. Let P be the orthogonal projection from L2(Γn)
onto H2(Γn). For φ ∈ L∞(Γn), we define

Tφf = P (φf) (f ∈ H2).

Then Tφ is called the Toeplitz operator with symbol φ. For a subset Φ in L∞(Γn), TΦ

denotes the set of Toeplitz operators whose symbols are in Φ, that is, we set

TΦ = {Tφ : φ ∈ Φ}.

The collection of all closed subspaces of H2(Γn) invariant under every Tφ ∈ TΦ is denoted
by LatTΦ. Throughout this paper, we assume that H∞ ⊆ Φ ⊆ L∞.

This paper consists of five sections. In Section 2, we consider one variable Hardy space
and recall results in [5]. In Section 3, we introduce some classes of functions in order to
study LatTΦ. In Section 4, we study LatTΦ for some Φ’s. In Section 5, we show that
LatTΦ is nontrivial for some Φ, and present examples of invariant subspaces of Tz and Tw.

2 A certain rigidity of H2(Γ) The following theorem was given in [5], which shows
that H2(Γ) has a certain rigidity.

Theorem 2.1 ([5]). If Φ = H∞(Γ) ∪ {φ} for φ ∈ L∞(Γ) \ H∞(Γ), then LatTΦ =
{⟨0⟩, H2(Γ)}.

The original proof is based on the theory of uniform algebras. We shall give another
proof to this theorem.

Proof. In this proof, we will write H2 = H2(Γ), H∞ = H∞(Γ) and so on. Suppose that
M ∈ LatTΦ and M is nontrivial. Then, M is an invariant subspace of H2. Hence, there
exists a non-constant inner function q such that M = qH2 by Beurling’s theorem. We note
that TφM ⊂ M is equivalent to that

PH2φqH2 ⊂ qH2.
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Hence b1(z)φ and b2(w)φ belong to H2 for all φ ∈ Φ. Therefore we have

φ ∈ b1(z)H
2 ∩ b2(w)H

2 ⊂ H2.

However, this is a contradiction.

Next, we introduce a kind of complement of M in our problem.

Definition 3.2. For M ∈ LatTΦ and φ ∈ Φ, put

K = {f : f ∈ L2 ⊖H2}

and

Kφ
M = {k ∈ K : k = φf − g for some f and g ∈ M},

where f denotes the complex conjugate of f . Moreover, we set

KΦ
M =

∪
φ∈Φ

Kφ
M.

If φ ∈ H∞ and k ∈ Kφ
M, then there exist f and g ∈ M such that k = φf − g. However,

it follows from K ∩M = ⟨0⟩ that k = 0, that is, Kφ
M = ⟨0⟩ for φ ∈ H∞, so that we may

define

KΦ
M =

∪
φ∈Φ\H∞

Kφ
M.

Remark 3.5. In H2(Γ),

K = {f : f ∈ L2(Γ)⊖H2(Γ)} = H2
0 (Γ)

and we have already dealt with Kφ
M in the proof of Theorem 2.1 (see (2.1.1)), implicitly.

Next, we study the properties of KΦ
M used in the rest of this paper.

Lemma 3.6. Let M be a closed subspace in H2, and Φ be a subset of L∞ which contains
H∞.

(1) M ∈ LatTΦ if and only if φM ⊂ M+Kφ
M for all φ ∈ Φ.

(2) If M ∈ LatTΦ, then (IL2 − PM)φMφ = Kφ
M for all φ ∈ Φ.

Proof. (1) First we show the ‘if’ part. For any φ ∈ Φ and f ∈ M, there exist g ∈ M and
k ∈ Kφ

M such that φf = g + k. From this equality, we have Tφf = g ∈ M. Hence we see
that M ∈ LatTΦ. Next, we show the ‘only if’ part. Suppose that M is in LatTΦ. For any
φ ∈ Φ and f ∈ M, there exist g ∈ M, h ∈ H2 ⊖M and k ∈ K such that

φf = g + h+ k.

From this equality, we have P (φf) = g + h. Since P (φf) and g are in M, h must be 0.
Therefore we see that φf = g + k and that k ∈ Kφ

M by the definition of Kφ
M.

(2) Since M contains Mφ, for any f ∈ Mφ there exist g ∈ M and k ∈ Kφ
M such that

φf = g + k̄ by (1). Then we see

(IL2 − PM)φf = (IL2 − PM)(g + k̄) = k̄.
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Therefore we have (IL2 − PM)φMφ ⊂ Kφ
M. On the other hand, for any k ∈ Kφ

M there
exist f and g ∈ M such that φf = g + k̄ by the definition of Kφ

M. In particular, we can
write f = f1 + f2, where f1 ∈ Mφ and f2 ∈ Mφ. Since φf1 ∈ M, we have

k̄ = (IL2 − PM)k̄

= (IL2 − PM)(φf − g)

= (IL2 − PM)(φf1 + φf2 − g)

= (IL2 − PM)φf2,

and which implies Kφ
M ⊂ (IL2 − PM)φMφ. Hence we have

(IL2 − PM)φMφ = Kφ
M.

Thus we obtain (2).

4 Properties of LatTΦ In this section, we study properties of LatTΦ for some Φ as the
union of H∞ and some set. First we set Φ the union of H∞ and the complex conjugate of
functions in H∞.

Proposition 4.1. If Φ = H∞ ∪H∞, then LatTΦ = LatTL∞ .

Proof. It is obvious that LatTL∞ ⊂ LatTΦ. To prove the converse inclusion, suppose that
M ∈ LatTΦ. Then, since Th1h2

= Th2
Th1 for any h1, h2 ∈ H∞, we see that Th1h2

M ⊂ M.

We note that L∞ is the algebra generated by H∞ and H∞ in the w∗-topology. So for any
φ ∈ L∞ we can choose a net {φα} ⊂ L∞ converging in w∗-topology to φ, where each φα

is a linear combination of products of functions in H∞ and H∞ and satisfies TφαM ⊂ M.
For any f and g ∈ H2 we have

lim
α∈A

⟨Tφα
f, g⟩ = lim

α∈A

∫

Γ2

φαfgdµ =

∫

Γ2

φfgdµ = ⟨Tφf, g⟩.

In particular, for any f ∈ M and g ∈ H2 ⊖M we see that

⟨Tφf, g⟩ = lim
α∈A

⟨Tφα
f, g⟩ = 0.

Hence Tφf is in M. Therefore we have TφM ⊂ M and so we conclude that LatTΦ ⊂
LatTL∞ .

Proposition 4.2. Suppose that F is a non-constant function in H∞∩qH∞ for some inner
function q. Let Φ = H∞ ∪ {F}. If M is in LatTΦ, then MΦ = MF ⊇ qM.

Proof. If F ∈ H∞ ∩ qH∞ then there exists f ∈ H∞ such that F = qf . Hence FqM =
fM ⊂ M, and trivially, qM ⊂ M. Therefore we have that qM ⊂ MF .

Next, we consider examples when Φ consists of all functions in H∞ and the complex
conjugate of an inner function.

Theorem 4.3. Let Φ = H∞ ∪ {q} for some non-constant inner function q. Suppose that
M ∈ LatTΦ. Then the following statements hold.

(1) MΦ = qM and MΦ = M⊖ qM.

(2) MΦ ⊂ (H2)Φ and MΦ ⊂ (H2)Φ.
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(3) KΦ
M = q(M⊖ qM).

Proof. (1) It is sufficient to prove Mq = qM since MΦ = Mq. If f ∈ Mq, then qf ∈ M
from the definition of Mq. The assumption that q is an inner function implies that f ∈ qM,
and hence we see that Mq ⊂ qM. Conversely, if f ∈ qM, then f ∈ M since qM ⊂ M.
Moreover, that q is inner implies that qf ∈ M. Therefore we see that qM ⊂ Mq, which
implies that the first statement. The second statement follows from the first statement.
(2) The first statement follows from the definition of MΦ and (H2)Φ. To show the second
statement, suppose that f ∈ MΦ. By (1) we have f ∈ M and f ⊥ qM. Moreover, since M
is invariant under Tq, we see that Tq(H

2 ⊖M) ⊂ H2 ⊖M, that is, q(H2 ⊖M) ⊂ H2 ⊖M.
This implies that M ⊥ q(H2 ⊖M). For any g ∈ H2, there exist g1 ∈ M and g2 ∈ H2 ⊖M
such that g = g1 + g2. Then we have

⟨f, qg⟩ = ⟨f, qg1 + qg2⟩
= ⟨f, qg1⟩+ ⟨f, qg2⟩
= 0

since f ⊥ qM and M ⊥ q(H2 ⊖M). Therefore we see that f ⊥ qH2, that is, f ∈ (H2)Φ.
Hence the second statement holds.
(3) By (2) of Lemma 3.6, it is obvious that

q(M⊖ qM) ⊃ (IL2 − PM)q(M⊖ qM) = Kq
M.

Next, we will show the converse inclusion. For any f ∈ M⊖ qM, there exist g ∈ M and
k ∈ Kq

M such that qf = g + k by (1) of Lemma 3.6. Then we have

∥g∥2 = ⟨g, g⟩
= ⟨qf − k, g⟩
= ⟨qf, g⟩ − ⟨k, g⟩
= ⟨f, qg⟩ − ⟨k, g⟩
= 0,

since f ⊥ qM and g ⊥ Kq
M. So we see that g = 0, which implies that qf = k ∈ Kq

M.

Therefore we have q(M⊖ qM) ⊂ Kq
M. Hence we obtain

q(M⊖ qM) = (IL2 − PM)q(M⊖ qM) = Kq
M

Since KΦ
M = Kq

M, the statement holds.

More generally, we are able to consider the case when Φ is the union of H∞ and a set of
the complex conjugate of inner functions. In Corollary 4.4, we denote by Λ a subset of R.

Corollary 4.4. Let Φ = H∞ ∪ {qα : qα is inner, α ∈ Λ}. Suppose that M ∈ LatTΦ. Then
the following statements hold.

(1) MΦ =
∩
α∈Λ

qαM and MΦ = M⊖
∩
α∈Λ

qαM.

(2) MΦ ⊂ (H2)Φ and MΦ ⊂ (H2)Φ.

(3) KΦ
M =

∪
α∈Λ

qα(M⊖ qαM).
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Proof. (1) These statements follow from (1) of Theorem 4.3 and the definitions of MΦ and
MΦ.
(2) It is clear that qαM ⊂ qαH

2 for all α ∈ Λ. Hence we have

MΦ =
∩
α∈Λ

qαM ⊂
∩
α∈Λ

qαH
2 = (H2)Φ.

Moreover by (2) of Theorem 4.3, we see that if f is in M⊖ qαM, then f ⊥ qαH
2 for all

α ∈ Λ. Therefore the second statement holds.
(3) The statement follows from (3) of Theorem 4.3 and the definition of KΦ

M.

We will use Proposition 4.5 to determine LatTΦ in some concrete case.

Proposition 4.5. Let q be a non-constant inner function and ψ = q−a
1−aq for some a ∈ C

with |a| < 1. If Φ = H∞ ∪ {q} and Ψ = H∞ ∪ {ψ}, then LatTΦ = LatTΨ.

Proof. Suppose that M ∈ LatTΦ. Since M is invariant under Tq, we see that TqN ⊂ N
where N = H2 ⊖M. In particular, we have

qN ⊂ N .

Note that N is a closed subspace in H2. We obtain

(q − a)N ⊂ N and (1− aq)−1N ⊂ N

for |a| < 1. Thus TψN ⊂ N and so TψM ⊂ M. This shows that LatTΦ ⊂ LatTΨ. Since

q = ψ+a
1+aψ , we can prove the converse inclusion similarly.

5 Examples In this section, we will describe LatTΦ for some concrete Φ. To begin with,
in Corollary 5.3, we will show the case that LatTΦ is trivial. To show this, we consider
when Φ is the union of H∞ and {q} for a one variable inner function q = q(z).

Theorem 5.1. Let Φ = H∞ ∪ {q(z)} for a one variable non-constant inner function q =
q(z). If M ∈ LatTΦ, then there exists some one variable inner function Q = Q(w) such
that M = Q(w)H2.

Proof. Since q = q(z) is a one variable non-constant inner function, there exist some a, b ∈ C
such that q(b) = a and |a| < 1, |b| < 1. Put ψ = q−a

1−aq . Since ψ(b) = 0, we write ψ = q0q1

where q0 = z−b
1−bz

and q1(z) is inner. If we put Ψ = H∞ ∪ {ψ}, then LatTΦ = LatTΨ by

Proposition 4.5. This implies that M is invariant under Tψ = Tq0q1 . So we have that

Tq0M = Tq0q1q1M ⊂ Tq0q1M ⊂ M.

Therefore we obtain Tq0M ⊂ M. So if we put Ω = H∞ ∪ {q0}, then LatTΨ ⊂ LatTΩ.
Moreover, by Proposition 4.5, we obtain LatTΩ = LatTΩ′ , where Ω′ = H∞ ∪ {z}. Hence
we have TzM ⊂ M. By (2) of Theorem 4.3, we see that

M⊖ zM ⊂ H2 ⊖ zH2 = H2(Γw)

and so w(M⊖zM) ⊂ M⊖zM ⊂ H2(Γw). The Beurling theorem implies that M⊖zM =
QH2(Γw), where Q = Q(w). Thus we have M = Q(w)H2.

Remark 5.2. Let Φ = H∞∪{q(w)} for a one variable non-constant inner function q = q(w).
Making the same argument for Theorem 5.1, we can show that if M ∈ LatTΦ, then there
exists some one variable inner function Q = Q(z) such that M = Q(z)H2.
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Abstract. Let Φ be a subset of L∞ containing H∞ and TΦ the family of Toeplitz
operators {Tφ}φ∈Φ. In this paper, we study invariant subspaces of TΦ and their prop-
erties. Moreover, we provide a concrete description of nontrivial invariant subspaces
of TΦ for some Φ.

1 Introduction Let Γ be the unit circle centered at the origin in the complex plane,
and H2(Γn) be the Hardy space on Γn. In [5], the second author showed that H2(Γ) has
a certain rigidity (see Theorem 2.1 stated below), and pointed out that H2(Γ2) does not
have this property. The purpose of this paper is to study this phenomenon with examples.

We introduce notions in this paper. Let L2(Γn) be the usual L2 space with respect to
the normalized Lebesgue measure on Γn. Let P be the orthogonal projection from L2(Γn)
onto H2(Γn). For φ ∈ L∞(Γn), we define

Tφf = P (φf) (f ∈ H2).

Then Tφ is called the Toeplitz operator with symbol φ. For a subset Φ in L∞(Γn), TΦ

denotes the set of Toeplitz operators whose symbols are in Φ, that is, we set

TΦ = {Tφ : φ ∈ Φ}.

The collection of all closed subspaces of H2(Γn) invariant under every Tφ ∈ TΦ is denoted
by LatTΦ. Throughout this paper, we assume that H∞ ⊆ Φ ⊆ L∞.

This paper consists of five sections. In Section 2, we consider one variable Hardy space
and recall results in [5]. In Section 3, we introduce some classes of functions in order to
study LatTΦ. In Section 4, we study LatTΦ for some Φ’s. In Section 5, we show that
LatTΦ is nontrivial for some Φ, and present examples of invariant subspaces of Tz and Tw.

2 A certain rigidity of H2(Γ) The following theorem was given in [5], which shows
that H2(Γ) has a certain rigidity.

Theorem 2.1 ([5]). If Φ = H∞(Γ) ∪ {φ} for φ ∈ L∞(Γ) \ H∞(Γ), then LatTΦ =
{⟨0⟩, H2(Γ)}.

The original proof is based on the theory of uniform algebras. We shall give another
proof to this theorem.

Proof. In this proof, we will write H2 = H2(Γ), H∞ = H∞(Γ) and so on. Suppose that
M ∈ LatTΦ and M is nontrivial. Then, M is an invariant subspace of H2. Hence, there
exists a non-constant inner function q such that M = qH2 by Beurling’s theorem. We note
that TφM ⊂ M is equivalent to that

PH2φqH2 ⊂ qH2.
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(3) KΦ
M = q(M⊖ qM).

Proof. (1) It is sufficient to prove Mq = qM since MΦ = Mq. If f ∈ Mq, then qf ∈ M
from the definition of Mq. The assumption that q is an inner function implies that f ∈ qM,
and hence we see that Mq ⊂ qM. Conversely, if f ∈ qM, then f ∈ M since qM ⊂ M.
Moreover, that q is inner implies that qf ∈ M. Therefore we see that qM ⊂ Mq, which
implies that the first statement. The second statement follows from the first statement.
(2) The first statement follows from the definition of MΦ and (H2)Φ. To show the second
statement, suppose that f ∈ MΦ. By (1) we have f ∈ M and f ⊥ qM. Moreover, since M
is invariant under Tq, we see that Tq(H

2 ⊖M) ⊂ H2 ⊖M, that is, q(H2 ⊖M) ⊂ H2 ⊖M.
This implies that M ⊥ q(H2 ⊖M). For any g ∈ H2, there exist g1 ∈ M and g2 ∈ H2 ⊖M
such that g = g1 + g2. Then we have

⟨f, qg⟩ = ⟨f, qg1 + qg2⟩
= ⟨f, qg1⟩+ ⟨f, qg2⟩
= 0

since f ⊥ qM and M ⊥ q(H2 ⊖M). Therefore we see that f ⊥ qH2, that is, f ∈ (H2)Φ.
Hence the second statement holds.
(3) By (2) of Lemma 3.6, it is obvious that

q(M⊖ qM) ⊃ (IL2 − PM)q(M⊖ qM) = Kq
M.

Next, we will show the converse inclusion. For any f ∈ M⊖ qM, there exist g ∈ M and
k ∈ Kq

M such that qf = g + k by (1) of Lemma 3.6. Then we have

∥g∥2 = ⟨g, g⟩
= ⟨qf − k, g⟩
= ⟨qf, g⟩ − ⟨k, g⟩
= ⟨f, qg⟩ − ⟨k, g⟩
= 0,

since f ⊥ qM and g ⊥ Kq
M. So we see that g = 0, which implies that qf = k ∈ Kq

M.

Therefore we have q(M⊖ qM) ⊂ Kq
M. Hence we obtain

q(M⊖ qM) = (IL2 − PM)q(M⊖ qM) = Kq
M

Since KΦ
M = Kq

M, the statement holds.

More generally, we are able to consider the case when Φ is the union of H∞ and a set of
the complex conjugate of inner functions. In Corollary 4.4, we denote by Λ a subset of R.

Corollary 4.4. Let Φ = H∞ ∪ {qα : qα is inner, α ∈ Λ}. Suppose that M ∈ LatTΦ. Then
the following statements hold.

(1) MΦ =
∩
α∈Λ

qαM and MΦ = M⊖
∩
α∈Λ

qαM.

(2) MΦ ⊂ (H2)Φ and MΦ ⊂ (H2)Φ.

(3) KΦ
M =

∪
α∈Λ

qα(M⊖ qαM).
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Proof. (1) These statements follow from (1) of Theorem 4.3 and the definitions of MΦ and
MΦ.
(2) It is clear that qαM ⊂ qαH

2 for all α ∈ Λ. Hence we have

MΦ =
∩
α∈Λ

qαM ⊂
∩
α∈Λ

qαH
2 = (H2)Φ.

Moreover by (2) of Theorem 4.3, we see that if f is in M⊖ qαM, then f ⊥ qαH
2 for all

α ∈ Λ. Therefore the second statement holds.
(3) The statement follows from (3) of Theorem 4.3 and the definition of KΦ

M.

We will use Proposition 4.5 to determine LatTΦ in some concrete case.

Proposition 4.5. Let q be a non-constant inner function and ψ = q−a
1−aq for some a ∈ C

with |a| < 1. If Φ = H∞ ∪ {q} and Ψ = H∞ ∪ {ψ}, then LatTΦ = LatTΨ.

Proof. Suppose that M ∈ LatTΦ. Since M is invariant under Tq, we see that TqN ⊂ N
where N = H2 ⊖M. In particular, we have

qN ⊂ N .

Note that N is a closed subspace in H2. We obtain

(q − a)N ⊂ N and (1− aq)−1N ⊂ N

for |a| < 1. Thus TψN ⊂ N and so TψM ⊂ M. This shows that LatTΦ ⊂ LatTΨ. Since

q = ψ+a
1+aψ , we can prove the converse inclusion similarly.

5 Examples In this section, we will describe LatTΦ for some concrete Φ. To begin with,
in Corollary 5.3, we will show the case that LatTΦ is trivial. To show this, we consider
when Φ is the union of H∞ and {q} for a one variable inner function q = q(z).

Theorem 5.1. Let Φ = H∞ ∪ {q(z)} for a one variable non-constant inner function q =
q(z). If M ∈ LatTΦ, then there exists some one variable inner function Q = Q(w) such
that M = Q(w)H2.

Proof. Since q = q(z) is a one variable non-constant inner function, there exist some a, b ∈ C
such that q(b) = a and |a| < 1, |b| < 1. Put ψ = q−a

1−aq . Since ψ(b) = 0, we write ψ = q0q1

where q0 = z−b
1−bz

and q1(z) is inner. If we put Ψ = H∞ ∪ {ψ}, then LatTΦ = LatTΨ by

Proposition 4.5. This implies that M is invariant under Tψ = Tq0q1 . So we have that

Tq0M = Tq0q1q1M ⊂ Tq0q1M ⊂ M.

Therefore we obtain Tq0M ⊂ M. So if we put Ω = H∞ ∪ {q0}, then LatTΨ ⊂ LatTΩ.
Moreover, by Proposition 4.5, we obtain LatTΩ = LatTΩ′ , where Ω′ = H∞ ∪ {z}. Hence
we have TzM ⊂ M. By (2) of Theorem 4.3, we see that

M⊖ zM ⊂ H2 ⊖ zH2 = H2(Γw)

and so w(M⊖zM) ⊂ M⊖zM ⊂ H2(Γw). The Beurling theorem implies that M⊖zM =
QH2(Γw), where Q = Q(w). Thus we have M = Q(w)H2.

Remark 5.2. Let Φ = H∞∪{q(w)} for a one variable non-constant inner function q = q(w).
Making the same argument for Theorem 5.1, we can show that if M ∈ LatTΦ, then there
exists some one variable inner function Q = Q(z) such that M = Q(z)H2.

COMMON INVARIANT SUBSPACES OF A FAMILY OF TOEPLITZ OPERATORS 123



Corollary 5.3. If Φ = H∞ ∪ {q1(z)q2(w)} for one variable non-constant inner functions
q1 = q1(z) and q2 = q2(w), then LatTΦ = {⟨0⟩, H2}.

Proof. If M ∈ LatTΦ, then we have that

Tq1M = Tq1q2(q2M) ⊂ Tq1q2M ⊂ M.

Hence by Theorem 5.1, there exists some one variable inner function Q2 = Q2(w) such that
M = Q2(w)H

2. Similarly we have Tq2M ⊂ M and so M = Q1(z)H
2 for some one variable

inner function Q1 = Q1(z). This happens only when Q1 and Q2 are constant. Therefore
we obtain the corollary.

Next, we will show the case that LatTΦ is nontrivial. Now we study the case of Φ =
H∞ ∪ {q1q2, q1q2} for some non-constant inner functions q1 = q1(z) and q2 = q2(w). We
note that if M =

∑n
k=0 q

n−k
1 qk2H

2, then it is clear that M is in LatTΦ. Theorem 5.4 shows
properties of LatTΦ.

Theorem 5.4. Let Φ = H∞ ∪ {q1q2, q1q2} for some non-constant one variable inner func-
tions q1 = q1(z) and q2 = q2(w). Suppose that M ∈ LatTΦ. Then the following statements
hold.

(1) q1M ⊂ q2M+H2 ⊖ q2H
2 and q2M ⊂ q1M+H2 ⊖ q1H

2.

(2) If there exists some natural number n such that qn1 ∈ M and qn−1
1 /∈ M, then we have

ql1q
m
2 /∈ M for l ≥ 0,m ≥ 0 and l +m < n.

(3) If there exists some natural number n such that qn1 ∈ M, then we have M ⊃∑n
k=0 q

n−k
1 qk2H

2.

Proof. (1) By (1) of Lemma 3.6,

q1q2M ⊂ M+KΦ
M.

Then we have
q1M ⊂ q2M+ q2KΦ

M ⊂ q2M+ q2K

since KΦ
M is a subset of K. Hence q1M ⊂ q2M+ q2K ∩H2. Moreover from the definition

of K, it is clear that q2K ∩H2 ⊂ H2 ⊖ q2H
2. Therefore we obtain

q1M ⊂ q2M+H2 ⊖ q2H
2.

The same argument shows that q2M ⊂ q1M+H2 ⊖ q1H
2.

(2) If ql1q
m
2 were in M, then we would have

Tn−1−m−l
q1 Tm

q1q2(q
l
1q

m
2 ) = Tn−1−m−l

q1 (qm+l
1 ) = qn−1

1 ∈ M.

This contradicts that qn−1
1 /∈ M. Hence we conclude that ql1q

m
2 /∈ M for l ≥ 0,m ≥ 0 and

l +m < n.
(3) Since qn1 is in M, we have T j

q1q2
(qn1 ) = qn−j

1 qj2 ∈ M for 0 ≤ j ≤ n. Let P+ be the set of

analytic trigonometric polynomials. Then we see that
∑n

j=0 q
n−j
1 qj2P+ ⊂ M. Since H2 is

the closure in the L2-norm of P+ and the multiplication by an inner function is continuous,
we have

n∑
j=0

qn−j
1 qj2H

2 ⊂ M.
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In [3], the first author studied LatTΨ for Ψ = {znw, znw} for a fixed natural number
n. In this context, we consider the case when Φ = H∞ ∪ {zw, zw}. In Theorem 5.5, we
describe LatTΦ completely and show that LatTΦ is nontrivial. Moreover we provide a
concrete example of invariant subspaces of Tz and Tw. We recall that H2(Γz) or H2(Γw)
denotes a one variable Hardy space on the unit circle Γ = Γz or Γw respectively.

Theorem 5.5. Let Φ = H∞ ∪ {zw, zw}. Then the following statements hold.

(1) If M ∈ LatTΦ, then

zM ⊂ wM+H2(Γz) and wM ⊂ zM+H2(Γw).

(2) A closed subspace M is in LatTΦ if and only if there exists the smallest natural number

N such that zN and wN belong to M and M =
∑N

j=0 z
N−jwjH2.

Proof. (1) We note that equalities

H2 ⊖ zH2 = H2(Γw) and H2 ⊖ wH2 = H2(Γz)

hold. Applying (1) of Theorem 5.4, we obtain the conclusion.
(2) The ‘if’ part is not hard to prove. Now we show the ‘only if’ part. Assume that
M ∈ LatTΦ. It is clear that there exists the smallest natural number N satisfying the

following condition; there exists f ∈ M such that ∂N

∂zN f(0, 0) ̸= 0 but ∂k

∂zk g(0, 0) = 0 for all
g ∈ M if k < N . In order to show that zN ∈ M, we consider the extremal problem

sup{Re ∂N

∂zN
f(0, 0); f ∈ M, ∥f∥ ≤ 1}.

Note that the mapping f �→ ∂N

∂zN f(0, 0) is a bounded linear functional on H2. By the Riesz
representation theorem, this extremal problem has a unique solution G ∈ M with ∥G∥ = 1

and ∂N

∂zN G(0, 0) > 0. We will see that G = zN . Put

gf =
G+ TN+1

zw f

∥G+ TN+1
zw f∥

for each f ∈ M. Since Re ∂N

∂zN gf (0, 0) ≤ ∂N

∂zN G(0, 0), it is easy to see that ∥G+TN+1
zw f∥ ≥ 1

for any f ∈ M. From this inequality, we obtain G ⊥ TN+1
zw f . Hence we have TN+1

zw G = 0.
Similarly we have TzwG = 0. From these equalities, we obtain G = zN . It is obvious that
wN = TN

zwz
N is in M.

By (3) of Theorem 5.4, we obtain M ⊃
∑N

j=0 z
N−jwjH2. Moreover, by (2) of Theorem

5.4, we see that zk1wk2 /∈ M for 0 ≤ k1 + k2 < N , which shows the converse inclusion.

Corollary 5.6 shows that eachM in LatTΦ contains an invariant subspace zNH2+wNH2

for some natural number N .

Corollary 5.6. Let Φ = H∞ ∪ {zw, zw}. If M ∈ LatTΦ, then there exists some natural
number N such that

M ⊃ zNH2 + wNH2.

Proof. By (2) of Theorem 5.5, there exists some natural number N such that

M =

N∑
j=0

zjwN−jH2.
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Abstract. Let Φ be a subset of L∞ containing H∞ and TΦ the family of Toeplitz
operators {Tφ}φ∈Φ. In this paper, we study invariant subspaces of TΦ and their prop-
erties. Moreover, we provide a concrete description of nontrivial invariant subspaces
of TΦ for some Φ.

1 Introduction Let Γ be the unit circle centered at the origin in the complex plane,
and H2(Γn) be the Hardy space on Γn. In [5], the second author showed that H2(Γ) has
a certain rigidity (see Theorem 2.1 stated below), and pointed out that H2(Γ2) does not
have this property. The purpose of this paper is to study this phenomenon with examples.

We introduce notions in this paper. Let L2(Γn) be the usual L2 space with respect to
the normalized Lebesgue measure on Γn. Let P be the orthogonal projection from L2(Γn)
onto H2(Γn). For φ ∈ L∞(Γn), we define

Tφf = P (φf) (f ∈ H2).

Then Tφ is called the Toeplitz operator with symbol φ. For a subset Φ in L∞(Γn), TΦ

denotes the set of Toeplitz operators whose symbols are in Φ, that is, we set

TΦ = {Tφ : φ ∈ Φ}.

The collection of all closed subspaces of H2(Γn) invariant under every Tφ ∈ TΦ is denoted
by LatTΦ. Throughout this paper, we assume that H∞ ⊆ Φ ⊆ L∞.

This paper consists of five sections. In Section 2, we consider one variable Hardy space
and recall results in [5]. In Section 3, we introduce some classes of functions in order to
study LatTΦ. In Section 4, we study LatTΦ for some Φ’s. In Section 5, we show that
LatTΦ is nontrivial for some Φ, and present examples of invariant subspaces of Tz and Tw.

2 A certain rigidity of H2(Γ) The following theorem was given in [5], which shows
that H2(Γ) has a certain rigidity.

Theorem 2.1 ([5]). If Φ = H∞(Γ) ∪ {φ} for φ ∈ L∞(Γ) \ H∞(Γ), then LatTΦ =
{⟨0⟩, H2(Γ)}.

The original proof is based on the theory of uniform algebras. We shall give another
proof to this theorem.

Proof. In this proof, we will write H2 = H2(Γ), H∞ = H∞(Γ) and so on. Suppose that
M ∈ LatTΦ and M is nontrivial. Then, M is an invariant subspace of H2. Hence, there
exists a non-constant inner function q such that M = qH2 by Beurling’s theorem. We note
that TφM ⊂ M is equivalent to that

PH2φqH2 ⊂ qH2.
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Corollary 5.3. If Φ = H∞ ∪ {q1(z)q2(w)} for one variable non-constant inner functions
q1 = q1(z) and q2 = q2(w), then LatTΦ = {⟨0⟩, H2}.

Proof. If M ∈ LatTΦ, then we have that

Tq1M = Tq1q2(q2M) ⊂ Tq1q2M ⊂ M.

Hence by Theorem 5.1, there exists some one variable inner function Q2 = Q2(w) such that
M = Q2(w)H

2. Similarly we have Tq2M ⊂ M and so M = Q1(z)H
2 for some one variable

inner function Q1 = Q1(z). This happens only when Q1 and Q2 are constant. Therefore
we obtain the corollary.

Next, we will show the case that LatTΦ is nontrivial. Now we study the case of Φ =
H∞ ∪ {q1q2, q1q2} for some non-constant inner functions q1 = q1(z) and q2 = q2(w). We
note that if M =

∑n
k=0 q

n−k
1 qk2H

2, then it is clear that M is in LatTΦ. Theorem 5.4 shows
properties of LatTΦ.

Theorem 5.4. Let Φ = H∞ ∪ {q1q2, q1q2} for some non-constant one variable inner func-
tions q1 = q1(z) and q2 = q2(w). Suppose that M ∈ LatTΦ. Then the following statements
hold.

(1) q1M ⊂ q2M+H2 ⊖ q2H
2 and q2M ⊂ q1M+H2 ⊖ q1H

2.

(2) If there exists some natural number n such that qn1 ∈ M and qn−1
1 /∈ M, then we have

ql1q
m
2 /∈ M for l ≥ 0,m ≥ 0 and l +m < n.

(3) If there exists some natural number n such that qn1 ∈ M, then we have M ⊃∑n
k=0 q

n−k
1 qk2H

2.

Proof. (1) By (1) of Lemma 3.6,

q1q2M ⊂ M+KΦ
M.

Then we have
q1M ⊂ q2M+ q2KΦ

M ⊂ q2M+ q2K

since KΦ
M is a subset of K. Hence q1M ⊂ q2M+ q2K ∩H2. Moreover from the definition

of K, it is clear that q2K ∩H2 ⊂ H2 ⊖ q2H
2. Therefore we obtain

q1M ⊂ q2M+H2 ⊖ q2H
2.

The same argument shows that q2M ⊂ q1M+H2 ⊖ q1H
2.

(2) If ql1q
m
2 were in M, then we would have

Tn−1−m−l
q1 Tm

q1q2(q
l
1q

m
2 ) = Tn−1−m−l

q1 (qm+l
1 ) = qn−1

1 ∈ M.

This contradicts that qn−1
1 /∈ M. Hence we conclude that ql1q

m
2 /∈ M for l ≥ 0,m ≥ 0 and

l +m < n.
(3) Since qn1 is in M, we have T j

q1q2
(qn1 ) = qn−j

1 qj2 ∈ M for 0 ≤ j ≤ n. Let P+ be the set of

analytic trigonometric polynomials. Then we see that
∑n

j=0 q
n−j
1 qj2P+ ⊂ M. Since H2 is

the closure in the L2-norm of P+ and the multiplication by an inner function is continuous,
we have

n∑
j=0

qn−j
1 qj2H

2 ⊂ M.
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In [3], the first author studied LatTΨ for Ψ = {znw, znw} for a fixed natural number
n. In this context, we consider the case when Φ = H∞ ∪ {zw, zw}. In Theorem 5.5, we
describe LatTΦ completely and show that LatTΦ is nontrivial. Moreover we provide a
concrete example of invariant subspaces of Tz and Tw. We recall that H2(Γz) or H2(Γw)
denotes a one variable Hardy space on the unit circle Γ = Γz or Γw respectively.

Theorem 5.5. Let Φ = H∞ ∪ {zw, zw}. Then the following statements hold.

(1) If M ∈ LatTΦ, then

zM ⊂ wM+H2(Γz) and wM ⊂ zM+H2(Γw).

(2) A closed subspace M is in LatTΦ if and only if there exists the smallest natural number

N such that zN and wN belong to M and M =
∑N

j=0 z
N−jwjH2.

Proof. (1) We note that equalities

H2 ⊖ zH2 = H2(Γw) and H2 ⊖ wH2 = H2(Γz)

hold. Applying (1) of Theorem 5.4, we obtain the conclusion.
(2) The ‘if’ part is not hard to prove. Now we show the ‘only if’ part. Assume that
M ∈ LatTΦ. It is clear that there exists the smallest natural number N satisfying the

following condition; there exists f ∈ M such that ∂N

∂zN f(0, 0) ̸= 0 but ∂k

∂zk g(0, 0) = 0 for all
g ∈ M if k < N . In order to show that zN ∈ M, we consider the extremal problem

sup{Re ∂N

∂zN
f(0, 0); f ∈ M, ∥f∥ ≤ 1}.

Note that the mapping f �→ ∂N

∂zN f(0, 0) is a bounded linear functional on H2. By the Riesz
representation theorem, this extremal problem has a unique solution G ∈ M with ∥G∥ = 1

and ∂N

∂zN G(0, 0) > 0. We will see that G = zN . Put

gf =
G+ TN+1

zw f

∥G+ TN+1
zw f∥

for each f ∈ M. Since Re ∂N

∂zN gf (0, 0) ≤ ∂N

∂zN G(0, 0), it is easy to see that ∥G+TN+1
zw f∥ ≥ 1

for any f ∈ M. From this inequality, we obtain G ⊥ TN+1
zw f . Hence we have TN+1

zw G = 0.
Similarly we have TzwG = 0. From these equalities, we obtain G = zN . It is obvious that
wN = TN

zwz
N is in M.

By (3) of Theorem 5.4, we obtain M ⊃
∑N

j=0 z
N−jwjH2. Moreover, by (2) of Theorem

5.4, we see that zk1wk2 /∈ M for 0 ≤ k1 + k2 < N , which shows the converse inclusion.

Corollary 5.6 shows that eachM in LatTΦ contains an invariant subspace zNH2+wNH2

for some natural number N .

Corollary 5.6. Let Φ = H∞ ∪ {zw, zw}. If M ∈ LatTΦ, then there exists some natural
number N such that

M ⊃ zNH2 + wNH2.

Proof. By (2) of Theorem 5.5, there exists some natural number N such that

M =

N∑
j=0

zjwN−jH2.
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Then we obtain

zNH2 + wNH2 ⊂
N∑
j=0

zjwN−jH2 = M.

Hence the statement is clear.
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PATTERN FORMATION FOR SELF-REGUIATING HOMEOSTASIS 
MODEL IN A RECTANGLE

Maya Kageyama1 and Atsushi Yagi2

Abstract. We continue the study on two-dimensional self-regulating homeostasis models. 
In the previous paper [4], after introducing a homeostasis model on a sphere, we showed 
global existence of solutions and constructed exponential attractors for the dynamical system 
generated by the model. We furthermore showed by numerical computations that white daisy 
and black daisy perform very clear segregation patterns on the sphere.

This paper is then devoted to investigating more on this pattern formation in a rectangular 
domain. We show that the competition of white and black daisies and the interaction with 
temperature create several types of segregation patterns and bring homeostasis of the global 
temperature to the planet.

1 Introduction We continue the study on two-dimensional self-regulating homeostasis models.
In the previous paper [4], after introducing a homeostasis model on a sphere on the basis of the
classical work Watson-Lovelock [6], we showed global existence of solutions and constructed expo-
nential attractors for the dynamical system generated by the model. We furthermore showed by
numerical computations that white daisy and black daisy perform very clear segregation patterns
on the sphere. This paper is then devoted to investigating more on this pattern formation.

We consider the following reaction diffusion system

(1.1)




∂u

∂t
= d∆u+ [(1− u− v)Φ(u, v, w)− f ]u in Ω× (0,∞),

∂v

∂t
= d∆v + [(1− u− v)Ψ(u, v, w)− f ] v in Ω× (0,∞),

∂w

∂t
= D∆w + [1− g(u, v)]R− σw4 in Ω× (0,∞),

in a rectangular domain Ω = (−ℓx, ℓx) × (0, ℓy), where 0 < ℓx, ℓy < ∞. As in [4], the variables
u = u(x, y, t) and v = v(x, y, t) denote the coverage rate of white and black daisy, respectively,
at position (x, y) ∈ Ω and time t. Therefore, u ≥ 0, v ≥ 0 and u + v ≤ 1 at any (x, y, t), and
1 − u − v denotes a rate of uncovered ground. The third state variable w = w(x, y, t) denotes a
surface temperature. We assume that u and v satisfy a diffusion equation on Ω with diffusion rate
d > 0. It is the same for w with diffusion rate D > 0. The function g(u, v) stands for an averaged
albedo of the surface that is given at each point as a function of u, v in the form

(1.2) g(u, v) = awu+ abv + ag(1− u− v) = (aw − ag)u+ (ab − ag)v + ag,

where aw, ab and ag denote the proper albedo of white daisy, black daisy and bare ground, respec-
tively. In general, we have 0 < ab < ag < aw < 1; as a consequence, it is always the case that
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Abstract. Let Φ be a subset of L∞ containing H∞ and TΦ the family of Toeplitz
operators {Tφ}φ∈Φ. In this paper, we study invariant subspaces of TΦ and their prop-
erties. Moreover, we provide a concrete description of nontrivial invariant subspaces
of TΦ for some Φ.

1 Introduction Let Γ be the unit circle centered at the origin in the complex plane,
and H2(Γn) be the Hardy space on Γn. In [5], the second author showed that H2(Γ) has
a certain rigidity (see Theorem 2.1 stated below), and pointed out that H2(Γ2) does not
have this property. The purpose of this paper is to study this phenomenon with examples.

We introduce notions in this paper. Let L2(Γn) be the usual L2 space with respect to
the normalized Lebesgue measure on Γn. Let P be the orthogonal projection from L2(Γn)
onto H2(Γn). For φ ∈ L∞(Γn), we define

Tφf = P (φf) (f ∈ H2).

Then Tφ is called the Toeplitz operator with symbol φ. For a subset Φ in L∞(Γn), TΦ

denotes the set of Toeplitz operators whose symbols are in Φ, that is, we set

TΦ = {Tφ : φ ∈ Φ}.

The collection of all closed subspaces of H2(Γn) invariant under every Tφ ∈ TΦ is denoted
by LatTΦ. Throughout this paper, we assume that H∞ ⊆ Φ ⊆ L∞.

This paper consists of five sections. In Section 2, we consider one variable Hardy space
and recall results in [5]. In Section 3, we introduce some classes of functions in order to
study LatTΦ. In Section 4, we study LatTΦ for some Φ’s. In Section 5, we show that
LatTΦ is nontrivial for some Φ, and present examples of invariant subspaces of Tz and Tw.

2 A certain rigidity of H2(Γ) The following theorem was given in [5], which shows
that H2(Γ) has a certain rigidity.

Theorem 2.1 ([5]). If Φ = H∞(Γ) ∪ {φ} for φ ∈ L∞(Γ) \ H∞(Γ), then LatTΦ =
{⟨0⟩, H2(Γ)}.

The original proof is based on the theory of uniform algebras. We shall give another
proof to this theorem.

Proof. In this proof, we will write H2 = H2(Γ), H∞ = H∞(Γ) and so on. Suppose that
M ∈ LatTΦ and M is nontrivial. Then, M is an invariant subspace of H2. Hence, there
exists a non-constant inner function q such that M = qH2 by Beurling’s theorem. We note
that TφM ⊂ M is equivalent to that

PH2φqH2 ⊂ qH2.
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Then we obtain

zNH2 + wNH2 ⊂
N∑
j=0

zjwN−jH2 = M.

Hence the statement is clear.
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In the previous paper [4], after introducing a homeostasis model on a sphere, we showed 
global existence of solutions and constructed exponential attractors for the dynamical system 
generated by the model. We furthermore showed by numerical computations that white daisy 
and black daisy perform very clear segregation patterns on the sphere.

This paper is then devoted to investigating more on this pattern formation in a rectangular 
domain. We show that the competition of white and black daisies and the interaction with 
temperature create several types of segregation patterns and bring homeostasis of the global 
temperature to the planet.

1 Introduction We continue the study on two-dimensional self-regulating homeostasis models.
In the previous paper [4], after introducing a homeostasis model on a sphere on the basis of the
classical work Watson-Lovelock [6], we showed global existence of solutions and constructed expo-
nential attractors for the dynamical system generated by the model. We furthermore showed by
numerical computations that white daisy and black daisy perform very clear segregation patterns
on the sphere. This paper is then devoted to investigating more on this pattern formation.

We consider the following reaction diffusion system

(1.1)




∂u

∂t
= d∆u+ [(1− u− v)Φ(u, v, w)− f ]u in Ω× (0,∞),

∂v

∂t
= d∆v + [(1− u− v)Ψ(u, v, w)− f ] v in Ω× (0,∞),

∂w

∂t
= D∆w + [1− g(u, v)]R− σw4 in Ω× (0,∞),

in a rectangular domain Ω = (−ℓx, ℓx) × (0, ℓy), where 0 < ℓx, ℓy < ∞. As in [4], the variables
u = u(x, y, t) and v = v(x, y, t) denote the coverage rate of white and black daisy, respectively,
at position (x, y) ∈ Ω and time t. Therefore, u ≥ 0, v ≥ 0 and u + v ≤ 1 at any (x, y, t), and
1 − u − v denotes a rate of uncovered ground. The third state variable w = w(x, y, t) denotes a
surface temperature. We assume that u and v satisfy a diffusion equation on Ω with diffusion rate
d > 0. It is the same for w with diffusion rate D > 0. The function g(u, v) stands for an averaged
albedo of the surface that is given at each point as a function of u, v in the form

(1.2) g(u, v) = awu+ abv + ag(1− u− v) = (aw − ag)u+ (ab − ag)v + ag,

where aw, ab and ag denote the proper albedo of white daisy, black daisy and bare ground, respec-
tively. In general, we have 0 < ab < ag < aw < 1; as a consequence, it is always the case that
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ab ≤ g(u, v) ≤ aw. Furthermore, Φ(u, v, w) and Ψ(u, v, w) denote a growth rate of white and black
daisy, respectively. According as [6], we set

Φ(u, v, w) = {1− δ(w − w − q[g(u, v)− aw])
2}+,

Ψ(u, v, w) = {1− δ(w − w − q[g(u, v)− ab])
2}+.

Here, w is a fixed optimal temperature for growing for both white daisy and black daisy. The term
q[g(u, v) − aw] (resp. q[g(u, v) − ab]) means some suitable adjustment on a local temperature to
the global one w at any position where white daisy (resp. black daisy) grows, q > 0 being some
coefficient. Since g(u, v) ≤ aw (resp. g(u, v) ≥ ab), we see that w is always adjusted negatively
(resp. positively) where white daisy (resp. black daisy) grows. The notation {w}+ = max{w, 0}
denotes a positive cutoff of the function w for −∞ < w < ∞; consequently, {1− δ(w − w)2}+ is a
positive cutoff of the square function 1− δ(w−w)2 for −∞ < w < ∞, δ > 0 being some coefficient.
Both white daisy and black daisy die at a rate f > 0. Finally, the term [1 − g(u, v)]R denotes
an increasing rate of the global temperature which is determined by the averaged albedo g(u, v)
mentioned above and the incoming energy R from the sun which is assumed to be constant in Ω.
And, the term −σw4 denotes a decaying rate of the temperature due to the Stefan-Boltzmann law,
σ > 0 being the Stefan-Boltzmann constant of the surface.

We impose, as boundary conditions, the periodic conditions in x-variable and the homogeneous
Neumann conditions in y-variable for all of u, v and w. That is,

(1.3)




ζ(−ℓx, y, t) = ζ(ℓx, y, t) and ζx(−ℓx, y, t) = ζx(ℓx, y, t)

on {−ℓx, ℓx} × (0, ℓy)× (0,∞),

ζy(x, 0, t) = ζy(x, ℓy, t) = 0, on (−ℓx, ℓx)× {0, ℓy} × (0,∞),

where ζ stands for u, v and w. Finally, the initial conditions are set as

(1.4) u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y) and w(x, y, 0) = w0(x, y) in Ω.

The main interest of the present paper is as mentioned above to investigate when homogeneous
distribution of white and black daisies becomes unstable and how segregation patterns are created
by the competition of two daisies and the interaction with global temperature. For this purpose we
want to consider the case where (1.1) has a stationary solution which is homogeneous in the spatial
variables (x, y). This is reason why we assume that the incoming energy R is constant with respect
to the variables (x, y). (In [4], R depends on the latitude.) In addition, for simplicity, we want to
consider (1.1) on the cylindrical surface instead of on the sphere. This is reason why we handle
(1.1) in (−ℓx, ℓx) × (0, ℓy) under the periodic-Neumann boundary conditions (1.3) on u, v and w.
If R is constant, then similar results will be obtained for the problem (1.1) and (1.4) on the sphere.

Global solutions are constructed as in [4], although we have to prepare and use the Proposition
2.1 which may not be so standard. Construction of the dynamical system and its exponential
attractors can be carried out in a quite analogous way as in [4]. In order to investigate stability and
instability of the homogeneous stationary solutions, we will restrict our interest only to a typical
case where the parameters in (1.1) are fixed as

ab =
1

4
, ag =

1

2
, aw =

3

4
, q = 20, δ = 3.265× 10−3,

f = 0.3, w = 295.5 and σ = 5.67× 10−8,

SELF-REGULATING HOMEOSTASIS MODEL IN A RECTANGLE 3

except R that is treated as a tuning parameter. Such a setting is suggested by [6]. Then, it
is proved that there is an interval (R∗, R

∗) for R such that if R �∈ [R∗, R
∗] there is no positive

homogeneous stationary solution, meanwhile if R ∈ (R∗, R
∗) there is a unique one U∗ = t(u∗, v∗, w∗).

Furthermore, for

φ(u, v, w) = [(1− u− v)Φ(u, v, w)− f ]u,

ψ(u, v, w) = [(1− u− v)Ψ(u, v, w)− f ] v,

it is proved that, if (u∗, v∗, w∗) satisfies

φu(u∗, v∗, w∗)ψv(u∗, v∗, w∗) ≥ φv(u∗, v∗, w∗)ψu(u∗, v∗, w∗),

then U∗ is stable, meanwhile if (u∗, v∗, w∗) satisfies

φu(u∗, v∗, w∗)ψv(u∗, v∗, w∗) < φv(u∗, v∗, w∗)ψu(u∗, v∗, w∗),

and if the diffusion coefficient D is sufficiently large with respect to the other d, then U∗ becomes
unstable. Roughly speaking, if the intra-species competition is stronger than the inter-species one
at U∗, then U∗ is stable. Meanwhile, if the intra-species competition is weaker than the inter-species
one at U∗ and if global temperature diffuses much faster than daisies, U∗ loses its stability, that is,
the diffusion driven instability takes place.

As the dynamical system possesses a finite-dimensional attractor, when U∗ is unstable, the
trajectories are attracted to some states of a finite number of freedoms which does not include the
homogeneous state. This fact then suggests that some pattern might be created spontaneously by
the white and black daisies. As a matter of fact, we find by numerical computations under suitably
fixed diffusion coefficients d and D that some segregation patterns emerge and they change their
types from homogeneous, spot, island and to labyrinth as R changes. On the other hand, the mean
of the global temperature, i.e.,

W (∞) =
1

|Ω|

∫∫

Ω

w(x, y,∞)dxdy,

is observed to be stable during R changes in this range. In this way, the competition between two
daisies and the interaction with global temperature create several types of segregation patterns of
daisies, and simultaneously they bring the homeostasis of global temperature to the planet.

The mechanism of self-regulating homeostasis has already been studied by using zero and one-
dimensional Daisyworld models. For a survey, we refer the reader to [4, Introduction].

2 Local Solutions

2.1 Laplacian under periodic-Neumann boundary conditions In order to formulate (1.1)-
(1.3) in the space L2(Ω), we have to define ∆ as a linear operator of L2(Ω) under the boundary
conditions stated in (1.3).

For this purpose, we consider the sesquilinear form

(2.1) a(u, v) = a

∫

Ω

∇u · ∇v dx+ c

∫

Ω

uv dx, u, v ∈ V,

where a and c are positive constants, on the space

(2.2) H1
per(Ω) = {u ∈ H1(Ω); u(−ℓx, y) = u(ℓx, y) in the interval (0, ℓy)}.
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ab ≤ g(u, v) ≤ aw. Furthermore, Φ(u, v, w) and Ψ(u, v, w) denote a growth rate of white and black
daisy, respectively. According as [6], we set

Φ(u, v, w) = {1− δ(w − w − q[g(u, v)− aw])
2}+,

Ψ(u, v, w) = {1− δ(w − w − q[g(u, v)− ab])
2}+.

Here, w is a fixed optimal temperature for growing for both white daisy and black daisy. The term
q[g(u, v) − aw] (resp. q[g(u, v) − ab]) means some suitable adjustment on a local temperature to
the global one w at any position where white daisy (resp. black daisy) grows, q > 0 being some
coefficient. Since g(u, v) ≤ aw (resp. g(u, v) ≥ ab), we see that w is always adjusted negatively
(resp. positively) where white daisy (resp. black daisy) grows. The notation {w}+ = max{w, 0}
denotes a positive cutoff of the function w for −∞ < w < ∞; consequently, {1− δ(w − w)2}+ is a
positive cutoff of the square function 1− δ(w−w)2 for −∞ < w < ∞, δ > 0 being some coefficient.
Both white daisy and black daisy die at a rate f > 0. Finally, the term [1 − g(u, v)]R denotes
an increasing rate of the global temperature which is determined by the averaged albedo g(u, v)
mentioned above and the incoming energy R from the sun which is assumed to be constant in Ω.
And, the term −σw4 denotes a decaying rate of the temperature due to the Stefan-Boltzmann law,
σ > 0 being the Stefan-Boltzmann constant of the surface.

We impose, as boundary conditions, the periodic conditions in x-variable and the homogeneous
Neumann conditions in y-variable for all of u, v and w. That is,

(1.3)




ζ(−ℓx, y, t) = ζ(ℓx, y, t) and ζx(−ℓx, y, t) = ζx(ℓx, y, t)

on {−ℓx, ℓx} × (0, ℓy)× (0,∞),

ζy(x, 0, t) = ζy(x, ℓy, t) = 0, on (−ℓx, ℓx)× {0, ℓy} × (0,∞),

where ζ stands for u, v and w. Finally, the initial conditions are set as

(1.4) u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y) and w(x, y, 0) = w0(x, y) in Ω.

The main interest of the present paper is as mentioned above to investigate when homogeneous
distribution of white and black daisies becomes unstable and how segregation patterns are created
by the competition of two daisies and the interaction with global temperature. For this purpose we
want to consider the case where (1.1) has a stationary solution which is homogeneous in the spatial
variables (x, y). This is reason why we assume that the incoming energy R is constant with respect
to the variables (x, y). (In [4], R depends on the latitude.) In addition, for simplicity, we want to
consider (1.1) on the cylindrical surface instead of on the sphere. This is reason why we handle
(1.1) in (−ℓx, ℓx) × (0, ℓy) under the periodic-Neumann boundary conditions (1.3) on u, v and w.
If R is constant, then similar results will be obtained for the problem (1.1) and (1.4) on the sphere.

Global solutions are constructed as in [4], although we have to prepare and use the Proposition
2.1 which may not be so standard. Construction of the dynamical system and its exponential
attractors can be carried out in a quite analogous way as in [4]. In order to investigate stability and
instability of the homogeneous stationary solutions, we will restrict our interest only to a typical
case where the parameters in (1.1) are fixed as

ab =
1

4
, ag =

1

2
, aw =

3

4
, q = 20, δ = 3.265× 10−3,

f = 0.3, w = 295.5 and σ = 5.67× 10−8,
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except R that is treated as a tuning parameter. Such a setting is suggested by [6]. Then, it
is proved that there is an interval (R∗, R

∗) for R such that if R �∈ [R∗, R
∗] there is no positive

homogeneous stationary solution, meanwhile if R ∈ (R∗, R
∗) there is a unique one U∗ = t(u∗, v∗, w∗).

Furthermore, for

φ(u, v, w) = [(1− u− v)Φ(u, v, w)− f ]u,

ψ(u, v, w) = [(1− u− v)Ψ(u, v, w)− f ] v,

it is proved that, if (u∗, v∗, w∗) satisfies

φu(u∗, v∗, w∗)ψv(u∗, v∗, w∗) ≥ φv(u∗, v∗, w∗)ψu(u∗, v∗, w∗),

then U∗ is stable, meanwhile if (u∗, v∗, w∗) satisfies

φu(u∗, v∗, w∗)ψv(u∗, v∗, w∗) < φv(u∗, v∗, w∗)ψu(u∗, v∗, w∗),

and if the diffusion coefficient D is sufficiently large with respect to the other d, then U∗ becomes
unstable. Roughly speaking, if the intra-species competition is stronger than the inter-species one
at U∗, then U∗ is stable. Meanwhile, if the intra-species competition is weaker than the inter-species
one at U∗ and if global temperature diffuses much faster than daisies, U∗ loses its stability, that is,
the diffusion driven instability takes place.

As the dynamical system possesses a finite-dimensional attractor, when U∗ is unstable, the
trajectories are attracted to some states of a finite number of freedoms which does not include the
homogeneous state. This fact then suggests that some pattern might be created spontaneously by
the white and black daisies. As a matter of fact, we find by numerical computations under suitably
fixed diffusion coefficients d and D that some segregation patterns emerge and they change their
types from homogeneous, spot, island and to labyrinth as R changes. On the other hand, the mean
of the global temperature, i.e.,

W (∞) =
1

|Ω|

∫∫

Ω

w(x, y,∞)dxdy,

is observed to be stable during R changes in this range. In this way, the competition between two
daisies and the interaction with global temperature create several types of segregation patterns of
daisies, and simultaneously they bring the homeostasis of global temperature to the planet.

The mechanism of self-regulating homeostasis has already been studied by using zero and one-
dimensional Daisyworld models. For a survey, we refer the reader to [4, Introduction].

2 Local Solutions

2.1 Laplacian under periodic-Neumann boundary conditions In order to formulate (1.1)-
(1.3) in the space L2(Ω), we have to define ∆ as a linear operator of L2(Ω) under the boundary
conditions stated in (1.3).

For this purpose, we consider the sesquilinear form

(2.1) a(u, v) = a

∫

Ω

∇u · ∇v dx+ c

∫

Ω

uv dx, u, v ∈ V,

where a and c are positive constants, on the space

(2.2) H1
per(Ω) = {u ∈ H1(Ω); u(−ℓx, y) = u(ℓx, y) in the interval (0, ℓy)}.
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As u ∈ H1(Ω) implies u|∂Ω ∈ H
1
2 (∂Ω) ⊂ L2(∂Ω), the coincidence u(−ℓx, y) = u(ℓx, y) is meaningful

as a function of L2(0, ℓy). Thereby, H1
per(Ω) is a closed subspace of H1(Ω) and becomes a Hilbert

space with the H1-inner product. Of course, H1
per(Ω) is dense in L2(Ω). Therefore,

H1
per(Ω) ⊂ L2(Ω) ⊂ H1

per(Ω)
∗

defines a triplet of spaces. In the meantime, a(u, v) given by (2.1) is continuous and coercive
on H1

per(Ω). By the theory of variation (see Dautray-Lions [2]), a(u, v) then determines a linear
operator A by the formula a(u, v) = 〈Au, v〉H1

per
∗×H1

per
for all u, v ∈ H1

per(Ω). The operator A

is seen to be a sectorial operator of H1
per(Ω)

∗ with the domain D(A) = H1
per(Ω) and is therefore

regarded as a realization of −a∆+ c in the space H1
per(Ω)

∗.
The part of A in the space L2(Ω) is defined by

{
D(A) = {u ∈ H1

per(Ω); Au ∈ L2(Ω)},
Au = Au.

In other words, u ∈ D(A) if and only if a(u, v) = (f, v) for all v ∈ H1
per(Ω) with some f ∈ L2(Ω).

By the theory of variation, again, A is a densely defined linear operator of L2(Ω). As a(u, v) is
symmetric, A is a positive definite self-adjoint operator of L2(Ω). In the present case, we can
characterize the domain D(A) as follows.

Proposition 2.1. The domain D(A) is given by

(2.3) D(A) = {u ∈ H2(Ω); u satisfies the conditions on ∂Ω stated in (1.3)}.

Moreover, it holds true that

(2.4) ‖u‖H2 ≤ C‖Au‖L2
, u ∈ D(A).

Proof. Let u ∈ H2(Ω) satisfy (1.3) and let v ∈ H1
per(Ω) be any function. By integration by parts,

∫∫

Ω

uxvx dxdy =

∫ ℓy

0

dy

∫ ℓx

−ℓx

uxvx dx =

∫ ℓy

0

dy

{
[uxv]

x=ℓx
x=−ℓx

−
∫ ℓx

−ℓx

uxxv dx

}
.

Here, the periodic conditions on u yield that

[uxv]
x=ℓx
x=−ℓx

= ux(ℓx, y)v(ℓx, y)− ux(−ℓx, y)v(−ℓx, y) = 0 for a.e. y ∈ (0, ℓy).

Therefore,
∫∫

Ω
uxvx dxdy = −

∫∫
Ω
uxxv dxdy. By the similar arguments, we have

∫∫

Ω

uyvy dxdy =

∫ ℓx

−ℓx

dx

{
[uyv]

y=ℓy
y=0 −

∫ ℓy

0

uyyv dy

}
= −

∫∫

Ω

uyyv dxdy.

In this way, we observe that (∇u,∇v) = (−∆u, v). In view of (2.1), this in fact shows that
a(u, v) = (−a∆u+ cu, v), hence u ∈ D(A) and Au = −a∆u+ cu.

In order to prove that u ∈ D(A) implies u ∈ H2(Ω), we will use a double Fourier expansion for
the functions of L2(Ω). For the variable x ∈ (−ℓx, ℓx), we use an expansion by the base functions
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cos mπ
ℓx

x and sin mπ
ℓx

x for m = 0, 1, 2, . . .; for the variable y ∈ (0, ℓy), an expansion by the base
functions cos nπ

ℓy
y for n = 0, 1, 2, . . .. Then, u can be expressed by the series

u =
∞∑

m,n=0

[
umn cos

mπ

ℓx
x+ vmn sin

mπ

ℓx
x

]
cos

nπ

ℓy
y

with Fourier coefficients umn and vmn determined by the base functions. And they satisfy
∑

m,n |umn|2

< ∞ and
∑

m,n |vmn|2 < ∞. In the distribution sense, we observe that

−∆u =
∞∑

m,n=0

[(
mπ

ℓx

)2

+

(
nπ

ℓy

)2
] [

umn cos
mπ

ℓx
x+ vmn sin

mπ

ℓx
x

]
cos

nπ

ℓy
y.

If u ∈ D(A), then, since C∞
0 (Ω) ⊂ H1

per(Ω), the condition Au ∈ L2(Ω) implies that −∆u = f ∈
L2(Ω). So, if fmn and gmn are the Fourier coefficients of f , then it follows that

umn =

[(
mπ

ℓx

)2

+

(
nπ

ℓy

)2
]−1

fmn and vmn =

[(
mπ

ℓx

)2

+

(
nπ

ℓy

)2
]−1

gmn

for every (m,n) �= (0, 0). Furthermore, it follows that

(2.5) ‖uxx‖2L2
+ ‖uxy‖2L2

+ ‖uyy‖2L2
≤ C

(∑
m,n

|fmn|2 +
∑
m,n

|gmn|2
)

≤ C‖f‖2L2
.

Hence, u belongs to H2(Ω).
Knowing that u ∈ D(A) implies u ∈ H2(Ω), we can repeat the arguments above to conclude

that the two integrals

∫ ℓy

0

[uxv]
x=ℓx
x=−ℓx

dy =

∫ ℓy

0

[ux(ℓx, y)v(ℓx, y)− ux(−ℓx, y)v(−ℓx, y)]dy,

∫ ℓx

−ℓx

[uyv]
y=ℓy
y=0 dx =

∫ ℓx

−ℓx

[uy(x, ℓy)v(x, ℓy)− uy(x, 0)v(x, 0)]dx

must vanish for all v ∈ H1
per(Ω). Remembering the definition (2.2), we verify that ux(ℓx, y) −

ux(−ℓx, y) = 0 for a.e. y ∈ (0, ℓy) and uy(x, ℓy) = uy(x, 0) = 0 for a.e. x ∈ (−ℓx, ℓx), that is, u
satisfies the boundary conditions of (1.3).

Finally, since ‖u‖H1 ≤ C‖Au‖L2
is already known, (2.4) is immediately verified from (2.5).

We have thus shown that A is a realization of −a∆+ c in L2(Ω) under the periodic-Neumann
boundary conditions stated in (1.3).

2.2 Abstract formulation Let us formulate the problems (1.1)-(1.4) as the Cauchy problem
for an abstract evolution equation

(2.6)




dU

dt
+AU = F (U), 0 < t < ∞,

U(0) = U0,
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As u ∈ H1(Ω) implies u|∂Ω ∈ H
1
2 (∂Ω) ⊂ L2(∂Ω), the coincidence u(−ℓx, y) = u(ℓx, y) is meaningful

as a function of L2(0, ℓy). Thereby, H1
per(Ω) is a closed subspace of H1(Ω) and becomes a Hilbert

space with the H1-inner product. Of course, H1
per(Ω) is dense in L2(Ω). Therefore,

H1
per(Ω) ⊂ L2(Ω) ⊂ H1

per(Ω)
∗

defines a triplet of spaces. In the meantime, a(u, v) given by (2.1) is continuous and coercive
on H1

per(Ω). By the theory of variation (see Dautray-Lions [2]), a(u, v) then determines a linear
operator A by the formula a(u, v) = 〈Au, v〉H1

per
∗×H1

per
for all u, v ∈ H1

per(Ω). The operator A

is seen to be a sectorial operator of H1
per(Ω)

∗ with the domain D(A) = H1
per(Ω) and is therefore

regarded as a realization of −a∆+ c in the space H1
per(Ω)

∗.
The part of A in the space L2(Ω) is defined by

{
D(A) = {u ∈ H1

per(Ω); Au ∈ L2(Ω)},
Au = Au.

In other words, u ∈ D(A) if and only if a(u, v) = (f, v) for all v ∈ H1
per(Ω) with some f ∈ L2(Ω).

By the theory of variation, again, A is a densely defined linear operator of L2(Ω). As a(u, v) is
symmetric, A is a positive definite self-adjoint operator of L2(Ω). In the present case, we can
characterize the domain D(A) as follows.

Proposition 2.1. The domain D(A) is given by

(2.3) D(A) = {u ∈ H2(Ω); u satisfies the conditions on ∂Ω stated in (1.3)}.

Moreover, it holds true that

(2.4) ‖u‖H2 ≤ C‖Au‖L2
, u ∈ D(A).

Proof. Let u ∈ H2(Ω) satisfy (1.3) and let v ∈ H1
per(Ω) be any function. By integration by parts,

∫∫

Ω

uxvx dxdy =

∫ ℓy

0

dy

∫ ℓx

−ℓx

uxvx dx =

∫ ℓy

0

dy

{
[uxv]

x=ℓx
x=−ℓx

−
∫ ℓx

−ℓx

uxxv dx

}
.

Here, the periodic conditions on u yield that

[uxv]
x=ℓx
x=−ℓx

= ux(ℓx, y)v(ℓx, y)− ux(−ℓx, y)v(−ℓx, y) = 0 for a.e. y ∈ (0, ℓy).

Therefore,
∫∫

Ω
uxvx dxdy = −

∫∫
Ω
uxxv dxdy. By the similar arguments, we have

∫∫

Ω

uyvy dxdy =

∫ ℓx

−ℓx

dx

{
[uyv]

y=ℓy
y=0 −

∫ ℓy

0

uyyv dy

}
= −

∫∫

Ω

uyyv dxdy.

In this way, we observe that (∇u,∇v) = (−∆u, v). In view of (2.1), this in fact shows that
a(u, v) = (−a∆u+ cu, v), hence u ∈ D(A) and Au = −a∆u+ cu.

In order to prove that u ∈ D(A) implies u ∈ H2(Ω), we will use a double Fourier expansion for
the functions of L2(Ω). For the variable x ∈ (−ℓx, ℓx), we use an expansion by the base functions
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< ∞ and
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If u ∈ D(A), then, since C∞
0 (Ω) ⊂ H1

per(Ω), the condition Au ∈ L2(Ω) implies that −∆u = f ∈
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fmn and vmn =
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+
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for every (m,n) �= (0, 0). Furthermore, it follows that

(2.5) ‖uxx‖2L2
+ ‖uxy‖2L2

+ ‖uyy‖2L2
≤ C

(∑
m,n

|fmn|2 +
∑
m,n

|gmn|2
)

≤ C‖f‖2L2
.

Hence, u belongs to H2(Ω).
Knowing that u ∈ D(A) implies u ∈ H2(Ω), we can repeat the arguments above to conclude

that the two integrals

∫ ℓy

0

[uxv]
x=ℓx
x=−ℓx

dy =

∫ ℓy

0

[ux(ℓx, y)v(ℓx, y)− ux(−ℓx, y)v(−ℓx, y)]dy,

∫ ℓx

−ℓx

[uyv]
y=ℓy
y=0 dx =

∫ ℓx

−ℓx

[uy(x, ℓy)v(x, ℓy)− uy(x, 0)v(x, 0)]dx

must vanish for all v ∈ H1
per(Ω). Remembering the definition (2.2), we verify that ux(ℓx, y) −

ux(−ℓx, y) = 0 for a.e. y ∈ (0, ℓy) and uy(x, ℓy) = uy(x, 0) = 0 for a.e. x ∈ (−ℓx, ℓx), that is, u
satisfies the boundary conditions of (1.3).

Finally, since ‖u‖H1 ≤ C‖Au‖L2
is already known, (2.4) is immediately verified from (2.5).

We have thus shown that A is a realization of −a∆+ c in L2(Ω) under the periodic-Neumann
boundary conditions stated in (1.3).

2.2 Abstract formulation Let us formulate the problems (1.1)-(1.4) as the Cauchy problem
for an abstract evolution equation

(2.6)




dU

dt
+AU = F (U), 0 < t < ∞,

U(0) = U0,
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in a Banach space X. As X we set the product L2-space, i.e.,

X =



U =



u
v
w


 ; u ∈ L2(Ω), v ∈ L2(Ω), w ∈ L2(Ω)



 .

The operator A denotes an operator matrix acting in X given by diag {Ad, Ad, AD}, where Ad

(resp. AD) is the realization of −d∆+ f (resp. −D∆+1) in L2(Ω) under the boundary conditions
stated in (1.3). Then, A is a positive definite self-adjoint operator of X. Of course the domain
D(A) is characterized by (2.3).

The nonlinear operator F (U) is defined from the reaction terms including in (1.1). However, in
view of our modeling, we expect that the solutions must exist in the ranges of u ≥ 0, v ≥ 0, u+v ≤ 1
and 0 ≤ w ≤ (R/σ)

1
4 . On account of this expectation on the ranges, we will define F (U) as follows:

F (U) =



H1(1− Reu− Re v) Φ

(
H1(Reu), H1(Re v), H2(Rew)

)
H1(Reu)

H1(1− Reu− Re v)Ψ
(
H1(Reu), H1(Re v), H2(Rew)

)
H1(Re v)

[1− g
(
H1(Reu), H1(Re v)

)
]R− σH2(Rew)

4 +H2(Rew)


 .

Here, H1(ξ) and H2(ξ) are cutoff functions defined by

H1(ξ) =




0, −∞ < ξ ≤ 0,

ξ, 0 < ξ ≤ 1,

1, 1 < ξ < ∞,

H2(ξ) =




0, −∞ < ξ ≤ 0,

ξ 0 < ξ ≤ (R/σ)
1
4 ,

(R/σ)
1
4 , (R/σ)

1
4 < ξ < ∞,

respectively.
Finally, the initial value U0 is taken from the space

(2.7) K =


U0 =



u0

v0
w0


 ∈ X; u0 ≥ 0, v0 ≥ 0, u0 + v0 ≤ 1, 0 ≤ w0 ≤

(
R

σ

) 1
4


 ,

K being thus the space of initial values.

2.3 Construction of local solutions Construction of the local solution to (2.6) is easily carried
out if we employ the theory of abstract parabolic evolution equations.

In fact, it is clear that H1(ξ) and H2(ξ) are uniformly bounded and globally Lipschitz contin-
uous functions for −∞ < ξ < ∞. Consequently, Φ(H1(Reu), H1(Re v), H2(Rew)) and Ψ(H1(Reu),
H1(Re v), H2(Rew)) are uniformly bounded and globally Lipschitz continuous functions for
(u, v, w) ∈ C3. Therefore, it is easily verified that F (U) is a bounded operator on X and sat-
isfies the Lipschitz condition, i.e.,

‖F (U)‖X ≤ C1, U ∈ X,

‖F (U)− F (V )‖X ≤ C2‖U − V ‖X , U, V ∈ X,

with suitable constants Ci > 0 (i = 1, 2).
It is then possible to apply [7, Theorem 4.4] to obtain that for any U0 ∈ X, there exists a unique

local solution to (2.6) in the function space:

U ∈ C([0, TU0 ];X) ∩ C1((0, TU0 ];X) ∩ C((0, TU0 ];D(A)).
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In addition, the solution U(t) satisfies the norm estimate

(2.8) ‖U(t)‖X + t‖AU(t)‖X ≤ CU0
, 0 < t ≤ TU0

.

Here, the constant CU0 and the time TU0 > 0 are determined by the norm ‖U0‖X alone.
Let us next prove that, if U0 is in K, then the local solution U(t) also takes values in K for

every 0 < t ≤ TU0
.

Proposition 2.2. If U0 ∈ K, then U(t) ∈ K for every 0 < t ≤ TU0
.

Proof. It is easy to verify that the complex conjugate U(t) of U(t) is also a local solution to (2.6).
Uniqueness of solution yields that U(t) = U(t) for every 0 < t ≤ TU0

, hence U(t) is real valued.
First, let us see that u(t) ≥ 0. For this purpose, we use the cutoff function given by H(u) = 1

2u
2

for −∞ < u < 0 and H(u) = 0 for 0 ≤ u < ∞. Put g(t) =
∫∫

Ω
H(u(x, y, t))dxdy. Then, for

0 < t ≤ TU0 ,

dg

dt
(t) =

∫∫

Ω

H ′(u)
∂u

∂t
dxdy = d

∫∫

Ω

H ′(u)∆udxdy

+

∫∫

Ω

H ′(u)
[
H1(1− u− v)Φ

(
H1(u), H1(v), H2(w)

)
H1(u)− fu

]
dxdy.

Here, on account of H ′(u) ∈ H1
per(Ω), we observe that

∫∫

Ω

H ′(u)∆udxdy = −
∫∫

Ω

∇H ′(u) · ∇u dxdy = −
∫∫

Ω

H ′′(u)|∇u|2dxdy ≤ 0.

Meanwhile, since H ′(u)H1(u) = 0 and −H ′(u)u ≤ 0 for all −∞ < u < ∞, it follows that dg
dt (t) ≤ 0,

i.e., g(t) ≤ g(0) = 0. This means that u(t) ≥ 0 for every 0 < t ≤ TU0

The same arguments for v(t) conclude that v(t) ≥ 0 for every 0 < t ≤ TU0
.

Second, in order to see that u(t) + v(t) ≤ 1, we notice that z(t) = 1− u(t)− v(t) is regarded as
a solution to

∂z

∂t
= d∆z −

[
Φ
(
H1(u), H1(v), H2(w)) + Ψ

(
H1(u), H1(v), H2(w)

)]
H1(z) + f [u+ v].

We can then repeat the same arguments for z(t) to conclude that z(t) ≥ 0, i.e., u(t) + v(t) ≤ 1 for
every 0 < t ≤ TU0

.

Third, let us observe that 0 ≤ w(t) ≤ (R/σ)
1
4 . But observation of the non negativity w(t) ≥ 0

is the same as for u(t) and v(t). Putting w1(t) = (R/σ)
1
4 −w(t), we notice that w1(t) is a solution

to
∂w1

∂t
= D∆w1 − σ[R/σ −H2(w)

4] +Rg(u, v) + [w −H2(w)].

Then, consider the function h(t) =
∫∫

Ω
H(w1(x, y, t))dxdy and differentiate it. Since H ′((R/σ)

1
4 −

w)[R/σ −H2(w)
4] = 0 and H ′((R/σ)

1
4 − w)[w −H2(w)] ≤ 0 for all −∞ < w < ∞, it follows that

dh
dt (t) ≤ 0, i.e., h(t) ≤ h(0) = 0. Hence, (R/σ)

1
4 − w(t) ≥ 0 for every 0 < t ≤ TU0

.
We have thus verified all the conditions in order that U(t) lies in K.

Once U(t) ∈ K, U(t) actually satisfies that H1(u(t)) = u(t), H1(v(t)) = v(t), H1(1 − u(t) −
v(t)) = 1 − u(t) − v(t) and H2(w(t)) = w(t). This means that the local solution U(t) to (2.6)
constructed above can be regard as a local solution to the original problem (1.1), (1.3) and (1.4),
too.
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in a Banach space X. As X we set the product L2-space, i.e.,

X =



U =



u
v
w


 ; u ∈ L2(Ω), v ∈ L2(Ω), w ∈ L2(Ω)



 .

The operator A denotes an operator matrix acting in X given by diag {Ad, Ad, AD}, where Ad

(resp. AD) is the realization of −d∆+ f (resp. −D∆+1) in L2(Ω) under the boundary conditions
stated in (1.3). Then, A is a positive definite self-adjoint operator of X. Of course the domain
D(A) is characterized by (2.3).

The nonlinear operator F (U) is defined from the reaction terms including in (1.1). However, in
view of our modeling, we expect that the solutions must exist in the ranges of u ≥ 0, v ≥ 0, u+v ≤ 1
and 0 ≤ w ≤ (R/σ)

1
4 . On account of this expectation on the ranges, we will define F (U) as follows:

F (U) =



H1(1− Reu− Re v) Φ

(
H1(Reu), H1(Re v), H2(Rew)

)
H1(Reu)

H1(1− Reu− Re v)Ψ
(
H1(Reu), H1(Re v), H2(Rew)

)
H1(Re v)

[1− g
(
H1(Reu), H1(Re v)

)
]R− σH2(Rew)

4 +H2(Rew)


 .

Here, H1(ξ) and H2(ξ) are cutoff functions defined by

H1(ξ) =




0, −∞ < ξ ≤ 0,

ξ, 0 < ξ ≤ 1,

1, 1 < ξ < ∞,

H2(ξ) =




0, −∞ < ξ ≤ 0,

ξ 0 < ξ ≤ (R/σ)
1
4 ,

(R/σ)
1
4 , (R/σ)

1
4 < ξ < ∞,

respectively.
Finally, the initial value U0 is taken from the space

(2.7) K =


U0 =



u0

v0
w0


 ∈ X; u0 ≥ 0, v0 ≥ 0, u0 + v0 ≤ 1, 0 ≤ w0 ≤

(
R

σ

) 1
4


 ,

K being thus the space of initial values.

2.3 Construction of local solutions Construction of the local solution to (2.6) is easily carried
out if we employ the theory of abstract parabolic evolution equations.

In fact, it is clear that H1(ξ) and H2(ξ) are uniformly bounded and globally Lipschitz contin-
uous functions for −∞ < ξ < ∞. Consequently, Φ(H1(Reu), H1(Re v), H2(Rew)) and Ψ(H1(Reu),
H1(Re v), H2(Rew)) are uniformly bounded and globally Lipschitz continuous functions for
(u, v, w) ∈ C3. Therefore, it is easily verified that F (U) is a bounded operator on X and sat-
isfies the Lipschitz condition, i.e.,

‖F (U)‖X ≤ C1, U ∈ X,

‖F (U)− F (V )‖X ≤ C2‖U − V ‖X , U, V ∈ X,

with suitable constants Ci > 0 (i = 1, 2).
It is then possible to apply [7, Theorem 4.4] to obtain that for any U0 ∈ X, there exists a unique

local solution to (2.6) in the function space:

U ∈ C([0, TU0 ];X) ∩ C1((0, TU0 ];X) ∩ C((0, TU0 ];D(A)).
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In addition, the solution U(t) satisfies the norm estimate

(2.8) ‖U(t)‖X + t‖AU(t)‖X ≤ CU0
, 0 < t ≤ TU0

.

Here, the constant CU0 and the time TU0 > 0 are determined by the norm ‖U0‖X alone.
Let us next prove that, if U0 is in K, then the local solution U(t) also takes values in K for

every 0 < t ≤ TU0
.

Proposition 2.2. If U0 ∈ K, then U(t) ∈ K for every 0 < t ≤ TU0
.

Proof. It is easy to verify that the complex conjugate U(t) of U(t) is also a local solution to (2.6).
Uniqueness of solution yields that U(t) = U(t) for every 0 < t ≤ TU0

, hence U(t) is real valued.
First, let us see that u(t) ≥ 0. For this purpose, we use the cutoff function given by H(u) = 1

2u
2

for −∞ < u < 0 and H(u) = 0 for 0 ≤ u < ∞. Put g(t) =
∫∫

Ω
H(u(x, y, t))dxdy. Then, for

0 < t ≤ TU0 ,

dg

dt
(t) =

∫∫

Ω

H ′(u)
∂u

∂t
dxdy = d

∫∫

Ω

H ′(u)∆udxdy

+

∫∫

Ω

H ′(u)
[
H1(1− u− v)Φ

(
H1(u), H1(v), H2(w)

)
H1(u)− fu

]
dxdy.

Here, on account of H ′(u) ∈ H1
per(Ω), we observe that

∫∫

Ω

H ′(u)∆udxdy = −
∫∫

Ω

∇H ′(u) · ∇u dxdy = −
∫∫

Ω

H ′′(u)|∇u|2dxdy ≤ 0.

Meanwhile, since H ′(u)H1(u) = 0 and −H ′(u)u ≤ 0 for all −∞ < u < ∞, it follows that dg
dt (t) ≤ 0,

i.e., g(t) ≤ g(0) = 0. This means that u(t) ≥ 0 for every 0 < t ≤ TU0

The same arguments for v(t) conclude that v(t) ≥ 0 for every 0 < t ≤ TU0
.

Second, in order to see that u(t) + v(t) ≤ 1, we notice that z(t) = 1− u(t)− v(t) is regarded as
a solution to

∂z

∂t
= d∆z −

[
Φ
(
H1(u), H1(v), H2(w)) + Ψ

(
H1(u), H1(v), H2(w)

)]
H1(z) + f [u+ v].

We can then repeat the same arguments for z(t) to conclude that z(t) ≥ 0, i.e., u(t) + v(t) ≤ 1 for
every 0 < t ≤ TU0

.

Third, let us observe that 0 ≤ w(t) ≤ (R/σ)
1
4 . But observation of the non negativity w(t) ≥ 0

is the same as for u(t) and v(t). Putting w1(t) = (R/σ)
1
4 −w(t), we notice that w1(t) is a solution

to
∂w1

∂t
= D∆w1 − σ[R/σ −H2(w)

4] +Rg(u, v) + [w −H2(w)].

Then, consider the function h(t) =
∫∫

Ω
H(w1(x, y, t))dxdy and differentiate it. Since H ′((R/σ)

1
4 −

w)[R/σ −H2(w)
4] = 0 and H ′((R/σ)

1
4 − w)[w −H2(w)] ≤ 0 for all −∞ < w < ∞, it follows that

dh
dt (t) ≤ 0, i.e., h(t) ≤ h(0) = 0. Hence, (R/σ)

1
4 − w(t) ≥ 0 for every 0 < t ≤ TU0

.
We have thus verified all the conditions in order that U(t) lies in K.

Once U(t) ∈ K, U(t) actually satisfies that H1(u(t)) = u(t), H1(v(t)) = v(t), H1(1 − u(t) −
v(t)) = 1 − u(t) − v(t) and H2(w(t)) = w(t). This means that the local solution U(t) to (2.6)
constructed above can be regard as a local solution to the original problem (1.1), (1.3) and (1.4),
too.
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3 Global Solutions and Dynamical System This section is devoted to constructing global
solutions, a dynamical system generated by (2.6) and its exponential attractors. But the similar
techniques used in [4] are available equally to the present problem.

3.1 Construction of global solutions It is immediate to construct a unique global solution
to (2.6) for any initial value in K. In fact, let U0 ∈ K. Then, Proposition 2.2 provides that the
norm ‖U(t)‖X remains uniformly bounded on the interval [0, TU0

]. This then means that we can
extend this local solution over some time interval [0, TU0

+ τ ], τ > 0 being determined by the norm
‖U(TU0

)‖X alone. It is then possible to repeat such an extension, for any local solution of (2.6)
(with this initial value U0) takes its values in K for every t and the extended time interval τ > 0 is
taken uniformly.

Therefore, we obtain the following existence theorem.

Theorem 3.1. For any U0 ∈ K, (2.6) possesses a unique global solution lying in

U ∈ C([0,∞);X) ∩ C1((0,∞);X) ∩ C((0,∞);D(A)).

The solution U(t) takes its values in K for every 0 < t < ∞ and satisfies the estimate

(3.1) ‖U(t)‖X + t(1 + t)−1‖AU(t)‖X ≤ C3, 0 < t < ∞,

with some constant C3 > 0 which is uniform for the initial values from K.

Proof. It suffices to prove the estimate (3.1). We already know that (3.1) holds true locally in
the interval (0, τ ], where τ is the time interval mentioned above. We then reset an initial value
U1 = U( τ2 ) ∈ K and apply (2.8) to this local solution. Then,

‖U(t)‖X + (t− τ
2 )‖AU(t)‖X ≤ C, τ ≤ t ≤ 3τ

2 .

This shows that (3.1) holds true in the extended interval (0, 3τ
2 ]. Repeating this procedure, we

obtain (3.1) on the whole interval (0,∞).

It is also verified that the global solution is Lipschitz continuous with respect to the initial value
in K. But, as the proof is quite analogous to that of [4, Theorem 3.3], we state the following
theorem without its proof.

Theorem 3.2. Let U0, V0 ∈ K and let U(t) and V (t) be the global solutions of (2.6) with initial
values U0 and V0, respectively. Then,

‖U(t)− V (t)‖X ≤ C4e
βt‖U0 − V0‖X , 0 ≤ t < ∞,(3.2)

√
t‖∇[U(t)− V (t)]‖X ≤ C4e

βt‖U0 − V0‖X , 0 < t < ∞,(3.3)

with some exponent β > 0 and some constant C4 > 0 which are both uniform for the initial values
from K.

3.2 Dynamical system By utilizing the theory of dynamical systems for semilinear abstract
parabolic evolution equations (see [7, Section 6.5]), it is immediate to construct a dynamical system
generated by (2.6) in the space X.

For U0 ∈ K, let U(t;U0) denote the global solution of (2.6) and set

S(t)U0 = U(t;U0), 0 ≤ t < ∞.
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Then, S(t) is a nonlinear semigroup acting on K, i.e., S(0) = I and S(t + s) = S(t)S(s) for
0 ≤ s, t < ∞. Furthermore, S(t) is seen to be continuous in the sense that (t, U0) �→ S(t)U0 is
continuous from [0,∞)×K into K. Indeed, due to (3.2), we have

‖S(s)V0 − S(t)U0‖X ≤ ‖S(s)V0 − S(s)U0‖X + ‖S(s)U0 − S(t)U0‖X
≤ eβs‖V0 − U0‖X + ‖S(s)U0 − S(t)U0‖X .

Then, (s, V0) → (t, U0) implies S(s)V0 → S(t)U0 in X.
The nonlinear semigroup S(t) thus defines a dynamical system in the space X, which is denoted

by (S(t),K,X). The phase space K presented by (2.7) is a bounded, closed subset of X.
As well known (see Babin-Vishik [1] and Temam [5]), the dissipative estimate provides existence

of the global attractor. Consider a subset B of K defined by

B = K ∩ {U ∈ D(A); ‖AU‖X ≤ C3 + 1}.

Then, (3.1) means that there is a time T such that S(t)K ⊂ B for every t ≥ T , i.e., B is an
absorbing set. In addition, B is a compact set of X. Thereby, B is a compact absorbing set of
(S(t),K,X). In view of the fact that S(T )B ⊂ S(T )K ⊂ B, we reset a phase space as

K ≡
∪

0≤t≤T

S(t)B ⊂ K.

It is obvious that S(t)K ⊂ K for every t > 0, i.e., K is an invariant set. Therefore, K is not only
compact and absorbing but also invariant. This means that the asymptotic behavior of trajectories
of (S(t),K,X) can be reduced to a sub dynamical system (S(t),K, X) in which the phase space K

is a compact set of X. By the usual arguments, it is then seen that B =
∩

0≤t<∞ S(t)K becomes a
global attractor of (S(t),K, X).

Furthermore, thanks to the estimate (3.3), we can construct the exponential attractors. Remem-
ber (see Eden-Foias-Nicolaenko-Temam [3]) that a subset M ⊂ K satisfying the following conditions
is called the exponential attractor of (S(t),K, X):

1. M is a compact subset of X with finite fractal dimension.

2. M includes the global attractor B.

3. M is an invariant set, i.e., S(t)M ⊂ M for every t > 0.

4. There exists an exponent k > 0 such that

h(S(t)K,M) ≤ C5e
−kt, 0 < t < ∞,

with a constant C5 > 0.

Here, h(K1,K2) = supF∈K1
infG∈K2

‖F −G‖X is a semi-distance of two subsets K1 and K2 of K.
As explained in [7, Section 6.4], the compact smoothing property

‖S(t∗)U0 − S(t∗)V0‖H1(Ω) ≤ C6‖U0 − V0‖X , U0, V0 ∈ K,

of S(t∗) with any fixed time t∗ > 0 provides existence of exponential attractors. But, in the present
case, this property is nothing more than the estimate (3.3). In this way, we obtain the following
theorem.
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3 Global Solutions and Dynamical System This section is devoted to constructing global
solutions, a dynamical system generated by (2.6) and its exponential attractors. But the similar
techniques used in [4] are available equally to the present problem.

3.1 Construction of global solutions It is immediate to construct a unique global solution
to (2.6) for any initial value in K. In fact, let U0 ∈ K. Then, Proposition 2.2 provides that the
norm ‖U(t)‖X remains uniformly bounded on the interval [0, TU0

]. This then means that we can
extend this local solution over some time interval [0, TU0

+ τ ], τ > 0 being determined by the norm
‖U(TU0

)‖X alone. It is then possible to repeat such an extension, for any local solution of (2.6)
(with this initial value U0) takes its values in K for every t and the extended time interval τ > 0 is
taken uniformly.

Therefore, we obtain the following existence theorem.

Theorem 3.1. For any U0 ∈ K, (2.6) possesses a unique global solution lying in

U ∈ C([0,∞);X) ∩ C1((0,∞);X) ∩ C((0,∞);D(A)).

The solution U(t) takes its values in K for every 0 < t < ∞ and satisfies the estimate

(3.1) ‖U(t)‖X + t(1 + t)−1‖AU(t)‖X ≤ C3, 0 < t < ∞,

with some constant C3 > 0 which is uniform for the initial values from K.

Proof. It suffices to prove the estimate (3.1). We already know that (3.1) holds true locally in
the interval (0, τ ], where τ is the time interval mentioned above. We then reset an initial value
U1 = U( τ2 ) ∈ K and apply (2.8) to this local solution. Then,

‖U(t)‖X + (t− τ
2 )‖AU(t)‖X ≤ C, τ ≤ t ≤ 3τ

2 .

This shows that (3.1) holds true in the extended interval (0, 3τ
2 ]. Repeating this procedure, we

obtain (3.1) on the whole interval (0,∞).

It is also verified that the global solution is Lipschitz continuous with respect to the initial value
in K. But, as the proof is quite analogous to that of [4, Theorem 3.3], we state the following
theorem without its proof.

Theorem 3.2. Let U0, V0 ∈ K and let U(t) and V (t) be the global solutions of (2.6) with initial
values U0 and V0, respectively. Then,

‖U(t)− V (t)‖X ≤ C4e
βt‖U0 − V0‖X , 0 ≤ t < ∞,(3.2)

√
t‖∇[U(t)− V (t)]‖X ≤ C4e

βt‖U0 − V0‖X , 0 < t < ∞,(3.3)

with some exponent β > 0 and some constant C4 > 0 which are both uniform for the initial values
from K.

3.2 Dynamical system By utilizing the theory of dynamical systems for semilinear abstract
parabolic evolution equations (see [7, Section 6.5]), it is immediate to construct a dynamical system
generated by (2.6) in the space X.

For U0 ∈ K, let U(t;U0) denote the global solution of (2.6) and set

S(t)U0 = U(t;U0), 0 ≤ t < ∞.
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Then, S(t) is a nonlinear semigroup acting on K, i.e., S(0) = I and S(t + s) = S(t)S(s) for
0 ≤ s, t < ∞. Furthermore, S(t) is seen to be continuous in the sense that (t, U0) �→ S(t)U0 is
continuous from [0,∞)×K into K. Indeed, due to (3.2), we have

‖S(s)V0 − S(t)U0‖X ≤ ‖S(s)V0 − S(s)U0‖X + ‖S(s)U0 − S(t)U0‖X
≤ eβs‖V0 − U0‖X + ‖S(s)U0 − S(t)U0‖X .

Then, (s, V0) → (t, U0) implies S(s)V0 → S(t)U0 in X.
The nonlinear semigroup S(t) thus defines a dynamical system in the space X, which is denoted

by (S(t),K,X). The phase space K presented by (2.7) is a bounded, closed subset of X.
As well known (see Babin-Vishik [1] and Temam [5]), the dissipative estimate provides existence

of the global attractor. Consider a subset B of K defined by

B = K ∩ {U ∈ D(A); ‖AU‖X ≤ C3 + 1}.

Then, (3.1) means that there is a time T such that S(t)K ⊂ B for every t ≥ T , i.e., B is an
absorbing set. In addition, B is a compact set of X. Thereby, B is a compact absorbing set of
(S(t),K,X). In view of the fact that S(T )B ⊂ S(T )K ⊂ B, we reset a phase space as

K ≡
∪

0≤t≤T

S(t)B ⊂ K.

It is obvious that S(t)K ⊂ K for every t > 0, i.e., K is an invariant set. Therefore, K is not only
compact and absorbing but also invariant. This means that the asymptotic behavior of trajectories
of (S(t),K,X) can be reduced to a sub dynamical system (S(t),K, X) in which the phase space K

is a compact set of X. By the usual arguments, it is then seen that B =
∩

0≤t<∞ S(t)K becomes a
global attractor of (S(t),K, X).

Furthermore, thanks to the estimate (3.3), we can construct the exponential attractors. Remem-
ber (see Eden-Foias-Nicolaenko-Temam [3]) that a subset M ⊂ K satisfying the following conditions
is called the exponential attractor of (S(t),K, X):

1. M is a compact subset of X with finite fractal dimension.

2. M includes the global attractor B.

3. M is an invariant set, i.e., S(t)M ⊂ M for every t > 0.

4. There exists an exponent k > 0 such that

h(S(t)K,M) ≤ C5e
−kt, 0 < t < ∞,

with a constant C5 > 0.

Here, h(K1,K2) = supF∈K1
infG∈K2

‖F −G‖X is a semi-distance of two subsets K1 and K2 of K.
As explained in [7, Section 6.4], the compact smoothing property

‖S(t∗)U0 − S(t∗)V0‖H1(Ω) ≤ C6‖U0 − V0‖X , U0, V0 ∈ K,

of S(t∗) with any fixed time t∗ > 0 provides existence of exponential attractors. But, in the present
case, this property is nothing more than the estimate (3.3). In this way, we obtain the following
theorem.
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Theorem 3.3. The dynamical system (S(t),K,X) possesses exponential attractors.

Proof. As noticed above, we already know that there exists an exponential attractorM for (S(t),K, X).
Then, as S(T )K ⊂ B ⊂ K, it is readily verified that M is an exponential attractor for (S(t),K,X),
too.

4 Homogeneous Stationary Solutions Consider the system of equations for u, v and w:

φ(u, v, w) ≡
[
(1− u− v){1− δ(w − w − q[g(u, v)− aw])

2} − f
]
u = 0,(4.1)

ψ(u, v, w) ≡
[
(1− u− v){1− δ(w − w − q[g(u, v)− ab])

2} − f
]
v = 0,(4.2)

χ(u, v, w) ≡ [1− g(u, v)]R− σw4 = 0,(4.3)

where g(u, v) is the function given by (1.2). Here, according to [6], we want to handle a typical case
that the parameters are given by

(4.4) ab =
1

4
, ag =

1

2
, aw =

3

4
, q = 20, δ = 3.265× 10−3,

f = 0.3, w = 295.5 and σ = 5.67× 10−8,

except R that is treated as a tuning parameter.

4.1 Positive solutions We are concerned with the solutions such that 0 < u < 1 and 0 < v < 1.
Then, since 1− u− v �= 0, it follows from (4.1) and (4.2) that

1− δ(w − w − q[g(u, v)− aw])
2 = 1− δ(w − w − q[g(u, v)− ab])

2.

Therefore, 2(w − w)− q[2g(u, v)− aw − ab] = 0. In view of ab + aw = 1, we have

(4.5) g(u, v) =
1

q
(w − w) +

1

2
.

It then follows from (1.2) that

(4.6) u− v =
4

q
(w − w).

Meanwhile, (4.5) together with (4.3) yields the 4-th order equation

(4.7) w4 − ρ(w − w0) = 0

for w, where ρ = R
qσ and w0 ≡ w − q

2 > 0. On the other hand, (4.5) together with (4.1) yields the
equation

(4.8) u+ v = 1− f

1− (q/4)2δ
.

In this way, we have observed that the equations (4.1)-(4.3) reduced to (4.6)-(4.8).

Let us next solve the equations (4.6)-(4.8). We first observe that when ρ = 44

33w
3
0, i.e., R = R0 ≡

44

33 qσw
3
0, (4.7) has a unique solution w = 4

3w0. Consequently, when R > R0, (4.7) has two solutions
w∗ < w∗ such that w0 < w∗ < 4

3w0 < w∗. But, here, we easily see for w∗ that the equations (4.6)
and (4.8) cannot have positive solutions. Meanwhile, there is a range for w∗ in which (4.6) and
(4.8) admit a unique positive solution. As R > R0 increases, w∗ monotonously decreases in the
range 4

3w0 > w∗ > w0. Therefore, we verify the following result.
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Proposition 4.1. There is a range (R∗, R
∗) of R for which (4.6)-(4.8) have a unique positive

solution (u∗, v∗, w∗).

Moreover, under (4.4) it is easy to see that

1− δ(w − w∗ − q[g(u∗, v∗)− ai])
2 ≥ 0

for i = w, b. This shows that for R∗ < R < R∗, U∗ = (u∗, v∗, w∗) gives a unique positive
homogeneous stationary solution of (2.6).

4.2 Stability and instability of U∗ We investigate stability and instability of the homogeneous
positive stationary solution U∗ when R∗ < R < R∗.

For this purpose we use the linearization principle. Linearizing (2.6) in a neighborhood of U∗,
let us consider the linear problem

(4.9)




dU

dt
+AU = F ′(U∗)U, 0 < t < ∞,

U(0) = U0.

Here, F ′(U∗) is a multiplicative operator of X by the matrix

F ′(U∗) =



φ∗
u φ∗

v φ∗
w

ψ∗
u ψ∗

v ψ∗
w

χ∗
u χ∗

v χ∗
w


 ≡



φu(u∗, v∗, w∗) φv(u∗, v∗, w∗) φw(u∗, v∗, w∗)
ψu(u∗, v∗, w∗) ψv(u∗, v∗, w∗) ψw(u∗, v∗, w∗)
χu(u∗, v∗, w∗) χv(u∗, v∗, w∗) χw(u∗, v∗, w∗)


 .

By elementary calculations, we observe that

φ∗
u =

[
q2δ
16 + 2fq2δ

16−q2δ − 1
]
u∗, φ∗

v =
[
q2δ
16 − 2fq2δ

16−q2δ − 1
]
u∗, φ∗

w = 8fqδ
16−q2δu∗,(4.10)

ψ∗
u =

[
q2δ
16 − 2fq2δ

16−q2δ − 1
]
v∗, ψ∗

v =
[
q2δ
16 + 2fq2δ

16−q2δ − 1
]
v∗, ψ∗

w = − 8fqδ
16−q2δ v∗,(4.11)

χ∗
u = −R

4 , χ∗
v = R

4 , χ∗
w = −4σw3

∗.(4.12)

We utilize again the base functions



cos

mπ

ℓx
x

sin
mπ

ℓx
x




× cos
nπ

ℓy
y, m, n = 0, 1, 2, . . . ,

which have been introduced in the proof of Proposition 2.1. They compose an orthogonal basis of
L2(Ω) and are an eigenfunction of −∆ under the periodic-Neumann boundary conditions with the
eigenvalue

µmn =

(
mπ

ℓx

)2

+

(
nπ

ℓy

)2

, m, n = 0, 1, 2, . . . , respectively.

Consider the subspaces of X which are defined by

Xc
mn = Span {e1 cos mπ

ℓx
x · cos nπ

ℓy
y, e2 cos

mπ
ℓx

x · cos nπ
ℓy
y, e3 cos

mπ
ℓx

x · cos nπ
ℓy
y},

Xs
mn = Span {e1 sin mπ

ℓx
x · cos nπ

ℓy
y, e2 sin

mπ
ℓx

x · cos nπ
ℓy
y, e3 sin

mπ
ℓx

x · cos nπ
ℓy
y},
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Theorem 3.3. The dynamical system (S(t),K,X) possesses exponential attractors.

Proof. As noticed above, we already know that there exists an exponential attractorM for (S(t),K, X).
Then, as S(T )K ⊂ B ⊂ K, it is readily verified that M is an exponential attractor for (S(t),K,X),
too.

4 Homogeneous Stationary Solutions Consider the system of equations for u, v and w:

φ(u, v, w) ≡
[
(1− u− v){1− δ(w − w − q[g(u, v)− aw])

2} − f
]
u = 0,(4.1)

ψ(u, v, w) ≡
[
(1− u− v){1− δ(w − w − q[g(u, v)− ab])

2} − f
]
v = 0,(4.2)

χ(u, v, w) ≡ [1− g(u, v)]R− σw4 = 0,(4.3)

where g(u, v) is the function given by (1.2). Here, according to [6], we want to handle a typical case
that the parameters are given by

(4.4) ab =
1

4
, ag =

1

2
, aw =

3

4
, q = 20, δ = 3.265× 10−3,

f = 0.3, w = 295.5 and σ = 5.67× 10−8,

except R that is treated as a tuning parameter.

4.1 Positive solutions We are concerned with the solutions such that 0 < u < 1 and 0 < v < 1.
Then, since 1− u− v �= 0, it follows from (4.1) and (4.2) that

1− δ(w − w − q[g(u, v)− aw])
2 = 1− δ(w − w − q[g(u, v)− ab])

2.

Therefore, 2(w − w)− q[2g(u, v)− aw − ab] = 0. In view of ab + aw = 1, we have

(4.5) g(u, v) =
1

q
(w − w) +

1

2
.

It then follows from (1.2) that

(4.6) u− v =
4

q
(w − w).

Meanwhile, (4.5) together with (4.3) yields the 4-th order equation

(4.7) w4 − ρ(w − w0) = 0

for w, where ρ = R
qσ and w0 ≡ w − q

2 > 0. On the other hand, (4.5) together with (4.1) yields the
equation

(4.8) u+ v = 1− f

1− (q/4)2δ
.

In this way, we have observed that the equations (4.1)-(4.3) reduced to (4.6)-(4.8).

Let us next solve the equations (4.6)-(4.8). We first observe that when ρ = 44

33w
3
0, i.e., R = R0 ≡

44

33 qσw
3
0, (4.7) has a unique solution w = 4

3w0. Consequently, when R > R0, (4.7) has two solutions
w∗ < w∗ such that w0 < w∗ < 4

3w0 < w∗. But, here, we easily see for w∗ that the equations (4.6)
and (4.8) cannot have positive solutions. Meanwhile, there is a range for w∗ in which (4.6) and
(4.8) admit a unique positive solution. As R > R0 increases, w∗ monotonously decreases in the
range 4

3w0 > w∗ > w0. Therefore, we verify the following result.
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Proposition 4.1. There is a range (R∗, R
∗) of R for which (4.6)-(4.8) have a unique positive

solution (u∗, v∗, w∗).

Moreover, under (4.4) it is easy to see that

1− δ(w − w∗ − q[g(u∗, v∗)− ai])
2 ≥ 0

for i = w, b. This shows that for R∗ < R < R∗, U∗ = (u∗, v∗, w∗) gives a unique positive
homogeneous stationary solution of (2.6).

4.2 Stability and instability of U∗ We investigate stability and instability of the homogeneous
positive stationary solution U∗ when R∗ < R < R∗.

For this purpose we use the linearization principle. Linearizing (2.6) in a neighborhood of U∗,
let us consider the linear problem

(4.9)




dU

dt
+AU = F ′(U∗)U, 0 < t < ∞,

U(0) = U0.

Here, F ′(U∗) is a multiplicative operator of X by the matrix

F ′(U∗) =



φ∗
u φ∗

v φ∗
w

ψ∗
u ψ∗

v ψ∗
w

χ∗
u χ∗

v χ∗
w


 ≡



φu(u∗, v∗, w∗) φv(u∗, v∗, w∗) φw(u∗, v∗, w∗)
ψu(u∗, v∗, w∗) ψv(u∗, v∗, w∗) ψw(u∗, v∗, w∗)
χu(u∗, v∗, w∗) χv(u∗, v∗, w∗) χw(u∗, v∗, w∗)


 .

By elementary calculations, we observe that

φ∗
u =

[
q2δ
16 + 2fq2δ

16−q2δ − 1
]
u∗, φ∗

v =
[
q2δ
16 − 2fq2δ

16−q2δ − 1
]
u∗, φ∗

w = 8fqδ
16−q2δu∗,(4.10)

ψ∗
u =

[
q2δ
16 − 2fq2δ

16−q2δ − 1
]
v∗, ψ∗

v =
[
q2δ
16 + 2fq2δ

16−q2δ − 1
]
v∗, ψ∗

w = − 8fqδ
16−q2δ v∗,(4.11)

χ∗
u = −R

4 , χ∗
v = R

4 , χ∗
w = −4σw3

∗.(4.12)

We utilize again the base functions



cos

mπ

ℓx
x

sin
mπ

ℓx
x




× cos
nπ

ℓy
y, m, n = 0, 1, 2, . . . ,

which have been introduced in the proof of Proposition 2.1. They compose an orthogonal basis of
L2(Ω) and are an eigenfunction of −∆ under the periodic-Neumann boundary conditions with the
eigenvalue

µmn =

(
mπ

ℓx

)2

+

(
nπ

ℓy

)2

, m, n = 0, 1, 2, . . . , respectively.

Consider the subspaces of X which are defined by

Xc
mn = Span {e1 cos mπ

ℓx
x · cos nπ

ℓy
y, e2 cos

mπ
ℓx

x · cos nπ
ℓy
y, e3 cos

mπ
ℓx

x · cos nπ
ℓy
y},

Xs
mn = Span {e1 sin mπ

ℓx
x · cos nπ

ℓy
y, e2 sin

mπ
ℓx

x · cos nπ
ℓy
y, e3 sin

mπ
ℓx

x · cos nπ
ℓy
y},
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where e1 = t(1, 0, 0), e2 = t(0, 1, 0), e3 = t(0, 0, 1). Then, it is easily verified that they are all a
three-dimensional subspace of X, are mutually orthogonal in X and their Hilbert sum coincides
with the space X, i.e.,

X =
∑

0≤m,n<∞

Xc
mn +

∑
1≤m<∞,0≤n<∞

Xs
mn.

Furthermore, it is verified that they are all an invariant subspace of the operator −A + F ′(U∗).
Hence, the problem (4.9) can be decomposed into the infinite number of subproblems of (4.9) in
the three-dimensional subspaces Xc

mn and Xs
mn.

By the way, the transformation matrices of −A + F ′(U∗) both in Xc
mn and Xs

mn are given by
Mµmn

, where we put

Mµ =



−dµ+ φ∗

u φ∗
v φ∗

w

ψ∗
u −dµ+ ψ∗

v ψ∗
w

χ∗
u χ∗

v −Dµ+ χ∗
w


 for 0 ≤ µ < ∞.

If for all Mµmn
, their eigenvalues have negative real parts, then U∗ is concluded to be a stable

stationary solution. To the contrary, if there exists at least oneMµmn such that one of its eigenvalues
has a positive real part, then U∗ is concluded to be an unstable one. The characteristic polynomial
of Mµ is given by

Pµ(λ) ≡ det(λI −Mµ) = λ3 + p1λ
2 + p2λ+ p3

with the following coefficients:

p1 = (2d+D)µ− (φ∗
u + ψ∗

v + χ∗
w), p3 = − detMµ,

p2 = (d2 + 2dD)µ2 − [(φ∗
u + ψ∗

v)D + (ψ∗
v + χ∗

w)d+ (χ∗
w + φ∗

u)d]µ

+ (φ∗
uψ

∗
v + ψ∗

vχ
∗
w + χ∗

wφ
∗
u)− (φ∗

vψ
∗
u + φ∗

wχ
∗
u + ψ∗

wχ
∗
v).

Furthermore, p3 is described as a third order polynomial of µ by

p3 = d2Dµ3 − [(φ∗
u + ψ∗

v)dD + χ∗
wd

2]µ2

+ [(φ∗
uψ

∗
v − φ∗

vψ
∗
u)D + (φ∗

uχ
∗
w + ψ∗

vχ
∗
w − ψ∗

wχ
∗
v − φ∗

wχ
∗
u)d]µ− detM0.

Here, it is verified from (4.10)-(4.12) that p1 > 0 and p1p2−p3 > 0. The Routh-Hurwitz theorem
then provides that Pµ(λ) has a root of positive real part if and only if p3 < 0. But we notice that

φ∗
uψ

∗
v − φ∗

vψ
∗
u =

([
q2δ

16
+

2fq2δ

16− q2δ
− 1

]2
−
[
q2δ

16
− 2fq2δ

16− q2δ
− 1

]2)
u∗v∗

=
4fq2δ

16− q2δ

(
q2δ

8
− 2

)
u∗v∗ < 0.

This shows that, if the diffusion coefficient D is sufficiently large with respect to the other d, then
p3 < 0 for µ varying in some interval (µ∗, µ

∗). Consequently, for µ ∈ (µ∗, µ
∗), the polynomial Pµ(λ)

has at least one positive root. As explained above, if there is some eigenvalue µmn that is included
in this interval, then U∗ is unstable.

For example, set R = 917 in addition to (4.4). Then,

p3 ≈ k(dµ)3 + (5.813 + 0.582k)(dµ)2 + (5.032− 0.021k)(dµ) + 0.885,

SELF-REGULATING HOMEOSTASIS MODEL IN A RECTANGLE 13

where we put D = kd. Thereby, if

(4.13) k > 5118.845,

then there exists the interval (µ∗, µ
∗) of µ in which p3 takes negative values.

5 Numerical Results This section is devoted to showing numerical results for (2.6).

Set Ω = (0, 2π) × (0, π), and set the parameters appearing in (1.1) as (4.4). The parameter R
is tuned as a control parameter. In view of (4.13), the diffusion coefficients are fixed by

D = 1 and d = 10−5.

According to the thermal physics, the incoming energy R is more precisely described by R = S×L,
where S is a radiation energy of sunlight and L is intensity of sunlight. Setting S = 917, we actually
tune L in a range

R = 917× L for 0.75 ≤ L ≤ 1.35.

(Consequently, R varies in [687.75, 1237.95].) By the results obtained in Section 4, we know for each
L of this range that (2.6) has a unique positive homogeneous stationary solution U∗. The initial
value U0 is then set by a random small perturbation of this homogeneous stationary solution.

All the numerical computations are performed by using the two-dimensional ADI methods.

5.1 Segregation patterns We vary L from 0.75 to 1.35 with step size ∆L = 0.05.

For 0.75 ≤ L ≤ 1.30, the stationary solution U∗ is unstable. So, in these cases, the perturbation
added to U∗ increases and the trajectory S(t)U0 leaves from U∗ and goes far away. About t = 6, 000,
the numerical solution is almost stabilized. The trajectory S(t)U0 might have been attracted by
the exponential attractors. The profiles of the graphs of u(t) and v(t) at t = 6, 000 are illustrated
by means of the color graduation by Fig. 1 (L = 0.75), Fig. 2 (L = 0.80), Fig. 3 (L = 0.85), Fig.
4 (L = 0.90), Fig. 5 (L = 0.95), Fig. 6 (L = 1.00), Fig. 7 (L = 1.05), Fig. 8 (L = 1.10), Fig. 9
(L = 1.15), Fig. 10 (L = 1.20), Fig. 11 (L = 1.25) and Fig. 12 (L = 1.30), respectively. On the
contrary, for L = 1.35, the stationary solution U∗ is stable. So, the trajectory S(t)U0 goes back to
U∗, see Fig. 13 . But, as the stability is very weak, it takes longtime (t = 6, 000) until S(t)U0 is
numerically stabilized.

Fig. 1: L = 0.75.
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where e1 = t(1, 0, 0), e2 = t(0, 1, 0), e3 = t(0, 0, 1). Then, it is easily verified that they are all a
three-dimensional subspace of X, are mutually orthogonal in X and their Hilbert sum coincides
with the space X, i.e.,

X =
∑

0≤m,n<∞

Xc
mn +

∑
1≤m<∞,0≤n<∞

Xs
mn.

Furthermore, it is verified that they are all an invariant subspace of the operator −A + F ′(U∗).
Hence, the problem (4.9) can be decomposed into the infinite number of subproblems of (4.9) in
the three-dimensional subspaces Xc

mn and Xs
mn.

By the way, the transformation matrices of −A + F ′(U∗) both in Xc
mn and Xs

mn are given by
Mµmn

, where we put

Mµ =



−dµ+ φ∗

u φ∗
v φ∗

w

ψ∗
u −dµ+ ψ∗

v ψ∗
w

χ∗
u χ∗

v −Dµ+ χ∗
w


 for 0 ≤ µ < ∞.

If for all Mµmn
, their eigenvalues have negative real parts, then U∗ is concluded to be a stable

stationary solution. To the contrary, if there exists at least oneMµmn such that one of its eigenvalues
has a positive real part, then U∗ is concluded to be an unstable one. The characteristic polynomial
of Mµ is given by

Pµ(λ) ≡ det(λI −Mµ) = λ3 + p1λ
2 + p2λ+ p3

with the following coefficients:

p1 = (2d+D)µ− (φ∗
u + ψ∗

v + χ∗
w), p3 = − detMµ,

p2 = (d2 + 2dD)µ2 − [(φ∗
u + ψ∗

v)D + (ψ∗
v + χ∗

w)d+ (χ∗
w + φ∗

u)d]µ

+ (φ∗
uψ

∗
v + ψ∗

vχ
∗
w + χ∗

wφ
∗
u)− (φ∗

vψ
∗
u + φ∗

wχ
∗
u + ψ∗

wχ
∗
v).

Furthermore, p3 is described as a third order polynomial of µ by

p3 = d2Dµ3 − [(φ∗
u + ψ∗
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wd

2]µ2
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uψ

∗
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∗
u)D + (φ∗
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∗
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vχ
∗
w − ψ∗

wχ
∗
v − φ∗
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∗
u)d]µ− detM0.

Here, it is verified from (4.10)-(4.12) that p1 > 0 and p1p2−p3 > 0. The Routh-Hurwitz theorem
then provides that Pµ(λ) has a root of positive real part if and only if p3 < 0. But we notice that
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=
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This shows that, if the diffusion coefficient D is sufficiently large with respect to the other d, then
p3 < 0 for µ varying in some interval (µ∗, µ

∗). Consequently, for µ ∈ (µ∗, µ
∗), the polynomial Pµ(λ)

has at least one positive root. As explained above, if there is some eigenvalue µmn that is included
in this interval, then U∗ is unstable.

For example, set R = 917 in addition to (4.4). Then,

p3 ≈ k(dµ)3 + (5.813 + 0.582k)(dµ)2 + (5.032− 0.021k)(dµ) + 0.885,
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where we put D = kd. Thereby, if

(4.13) k > 5118.845,

then there exists the interval (µ∗, µ
∗) of µ in which p3 takes negative values.

5 Numerical Results This section is devoted to showing numerical results for (2.6).

Set Ω = (0, 2π) × (0, π), and set the parameters appearing in (1.1) as (4.4). The parameter R
is tuned as a control parameter. In view of (4.13), the diffusion coefficients are fixed by

D = 1 and d = 10−5.

According to the thermal physics, the incoming energy R is more precisely described by R = S×L,
where S is a radiation energy of sunlight and L is intensity of sunlight. Setting S = 917, we actually
tune L in a range

R = 917× L for 0.75 ≤ L ≤ 1.35.

(Consequently, R varies in [687.75, 1237.95].) By the results obtained in Section 4, we know for each
L of this range that (2.6) has a unique positive homogeneous stationary solution U∗. The initial
value U0 is then set by a random small perturbation of this homogeneous stationary solution.

All the numerical computations are performed by using the two-dimensional ADI methods.

5.1 Segregation patterns We vary L from 0.75 to 1.35 with step size ∆L = 0.05.

For 0.75 ≤ L ≤ 1.30, the stationary solution U∗ is unstable. So, in these cases, the perturbation
added to U∗ increases and the trajectory S(t)U0 leaves from U∗ and goes far away. About t = 6, 000,
the numerical solution is almost stabilized. The trajectory S(t)U0 might have been attracted by
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4 (L = 0.90), Fig. 5 (L = 0.95), Fig. 6 (L = 1.00), Fig. 7 (L = 1.05), Fig. 8 (L = 1.10), Fig. 9
(L = 1.15), Fig. 10 (L = 1.20), Fig. 11 (L = 1.25) and Fig. 12 (L = 1.30), respectively. On the
contrary, for L = 1.35, the stationary solution U∗ is stable. So, the trajectory S(t)U0 goes back to
U∗, see Fig. 13 . But, as the stability is very weak, it takes longtime (t = 6, 000) until S(t)U0 is
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Fig. 1: L = 0.75.
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Fig. 2: L = 0.80.

Fig. 3: L = 0.85.

Fig. 4: L = 0.90.

Fig. 5: L = 0.95.
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Fig. 6: L = 1.00.

Fig. 7: L = 1.05.

Fig. 8: L = 1.10.

Fig. 9: L = 1.15.
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Fig. 10: L = 1.20.

Fig. 11: L = 1.25.

Fig. 12: L = 1.30.

Fig. 13: L = 1.35.
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For 0.75 ≤ L ≤ 1.30, we find clear segregation patterns formed by the white and black daisies.
At L = 0.75, black daisy is dominant in Ω and white daisy occurs only in a small number of spots.
At L = 0.80, the number of spots generated by white daisy increases; but, at L = 0.85 and 0.90,
some of these spots are jointed to make a long island of white daisy. At L = 0.95, the growth of
two daisies seems to balance in Ω and both of them form a labyrinth pattern. For 1.00 ≤ L ≤ 1.30,
white daisy in turn becomes dominant. As L increases, the very reversed patterns of white daisy
and black daisy are successively performed. At L = 1.35, white and black daisies coexist but two
daisies are distributed homogeneously in Ω.

5.2 Mean of global temperature For 0.75 ≤ L ≤ 1.35, the numerical values of w(t) are as
well stabilized about t = 6, 000. The profiles of the graphs of w(t) at t = 6, 000 are illustrated by
means of the color graduation by Figs. 14-26. Of course, the distribution of the global temperature
depends closely on those of white and black daisies. So, we want to consider the spatial mean of
w(x, y, t), i.e.,

W (t) =
1

|Ω|

∫∫

Ω

w(x, y, t)dxdy, 0 ≤ t < ∞.

For each L, an approximate value of W (6, 000) is computed by a numerical integration. Its graph
is drawn by Fig. 27. (However, the temperature is expressed in degrees Celsius.) We find that
during the interval [0.75, 1.35] of L, the mean of the global temperature is completely stabilized.

We thus observe that the homeostasis in the global temperature is maintained in Ω with respect
to a change of intensity of sunlight, although the segregation pattern of white and black daisies
clearly changes its types from homogeneous, spot, island and to labyrinth.

Fig. 14: L = 0.75. Fig. 15: L = 0.80.

Fig. 16: L = 0.85. Fig. 17: L = 0.90.
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Fig. 18: L = 0.95. Fig. 19: L = 1.00.

Fig. 20: L = 1.05. Fig. 21: L = 1.10.

Fig. 22: L = 1.15. Fig. 23: L = 1.20.

Fig. 24: L = 1.25. Fig. 25: L = 1.30.
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Fig. 26: L = 1.35.

Fig. 27: The spatial mean of temperature.
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Abstract. Reduction of the amount of wastes coming from food containers and pack-
aging is one of urgent issues for the humankind. Japanese manufacturers, including
F. P. Corporation, are devising their own recycling system of disposable food contain-
ers for reusing resources in containers and packagings. Without waiting the Guidelines
issued by the Ministry of Health, Labour and Welfare of Japanese Government, it is
indispensable to ensure food safety when the manufacturer uses such recycled mate-
rials. This paper then intends to present methods for estimating a diffusion rate of
contaminant if it is contained in post-consumer food containers and enters the recycling
line. Our methods will be explained by applying them to the recycling line realized by
F. P. Corporation. As our methods are quite general, they may easily be applied to
any other recycling lines.

1 Introduction It is ordinarily seen that a large amount of household wastes is occupied
by those which come from food containers and packagings. In order to reduce the amount
of such wastes, the Recycling Law of Food Containers and Packaging has been established
in Japan in 1995 for promoting more effective use of resources in containers and packagings.

F. P. Corporation (abbreviated to FPCO), a manufacturer of disposable food containers
to be used in supermarkets, convenience stores and others, has been realizing an original
recycling system since 1990.

Post-consumer food containers brought to supermarkets and others are gathered by
collection boxes and are brought back to the recycling plants of FPCO by utilizing returning
trucks which delivered their products as explained in [1]. FPCO’s recycling process of
foamed polystyrene containers consists of three main steps, namely, (1) sorting/crashing, (2)
washing/dehydration, and (3) extrusion/pelletizing, in order to remove contaminators from
the collected polystyrene containers. Using the regenerated polystyrene pellets, recycled
foamed polystyrene containers are made via sheet formations. Its schematic diagram is
sketched by Figure 1. For details, see the homepage [2].

Without waiting the Guidelines [3] issued by the Ministry of Health, Labour and Welfare
of Japanese Government, it is indispensable to ensure food safety when the manufacturer
uses such recycled materials for reproducing food containers. Careful and sufficient con-
siderations must be taken for preventing any recycled containers containing adventitious
chemical contaminant which may migrate into foods and influence human health from be-
ing distributed to the markets.

FPCO has received a non-objection letter on recycled foamed polystyrene containers
from U. S. Food and Drug Administration. In addition, constant inspections are carried
out in daily production activities in accordance with Japanese Food Sanitation Act.

Meanwhile, investigations on the worst case are always required in the field of food sani-
tation. One of these investigations, to know scientifically how contaminants diffuse through
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the recycling process is very important and to estimate reasonably the highest possible
contaminant concentration is very crucial. By these reasons, a mathematical approach is
proposed by the present authors and some analytical results are described in the paper.
Specifically, we assume that a tray containing a unit amount of contaminant enters FPCO’s
recycling line. Then, under the worst external conditions to be considered, we analyse its
diffusion rate. Finally, we compute the highest contaminant concentration by means of the
random variable.

As our methods of estimation are very general, it is easy to know how the response
is with respect to the change of controllable internal conditions. We then hope that the
methods presented in this paper would play a meaningful role in order to establish safer
and more reliable recycling processes for reusing more post-consumer food containers and
packaging waste.

Finally, let us review FPCO’s recycling line whose schematic diagram is sketched by
Figure 1. The collected trays are crashed into small fragments. After being fully washed,
the fragments are melted by a heater and the polystyrene in gel is pelletized by an extruding
machine to yield numbers of pellets which are a unit grain of foamed polystyrene of a
uniformed size in order to reproduce new food-trays. The pellets made from the used trays
are packed in big boxes and are quadrupled by adding three times virgin pellets. After
being entirely blended, the quadrupled pellets are laid in a thin layer, once again melted
and are sheeted by another extruding machine to make polystyrene sheets. These sheets
are laminated by a virgin film and cut into a unit size of tray. By these processes, the used
trays are recycled to new ones.

DIFFUSION  RATE  CONTAMINANT  RECYCLING  LINE 3

Fig. 1: FPCO’s Recycling Methods
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2 Material and Methods We first want to notice that through the recycling line
sketched by Figure 1, the diffusion of contaminant consists of three independent kinds
of diffusions.

First one is the temporal diffusion. Assume that one tray containing a unit amount of
contaminant has entered the production line. Then, the contaminated tray is crashed into
almost 250 fragments which contain as a result 4.0 × 10−3 unit of contaminant for each.
Through melting and pelletizing, the 250 fragments are processed into numbers of pellets
which contain a certain unit of contaminant. And these contaminated pellets together with
other clear ones are packed in several boxes. Then, how do the contaminated pellets diffuse
over the packing boxes?

Second one is the diffusion caused by combination which may be called the combinatorial
diffusion. Consider a box of pellets which nearly consist of 1.0 × 107 pellets and assume
that some of these, say n pellets, are contaminated. By addition of three boxes of virgin
pellets, we have 4.0 × 107 pellets as a whole. These pellets are randomly divided into sets
consisting of 100 pellets uniformly; consequently, we make 4.0×105 sets. Each set of pellets
can yield just one new tray after melting, sheeting and cutting processes. Then, how do the
n contaminated pellets included in 4.0× 107 pellets in total diffuse over the dividing sets?

Third one is the diffusion caused by melting and extruding (here and after the word
extruding will be used for two meanings: pelletizing by extrusion and sheeting by extrusion).
The production line has two processes of melting and extruding. Naturally, through the two
processes the contaminant in contaminated fragments or in contaminated pellets diffuses in
the gel of polystyrene. Then, how does the contaminant diffuse in the gel spatially?

Let us next explain how we analysed these different kinds of diffusions.
As for the temporal diffusion, we made the following experiments. A certain number

of colored fragments of tray were inserted in the recycling line and the arriving time of
each fragment at the first melting stage was checked. Several times this trial was repeated.
Through these experiments we know how long the fragments made of a contaminated tray
entered in the line diffuse temporally before arriving at the first melting stage.

The combinatorial diffusion can be analysed exactly by using the theory of probability
and combinatorics (e.g., see [4, 7]). Consider a collection of N = 4.0 × 107 pellets which
includes n contaminated pellets. We divide all the pellets randomly into 4.0 × 105 sets
which consist uniformly of 100 pellets. Denote by X the maximum of contaminated pellets
included in one set throughout the 4.0 × 105 sets. Of course X changes depending on
how to divide, so X is considered as a random variable. The most favorable case is that
the n contaminated pellets are completely divided into different sets, i.e., X = 1. On the
contrary, the worst case is that the n pellets are divided into a single set, i.e., X = n, but
the probability of such a division should be negligibly small. We will devise an easy way
how to compute the probability such that X = k for the variable k = 1, 2, 3, . . . , n.

Finally, the spatial diffusion due to melting and extruding is analysed by the following
experiments. A similar type of melting and sheeting machine was prepared. Among numbers
of pellets, just one pellet which contains a material emitting fluorescent X-rays was put and
passed through the heater and extruder. The resultant sheet was then carefully examined.
How wide is the emitting material spread? What is magnitude of the X-ray in each part
of sheet? Several times this experiment was repeated. Out of those data, we built a fitting
function which describes the diffusion of the emitting material as a 3D graph, by using the
techniques of implicit surface fitting (see [6, 10]). By these arguments we know how wide
the contaminant in a pellet is spread and by what rate the contaminant diffuses through
the melting and extruding processes.

It is, however, very difficult to analyse the spatial diffuses of contaminant in the first
melting process, because the gel made from the fragments is immediately formed into num-

DIFFUSION  RATE  CONTAMINANT  RECYCLING  LINE 5

bers of pellets by a pelletizing extruder. So we want to introduce an imaginary process of
sheeting and want to consider that the gel is once formed into sheets and then those sheets
are formed into pellets.
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indispensable to ensure food safety when the manufacturer uses such recycled mate-
rials. This paper then intends to present methods for estimating a diffusion rate of
contaminant if it is contained in post-consumer food containers and enters the recycling
line. Our methods will be explained by applying them to the recycling line realized by
F. P. Corporation. As our methods are quite general, they may easily be applied to
any other recycling lines.

1 Introduction It is ordinarily seen that a large amount of household wastes is occupied
by those which come from food containers and packagings. In order to reduce the amount
of such wastes, the Recycling Law of Food Containers and Packaging has been established
in Japan in 1995 for promoting more effective use of resources in containers and packagings.

F. P. Corporation (abbreviated to FPCO), a manufacturer of disposable food containers
to be used in supermarkets, convenience stores and others, has been realizing an original
recycling system since 1990.

Post-consumer food containers brought to supermarkets and others are gathered by
collection boxes and are brought back to the recycling plants of FPCO by utilizing returning
trucks which delivered their products as explained in [1]. FPCO’s recycling process of
foamed polystyrene containers consists of three main steps, namely, (1) sorting/crashing, (2)
washing/dehydration, and (3) extrusion/pelletizing, in order to remove contaminators from
the collected polystyrene containers. Using the regenerated polystyrene pellets, recycled
foamed polystyrene containers are made via sheet formations. Its schematic diagram is
sketched by Figure 1. For details, see the homepage [2].

Without waiting the Guidelines [3] issued by the Ministry of Health, Labour and Welfare
of Japanese Government, it is indispensable to ensure food safety when the manufacturer
uses such recycled materials for reproducing food containers. Careful and sufficient con-
siderations must be taken for preventing any recycled containers containing adventitious
chemical contaminant which may migrate into foods and influence human health from be-
ing distributed to the markets.

FPCO has received a non-objection letter on recycled foamed polystyrene containers
from U. S. Food and Drug Administration. In addition, constant inspections are carried
out in daily production activities in accordance with Japanese Food Sanitation Act.

Meanwhile, investigations on the worst case are always required in the field of food sani-
tation. One of these investigations, to know scientifically how contaminants diffuse through
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bers of pellets by a pelletizing extruder. So we want to introduce an imaginary process of
sheeting and want to consider that the gel is once formed into sheets and then those sheets
are formed into pellets.
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3 Results

3.1 Temporal diffusion We inserted 50 colored fragments of tray at the end of crashing
process and checked the arriving time of each fragment at the checking point which was set
almost in the middle of crashing and melting stages. This trial was repeated 5 times. We
could check for almost 30 fragments their arriving time for each trial. The result is graphed
in Figure 2.

Here, ∆t = 1, 2, 3 (min.) denotes a unit of time interval, the axis of abscissas i =
1, 2, 3, . . . denotes time i∆t (min.), and the axis of ordinates denotes a number of fragments
which arrived during the time from (i − 1)∆t to i∆t. From the data we observe that
the range of arrival time is not so long and all the checked fragments arrived within 26
min. Indeed, we verify that, if the graphs in Figure 2 can be approximated by the normal
distributions, then it is concluded that 95% of fragments arrive within 25 minutes (see [8]).
Remembering that our cheking point is set at the middle of crashing and melting stages, we
want to estimate that the temporal diffusion of contaminated fragments is about 1 hour.

After being melted and pelletized, the fragments are formed into pellets and the pellets
are packed in big boxes. We know that each packing box is filled with pellets by just 1 hour.
This means that the pellets made from the 250 contaminated fragments must be packed at
most 2 boxes. In this way the n contaminated pellets can be included in a single packing
box with a high probability, which means that the temporal diffusion must be disregarded.
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Fig. 2: Experimental Data
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by those which come from food containers and packagings. In order to reduce the amount
of such wastes, the Recycling Law of Food Containers and Packaging has been established
in Japan in 1995 for promoting more effective use of resources in containers and packagings.

F. P. Corporation (abbreviated to FPCO), a manufacturer of disposable food containers
to be used in supermarkets, convenience stores and others, has been realizing an original
recycling system since 1990.

Post-consumer food containers brought to supermarkets and others are gathered by
collection boxes and are brought back to the recycling plants of FPCO by utilizing returning
trucks which delivered their products as explained in [1]. FPCO’s recycling process of
foamed polystyrene containers consists of three main steps, namely, (1) sorting/crashing, (2)
washing/dehydration, and (3) extrusion/pelletizing, in order to remove contaminators from
the collected polystyrene containers. Using the regenerated polystyrene pellets, recycled
foamed polystyrene containers are made via sheet formations. Its schematic diagram is
sketched by Figure 1. For details, see the homepage [2].

Without waiting the Guidelines [3] issued by the Ministry of Health, Labour and Welfare
of Japanese Government, it is indispensable to ensure food safety when the manufacturer
uses such recycled materials for reproducing food containers. Careful and sufficient con-
siderations must be taken for preventing any recycled containers containing adventitious
chemical contaminant which may migrate into foods and influence human health from be-
ing distributed to the markets.

FPCO has received a non-objection letter on recycled foamed polystyrene containers
from U. S. Food and Drug Administration. In addition, constant inspections are carried
out in daily production activities in accordance with Japanese Food Sanitation Act.

Meanwhile, investigations on the worst case are always required in the field of food sani-
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3.2 Spatial diffusion We put one pellet which contains a material emitting fluorescent
X-rays in a similar type of melting and sheeting machine. Magnitude of the X-ray in each
part of the resultant sheet was measured by a photometer. The data is given by Table 1.

Table 1: Data

1 2 3 4 5 6

1 0 0.027003484 0.031068525 0.024970964 0.022357724 0.019454123
2 0.013066202 0.028745645 0.030197445 0.026422764 0.022938444 0.019163763
3 0.007549361 0.034262485 0.042973287 0.033391405 0.022938444 0.014808362
4 0 0.020325203 0.041521487 0.030487805 0.025551684 0.018583043
5 0.006097561 0 0.009001161 0.012485482 0.032520325 0.025842044

7 8 9 10 11 12

0.012775842 0.019163763 0.008420441 0.007839721 0 0.008420441
0.018873403 0.013646922 0.009872242 0.007839721 0.006678281 0
0.012775842 0.008710801 0.010162602 0.007839721 0 0
0.016260163 0.012485482 0.011614402 0.010162602 0.007259001 0.005807201
0.031939605 0.022067364 0.021777003 0.016260163 0.012775842 0.011904762

13 14 15 16

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.011614402 0.011324042 0 0

The resultant sheet is of width 35cm × 480cm. This area is divided into 5 × 16 parts
which are uniformly of width 7cm × 30cm. The numbers in Table 1 show the magnitude
of the X-ray in these parts. The total magnitude is just 1. We see that the part (3, 3) has
the maximum magnitude. The data can also be illustrated by a rectangular graph drew in
Figure 3.

In order to use these data more conveniently, it is necessary to describe the graph by a
suitable fitting surface. Several methods are known how to fit a function f(x, y) to a given
rectangular graph. We here use the normal distribution for the variable x and the Johnson
Sb distribution for the variable y due to [6], that is,

(3.1) f(x, y) =
b− a

2πσ(b− y)(y − a)
exp

{
− (x− µ)2

2σ2
− 1

2

[
γ + δ log

(
y − a

b− y

)]2}
,

where a, b, γ, δ, µ and σ are parameters to be determined, see [10]. Some optimization
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Fig. 3: Rectangular Graph

arguments owing to [5] yield that, under

(3.2)




a = −10.1864

b = 15.9004

γ = 0.6660

δ = 0.6671

µ = 2.3588

σ = 1.8366,

its fitting becomes the maximum, for the details see [9].
We also impose a condition that the numerical integral of f(x, y) is nearly equal to 1.

The graph of the function (3.1) with parameters (3.2) is given by Figure 4.
It is possible to derive many properties of the spatial diffusion through the melting and

sheeting processes by using this fitting function.
Assume that one contaminated pellet containing, say a unit amount of, contaminant is

put in the second melting process. The contaminant in the pellet diffuses, after melting
and sheeting, over the sheet to be laminated and cut according to the function obtained by
Figure 4. Noticing that a reproduced tray is of width 12cm × 20cm, we can compute the
maximum amount of contaminant in a tray as

(3.3) SDR = 0.037264

(for the details see [9]), which is called the Spatial Diffusion Rate.
Let us now estimate the spatial diffusion in the first melting process. As discussed above,

we should disregard the temporal diffusion of contaminated fragments. So we assume that
250 contaminated fragments are put simultaneously in the first melting stage. In addition,
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issued by the Ministry of Health, Labour and Welfare of Japanese Government, it is
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contaminant if it is contained in post-consumer food containers and enters the recycling
line. Our methods will be explained by applying them to the recycling line realized by
F. P. Corporation. As our methods are quite general, they may easily be applied to
any other recycling lines.

1 Introduction It is ordinarily seen that a large amount of household wastes is occupied
by those which come from food containers and packagings. In order to reduce the amount
of such wastes, the Recycling Law of Food Containers and Packaging has been established
in Japan in 1995 for promoting more effective use of resources in containers and packagings.

F. P. Corporation (abbreviated to FPCO), a manufacturer of disposable food containers
to be used in supermarkets, convenience stores and others, has been realizing an original
recycling system since 1990.

Post-consumer food containers brought to supermarkets and others are gathered by
collection boxes and are brought back to the recycling plants of FPCO by utilizing returning
trucks which delivered their products as explained in [1]. FPCO’s recycling process of
foamed polystyrene containers consists of three main steps, namely, (1) sorting/crashing, (2)
washing/dehydration, and (3) extrusion/pelletizing, in order to remove contaminators from
the collected polystyrene containers. Using the regenerated polystyrene pellets, recycled
foamed polystyrene containers are made via sheet formations. Its schematic diagram is
sketched by Figure 1. For details, see the homepage [2].

Without waiting the Guidelines [3] issued by the Ministry of Health, Labour and Welfare
of Japanese Government, it is indispensable to ensure food safety when the manufacturer
uses such recycled materials for reproducing food containers. Careful and sufficient con-
siderations must be taken for preventing any recycled containers containing adventitious
chemical contaminant which may migrate into foods and influence human health from be-
ing distributed to the markets.

FPCO has received a non-objection letter on recycled foamed polystyrene containers
from U. S. Food and Drug Administration. In addition, constant inspections are carried
out in daily production activities in accordance with Japanese Food Sanitation Act.

Meanwhile, investigations on the worst case are always required in the field of food sani-
tation. One of these investigations, to know scientifically how contaminants diffuse through
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Fig. 3: Rectangular Graph

arguments owing to [5] yield that, under

(3.2)




a = −10.1864

b = 15.9004

γ = 0.6660

δ = 0.6671

µ = 2.3588

σ = 1.8366,

its fitting becomes the maximum, for the details see [9].
We also impose a condition that the numerical integral of f(x, y) is nearly equal to 1.

The graph of the function (3.1) with parameters (3.2) is given by Figure 4.
It is possible to derive many properties of the spatial diffusion through the melting and

sheeting processes by using this fitting function.
Assume that one contaminated pellet containing, say a unit amount of, contaminant is

put in the second melting process. The contaminant in the pellet diffuses, after melting
and sheeting, over the sheet to be laminated and cut according to the function obtained by
Figure 4. Noticing that a reproduced tray is of width 12cm × 20cm, we can compute the
maximum amount of contaminant in a tray as

(3.3) SDR = 0.037264

(for the details see [9]), which is called the Spatial Diffusion Rate.
Let us now estimate the spatial diffusion in the first melting process. As discussed above,

we should disregard the temporal diffusion of contaminated fragments. So we assume that
250 contaminated fragments are put simultaneously in the first melting stage. In addition,
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Fig. 4: Johnson Sb Distribution

we set an imaginary process of sheeting, namely, we consider that the fragments are once
melted by a heater, the gel is extruded to form it into a sheet, and the sheet is processed into
pellets. We therefore assume that a unit amount of contaminant is put in the melting and
sheeting processes. Then its diffusion can estimated as above. The contaminant spreads
over a sheet of width 35cm× 480cm and its distribution is given by the function (3.1) with
parameters (3.2). Since one tray measures 12cm× 20cm and consists of almost 100 pellets,
this sheet yields 70 trays, i.e., 7.0× 103 pellets which are contaminated. In this way, a unit
amount of contaminant diffuses over 7× 103 pellets with some rate which depends on each
pellet. It is, however, very difficult to estimate a distribution of rates over such a large
number of pellets. So, considering the fact that the gel of polystyrene is stirred harder
by the pelletizing extruder, we want to take a homogeneous distribution but over a little
bit smaller number of pellets. In this paper, we set 6.0 × 103 contaminated pellets which
contain a uniform amount of contaminant, namely,

(3.4) n = 6.0× 103

and all these pellets contain uniformly a 1/[6.0× 103] unit of contaminant.

3.3 Combinatorial diffusion Consider a collection of N = 4.0 × 107 pellets which
includes, according to (3.4), n = 6.0 × 103 contaminated pellets. We divide these pellets
randomly into q = 4.0× 105 sets of pellets which consist uniformly of p = 100 pellets.

More precisely, we study dispositions of the N pellets into the q × p sites described
by Figure 5. Let X be a random variable which is defined as the maximum number of
contaminated pellets through the all dividing sets for each disposition. That is, X is a
random variable defined on the sample space

Ω = {all the permutations of the N pellets into the q × p sites}.

The probability such that X = k, where k = 1, 2, 3, . . . , n, can be computed by the following
methods.
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Fig. 5: Division

I. Probability of X = 1. The total number of elements of Ω, namely, the total number of
permutations of N pellets is of course N !.

In the meantime, the number of permutations such that X = 1, namely, the number of
permutations in which the n contaminated pellets are completely disposed in different sets
is computed by the following procedure:

1. First, we count the number of choice of n sites for contaminated pellets. As for sets,
we have qCn. For such a choice, each set has pC1 sites for a contaminated pellet.
Therefore, it counts qCn[pC1]

n.

2. Let the n sites for contaminated pellets be fixed as (1). Then there are n! permutations
of the contaminated pellets.

3. Let the sites for contaminated pellets be fixed as (1) and let the contaminated pellets
be disposed as (2). Then the non-contaminated pellets are disposed by (N−n)! ways.

We therefore conclude that

(3.5) P (X = 1) =
qCn · [pC1]

n · n! · (N − n)!

N !
=

pn · q! · (N − n)!

(q − n)! ·N !
.

By some calculations,

P (X = 1) =
pq

N
· p(q − 1)

N − 1
· p(q − 2)

N − 2
· · · p(q − n+ 1)

N − n+ 1
.

This provides us a practical scheme for computing P (X = 1) such that




P0 =
pq

N
= 1,

Pi =
p(q − i)

N − i
· Pi−1 (i = 1, 2, 3, . . . , n− 1).

It then results in

(3.6) P (X = 1) ≈ 3.60565× 10−5.
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1 Introduction It is ordinarily seen that a large amount of household wastes is occupied
by those which come from food containers and packagings. In order to reduce the amount
of such wastes, the Recycling Law of Food Containers and Packaging has been established
in Japan in 1995 for promoting more effective use of resources in containers and packagings.

F. P. Corporation (abbreviated to FPCO), a manufacturer of disposable food containers
to be used in supermarkets, convenience stores and others, has been realizing an original
recycling system since 1990.

Post-consumer food containers brought to supermarkets and others are gathered by
collection boxes and are brought back to the recycling plants of FPCO by utilizing returning
trucks which delivered their products as explained in [1]. FPCO’s recycling process of
foamed polystyrene containers consists of three main steps, namely, (1) sorting/crashing, (2)
washing/dehydration, and (3) extrusion/pelletizing, in order to remove contaminators from
the collected polystyrene containers. Using the regenerated polystyrene pellets, recycled
foamed polystyrene containers are made via sheet formations. Its schematic diagram is
sketched by Figure 1. For details, see the homepage [2].

Without waiting the Guidelines [3] issued by the Ministry of Health, Labour and Welfare
of Japanese Government, it is indispensable to ensure food safety when the manufacturer
uses such recycled materials for reproducing food containers. Careful and sufficient con-
siderations must be taken for preventing any recycled containers containing adventitious
chemical contaminant which may migrate into foods and influence human health from be-
ing distributed to the markets.

FPCO has received a non-objection letter on recycled foamed polystyrene containers
from U. S. Food and Drug Administration. In addition, constant inspections are carried
out in daily production activities in accordance with Japanese Food Sanitation Act.

Meanwhile, investigations on the worst case are always required in the field of food sani-
tation. One of these investigations, to know scientifically how contaminants diffuse through
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I. Probability of X = 1. The total number of elements of Ω, namely, the total number of
permutations of N pellets is of course N !.

In the meantime, the number of permutations such that X = 1, namely, the number of
permutations in which the n contaminated pellets are completely disposed in different sets
is computed by the following procedure:

1. First, we count the number of choice of n sites for contaminated pellets. As for sets,
we have qCn. For such a choice, each set has pC1 sites for a contaminated pellet.
Therefore, it counts qCn[pC1]

n.

2. Let the n sites for contaminated pellets be fixed as (1). Then there are n! permutations
of the contaminated pellets.

3. Let the sites for contaminated pellets be fixed as (1) and let the contaminated pellets
be disposed as (2). Then the non-contaminated pellets are disposed by (N−n)! ways.

We therefore conclude that

(3.5) P (X = 1) =
qCn · [pC1]

n · n! · (N − n)!

N !
=

pn · q! · (N − n)!

(q − n)! ·N !
.

By some calculations,

P (X = 1) =
pq

N
· p(q − 1)

N − 1
· p(q − 2)

N − 2
· · · p(q − n+ 1)

N − n+ 1
.

This provides us a practical scheme for computing P (X = 1) such that




P0 =
pq

N
= 1,

Pi =
p(q − i)

N − i
· Pi−1 (i = 1, 2, 3, . . . , n− 1).

It then results in

(3.6) P (X = 1) ≈ 3.60565× 10−5.
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II. Probability of X = 2. Let us compute P (X = 2). To this end, we introduce another
random variable X2 which denotes the number of sets including just two contaminated
pellets for each permutation of Ω. Let x2 be a variable running from 1 to n

2 . It is clear that

(3.7) P (X = 2) =

n
2∑

x2=1

P (X = 2, X2 = x2).

So it suffices to compute P (X = 2, X2 = x2).
Then each P (X = 2, X2 = x2) can be obtained by the following procedure:

1. First, compute the number of choice of 2x2 sites at which the double contaminated
pellets are disposed. Of course, the choice of x2 sets in which two contaminated pellets
are disposed is qCx2 . For such a choice, the choice of two sites for contaminated pellets
is pC2 per each set. Therefore, it counts qCx2

[pC2]
x2 .

2. Under (1), the permutations of n pellets into the chosen 2x2 sites is nP2x2 .

3. Under (1) and (2), a collection of N − 2x2 pellets (including n − 2x2 contaminated
ones) remains to be divided into q sets. But any set other than those chosen in (1)
must include at most one contaminated pellet. Then an analogous procedure to that
explained above is available to compute the number of such permutations. Indeed, we
have q−x2Cn−2x2 · [pC1]

n−2x2 · (n− 2x2)! · (N − n)!.

It then follows that

P (X = 2, X2 = x2)

=
qCx2 · [pC2]

x2 · nP2x2 · q−x2Cn−2x2 · [pC1]
n−2x2 · (n− 2x2)! · (N − n)!

N !

=
pn−x2 · (p− 1)x2 · q! · n! · (N − n)!

2x2 · x2! · (q − n+ x2)! · (n− 2x2)! ·N !
.

It is easy to verify the following recurrence formula for x2:




P (X = 2, X2 = 0) =P (X = 1),

P (X = 2, X2 = x2) =
(p− 1)(n− 2x2 + 2)(n− 2x2 + 1)

2px2(q − n+ x2)

× P (X = 2, X2 = x2 − 1)
(
x2 = 1, 2, 3, . . . , n

2

)
.

Using this formula we can compute P (X = 2, X2 = x2) for all x1 = 1, 2, 3, . . . , n
2 . Then

P (X = 2) is obtained by the summation (3.7). Indeed,

(3.8) P (X = 2) ≈ 8.05853× 10−1.

III. Probability of X = 3. We introduce a further random variable X3 which denotes the
number of sets including just three contaminated pellets for each permutation of Ω. Let x3

be a variable running from 1 to n
3 . Then,

(3.9) P (X = 3) =
∑

1 ≤ x3 ≤ n
3

3 ≤ 2x2 + 3x3 ≤ n

P (X = 3, X3 = x3, X2 = x2).
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So let us compute P (X = 3, X3 = x3, X2 = x2) for every pair (x3, x2) such that
1 ≤ x3 ≤ n

3 and 3 ≤ 2x2 + 3x3 ≤ n.

1. First, as before, compute the number of choice of 3x3 sites at which the triple contam-
inated pellets are disposed. The choice of x3 sets in which three contaminated pellets
are disposed is qCx3 . For such a choice, the choice of three sites for contaminated
pellets is pC3 per each set. Therefore, it counts qCx3 [pC3]

x3 .

2. Under (1), the permutations of n pellets into the chosen 3x3 sites is nP3x3 .

3. Under (1) and (2), a collection of N − 3x3 pellets (including n − 3x3 contaminated
ones) remains to be divided into q sets. But any set other than those chosen in (1)
must include at most two contaminated pellets. Then an analogous procedure to that
for the case where X = 2 is available to compute the number of such permutations.
Indeed, we have

q−x3Cx2 · [pC2]
x2 · n−3x3P2x2 · q−x3−x2Cn−3x3−2x2 [pC1]

n−3x3−2x2

× (n− 3x3 − 2x2)! · (N − n)!.

It then follows that

P (X = 3, X3 = x3, X2 = x2)

=
{
qCx3 [pC3]

x3 · nP3x3 · q−x3Cx2 · [pC2]
x2 · n−3x3P2x2 · q−x3−x2Cn−3x3−2x2

× [pC1]
n−3x3−2x2 · (n− 3x3 − 2x2)! · (N − n)!

}/
N !

=
pn−2x3−x2 · (p− 1)x3+x2 · (p− 2)x3 · q! · n! · (N − n)!

6x3 · 2x2 · x3! · x2! · (q − n+ 2x3 + x2)! · (n− 3x3 − 2x2)! ·N !
.

To compute P (X = 3) in an easy way, we rewrite (3.9) into

(3.10) P (X = 3) =

n
2−2∑
x2=0

[
n−2x2

3

]
∑
x3=1

P (X = 3, X3 = x3, X2 = x2),

where
[
n−2x2

3

]
denotes the integer part of n−2x2

3 , i.e., 0 ≤ n−2x2

3 −
[
n−2x2

3

]
< 1. Then, for

each fixed x2 = 0, 1, 2, . . . , n
2 − 2, we verify the following recurrence formula for x3:





P (X = 3, X3 = 0, X2 = x2) = P (X = 2, X2 = x2),

P (X = 3, X3 = x3, X2 = x2)

=
(p− 1)(p− 2)(n− 3x3 − 2x2 + 1)(n− 3x3 − 2x2 + 2)(n− 3x3 − 2x2 + 3)

6p2x3(q − n+ 2x3 + x2 − 1)(q − n+ 2x3 + x2)

× P (X = 3, X3 = x3 − 1, X2 = x2)
(
x3 = 1, 2, 3, . . . ,

[
n−2x2

3

])
.

For each fixed 0 ≤ x2 ≤ n
2 − 2, we first compute the summation of the probabilities

P (X = 3, X3 = x3, X2 = x2) for 1 ≤ x3 ≤
[
n−2x2

3

]
. Then by the formula (3.10), we

compute P (X = 3). It then results in

(3.11) P (X = 3) ≈ 1.93364× 10−1.
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Abstract. Reduction of the amount of wastes coming from food containers and pack-
aging is one of urgent issues for the humankind. Japanese manufacturers, including
F. P. Corporation, are devising their own recycling system of disposable food contain-
ers for reusing resources in containers and packagings. Without waiting the Guidelines
issued by the Ministry of Health, Labour and Welfare of Japanese Government, it is
indispensable to ensure food safety when the manufacturer uses such recycled mate-
rials. This paper then intends to present methods for estimating a diffusion rate of
contaminant if it is contained in post-consumer food containers and enters the recycling
line. Our methods will be explained by applying them to the recycling line realized by
F. P. Corporation. As our methods are quite general, they may easily be applied to
any other recycling lines.

1 Introduction It is ordinarily seen that a large amount of household wastes is occupied
by those which come from food containers and packagings. In order to reduce the amount
of such wastes, the Recycling Law of Food Containers and Packaging has been established
in Japan in 1995 for promoting more effective use of resources in containers and packagings.

F. P. Corporation (abbreviated to FPCO), a manufacturer of disposable food containers
to be used in supermarkets, convenience stores and others, has been realizing an original
recycling system since 1990.

Post-consumer food containers brought to supermarkets and others are gathered by
collection boxes and are brought back to the recycling plants of FPCO by utilizing returning
trucks which delivered their products as explained in [1]. FPCO’s recycling process of
foamed polystyrene containers consists of three main steps, namely, (1) sorting/crashing, (2)
washing/dehydration, and (3) extrusion/pelletizing, in order to remove contaminators from
the collected polystyrene containers. Using the regenerated polystyrene pellets, recycled
foamed polystyrene containers are made via sheet formations. Its schematic diagram is
sketched by Figure 1. For details, see the homepage [2].

Without waiting the Guidelines [3] issued by the Ministry of Health, Labour and Welfare
of Japanese Government, it is indispensable to ensure food safety when the manufacturer
uses such recycled materials for reproducing food containers. Careful and sufficient con-
siderations must be taken for preventing any recycled containers containing adventitious
chemical contaminant which may migrate into foods and influence human health from be-
ing distributed to the markets.

FPCO has received a non-objection letter on recycled foamed polystyrene containers
from U. S. Food and Drug Administration. In addition, constant inspections are carried
out in daily production activities in accordance with Japanese Food Sanitation Act.

Meanwhile, investigations on the worst case are always required in the field of food sani-
tation. One of these investigations, to know scientifically how contaminants diffuse through
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IV. Probability of X = k for k ≥ 4. By the similar procedures, we can develop our methods
of computation for the cases where k = 4, 5, 6, . . . , p, and using those we can in fact compute
P (X = k) for all these k. For instance, we have

(3.12) P (X = 4) ≈ 1.07083× 10−3.

By the way, in view of (3.6), (3.8), (3.11) and (3.12), we immediately verify that

(3.13) P (X = 5) < 1−
4∑

k=1

P (X = k) ≈ 7.13× 10−4.

Finally, let us consider the worst disposition that the n contaminated pellets are divided
into just r = n/p = 60 sets which therefore consist of entirely contaminated pellets. First,
compute the number of choice of sites. Clearly, the number of choice of sets is qCr which
equals to that of choice of sites. The permutation of n pellets to these chosen suites is n!.
The permutation of non contaminated pellets is (N − n)!. Therefore,

P (X = p, Xp = r, Xp−1 = · · · = X2 = 0) =
qCr · n! · (N − n)!

N !
=

q! · n! · (N − n)!

r! · (q − r)! ·N !
.

In view of (3.5) we have

P (X = p, Xp = r, Xp−1 = · · · = X2 = 0) =
n! · (q − n)!

pn · r! · (q − r)!
P (X = 1).

Here,
n! · (q − n)!

r! · (q − r)!
=

n(n− 1)(n− 2) · · · [n− (n− r − 1)]

(q − r)(q − r − 1)(q − r − 2) · · · [q − r − (n− r − 1)]

and
n

q − r
>

n− 1

q − r − 1
>

n− 2

q − r − 2
> · · · > n− (n− r − 1)

q − r − (n− r − 1)
.

Since n
q−r = 600

39994 < 1
60 , we see that

(3.14) P (X = p, Xp = r, Xp−1 = · · · = X2 = 0) <
1

6n−r × 103n−r
P (X = 1),

which is an extremely small number.
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4 Conclusion We have obtained the following results on diffusion rate of contaminant
in the recycling line sketched by Figure 1.

Assume that one tray containing a unit amount of contaminant has entered the produc-
tion line. Through the crashing, washing, melting and pelletizing processes, the contaminant
diffuses into a certain number of pellets which is a unit grain of polystyrene of uniformed
size to reproduce the new trays. By the experiment of pursuing some number of colored
fragments of tray inserted in the line (Figure 2), we know that the temporal diffusion must
be disregarded, although the contaminant spreads over a certain number, say n, of pellets.
The n contaminated pellets must be packed in a single packing box.

By the experiment of measuring magnitude of the X-ray in each part of the resultant
sheet formed by a heating and sheeting machine (Figure 3), we know that it is reasonable
to assume that n is 6 × 103 and the n contaminated pellets have a unified amount of
contaminant, namely, 1/[6× 103] unit.

By the addition of three boxes of virgin pellets, we have a collection of N = 4.0 ×
107 pellets which includes the n contaminant pellets. Through the blending and setting
processes, these pellets are randomly divided into q sets which consist uniformly of p = 100
pellets and yield just one new tray. Consequently, we have q = 4.0 × 105, i.e., N = pq.
Diffusion of the n contaminated pellets over the q sets can be known by the using the theory
of combinatorial probability. Introduce a random variable X which denotes the maximum
number of contaminated pellets in a set through the q sets in these divisions. Of course, X
takes a value k from 1 to p. The probability of X = k which is denoted by P (X = k) can
exactly be computed. For k = 1, 2, 3, 4 and 5, its approximate value or its estimate of value
is given by (3.6), (3.8), (3.11), (3.12) and (3.13), respectively.

Consider a case of X = k which takes place at probability P (X = k). Then the sets
containing k contaminated pellets yield one recycling tray through the melting and sheeting
processes. According to (3.3), the contaminant in a pellet diffuses in an area of sheet which
corresponds to one tray at most with rate SDR = 0.037264. Therefore the recycling trays
yielded by these sets are feared to contain at most contaminant of amount

TDR =
1

6.0× 103
× 0.037264× k =

k

1.6101× 105

unit. We then want to call this rate the Total Diffusion Rate.
The most favorable case is that X = 1. In this case, TDR takes its minimum 1/[1.6101×

105], but as seen by (3.6) the probability is very small. The probability that either X = 2 or
X = 3 takes place reaches to higher than 0.999. In these cases we have TDR = 1/[8.0505×
104] or 1/[5.3670 × 104], respectively. The worst case with realistic occurring probability
might be, in view of (3.13), the case of X = 5. In this case, we have TDR = 1/[3.2202×104].
To the contrary, the theoretically worst case is that X = p (= 100). In such a case, TDR
attains its minimum 1/[1.6101 × 103], but as seen by (3.14), its occurring probability is
extremely small.
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Submissions should be in PDF file compiled from the source files.  Send the 
PDF file to s1bmt@jams.jp . 

b. Prepare a Submission Form and send it to the ISMS.  The required items to 
be contained in the form are:  

  1. Editor’s name whom the author chooses from the Editorial Board 
(http://www.jams.or.jp/hp/submission_f.html )and would like to take in 
charge of the paper for refereeing.  

2. Title of the paper.   
3. Authors’ names.   
4. Corresponding author’s name, e-mail address and postal address (affiliation).  
5. Membership number in case the author is an ISMS member.   
 
Japanese authors should write 3 and 4 both in English and in Japanese.  
 
At http://www.jams.or.jp/hp/submission_f.html, the author can find the 
Submission Form. Fulfill the Form and sent it to the editorial office by pushing 
the button “transmission”.  Or, without using the Form, the author may send 
an e-mail containing the items 1-5 to s1bmt@jams.jp 

 
(2) Registration of Papers 

When the editorial office receives both a PDF file of a submitted paper and a 
Submission Form, we register the paper.  We inform the author of the 
registration number and the received date.  At the same time, we send the PDF 
file to the editor whom the author chooses in the Submission Form and request 
him/her to begin the process of refereeing. (Authors need not send their papers to 
the editor they choose.) 
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(3) Reviewing Process 
a. The editor who receives, from the editorial office, the PDF file and the request 

of starting the reviewing process, he/she will find an appropriate referee for 
the paper.   

b. The referee sends a report to the editor.  When revision of the paper is 
necessary, the editor informs the author of the referee’s opinion. 

c. Based on the referee report, the editor sends his/her decision (acceptance of 
rejection) to the editorial office. 

 
(4) a. Managing Editor of the SCMJ makes the final decision to the paper valuing the  

editor’s decision, and informs it to the author. 
b. When the paper is accepted, we ask the author to send us a source file and 

a PDF file of the final manuscript.  
c. The publication charges for the ISMS members are free if the membership dues 

have been paid without delay. If the authors of the accepted papers are not the 
ISMS members, they should become ISMS members and pay ¥6,000 (US$75, 
Euro55) as the membership dues for a year, or should just pay the same 
amount without becoming the members. 

 
 
 
 

Items required in Submission Form 
1. Editor’s name who the authors wish will take in charge of the paper 
2. Title of the paper 
3. Authors’ names 
3’.  3. in Japanese for Japanese authors 
4. Corresponding author’s name and postal address (affiliation) 
4’.  4. in Japanese for Japanese authors 
5. ISMS membership number 
6. E-mail address   
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Call for ISMS Members 
 

Call for Academic and Institutional Members 
 

Discounted subscription price: When organizations become the Academic and Institutional 
Members of the ISMS, they can subscribe our journal Scientiae Mathematicae Japonicae at the 
yearly price of US$225.  At this price, they can add the subscription of the online version upon 
their request.    

 
Invitation of two associate members: We would like to invite two persons from the 

organizations to the associate members with no membership fees. The two persons will enjoy 
almost the same privileges as the individual members.  Although the associate members 
cannot have their own ID Name and Password to read the online version of SCMJ, they can 
read the online version of SCMJ at their organization. 

 
To apply for the Academic and Institutional Member of the ISMS, please use the following 

application form. 
 
----------------------------------------------------------------------------------------------------------- 
 

Application for Academic and Institutional Member of ISMS 
Subscription of SCMJ 

Check one of the two. 

 

□Print               □Print ＋ Online 

(US$225)                 (US$225) 

University (Institution) 

 

 

Department 

 

 

Postal Address 

where SCMJ should be 

sent 

 

E-mail address 

 

 

Person in charge 

Name: 

Signature: 

 

Payment 

Check one of the two. 
□Bank transfer        □Credit Card (Visa, Master) 

Name of Associate Membership 

1.  

 

2.  
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Call for Individual Members 

 
We call for individual members.  The privileges to them and the membership dues are shown 

in “Join ISMS !” on the inside of the back cover. 
 

 
 Items required in Membership Application Form 
   

1. Name 
2. Birth date 
3. Academic background 
4. Affiliation 
5. 4’s address 
6. Doctorate 
7. Contact address 
8. E-mail address 
9. Special fields 
10. Membership category (See Table 1 in “Join ISMS !”) 
 

Individual Membership Application Form 
 
1. Name 
 

 

 
2. Birth date 
 

 

3. 
Academic background 
 

 

 
4. Affiliation 
 

 

 
5. 4’s address 
 
 

 

 
6. Doctorate 
 

 

 
7. Contact address 
 
 

 

  
8.  E-mail address 
 

 

 
9.  Special fields 
 

 

10.  
Membership 

    category 
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Contributions (Gift to the ISMS) 
We deeply appreciate your generous contributions to support the activities of our 

society. 
The donation are used (1) to make medals for the new prizes (Kitagawa Prize, 
Kunugi Prize, and ISMS Prize),  (2) to support the IVMS at Osaka University 
Nakanoshima Center, and (3) for a special fund designated by the contributors. 
 
Your remittance to the following accounts of ours will be very much appreciated. 

 
(1)  Through a post office, remit to our giro account ( in Yen only ): 

         No. 00930-1-11872, Japanese Association of Mathematical Sciences (JAMS ) 
   or send International Postal Money Order (in US Dollar or in Yen) to our 

address: 
       International Society for Mathematical Sciences 

         2-1-18 Minami Hanadaguchi, Sakai-ku, Sakai, Osaka 590-0075, Japan 
 
(2)   A/C 94103518, ISMS 

CITIBANK, Japan Ltd., Shinsaibashi Branch 
           Midosuji Diamond Building 
           2-1-2 Nishi Shinsaibashi, Chuo-ku, Osaka 542-0086, Japan 
 

 
 

******************************************************************************** 
Payment Instructions: 

Payment can be made through a post office or a bank, or by credit card. Members may 
choose the most convenient way of remittance. Please note that we do not accept payment by 
bank drafts (checks). For more information, please refer to an invoice. 
 

Methods of Overseas Payment: 
Payment can be made through (1) a post office, (2) a bank, (3) by credit card, or (4) 
UNESCO Coupons.  

Authors or members may choose the most convenient way of remittance as are shown below. 
Please note that we do not accept payment by bank drafts (checks). 
(1) Remittance through a post office to our giro account No. 00930-1-11872 or send 
International Postal Money Order to our postal address (2) Remittance through a 
bank to our account No. 94103518 at Shinsaibashi Branch of CITIBANK (3) Payment 
by credit cards (AMEX, VISA, MASTER or NICOS), or (4) Payment by UNESCO 
Coupons. 
 

Methods of Domestic Payment: 
Make remittance to: 

(1) Post Office Transfer Account - 00930-3-73982 or  
(2) Account No.7726251 at Sakai Branch, SUMITOMO MITSUI BANKING 
CORPORATION, Sakai, Osaka, Japan. 
All of the correspondences concerning subscriptions, back numbers, individual and 
institutional memberships, should be addressed to the Publications Department, 
International Society for Mathematical Sciences. 
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Join ISMS ! 
ISMS Publications: We published Mathematica Japonica (M.J.) in print, 

which was first published in 1948 and has gained an international reputation in 
about sixty years, and its offshoot Scientiae Mathematicae (SCM) both online 
and in print. In January 2001, the two publications were unified and changed to 
Scientiae Mathematicae Japonicae (SCMJ), which is the “21st Century New 
Unified Series of Mathematica Japonica and Scientiae Mathematicae” and 
published both online and in print.  Ahead of this, the online version of SCMJ 
was first published in September 2000.  The whole number of SCMJ exceeds 270, 
which is the largest amount in the publications of mathematical sciences in 
Japan. The features of SCMJ are: 
1) About 80 eminent professors and researchers of not only Japan but also 20 

foreign countries join the Editorial Board. The accepted papers are 
published both online and in print. SCMJ is reviewed by Mathematical 
Review and Zentralblatt from cover to cover. 

2) SCMJ is distributed to many libraries of the world. The papers in SCMJ 
are introduced to the relevant research groups for the positive exchanges 
between researchers. 

3) ISMS Annual Meeting: Many researchers of ISMS members and 
non-members gather and take time to make presentations and discussions 
in their research groups every year. 

 
The privileges to the individual ISMS Members:  
(1) No publication charges 
(2) Free access (including printing out) to the online version of SCMJ 

 (3) Free copy of each printed issue  
 
The privileges to the Institutional Members:  
Two associate members can be registered, free of charge, from an institution.  

 
 
Table 1: Membership Dues for 2013 
Categories Domestic Overseas Developing 

countries 
1-year Regular 
member 

     ￥6,000  US$75 ,  €55 US$45,  €33 
 

1-year Student 
member 

     ￥4,000 US$50,  €37 US$30,  €22 
Life member* Calculated  

as below* 
       NA    NA 

 
Honorary member     Free        Free    Free 

 
 
* Regular member between 63 - 73 years old can apply the category. 
   (73－age ) × ¥3,000 
Regular member over 73 years old can maintain the qualification and the 
privileges of the ISMS members, if they wish. 
 
Categories of 3-year members were abolished. 
  
 

INTERNATIONAL SOCIETY FOR MATHEMATICAL SCIENCES
Scientiae Mathematicae Japonicae, Notices from the ISMS

The International Society for Mathematical Sciences (ISMS) is an international soci-
ety consisting of mathematical scientists throughout the world.

The main activities of the ISMS are to publish (1) the (print and online) journal
Scientiae Mathematicae Japonicae (SCMJ) and (2) Notices from the ISMS and to
hold assembly meeetings in Japan and international internet meetings (distance
symposium) of mathematical sciences (IVMS) accessible from all over the world.

SCMJ is the 21st Century New Unified Series of Mathematica Japonica (MJ) and
Scientiae Mathematicae (SCM). MJ was first published in 1948 and was one of the
oldest mathematical journals in Japan. SCM was an online and print journal started in
1998 in celebration of the semi-centurial anniversary and received 26000 visits per month
from 50 countries in the world. SCMJ contains original papers in mathematical sciences
submitted from all over the world and receives 38000 visits per month now. Not only
papers in pure and applied mathematics but those devoted to mathematical statistics,
operations research, informatics, computer science, biomathematics, mathematical eco-
nomics and other mathematical sciences are also welcome. The journal is published in
January, March, May, July, September, and November in each calendar year.

The ISMS has enhanced the journal, begining from July 1995, by including excel-
lent Research-Expository papers in the section “International Plaza for Mathematical
Sciences ” as well as original research papers. The section provides papers dealing with
broad overviews of contemporary mathmatical sciences, written by experts mainly at
our invitation. Papers shedding lights on open problems or new directions or new break-
throughs for future research are especially welcome.

As is shown in the Editorial Board of SCMJ, we have invited many distin-
guished professors of 20 countries as editors, who will receive and referee the papers
of their special fields with their high standard.

Beginning from 2007, we make the online version of SCMJ more readable and conve-
nient to the readers by adding the specialized contents. By this, the readers can access
to the online version, in which the papers appear in the order of acceptance, from (i)
the contents of the printed version, and (ii) the specialized contents of a volume. From
2007, the subscription fee of the printed version plus the online version of SCMJ becomes
lower and the same of the printed version only. Therefore, the subscribers of the printed
version can read the online version without no additional cost.

For benefit of the ISMS members, we publish ”Notices from the ISMS” 6 times a year.
We are enhancing it by adding interesting articles, including book reviewing, written by
eminent professors.

The ISMS has set up a videoconferencing system (IVMS) which can connect up
to twenty sites of a reserch group in the same or different countries in the world.
Using this system, speakers of the session can write on a white board or an OHP sheet
or use PowerPoint. On the other hand participants can ask questions or make comments
from any connected site in the world. All these are performed similarly to the traditional
meetings.

To connect with our system, you can use your own videoconferencing system only if
it satisfies the International Telecommunication Union-Technical Committee Standards
(ITU-T Standard).

Copyright Transfer Agreement

A copyright transfer agreement is required before a paper is published in this journal.
By submitting a paper to this journal, authors are regarded to certify that the manuscript
has not been submitted to nor is it under consideration for publication by another journal,
conference proceedings or similar publication.

For more information, please visit http://www.jams.or.jp.

Copyright Copyright c©2014 by International Society for Mathematical Sciences.
All rights reserved.

Categories Domestic Overseas Developing 
countries

1-year� Regular
member ￥8,000  US$80 ，Euro75  US$50， Euro47

1-year� Students 
member ￥4,000  US$50 ，Euro47  US$30 ，Euro28

Life member* Calculated
as below*  US$750 ，Euro710  US$440， Euro416

Honorary member Free Free Free

Membership Dues for ２０１9

　(Regarding submitted papers,we apply above presented new fee after April 15 in 
2015 on registoration date.) * Regular member between 63 - 73 years old can apply 
the category.
(73－age ) × ￥3,000
Regular member over 73 years old can maintain the qualification and the privileges 
of the ISMS members, if they wish.

Categories of 3-year members were abolished.
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