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Abstract

This paper consider the following construction problem with various type facilities, i.e., type 1: an

emergency facility, type 2:semi-obnoxious one, type 3: welcome one, type 4: not so far but not so near one

and type 5: supply center of school lunch. There are finite possible construction sites F1, F2, · · · , Fn in a

rectangular area U = {a ≤ x ≤ b, c ≤ y ≤ d} and construction cost cij depends on the construction site

Fj and facility type Ti, i = 1, 2, 3, 4, 5, j = 1, 2, . . . , n. We use A-distance and except construction cost,

for Ti,weighted maximum distance from the emergency facility to the hospital via accident site D1,j to

be minimized among j = 1, 2, ..., n For Tℓ, ℓ = 2, 3, 4. the minimal satisfaction degree µij with respect to

the membership function about A-distance from the facility site to be maximized among j = 1, 2, . . . , n

and for T5, the latest lunch delivery time t5j of schools among possible construction site Fj should be

minimized. Main problem is as follows.

Each facility Ti, i = 1, 2, 3, 4, 5, is constructed at just one possible site so that total construction cost

and weighted total sum w1M1j1+w2M2j2+· · ·+w5M5j5should be minimized where jk is construction site

of Tk, k = 1, 2, 3, 4, 5.. This problem becomes bi-criteria problem and we seek non-dominated solutions.

Finally we discuss further research problems.

1 Introduction

There are huge amount of papers on facility location problems since Weber published his paper [?] and

Hamacher et. al. [?] tried to classify them by using the similar codes to queuing and scheduling problems.

　We considered many models on emergency facility location problem ([?], [?], [?], [?], [?]) and proposed

an extended model of them. This paper is organized as follows. Section 2 formulates our model and

defines non-dominated solutions. Section 3 proposes solution procedures to seek some non-dominated

solutions. Section 4 summarizes results of our paper and discusses further research problems.

2 Problem formulation

We consider the following construction problem with various type facilities, i.e., type 1: an emergency

facility, type 2:semi-obnoxious one (crematory, disposal center etc), type 3: welcome one (city hall), type

4: not so far but not so near one (shopping mall) and type 5: supply center of school lunch. There

are finite possible construction sites F1, F2, · · · , Fn in a rectangular area U = {a ≤ x ≤ b, c ≤ y ≤ d}

TOTAL FACILITY CONSTRUCTION PLANNING PROBLEM
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and construction cost cij depends on the construction site Fj and facility type Ti, i = 1, 2, 3, 4, 5, j =

1, 2, . . . , n. We use A-distance and except construction cost for Ti,distance sum from the emergency

facility to the hospital via accident site D1j to be minimized among j = 1, 2, ...., n, For Tℓ, ℓ = 2, 3, 4,

the minimal satisfaction degree µℓjwith respect to the membership function about A-distance from the

facility site Fj to be maximized among j = 1, 2, ..., n,, and for T5, latest lunch delivery time t5j of schools

among possible construction site Fj should be minimized. We denote D1j as M1j , 1 − µℓj , ℓ = 2, 3, , 4

and t5j as M5j . That is, corresponding to each facility type k, k = 1, 2, 3, 4, 5, we consider a sub-problem

Pk and calculate Mkj , j = 1, 2, ..., n. First we review how to solve Pk and calculate Mkj , j = 1, 2, ..., n in

the next section. Main problem is as follows.

Each facility Ti, i = 1, 2, 3, 4, 5 is constructed at just one possible site so that total construction cost

and weighted total sum w1M1j1 + w2M2j2 + · · ·+ w5M5j5should be minimized where jk is construction

site of Tk, k = 1, 2, 3, 4, 5. This problem is formulated as the following bi-criteria problem P .

P : minimizeΣn
j=1Σ

5
i=1cijxij , : minimizeΣn

j=1Σ
5
i=1, wiMijxij

subject to Σ5
i=1xij = 1, j = 1, 2, ..., n,Σn

j=1xij = 1, i = 1, 2, 3, 4, 5,

xij = 0 or 1, i = 1, 2, 3, 4, 5, j = 1, 2, ..., n

3 Solution Procedure

(A distance) ([?])There exists a set of directions A = {α1, α2, · · · , αa} where αi, i = 1, 2, ...., a is

an angle from x axis in an orthogonal coordinate and let 0 ≤ α1 < α2 < · · · < αa < 180o. Hereafter

if no confusion occurs, directions αi, i = 1, 2, ..., a and angles αi, i = 1, 2, ..., a are used as the same

meaning. Directions αj .αj+1 are called neighboring where αa, α1are also called neighboring, that is,

αa+1 is interpreted as α1.Further A line, a half line and a line segment are called A-directional (or A-

oriented) if their directions are ones of αi, i = 1, 2, ..., a. Then A distance between two points(p1, p2) ∈ R2

are defined as follows

dA(p
1, p2) =

{
d2(p

1, p2) if direction p1p2 is A-oriented

min{dA(p1, p3) + dA(p
3, p2)|p3 ∈ R2} Otherwise

(1)

where d2(p
1, p2)is the Euclidian distance between (p1, p2). That is, according to the results in [?], when

αj <an angle of the line connecting demand point i with the facility site (x, y) < αj+1,

di = M1|m2(pi − x) − (qi − y)| +M2|m1(pi − x) − (qi − y)| where m1 = max(tanαj , tanαj+1),m2 =

min(tanαj , tanαj+1),M1 =

√
1+m2

1

m1−m2
,M2 =

√
1+m2

2

m1−m2
. If either αj or αj+1 is 90o, then we interpret M1 =

limm1→∞

√
1+m2

1

m1−m2
= 1,M2|m1(pi−x)−(qi−y)| = limm1→∞

√
1+m2

2

m1−m2
|m1(pi−x)−(qi−y)| =

√
1 +m2

2|pi−
x|.

2 Hiroaki Ishii
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P2P1

P3

P ′
3

P2

αi

αi

αj

αj

Fig.1 A-distance between P 1 and P 2

First we show the facility location of type 1. That is, an emergency facility problem P1 as follows:

There exist m hospitals H1, H2, · · · , Hm. If an accident occurs, the ambulance cars in the facility site p

rushes to the scene of accident and bring the injured persons to the nearest hospitals as soon as possible.

Demand points (possible accident occurrence points) are distributed uniformly in U in a rectangular

area. Let S(Q) denotes the nearest hospital to the point Q ∈ U . Then the distance sum from p

is R(p,Q) = dA(p,Q) + dA(Q,S(Q)) and R(p) = max{R(p,Q)|Q ∈ U} should be minimized among

p ∈ F1.F2, · · · , Fn. dA(Q,S(Q)) is calculated as below using Voronoi diagram with respect to hospitals

H1, H2, · · · , Hm.

(Voronoi diagram)

For a set of s points V1, V2, · · · , Vs, Voronoi polygon VA(Vi) on point Vi with respect to A-distance on

X is defined as follows:

VA(Vi) = ∩j ̸=i{Q|dA(Q,Vi) ≤ dA(Q,Vj), Q ∈ X}

The set of all Voronoi polygons for the points in V is a partition of some region on a plane X. Edge

of Voronoi polygon is called Voronoi edge. Then we construct Voronoi diagram V DA(H) with respect

to the set of hospital points H = H1, H2, · · · , Hm and A-distance on the area X. To construct Voronoi

diagram is done in O(mlogm) computational time ([?]). Figure 2 illustrates Voronoi diagram in this

case. According to the Theorem in [[?]], maximizer among Q with respect to R(p) is one of the following

points (a),(b) in Theorem 1.

Theorem 1.

(a) The intersection points of boundary of U and the Voronoi diagram

(b) Vertices of Voronoi diagram.

Let these points of Theorem 1 be p11, p
1
2, · · · , p1ni

Then we can calculate R(Fj), j = 1, 2, ..., n as follows.

TOTAL FACILITY CONSTRUCTION PLANNING PROBLEM 3
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H3 H4

H5
H2

H1

H6

Hospital

Fig.2 Voronoi diagram with respect to hospitals H1, H2, H3, H4, H5, H6

R(Fj) = Max{R(Fj , p
1
k)|k = 1, 2, ...., n1}, j = 1, 2, ..., n

The optimal solution of P1 is a minimizer of min{R(Fj), j = 1, 2, ..., n}. Next for type 2, 3, 4 facility,

we consider A-distance dA(i, p) from demand point p = (x, y) ∈ U to the facility site Fi = (pi, qi) which

is calculated as follows:

From the above results, when α <an angle of the line connecting demand point (x, y) with the

facility site Fi < αi+1, dA(i, p) = M1|m2(pi − x) − (qi − y)| + M2|m1(pi − x) − (qi − y)| where

m1 = max(tanαj , tanαj+1),m2 = min(tanαj , tanαj+1),M1 =

√
1+m2

1

m1−m2
,M2 =

√
1+m2

2

m1−m2
. Therefore A-

distance dA(i, p) from demand points to facility site Fi = min{zi1, zi2, · · · , zia} where zij , j = 1, 2, ..., a is

the optimal value of following problem Zj :

Zj : Minimizez

subject to M1|m2(pi − x)− (qi − y)|+M2|m1(pi − x)− (qi − y)| < z

m2|x− pi| ≤ |y − qi| ≤ m1|x− pi|, (x, y) ∈ U

This is a linear programming problem basically. For T2, we consider the following membership function.

µ2(p) =




0 (dA(i, p) ≤ ai)
dA(i,p)−ai

bi−ai
(ai ≤ dA(i, p) ≤ bi)

1 (dA(i, p) ≥ bi)

(2)

where ai < biand subproblem is to maximize µ2i = min{µ2i(p)|p ∈ U} with respect to Fi, i = 1, 2, ..., n.

Optimal solution is a maximizer of µ2i. For T3, we consider the following membership function.

µ3i(p) =





0 (dA(i, p) ≥ ei)

1− dA(i,p)−ci
ei−ci

(ci ≤ dA(i, p) ≤ ei)

1 (dA(i, p) ≤ ci)

(3)

where ci < ei and subproblem is to maximize µ3i = min{µ3i(p)|p ∈ U} with respect to Fi, i = 1, 2, ..., n.

Optimal solution is a maxmizer of µ3i. For T4, we consider the following membership function.

µ4i(p) =




0 (dA(i, p) ≤ ai)
dA(i,p)−ai

bi−ai
(ai ≤ dA(i, p) ≤ bi)

1 (bi ≤ dA(i, p) ≤ ci)

1− dA(i,p)−ci
ei−ci

(ci ≤ dA(i, p) ≤ ei)

0 (dA(i, p) ≥ ei)

(4)

4 Hiroaki Ishii
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where ai < bi < ci < ei and subproblem is to maximize µ4i = min{µ4i(p)|p ∈ U} with respect to Fi, i =

1, 2, ..., n. Optimal solution is a maximizer of µ4i. Finally consider the supply center of school lunch T5

given as follows. There are s schools S1.S2, · · · , Ss in urban area U. We consider the construction site of

new supply center providing lunch for these schools among n possible sites　 F1, F2, · · · , Fn The trader

delivers ingredients to the supply center every morning. After receiving these ingredients,the supply cen-

ter starts to make lunch. Lunch for all schools should be ready on delivery time. The　 delivery cars must

deliver lunch to be in lunch time of each school. For that purpose, we divide schools　 into groups corre-

sponding to r delivery cars. We choose the best site of the center by minimizing the latest delivery time of

lunch among all schools. First we calculate A-distances dA(i, j) from each possible site Fj , i = 1, 2, ..., n

to each school .Sj , j = 1, 2, ..., s. Sorting dA(i, j) for each Fi let the result be dA(i, i(1) ≤ dA(i, i(2)) ≤
· · · dA(i, I(s)). Then for eacf Fi, we divide schools into r trucks as follows.Choose r longest distances and

assign school Si(is−t+1)todeliverycarsTR(t),t=1,2,...,r.Thenletbed̃A(, k) = 2dA(i, i(k)), k = 1, 2, ..., s− r.

Next we divide schools to r group by the following steps.

Step 1:SetBi(t) = dA(i, i(s−t+1))+d̃A(i, t), t = 1, 2, ..., r−1, Bi(r) = dA(i, i(s−r+1))+d̃A(i, i(s−r)), , k =

s− r and G(t) = Si(s−t+1), t = 1, 2, ..., r − 1, G(r) = {Si(s−r+1, Si(s−r)}
Step 2: Let k = k+!. if k = 0,terminates .Otherwise go to Step3.

Step 3: Let B(s) ← min{Bi(u)|u = 1, 2, ..., r} and its minimizer be t(k). Then Bi(t(k)) = Bi(t(k)) +

d̃A(i, i(k)), G(t(k)) = G(t(k)) ∪ Si(k). Return to Step2.

Note that final Bi(u) divided by the standard speed describes the total delivery time using TRu to group

of schools G(u), u = 1, 2,…, r. Though heuristic, the above dividing method tries to make burden even,

that is, minimizing the maximum burden among delivery cars. Let the maximum burden using the above

dividing method for candidate site Fibe BM(i). Here we assume the staring time of making lunch is

and so finishing time preparing lunch is also fixed and so minimizer of BM(i), i = 1, 2, ..., n is an optimal

solution of P5.Here M5i = BM(i)
SP + CT where CT is a starting time to making school lunch and SP

is a standard speed of delivery truck. Based on the above discussion, we have the main problem P.

P : minimizeΣn
j=1Σ

5
i=1cijxij , : minimizeΣn

j=1Σ
5
i=1, wiMijxij

subject to Σ5
i=1xij = 1, j = 1, 2, ..., n,Σn

j=1xij = 1, i = 1, 2, 3, 4, 5,

xij = 0or1, i = 1, 2, 3, 4, 5, j = 1, 2, ..., n But this problem has bi-criteria and so we define non-

dominated solution now,

(Non-dominated solution)

For two solutions, F1 = (Fj11
, Fj12

, Fj13
, Fj14

, Fj15
, ), that is,(xij1i

= 1, i = 1, 2, ..., 5, otherxij = 0) and

F2 = (Fj21
, Fj22

, Fj23
, Fj24

, Fj25
, ), that is, (xij2i

= 1, i = 1, 2, ..., 5, otherxij = 0) if

Σn
j=1Σ

5
i=1cijxj1j

≤ Σn
j=1Σ

5
i=1cijxj2j

,Σn
j=1Σ

5
i=1WiMijxj1j

≤ Σn
j=1Σ

5
i=1WiMijxj2j

and at least one inequal-

ity holds strictly inequality, then we call solution F1 dominates F2. If there exists no solution dominates

F, F is called non-dominated solution.

We seek some non-dominated solutions. First non-dominated solution is obtained from the solution

minimizing the total construction cost, that is, optimal solution of the following assignment problem AP:

minimize Σn
j=1Σ

5
i=1cijxij

subject to Σ5
i=1xij = 1, j = 1, 2, ..., n,Σn

j=1xij = 1, i = 1, 2, 3, 4, 5,

xij = 0or1, i = 1, 2, 3, 4, 5, j = 1, 2, ..., n

TOTAL FACILITY CONSTRUCTION PLANNING PROBLEM 5
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This problem is a special transportation problem with 5 supply nodes and n demand nodes where

upper supply quantity is 1 and each demand quantity is at most 1. Unit transportation cost is 1. Usually

dummy n-5 supply nodes with big transportation cost to demand nodes and only one possible supply

quantity, Or among O(n5) solutions, we find an optimal solution, that is minimizer of Σn
j=1Σ

5
i=1cijxij

is a non-dominated solution.Similarly an optimal solution of the following another assignment problem

AM.

AM: minimize Σn
j=1Σ

5
i=1, wiMijxij

subject to Σ5
i=1xij = 1, j = 1, 2, ..., n,Σn

j=1xij = 1, i = 1, 2, 3, 4, 5,

xij = 0or1, i = 1, 2, 3, 4, 5, j = 1, 2, ..., n

Another one is given as follows:

Let WMij = wiMij , i = 1, 2, ..., 5, j = 1, 2, ..., n and sort them for each i=1,2,...,5. Then results be

set WMi = {WMi(i(1)),WMi(i(2)),WMi(i(3)), · · · ,WMi(i(ni))} where WM(i(i(1) < WM(i(i(2) <

WM(i(i3) < · · · < WM(i(i(ni)), i = 1, 2, ..., 5, n is the number of different ones. We choose cheaper

disjoint five construction sites from the list WMii = 1, 2, ..., 5,and resulting one is a non-dominated solu-

tion. Of course, if there exists the same value WMiℓ(i(k)) = WMiζ (i(τ)), we prefer cheaper construction

cost one.

4 Conclusion

We have a total construction planning model of various type facilities. Of course many other type

facilities should be considered and also the case of given facilities are important to total planning including

some case closing old ones. Further in a financial aspect, some facilities will be establish in a same place

and in turn, in urban area, many barriers exist where inside we cannot pass and so make detours.

Therefore more realistic situation should considered when we total planning. Further scenario analysis

that considers near future situation including enviromental aspects.
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N.Rajesh andS. Shanthi

Abstract. The purpose of this paper is to introduce a new class functions called,
subweakly b-continuous functions. Also, we obtain its characterizations and its basic
properties.

1 Introduction Functions and of course open functions stand among the most im-
portant notions in the whole of mathematical science. Many different forms of continuous
functions have been introduced over the years. Various interesting problems arise when
one considers continuity. Its importance is significant in various areas of mathematics
and related sciences. In 1996, Andrijevic [2] introduced a weak form of open sets called
b-open sets. In the same year, this notion was also called sp-open sets in the sense of
Dontchev and Przemski [6] but one year later are called γ-open sets due to El-Atik [14].
Ekici [3, 7, 8, 9, 10, 11, 12, 13] studied some papers related with b-open sets. In this
paper, we will continue the study of related functions by involving b-open sets. We in-
troduce and characterize the concept of subweakly b-continuous functions in topological
spaces.

2 Preliminaries Throughout this paper, spaces means topological spaces on which
no separation axioms are assumed unless otherwise mentioned and f : (X, τ) → (Y, σ)
(or simply f : X → Y ) denotes a function f of a space (X, τ) into a space (Y, σ).
Let A be a subset of a space (X, τ). The closure and the interior of A are denoted by
Cl(A) and Int(A), respectively. The θ-closure [24] of A, denoted by Clθ(A), is defined
to be the set of all x ∈ X such that A ∩ Cl(U) �= ∅ for every open neighbourhood
U of x. If A = Clθ(A), then A is called θ-closed. The complement of θ-closed set is
called θ-open. A subset A of (X, τ) is said to be regular open [23](resp. semi-open
[15], preopen [16], α-open [20], b-open [2] or γ-open [14]) if A = Int(Cl(A)) (resp.
A ⊂ Cl(Int(A)), A ⊂ Int(Cl(A)), A ⊂ Int(Cl(Int(A))), A ⊂ Int(Cl(A)) ∪ Cl(Int(A))).
The complement of a semi-open (resp. preopen, b-open) set is called semi-closed [5]
(resp.preclosed [16], b-closed [2]). The intersection of all semi-closed (resp. preclosed,
b-closed) sets containing A is called the semiclosure [4] (resp. preclosure [16], b-closure
[2]) of A and is denoted by sCl(A) (resp. pCl(A), bCl(A)). For each x ∈ X, the family
of all b-open sets containing x is denoted by BO(X, τ ;x). The family of all α-open (resp.
b-open) sets of a topological space (X, τ) is denoted by αO(X, τ) (resp. BO(X, τ)). A
function f : (X, τ) → (Y, σ) is said to be α-continuous [17] if for every x ∈ X and every
open set V of Y containing f(x), there exists an α-open set U containing x such that
f(U) ⊂ V . A function f : (X, τ) → (Y, σ) is said to be weakly b-continuous [22] if for
every x ∈ X and every open set V of Y containing f(x), there exists U ∈ BO(X, τ ; x)
such that f(U) ⊂ Cl(V ).

∗2010 Math. Subject classification. 54C10,54C08,54C05.
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Lemma 2.1 [2] Let A be a subset of a topological space (X, τ).
(i) x ∈ bCl(A) if and only if A ∩ U �= ∅ for every U ∈ BO(X, τ ; x).
(ii) Any union of b-open sets is b-open.
(iii) bCl(A) is b-closed.
(iv) A is b-closed if and only if A = bCl(A).

3 Subweakly b-continuous functions

Definition 3.1 A function f : (X, τ) → (Y, σ) is said to be subweakly b-continuous if
there exists an open base B for the topology σ on Y for which bCl(f−1(V )) ⊂ f−1(Cl(V ))
for every V ∈ B.

Remark 3.2 (i) It is clear that weak b-continuity implies subweak b-continuity.
(ii) The converse of the implication of (i) above is not true in general as it can

be seen from the following example: let (X, τ) and (Y, σ) be the following topological
spaces, where X := {a, b, c, d} = Y , τ := {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, X}
and σ := P (Y ) and f : (X, τ) → (Y, σ) be a function defined by f(a) = f(b) := a,
f(c) := b, f(d) := c. Then, there exists an open base B of the topology σ on Y
such that bCl(f−1(V )) ⊂ f−1(Cl(V )) for every set V ∈ B,i.e., f : (X, τ) → (Y, σ) is
subweakly b-continuous. Indeed, we take B := {∅, {a}, {b}, {c}, {d}, Y } and we have
that: BO(X, τ) = P (X)\{{d}} and BC(X, τ) = P (X)\{{a, b, c}}. And, the function
f : (X, τ) → (Y, σ) is not weakly b-continuous. Indeed. there exist a point d ∈ X and a set
V := {c, d} ∈ σ such that f(d) = c ∈ V and f(U) �⊂ Cl(V ) for every set U ∈ BO(X, τ ; d),
where BO(X, τ ; d)= {{a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, X}.

Theorem 3.3 A function f : (X, τ) → (Y, σ) is subweakly b-continuous if and only if
there is an open base B for the topology σ on Y for which Cl(Int(f−1(V )))∩Int(Cl(f−1(V ))) ⊂
f−1(Cl(V )) for every V ∈ B.

Proof. The proof is clear, because it is well known that bCl(A) = A ∪ (Cl(Int(A)) ∩
Int(Cl(A))) holds for every set A of (X, τ) (cf. Proposition 2.5 and its proof in [2]). q.e.d

Theorem 3.4 If a function f : (X, τ) → (Y, σ) is subweakly b-continuous, then for
every θ-open (resp. θ-closed) set V of (Y, σ), f−1(V ) is a union of b-closed sets (resp.
an intersection of b-open sets).

Proof. Let B be an open base for the topology σ on Y for which bCl(f−1(V )) ⊂
f−1(Cl(V )) for every V ∈ B. Let V be a θ-open subset of (Y, σ) with x ∈ f−1(V ).
Then there exist W ∈ B such that f(x) ∈ W ⊂ Cl(W ) ⊂ V . Then x ∈ bCl(f−1(W )) ⊂
f−1(Cl(W )) ⊂ f−1(V ). By Lemma 2.1, bCl(f−1(W )) is b-closed; f−1(V ) is a union of
b-closed sets. The second case is proved by an argument similar to the first case above.
q.e.d.

Recall that by the graph of a function f : X → Y , we mean that G(f) := {(x, y)| x ∈
X, y = f(x)} and by the graph function of f , say g : X → Y , we mean that g(x) :=
(x, f(x)).

Theorem 3.5 If f : (X, τ) → (Y, σ) is subweakly b-continuous and (Y, σ) is Hausdorff,
then G(f) is b-closed in (X × Y, τ × σ).

Proof. Let (x, y) ∈ (X × Y ) \ G(f). Then y �= f(x). Let B be an open base for the
topology σ on Y for which bCl(f−1(V )) ⊂ f−1(Cl(V )) for every V ∈ B. Since (Y, σ)
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is Hausdorff, there exist disjoint open sets V and W in Y with y ∈ V , f(x) ∈ W ,
and V ∈ B. Then f(x) �∈ Cl(V ) and hence x �∈ f−1(Cl(V )). Since f is subweakly
b-continuous, bCl(f−1(V )) ⊂ f−1(Cl(V )) and hence x �∈ bCl(f−1(V )). Then we see that
(x, y) ∈ (X \ bCl(f−1(V ))) × V ⊂ (X × Y ) \ G(f). Then by Lemmas 2.1, we have that
G(f) is b-closed. q.e.d

Theorem 3.6 If f : (X, τ) → (Y, σ) is subweakly b-continuous, then the graph function
g : (X, τ) → (X × Y, τ × σ) is subweakly b-continuous.

Proof. Let B be an open base for the topology σ on Y for which bCl(f−1(V )) ⊂
f−1(Cl(V )) for every V ∈ B. Then C := {U × V |U ⊂ X is open and V ∈ B} is an open
base for the product topology τ×σ on X×Y . For U×V ∈ C, we have bCl(g−1(U×V )) =
bCl(U∩f−1(V )) ⊂ bCl(U)∩bCl(f−1(V )) ⊂ Cl(U)∩f−1(Cl(V )) = g−1(Cl(U)×Cl(V )) =
g−1(Cl(U × V )). Thus, the graph function g : (X, τ) → (X × Y, τ × σ) is subweakly
b-continuous. q.e.d.

Theorem 3.7 Let f : (X, τ) → (Y, σ) be a function and g : (X, τ) → (X × Y, τ × σ)
its graph function. Let B be an open base for the topology σ on Y . If g : (X, τ) →
(X×Y, τ×σ) is subweakly b-continuous with respect to the open base C = {U×V | U ⊂ X
is open and V ∈ B} for the product topology τ × σ on X × Y , then f is subweakly b-
continuous with respect to the open base B.

Proof. Let V ∈ B. We have bCl(f−1(V )) = bCl(X \ f−1(V )) = bCl(g−1(X × V )) ⊂
g−1(Cl(X × V )) = g−1(X × Cl(V ))) = f−1(Cl(V )); hence f is subweakly b-continuous.
q.e.d.

Definition 3.8 A topological space (X, τ) is said to be b-T1 [10] if for each pair of
distinct points x and y of X, there exists b-open sets U and V containing x and y,
respectively such that y �∈ U and x �∈ V .

Theorem 3.9 If f : (X, τ) → (Y, σ) is subweakly b-continuous injection and (Y, σ) is
Hausdorff, then (X, τ) is b-T1.

Proof. Let x and y be distinct points in X. Since f is injective, f(x) �= f(y). Let B be
an open base for the topology σ on Y for which bCl(f−1(V )) ⊂ f−1(Cl(V )) for every
V ∈ B. Since (Y, σ) is Hausdorff, there exist disjoint subsets V1 and W1 in (Y, σ) with
f(y) ∈ V1, f(x) ∈ W1. There exists a subset V ∈ B such that f(y) ∈ V, f(x) �∈ V ,
V ∩ W1 = ∅ and V ⊂ V1. Then f(x) �∈ Cl(V ); and hence y ∈ f−1(V ) ⊂ bCl(f−1(V ))
and x �∈ f−1(Cl(V )). Since f is subweakly b-continuous, x �∈ bCl(f−1(V )). Then, using
Lemma 2.1(iii), we have X \ bCl(f−1(V )) is a b-open set containing x but not y. By an
argument similar to that of the above proof, it is shown that there exists a subset W ∈ B
such that X \ bCl(f−1(W )) is a b-open set containing y but not x. It follows that (X, τ)
is b-T1. q.e.d

Lemma 3.10 Let (X, τ) be a topological space and A a subset of (X, τ). Then we have
the following properties.

(i) [14],[18, Proposition 3.9] (e.g. [1, Proof of Theorem 2.3(3)], [13, Lemma 2.2],[19,
Lemma 3.2],[21, Lemma 5.2] , [25, Lemma 5.1]) If A ∈ αO(X, τ) and U ∈ BO(X, τ),
then U ∩ A ∈ BO(A, τ |A).

(ii) [14] (e.g., [25, Lemma 5.2 (1)]) If A ∈ αO(X, τ) and V ∈ BO(A, τ |A) and then
V ∈ BO(X, τ).

(iii) [2, Proposition 2.4, Proposition 2.3(b)] If A ∈ αO(X, τ) and U ∈ BO(X, τ),
then U ∩ A ∈ BO(X, τ).
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(iv) [21, Lemma 5.3] If B ⊂ A ⊂ X and A ∈ αO(X, τ), then (bCl(B))∩A = bClA(B),
where bClA(B) :=

∩
{F | F is b-closed in (A, τ |A) with B ⊂ F ⊂ A}.

Theorem 3.11 If f : (X, τ) → (Y, σ) is subweakly b-continuous and A ∈ αO(X, τ), then
f |A : (A, τ |A) → (Y, σ) is subweakly b-continuous.

Proof. Let B be an open base for the topology σ on Y for which bCl(f−1(V )) ⊂
f−1(Cl(V )) for every V ∈ B. Then using Lemma 3.10 (iv) we have for V ∈ B,
bClA((f |A)−1- (Cl(V )) ⊂ A∩bCl((f |A)−1(V ))=A∩bCl(A∩f−1(V )) ⊂ A∩bCl(f−1(V )) ⊂
A ∩ f−1(Cl(V ))=(f |A)−1(Cl(V )). Therefore, f |A is subweakly b-continuous. q.e.d.

Theorem 3.12 If f : (X, τ) → (Y, σ) is subweakly b-continuous and E is an open subset
of (Y, σ) with f(X) ⊂ E, then f : (X, τ) → (E, σ|E) is subweakly b-continuous.

Proof. Let B be an open base for the topology σ on Y for which bCl(f−1(V )) ⊂
f−1(Cl(V )) for every V ∈ B. Then, the collection C := {V ∩ E| V ∈ B} is an open
base for the relative topology σ|E on E. Since E is open in (Y, σ), it is well known that
Cl(V )∩E ⊂ ClE(V ∩E). Then, bCl(f−1(V ∩E)) ⊂ f−1(Cl(V )∩E) ⊂ f−1(ClE(V ∩E));
hence f : (X, τ) → (E, σ|E) is subweakly b-continuous. q.e.d.

Theorem 3.13 Let f : (X, τ) → (X, τ) be subweakly b-continuous and let A ⊂ X such
that f(X) ⊂ A and f |A is the identity function on A. Then, if (X, τ) is Hausdorff, then
A is b-closed.

Proof. Assume A is not b-closed. Let x ∈ bCl(A) \ A. Let B be an open base for the
topology τ on X for which bCl(f−1(V )) ⊂ f−1(Cl(V )) for every V ∈ B. Since x �∈ A,
f(x) �= x. Since (X, τ) is Hausdorff, there exist disjoint open sets V and W with x ∈ V ,
f(x) ∈ W and V ∈ B. Let U ∈ BO(X, τ ; x). Then x ∈ U ∩ V which is b-open in (X, τ)
by Lemma 3.10(iii). Since x ∈ bCl(A), (U ∩ V ) ∩ A �= ∅. Let y ∈ (U ∩ V ) ∩ A. Since
y ∈ A, f(y) = y ∈ V and hence y ∈ f−1(V ). Therefore, y ∈ U ∩ f−1(V ) and hence
U ∩f−1(V ) �= ∅ and, using Lemma 2.1(i), we have x ∈ bCl(f−1(V )). However, f(x) ∈ W
which is open and disjoint from V . So f(x) �∈ Cl(V ) or, that is, x �∈ f−1(Cl(V )), which
contradicts the assumption that f is also subweakly b-continuous. Therefore, A is b-
closed. q.e.d.

Theorem 3.14 If f1 : (X, τ) → (Y, σ) is α-continuous, f2 : (X, τ) → (Y, σ) is subweakly
b-continuous, and (Y, σ) is Hausdorff, then the set A := {x ∈ X| f1(x) = f2(x)} is
b-closed in (X, τ).

Proof. Let x ∈ X \ A. Then f1(x) �= f2(x). Let B be an open base for the topology σ
on Y for which bCl(f−1(V )) ⊂ f−1(Cl(V )) for every V ∈ B. Since (Y, σ) is Hausdorff,
there exist disjoint open sets V and W with f1(x) ∈ V, f2(x) ∈ W and V ∈ B. Then
f2(x) �∈ Cl(V ) and hence x �∈ f−1

2 (Cl(V )). Then, since f2 is subweakly b-continuous,
x ∈ X\bCl(f−1

2 (V )). Thus, x ∈ f−1
1 (V )∩(X\bCl(f−1

2 (V ))) ⊂ X\A. By Lemma 2.1(iii),
X \ bcl(f−1

2 (V )) is b-open in (X, τ). Since f−1
1 (V ) is α-open in (X, τ), it follows from

Lemma 3.10(iii) that the intersection of these sets is b-open in (X, τ). It follows from
Lemma 2.1(ii) that X \ A is b-open; and hence A is b-closed in (X, τ). q.e.d.

Recall that a subset A of a topological space (X, τ) is said to be b-dense [18] if bcl(A) = X.

Corollary 3.15 Assume that f1 : (X, τ) → (Y, σ) is α-continuous, f2 : (X, τ) → (Y, σ)
is subweakly b-continuous, and (Y, σ) is Hausdorff. If f1 and f2 agree on a b-dense set,
then f1 = f2.
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Proof. Let A := {x ∈ X| f1(x) = f2(x)} and let U be a b-dense set in (X, τ) on which f1

and f2 agree. Then, since U ⊂ A, we have X = bCl(U) ⊂ bCl(A) = A (cf. Theorem 3.14)
and hence f1 = f2. q.e.d.

Theorem 3.16 If fj : (X, τ) → (Yj , σj) is subweakly b-continuous for each j ∈ Λm

where Λm := {1, 2, ...,m}(m > 1), then f : (X, τ) → (
∏m

j=1 Yj ,
∏m

j=1 σj) given by f(x) :=
(f1(x), f2(x), ..., fm(x)) is subweakly b-continuous.

Proof. For each j ∈ Λ, let Bj be an open base for the topology on Yj for which
bCl(f−1

j (Vj)) ⊂ f−1
j (Cl(Vj)) for every Vj ∈ Bj . Then, let B := {

∏m
j=1 Vj |Vj ∈ Bj(j ∈

Λm)} be an open base for the topology
∏m

j=1 σj on
∏m

j=1 Yj . For every set V :=∏m
j=1 Vj ∈ B, bCl(f−1(V ))=bCl(

∩
{f−1

j (Vj)|j ∈ Λ}) ⊂
∩
{bCl(f−1

j (Vj))| j ∈ Λm} ⊂∩
{f−1

j (Cl(Vj))|j ∈ Λm}=f−1(
∏m

j=1(Cl(Vj)))=f−1(Cl(V )). Thus, f is subweakly b-
continuous. q.e.d.

Theorem 3.17 If fj : (Xj , τj) → (Yj , σj) is subweakly b-continuous for each j ∈ Λm

where Λm := {1, 2, ...,m}(m > 1), then a function
∏m

j=1 fj : (
∏m

j=1 Xj ,
∏m

j=1 τj) →
(
∏m

j=1 Yj ,
∏m

j=1 σj) defined by (
∏m

j=1 fj)(x) := (f1(x), f2(x), ..., fm(x)) is subweakly b-
continuous.

Proof. For each j ∈ A, let Bj be an open base for the topology on Yj for which
bCl(f−1

j (Vj)) ⊂ f−1
j (Cl(Vj)) for every Vj ∈ Bj . Let B := {

∏m
j=1 Vj |Vj ∈ Bj(j ∈ Λm)}

be an open base for the topology
∏m

j=1 σj on
∏m

j=1 Yj . For every set V :=
∏m

j=1 Vj ∈
B, we have that: bCl((

∏m
j=1 fj)−1(V )) ⊂

∏m
j=1 bCl((fj)−1(Vj)) ⊂

∏m
j=1(fj)−1(Cl(Vj))

=(
∏m

j=1 fj)−1(
∏m

j=1 Cl(Vj)) =(
∏m

j=1 fj)−1(Cl(
∏m

j=1 Vj)) =(
∏m

j=1 fj)−1(Cl(V )). Thus,∏m
j=1 fj is subweakly b-continuous. q.e.d.
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O-UNION AND O-DECOMPOSITION ON HYPER K-ALGEBRAS

Abstract. In this paper, we define a O-union of two hyper K-algebras and O-decomposition

of a hyper K-algebra. In general, the O-union of two hyper K-algebra is not a hyper

K-algebra. But, if a hyper K-algebra (H, ◦, 0), be the O-union of two hyper K-algebras

(H, ◦1, 0) and (H, ◦2, 0), we investigate which properties of (H, ◦1, 0) and (H, ◦2, 0) is

transferred to (H, ◦, 0) and conversely. Also we show that a hyper K-algebra (H, ◦, 0)
where x ∈ x ◦ y can be decomposed into a positive implicative hyper BCK-algebra and

a hyper K-algebra.

1. Introduction

The concept of BCK-algebra that is a generalization of set difference and propositional
calculi was established by Imai and Iséki [3] in 1966. In Ref. [4], Jun et al. applied the
hyper structures BCK-algebra. In 1934, Marty [5] introduced for the first time the hyper
structure theory in the 8th congress of Scandinavian Mathematicians. In Ref. [2], Borzooei
et al. introduced the generalization of BCK-algebra and hyper BCK-algebra, called hyper
K-algebra. They studied properties of hyper K-algebra. In this article, the aim is to define
the O-union and O-decomposition on hyper K-algebras. Section 2, concerns definitions and
theorems that are needed in the sequel. Section 3, we give O-union’s definition of two
hyper K-algebras and O-decomposition of a hyper K-algebra into two hyper K-algebras and
finally in Section 4, we study transferable properties on O-Union (decomposition) hyper
K-algebras.

2. Preliminaries

In this section we give some definitions and theorems that are needed in the sequel.

Definition 2.1. [2] Let H be a set containing 0 and the function ◦ : H × H → P ∗(H)(:=
P (H) \ ∅) is called a hyper operation on H. Then (H, ◦, 0) is called a hyper K-algebra
(hyper BCK-algebra) if it satisfies HK1-HK5 (BHK1-BHK4).

HK1 : (x ◦ z) ◦ (y ◦ z) < x ◦ y, BHK1 : (x ◦ z) ◦ (y ◦ z) � x ◦ y,
HK2 : (x ◦ y) ◦ z = (x ◦ z) ◦ y, BHK2 : (x ◦ y) ◦ z = (x ◦ z) ◦ y,
HK3 : x < x, BHK3 : x ◦ H � x,
HK4 : x < y, y < x ⇒ x = y, BHK4 : x � y, y � x ⇒ x = y.
HK5 : 0 < x.

for all x, y, z ∈ H, where x < y(x � y) ⇔ 0 ∈ x ◦ y. For any A, B ⊆ H,A < B if there exist
a ∈ A and b ∈ B such that a < b. Moreover, A � B if for all a ∈ A there exist b ∈ B such
that a � b. A hyper K-algebra (H, ◦, 0) is bounded if there exist an element e ∈ H such
that x < e for all x ∈ H.
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Definition 2.2. [2] Let S be a nonempty set of a hyper K-algebra (H, ◦, 0) containing 0.
If S is a hyper K-algebra with respect to the hyper operation ◦ on H, we say that S is a
hyper K-subalgebra of H.

Theorem 2.3. [2] Let S be a nonempty set of a hyper K-algebra (H, ◦, 0). Then S is a
hyper K-subalgebra of H iff x ◦ y ⊆ S for all x, y ∈ S.

Theorem 2.4. [7] Let H be a set containing 0, P0(H) := {A ⊆ H : 0 ∈ A} and S = {f |f :
H → P0(H) is a function}. Then ◦f : H × H → P ∗(H) where

x ◦f y :=

{
f(x), ifx = y,

{x}, ifx �= y.

is a hyperoperation. Moreover, the following statements are equivalent:
(1) (H, of , 0) is a hyper K-algebra,
(2) f(x) of y = f(x) for all y �= x, y ∈ H,
(3) x �= y and y ∈ f(x) imply y ∈ f(y) and f(y) ⊆ f(x).

This hyper K-algebra is called a quasi union hyper K-algebra.

Theorem 2.5. [7] Let (H, ◦, 0) be a quasi union hyper K-algebra. Then the following
statements are equivalent:

(1) H is a positive implicative hyper K-algebra,
(2) f(x) = {0} or f(x) = {0, x} for all x ∈ H,
(3) H is a hyper BCK-algebra.

Definition 2.6. [2, 9] Let I be a subset of a hyper K-algebra containing 0. Then I is said
to be a hyper K-ideal (weak hyper K-ideal) of H if x ◦ y < I (x ◦ y ⊆ I) and y ∈ I imply
x ∈ I for all x, y ∈ H.

Notation: Let A and I be nonempty subsets of a hyper K-algebra H. We set AR1I :=
A ⊆ I, AR2I := A ∩ I �= ∅, and AR3I := A < I.

Definition 2.7. [1] A nonempty subset of a hyper K-algebra H such that 0 ∈ I, for all
x, y, z ∈ H, and i, j, k ∈ {1, 2, 3} is said to be

(1) implicative hyper K-ideal of H if ((x ◦ z) ◦ (y ◦ x)) < I, z ∈ I ⇒ x ∈ I,
(2) positive implicative hyper K-ideal of type (i, j, k) if (x◦y)◦zRiI and y◦zRjI imply

that x ◦ zRkI,
(3) commutative hyper K-ideal of type (i, j) if (x ◦ y) ◦ zRiI , z ∈ I imply that x ◦ (y ◦

(y ◦ x))RjI.

Theorem 2.8. [1] Let I be a hyper K-ideal of hyper K-algebra H. Then I is an implicative
hyper K-ideal iff x ◦ (y ◦ x) < I implies that x ∈ I, for any x, y ∈ H.

3. O-union and O-decomposition on the hyper K-algebras

In this section, at first we define O-union of two hyper K-algebras and O-decomposition
of a hyper K-algebra into two hyper K-algebras, and then we study transferable properties
on O-Union (decomposition) hyper K-algebras.

Definition 3.1. Let (H, ◦1, 0) and (H, ◦2, 0) are two hyper K-algebras and ◦ := ◦1 ∪ ◦2

i.e. x ◦ y = (x ◦1 y) ∪ (x ◦2 y). If (H, ◦, 0) be a hyper K-algebra then we say (H, ◦, 0) is
O-union of two hyper K-algebras (H, ◦1, 0) and (H, ◦2, 0). Moreover, a hyper K-algebra
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(H, ◦, 0) is called O-decomposition into two hyper K-algebras (H, ◦1, 0) and (H, ◦2, 0) if
◦ = ◦1 ∪ ◦2, for all x, y ∈ H. If ◦ be different from ◦1 and ◦2, we say that (H, ◦, 0) is a
proper O-decomposition.

Example 3.2. The hyper K-algebra (H, ◦, 0)
◦ 0 1 2
0 {0} {0,1,2} { 0,1,2}
1 {1} {0,1,2} {0,1,2}
2 {2} {1,2} {0,1,2}

can be O-decomposed into two hyper K-algebras (H, ◦1, 0) and (H, ◦2, 0) as follows:
◦1 0 1 2
0 {0} {0,1,2} { 0,1,2}
1 {1} {0,2} {0,1,2}
2 {2} {2} {0,1,2}

◦2 0 1 2
0 {0} {0,1,2} { 0,1,2}
1 {1} {0,1,2} {0,2}
2 {2} {1,2} {0,1,2}

The O-decomposition of a hyper K-algebra (H, ◦, 0) is not unique, since the hyper K-algebra
(H, ◦, 0) in example 3.2 is O-decomposed as follows:

◦3 0 1 2
0 {0} {0,1} { 0,1}
1 {1} {0,1} {0}
2 {2} {2} {0,1}

◦4 0 1 2
0 {0} {0,1,2} { 0,1,2}
1 {1} {0,1,2} {1,2}
2 {2} {1,2} {0,2}

The following example shows that a hyper K-algebra (H, ◦, 0) can not be O-decomposed
into two proper hyper K-algebras.
Example 3.3.

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0,1} {1}
2 {2} {2} {0}

◦1 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {2} {0}

◦2 0 1 2
0 {0} {0} {0}
1 {1} {0,1} {1}
2 {2} {2} {0}

The following example shows that O-union of two hyper K-algebras (H, ◦1, 0) and (H, ◦2, 0)
is not a hyper K-algebra.

Example 3.4. Let (H, ◦1, 0) and (H, ◦2, 0) are hyper K-algebras as follows. Then (H, ◦, 0),
the O-union of them is not hyper K-algebra, because 1 < 2, 2 < 1 but 1 �= 2.

◦1 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0,1} {0,1,2}

◦2 0 1 2
0 {0} {0} {0}
1 {1} {0,1} {0}
2 {2} {2} {0,2}

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0,1} {0,1}
2 {2} {0,1,2} {0,1,2}

Theorem 3.5. Any O-union of two quasi union hyper K-algebras is a quasi union hyper
K-algebra.

Proof. Suppose (H, ◦1, 0) and (H, ◦2, 0) are two quasi union hyper K-algebras, therefore
there are two functions f, g : H → P0(H) and ◦ : H × H → P ∗(H) such that

x ◦f y :=

{
(f ∪ g)(x) , ifx = y;
{x} , ifx �= y.

It is clear that ◦ is a hyperopration, we show that H is a quasi union hyper K-algebra. Let
y ∈ (f ∪ g)(x) = (x ◦1 x) ∪ (x ◦2 x) for any x, y ∈ H. So y ∈ x ◦1 x or y ∈ x ◦2 x. Since
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(H, ◦1, 0) and (H, ◦2, 0) are two quasi union hyper K-algebras, we get y ∈ y ◦1 y ⊆ x ◦1 x or
y ∈ y ◦2 y ⊆ x ◦2 x. Therefore y ∈ (f ∪ g)(y) ⊆ (f ∪ g)(x), and the proof is completed. �

Theorem 3.6. Let (H, ◦, 0) be a hyper K-algebra such that x ∈ x◦y for all x, y ∈ H. Then
H is O-decomposition into a positive implicative hyper BCK-algebra (H, ◦1, 0) and a hyper
K-algebra (H, ◦2, 0).

Proof. Let (H, ◦, 0) be a hyper K-algebra, since x ∈ x ◦ y we can define ◦1 : H ×H → H as
follows:

x ◦1 y :=

{
{x} , ifx �= y;
{0} , ifx = y.

It is clear that (H, ◦1, 0) is a quasi union hyper K-algebra. By Theorem 2.5(1) and
(2), (H, ◦1, 0) is a positive implicative hyper BCK-algebra. So (H, ◦, 0) is written as O-
decomposition into a hyper BCK-algebra (H, ◦1, 0) and at least a hyper K-algebra (H, ◦2, 0)
where ◦2 = ◦. �

Example 3.7. The hyper K-algebra (H, ◦, 0) with following cayley table is O-decomposition
into a hyper BCK-algebra (H, ◦1, 0) and a proper hyper K-algebra (H, ◦2, 0).

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0,1} {0,1}
2 {2} {2} {0,2}

◦1 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {2} {0}

◦2 0 1 2
0 {0} {0} {0}
1 {1} {0,1} {0}
2 {2} {2} {0,2}

The following example shows that the condition x ∈ x◦y in the theorem 3.6 is necessary.

Example 3.8. By the following cayley table, (H, ◦, 0) is a hyper K-algebra,
◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1,3} {2}
2 {2} {0,2} {0,2} {2}
3 {3} {3} {3} {0}

If ◦ = ◦1 ∪ ◦2 then there are 36 hyper oprations on H for ◦1 as follows:
◦1 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0} or {0,1} {1} or {3}or {1,3} {2}
2 {2} {0} or {2} or {0,2} {0} or {0,2} {2}
3 {3} {3} {3} {0}

by checking all these cases, we see that (H, ◦1, 0) is not a hyper BCK-algebra. So (H, ◦, 0)
is not written as O-decomposition into a BCK-algebra and a hyper K-algebra.

4. Transferable properties

In this section we study transferable properties on O-Union (decomposition) hyper K-
algebras.

Theorem 4.1. Let (H, ◦, 0) be O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0). Then S is subalgebra of (H, ◦, 0) if and only if S is subalgebra of (H, ◦1, 0) and
(H, ◦2, 0) .

Proof. It is clear. �
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Theorem 4.2. Let (H, ◦, 0) be O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0). Then I is a weak hyper K-ideal of (H, ◦, 0) if and only if I is a weak hyper K-ideal
of (H, ◦1, 0) or (H, ◦2, 0).

Proof. Suppose I be a weak hyper K-ideal of (H, ◦1, 0) or (H, ◦2, 0), x ◦ y ⊆ I and y ∈ I.
Then x◦1 y ⊆ I and x◦2 y ⊆ I for all x, y ∈ H. Since I is a weak hyper K-ideal of (H, ◦1, 0)
or (H, ◦2, 0) then x ∈ I.
Conversely, suppose I be a weak hyper K-ideal of (H, ◦, 0) and x ◦1 y ⊆ I or x ◦2 y ⊆ I
and y ∈ I. If x ◦i y � I for some i ∈ {1, 2}, then I is a weak hyper K-ideal of (H, ◦1, 0) or
(H, ◦2, 0), otherwise x ◦i y ⊆ I for any i ∈ {1, 2} and we have x ◦ y = x ◦1 y ∪ x ◦2 y ⊆ I,
therefore x ∈ I. �

Theorem 4.3. Let (H, ◦, 0) is O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0). Then

(1) If e be a upper bound of (H, ◦1, 0) and (H, ◦2, 0), then e is a upper bound of H.
(2) If I be a hyper K-ideal of (H, ◦1, 0) and (H, ◦2, 0), then I is a hyper K-ideal of H.
(3) If I be an implicative hyper K-ideal of (H, ◦1, 0) and (H, ◦2, 0), then I is an im-

plicative hyper K-ideal of H.

Proof. (1): By hypothesis we have 0 ∈ x ◦1 e and 0 ∈ x ◦2 e for all x ∈ H. So 0 ∈ x ◦ e and
e is a upper bound of H.
(2): Let x◦y < I and y ∈ I, so x◦1 y < I or x◦2 y < I, since I is hyper K-ideal of (H, ◦1, 0)
and (H, ◦2, 0) we get x ∈ I.
(3): Let x ◦ (y ◦ x) < I, so x ◦1 (y ◦1 x) < I or x ◦2 (y ◦2 x) < I, by assumption we have
x ∈ I. �

The following example shows that the converse of theorem 4.3 (1) is not true in general.

Example 4.4. Let (H, ◦1, 0) and (H, ◦2, 0) are hyper K-algebras as follows and (H, ◦, 0) be
O-union of them. Then the two hyper K-algebras are not bounded but 1 is a upper bound
of (H, ◦, 0).

◦1 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {0} {0,2} {2}
3 {3} {3} {0,1,3} {0,1,3}

◦2 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {2} {0,2} {2}
3 {3} {0,1,2} {0,1,3} {0,1,2,3}

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {0,2} {0,2} {2}
3 {3} {0,1,2,3} {0,1,3} {0,1,2,3}

The following example shows that, in the theorem 4.3 (2) and (3) we can not use “or”
instead of “and”.

Example 4.5. Let (H, ◦, 0), (H, ◦1, 0) and (H, ◦2, 0) be as follows. Then I = {0, 1} is a
hyper K-ideal of (H, ◦1, 0), but I is not a hyper K-ideal of (H, ◦2, 0) and (H, ◦, 0). Also I is
an implicative hyper K-ideal of (H, ◦1, 0) and it is not implicative hyper K-ideal of (H, ◦2, 0)
and (H, ◦, 0). Because 2 ◦2 (2 ◦2 2) < I but 2 /∈ I.
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Theorem 4.2. Let (H, ◦, 0) be O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0). Then I is a weak hyper K-ideal of (H, ◦, 0) if and only if I is a weak hyper K-ideal
of (H, ◦1, 0) or (H, ◦2, 0).

Proof. Suppose I be a weak hyper K-ideal of (H, ◦1, 0) or (H, ◦2, 0), x ◦ y ⊆ I and y ∈ I.
Then x◦1 y ⊆ I and x◦2 y ⊆ I for all x, y ∈ H. Since I is a weak hyper K-ideal of (H, ◦1, 0)
or (H, ◦2, 0) then x ∈ I.
Conversely, suppose I be a weak hyper K-ideal of (H, ◦, 0) and x ◦1 y ⊆ I or x ◦2 y ⊆ I
and y ∈ I. If x ◦i y � I for some i ∈ {1, 2}, then I is a weak hyper K-ideal of (H, ◦1, 0) or
(H, ◦2, 0), otherwise x ◦i y ⊆ I for any i ∈ {1, 2} and we have x ◦ y = x ◦1 y ∪ x ◦2 y ⊆ I,
therefore x ∈ I. �

Theorem 4.3. Let (H, ◦, 0) is O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0). Then

(1) If e be a upper bound of (H, ◦1, 0) and (H, ◦2, 0), then e is a upper bound of H.
(2) If I be a hyper K-ideal of (H, ◦1, 0) and (H, ◦2, 0), then I is a hyper K-ideal of H.
(3) If I be an implicative hyper K-ideal of (H, ◦1, 0) and (H, ◦2, 0), then I is an im-

plicative hyper K-ideal of H.

Proof. (1): By hypothesis we have 0 ∈ x ◦1 e and 0 ∈ x ◦2 e for all x ∈ H. So 0 ∈ x ◦ e and
e is a upper bound of H.
(2): Let x◦y < I and y ∈ I, so x◦1 y < I or x◦2 y < I, since I is hyper K-ideal of (H, ◦1, 0)
and (H, ◦2, 0) we get x ∈ I.
(3): Let x ◦ (y ◦ x) < I, so x ◦1 (y ◦1 x) < I or x ◦2 (y ◦2 x) < I, by assumption we have
x ∈ I. �

The following example shows that the converse of theorem 4.3 (1) is not true in general.

Example 4.4. Let (H, ◦1, 0) and (H, ◦2, 0) are hyper K-algebras as follows and (H, ◦, 0) be
O-union of them. Then the two hyper K-algebras are not bounded but 1 is a upper bound
of (H, ◦, 0).

◦1 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {0} {0,2} {2}
3 {3} {3} {0,1,3} {0,1,3}

◦2 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {2} {0,2} {2}
3 {3} {0,1,2} {0,1,3} {0,1,2,3}

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {0,2} {0,2} {2}
3 {3} {0,1,2,3} {0,1,3} {0,1,2,3}

The following example shows that, in the theorem 4.3 (2) and (3) we can not use “or”
instead of “and”.

Example 4.5. Let (H, ◦, 0), (H, ◦1, 0) and (H, ◦2, 0) be as follows. Then I = {0, 1} is a
hyper K-ideal of (H, ◦1, 0), but I is not a hyper K-ideal of (H, ◦2, 0) and (H, ◦, 0). Also I is
an implicative hyper K-ideal of (H, ◦1, 0) and it is not implicative hyper K-ideal of (H, ◦2, 0)
and (H, ◦, 0). Because 2 ◦2 (2 ◦2 2) < I but 2 /∈ I.
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◦1 0 1 2
0 {0} {0} {0}
1 {1} {0,1} {1}
2 {2} {2} {0}

◦2 0 1 2
0 {0} {0} {0}
1 {1} {0,1} {1}
2 {2} {0} {0,2}

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0,1} {1}
2 {2} {0,2} {0,2}

Theorem 4.6. Let (H, ◦, 0) be O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0). Then

(1) If I be a hyper K-ideal of (H, ◦, 0), then I is a hyper K-ideal of (H, ◦1, 0) or
(H, ◦2, 0).

(2) If I be an implicative hyper K-ideal of (H, ◦, 0), then I is an implicative hyper
K-ideal of (H, ◦1, 0) or (H, ◦2, 0).

(3) If I be a positive implicative hyper K-ideal of type (i, j, k) in (H, ◦, 0), where i, j, k ∈
{1, 2, 3}. Then I is a positive implicative hyper K-ideal of the same type in (H, ◦1, 0)
or (H, ◦2, 0).

Proof. (1): Suppose x◦1 y < I or x◦2 y < I and y ∈ I for all x, y ∈ H, then x◦y < I. Since
I is hyper K-ideal of H, we have x ∈ I, i.e. I is a hyper K-ideal of (H, ◦1, 0) or (H, ◦2, 0).
(2): Suppose x ◦1 (y ◦1 x) < I for all x, y ∈ H, then x ◦ (y ◦x) < I. Since I is an implicative
hyper K-ideal of H, by Theorem 2.8, x ∈ I and I is an implicative hyper K-ideal of (H, ◦1, 0)
or (H, ◦2, 0).
(3): It is sufficient to prove for type (1, 1, 1), the proof for other types is similar. If (x◦i y)◦i

z � I or y ◦i z � I for some i ∈ {1, 2}, then I is positive implicative hyper K-ideal of type
(1, 1, 1) in (H, ◦1, 0) or (H, ◦2, 0). Otherwise if (x ◦1 y) ◦1 z ⊆ I, (x ◦2 y) ◦2 z ⊆ I, y ◦1 z ⊆ I
and y ◦2 z ⊆ I, then (x ◦ y) ◦ z ⊆ I and y ◦ z ⊆ I. Since I is a positive implicative hyper
K-ideal of type (1, 1, 1) in (H, ◦, o) , then x ◦ z ⊆ I and we get x ◦1 z ⊆ I and x ◦2 z ⊆ I.
Therefore in general I is positive implicative hyper K-ideal of type (1, 1, 1) in (H, ◦1, o) or
(H, ◦2, o) and the proof is completed. �

The following example shows that the converse of theorem 4.6 (3) is not true in general.

Example 4.7. Consider the following hyper K-algebras (H, ◦, 0), (H, ◦1, 0) and (H, ◦2, 0).
Then (H, ◦, 0) is O-decomposition into (H, ◦1, 0) and (H, ◦2, 0), and I = {0, 1} is positive
implicative hyper K-ideal of type (2, 1, 2) in (H, ◦1, 0), but I is not positive implicative
hyper K-ideal of type (2, 1, 2) in (H, ◦2, 0), since (2 ◦2 1) ◦2 0 ∩ I �= ∅ and 1 ◦2 0 ⊆ I but
2 ◦2 0 ∩ I = ∅. Hence I is not positive implicative hyper K-ideal of type (2, 1, 2) in H.

◦ 0 1 2
0 {0} {0,1,2} { 0,1,2}
1 {1} {0,2} {1,2}
2 {2} {0,1,2} {0,1,2}

◦1 0 1 2
0 {0} {0} { 0}
1 {1} {0} {1}
2 {2} {2} {0,2}

◦2 0 1 2
0 {0} {0,1,2} { 0,1,2}
1 {1} {0,2} {1,2}
2 {2} {0,1} {0,1,2}

Theorem 4.8. Let (H, ◦, 0) be O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0). If I be a positive implicative hyper K-ideal of types (1, 1, 2) and (1, 1, 3) in
(H, ◦1, 0) or (H, ◦2, 0). Then I is a positive implicative hyper K-ideal of the same type
in H.

Proof. Let I is a positive implicative hyper K-ideal of type (1, 1, 2) in (H, ◦1, 0) or (H, ◦2, 0),
(x◦y)◦ z ⊆ I and y ◦ z ⊆ I, then (x◦1 y)◦1 z ⊆ I, (x◦2 y)◦2 z ⊆ I, y ◦1 z ⊆ I and y ◦2 z ⊆ I.
By hypothesis we get that x ◦1 z ∩ I �= ∅ or x ◦2 z ∩ I �= ∅, hence x ◦ z ∩ I �= ∅ and I is a
positive implicative hyper K-ideal of type (1, 1, 2) in (H, ◦, 0). The proof for type (1, 1, 3)
is similar. �
Theorem 4.9. Let (H, ◦, 0) be O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0). If I be a positive implicative hyper K-ideal of type (1, 1, 1), (1, j, k) or (i, 1, k)
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where i, j ∈ {1, 2, 3} and k �= 1 in (H, ◦1, 0) and (H, ◦2, 0). Then I is a positive implicative
hyper K-ideal of the same type in H.

Proof. Let I is a positive implicative hyper K-ideal of type (1, 1, 1) in (H, ◦1, 0) and (H, ◦2, 0),
(x ◦ y) ◦ z ⊆ I and y ◦ z ⊆ I, so (x ◦1 y) ◦1 z ⊆ I, (x ◦2 y) ◦2 z ⊆ I, y ◦1 z ⊆ I and y ◦2 z ⊆ I.
Since I is a positive implicative hyper K-ideal of type (1, 1, 1) in (H, ◦1, 0) and (H, ◦2, 0),
we have x ◦1 z ⊆ I and x ◦2 z ⊆ I, so x ◦ z ⊆ I. The proof for the others is similar. �

Theorem 4.9 is not true for other cases, the following example shows this for type (2, 2, 3).

Example 4.10. The hyper K-algebra (H, ◦, 0) is O-decomposition into (H, ◦1, 0) and
(H, ◦2, 0) as follows and I = {0, 1} is a positive implicative of type (2, 2, 3) in (H, ◦1, 0) and
(H, ◦2, 0), but I is not a positive implicative of type (2, 2, 3) in H. Since (2 ◦ 3) ◦ 1∩ I �= ∅,
3 ◦ 1 ∩ I �= ∅ and 2 ◦ 1 ≮ I.

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {2} {0,2} {0,1,2}
3 {3} {0,3} {3} {0,3}

◦1 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {2} {0,2} {2}
3 {3} {0} {3} {0,3}

◦2 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {2} {0,2} {0,1}
3 {3} {3} {3} {0,3}

Theorem 4.11. Let (H, ◦, 0) be O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0) and the nonempty subset I of H be a commutative hyper K-ideal of type (i, j); i, j ∈
{1, 2, 3} in H. Then I is a commutative hyper K-ideal of type (i, j) in (H, ◦1, 0) or (H, ◦2, 0).

Proof. We prove theorem for type (2, 2) and the proof for the other types is similar. Let
(x ◦1 y) ◦1 z ∩ I �= ∅ or (x ◦1 y) ◦1 z ∩ I �= ∅ and z ∈ I, so (x ◦ y) ◦ z ∩ I �= ∅. Since I is
a commutative hyper K-ideal of type (2, 2) in H, we have x ◦ (y ◦ (y ◦ x)) ∩ I �= ∅. Thus
x ◦1 (y ◦1 (y ◦1 x)) ∩ I �= ∅ or x ◦2 (y ◦2 (y ◦2 x)) ∩ I �= ∅. �

Theorem 4.12. Let (H, ◦, 0) be O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0) and the nonempty subset I of H be a commutative hyper K-ideal of type (1, 1)
or (i, j); i ∈ {1, 2, 3}, j ∈ {2, 3} in (H, ◦1, 0) and (H, ◦2, 0), then I is a commutative hyper
K-ideal of the same type in H.

Proof. We prove theorem for type (1, 1) and the proof for the other types is similar. Let
(x ◦ y) ◦ z ⊆ I and z ∈ I. So (x ◦1 y) ◦1 z ⊆ I and (x ◦2 y) ◦2 z ⊆ I. Since I is a commutative
hyper K-ideal of type (1, 1) in (H, ◦1, 0) and (H, ◦2, 0), we have x ◦1 (y ◦1 (y ◦1 x)) ⊆ I and
x ◦2 (y ◦2 (y ◦2 x)) ⊆ I. Finally x ◦ (y ◦ (y ◦ x)) ⊆ I and I is a commutative hyper K-ideal
of type (1, 1) in H. �

The following example shows that, in the theorem 4.12 we can not use “or” instead of
“and”.

Example 4.13. Consider the following hyper K-algebras (H, ◦, 0), (H, ◦1, 0) and (H, ◦2, 0).
Then (H, ◦, 0) is O-decomposition into (H, ◦1, 0) and (H, ◦2, 0), and I = {0, 1} is a commu-
tative hyper K-ideal of type (1, 1) in (H, ◦1, 0), but I is not commutative hyper K-ideal of
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where i, j ∈ {1, 2, 3} and k �= 1 in (H, ◦1, 0) and (H, ◦2, 0). Then I is a positive implicative
hyper K-ideal of the same type in H.

Proof. Let I is a positive implicative hyper K-ideal of type (1, 1, 1) in (H, ◦1, 0) and (H, ◦2, 0),
(x ◦ y) ◦ z ⊆ I and y ◦ z ⊆ I, so (x ◦1 y) ◦1 z ⊆ I, (x ◦2 y) ◦2 z ⊆ I, y ◦1 z ⊆ I and y ◦2 z ⊆ I.
Since I is a positive implicative hyper K-ideal of type (1, 1, 1) in (H, ◦1, 0) and (H, ◦2, 0),
we have x ◦1 z ⊆ I and x ◦2 z ⊆ I, so x ◦ z ⊆ I. The proof for the others is similar. �

Theorem 4.9 is not true for other cases, the following example shows this for type (2, 2, 3).

Example 4.10. The hyper K-algebra (H, ◦, 0) is O-decomposition into (H, ◦1, 0) and
(H, ◦2, 0) as follows and I = {0, 1} is a positive implicative of type (2, 2, 3) in (H, ◦1, 0) and
(H, ◦2, 0), but I is not a positive implicative of type (2, 2, 3) in H. Since (2 ◦ 3) ◦ 1∩ I �= ∅,
3 ◦ 1 ∩ I �= ∅ and 2 ◦ 1 ≮ I.

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {2} {0,2} {0,1,2}
3 {3} {0,3} {3} {0,3}

◦1 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {2} {0,2} {2}
3 {3} {0} {3} {0,3}

◦2 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0,1} {1} {1}
2 {2} {2} {0,2} {0,1}
3 {3} {3} {3} {0,3}

Theorem 4.11. Let (H, ◦, 0) be O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0) and the nonempty subset I of H be a commutative hyper K-ideal of type (i, j); i, j ∈
{1, 2, 3} in H. Then I is a commutative hyper K-ideal of type (i, j) in (H, ◦1, 0) or (H, ◦2, 0).

Proof. We prove theorem for type (2, 2) and the proof for the other types is similar. Let
(x ◦1 y) ◦1 z ∩ I �= ∅ or (x ◦1 y) ◦1 z ∩ I �= ∅ and z ∈ I, so (x ◦ y) ◦ z ∩ I �= ∅. Since I is
a commutative hyper K-ideal of type (2, 2) in H, we have x ◦ (y ◦ (y ◦ x)) ∩ I �= ∅. Thus
x ◦1 (y ◦1 (y ◦1 x)) ∩ I �= ∅ or x ◦2 (y ◦2 (y ◦2 x)) ∩ I �= ∅. �

Theorem 4.12. Let (H, ◦, 0) be O-decomposition into two hyper K-algebras (H, ◦1, 0) and
(H, ◦2, 0) and the nonempty subset I of H be a commutative hyper K-ideal of type (1, 1)
or (i, j); i ∈ {1, 2, 3}, j ∈ {2, 3} in (H, ◦1, 0) and (H, ◦2, 0), then I is a commutative hyper
K-ideal of the same type in H.

Proof. We prove theorem for type (1, 1) and the proof for the other types is similar. Let
(x ◦ y) ◦ z ⊆ I and z ∈ I. So (x ◦1 y) ◦1 z ⊆ I and (x ◦2 y) ◦2 z ⊆ I. Since I is a commutative
hyper K-ideal of type (1, 1) in (H, ◦1, 0) and (H, ◦2, 0), we have x ◦1 (y ◦1 (y ◦1 x)) ⊆ I and
x ◦2 (y ◦2 (y ◦2 x)) ⊆ I. Finally x ◦ (y ◦ (y ◦ x)) ⊆ I and I is a commutative hyper K-ideal
of type (1, 1) in H. �

The following example shows that, in the theorem 4.12 we can not use “or” instead of
“and”.

Example 4.13. Consider the following hyper K-algebras (H, ◦, 0), (H, ◦1, 0) and (H, ◦2, 0).
Then (H, ◦, 0) is O-decomposition into (H, ◦1, 0) and (H, ◦2, 0), and I = {0, 1} is a commu-
tative hyper K-ideal of type (1, 1) in (H, ◦1, 0), but I is not commutative hyper K-ideal of
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type (1, 1) in (H, ◦2, 0). Since (1 ◦2 0)◦2 0 ⊆ I and 1◦2 (0◦2 (0◦2 1)) = {0, 1, 2} � I. Finally
(1 ◦ 0) ◦ 0 ⊆ I but 1 ◦ (0 ◦ (0 ◦ 1)) = {0, 1, 2} � I, so I is not a commutative hyper K-ideal
of type (1, 1) in H.

◦ 0 1 2
0 {0} {0,1,2} {0,1,2}
1 {1} {0,1,2} {0,1,2}
2 {2} {1,2} {0,1,2}

◦1 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {2} {0,2}

◦2 0 1 2
0 {0} {0,1,2} {0,1,2}
1 {1} {0,1,2} {0,2}
2 {2} {1,2} {0,1,2}
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Abstract. It is well known that the meaning of the convergence in posets stings the
interest of many investigators such as R. F. Anderson, J. C. Mathews and V. Olejc̆ek
(see, for example [13,14]). Among others, the notions of the order-convergence and of
the o2-convergence in posets were studied in details, presenting necessary and sufficient
conditions under of which these convergences are topological. Many researchers give a
special attention to the study of these convergences in different posets, inserting new
knowledge in the classical theory of posets’s convergence. In this paper, we introduce
the ideal-order-convergence in posets, proving results which are based on this notion.
We insert topologies in posets and we study their properties. We also give a sufficient
and necessary condition for the ideal-order-convergence in a poset to be topological.
The introduction of a weaker form of the ideal-order-convergence in posets, called
ideal-o2-convergence, completes our study.

Introduction

The order-convergence in posets was introduced by G. Birkhoff [1]. In general, the
order-convergence is not topological, that is a poset X may not have a topology τ so that
nets order-converge if and only if they converge with respect to the topology τ on X [14,22].
Then, much attention was paid to those posets in which the order-convergence is topological
[15–17,23]. Also, modifications of the order-convergence was studied in [13,18,20,22,23].

Meanwhile with the study of the order-convergence in posets, the notion of the o2-
convergence was communicated by the authors in [13, 18]. In fact, the o2-convergence is a
generalization of the order-convergence and, as the order-convergence, the o2-convergence
is also, not topological in general. Also in [20], many sufficient and necessary conditions
were given so that this kind of convergence be topological.

On the other hand, in recent years, a lot of papers have been written on statistical
convergence and ideal convergence in metric and topological spaces (see, for instance, [2,3,
7–9,12]).

In the present paper we introduce and study the notion of convergence of nets in posets
via an ideal. We proceed with the following enumeration: In Section 1, we recall some
definitions which will be used in the rest of the paper. In Section 2, we define the notion of
the ideal-order-convergence in posets proving classical results for the notion of convergence.
In Section 3, we introduce topologies in posets and we give a sufficient and necessary
condition for the ideal-order-convergence in a poset to be topological. In Section 4, we
study the ideal-order-convergence in Cartesian products of posets. Finally, in Section 5, the
concepts of the ideal-o2-convergence and the topological ideal-o2-convergence in posets are
developed.

1 Preliminaries

In this section we recall some definitions that are needed in the sequel and we refer
to [1] for more details. We shall frequently denote posets by their underlying sets, and we
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write X for (X,�). We will also use the following symbols (a, b) = {x ∈ X : a < x < b},
[a, b] = {x ∈ X : a � x � b}, (a, b] = {x ∈ X : a < x � b}, and [a, b) = {x ∈ X : a � x < b}.
In addition, by writing A ⊆fin B we mean that the set A is a finite subset of the set B.

(1) A subset A of a poset X is said to be directed if A �= ∅, and for any a1, a2 ∈ A there
exists a ∈ A such that a1 � a and a2 � a.

(2) A subset A of a poset X is said to be filtered if A �= ∅, and for any a1, a2 ∈ A there
exists a ∈ A such that a � a1 and a � a2.

If (D1,�1) and (D2,�2) are directed sets, then the Cartesian productD1×D2 is directed
by �, where (d1, d2) � (d′1, d

′
2) if and only if d1 �1 d′1 and d2 �2 d′2.

A net in a set X is an arbitrary function x from a non-empty directed preordered set D
to X. If x(d) = xd, for all d ∈ D, then the net x will be denoted by the symbol (xd)d∈D.

Let X be a topological space. A net (xd)d∈D in X is said to topology-converge to a point
x ∈ X, if for every open neighborhood U of x, xd ∈ U eventually. In this case we write

(xd)d∈D
t−→ x.

A net (yλ)λ∈Λ in X is said to be a semi-subnet of the net (xd)d∈D in X if there exists
a function ϕ : Λ → D such that y = x ◦ ϕ, or equivalently, yλ = xϕ(λ) for every λ ∈ Λ. We
write (yλ)

ϕ
λ∈Λ to indicate the fact that ϕ is the function mentioned above.

A family I of subsets of a non-empty set D is called an ideal if I has the following
properties:

(1) ∅ ∈ I.
(2) If A ∈ I and B ⊆ A, then B ∈ I.
(3) If A,B ∈ I, then A ∪B ∈ I.
The ideal I is called non-trivial if D /∈ I.

Suppose that (yλ)
ϕ
λ∈Λ is a semi-subnet of the net (xd)d∈D in X. For every ideal I of the

directed set D, we consider the family {A ⊆ Λ : ϕ(A) ∈ I}. This family is an ideal on Λ
which will be denoted by IΛ(ϕ).

A filter F in a non-empty set X is a family of subsets of X that has the following
properties:

(1) X ∈ F .

(2) If A ∈ F and B ⊇ A, then B ∈ F .

(3) If A,B ∈ F , then A ∩B ∈ F .

If ∅ /∈ F , we say that F is a proper filter.
Given a filter F on a set X, let M = {(x, F ) ∈ X×F : x ∈ F} and for (x, F ), (y,G) ∈ M

define (x, F ) � (y,G) if and only if F ⊆ G. It is easily seen that � directs M . The map
sF : M → X with sF (x, F ) = x, is a net in X, which is called the net associated with F . If

(X, τ) is a topological space, then F t−→ x ∈ X with respect to τ if and only if sF
t−→ x with

respect to τ .
Dually, given a net s : M → X on a set X, define

Fs = {F ⊆ X : {s(m) : m � m0} ⊆ F for some m0 ∈ M}.

Then Fs is a filter on X, which is called the filter associated with s. If (X, τ) is a topological

space, then s
t−→ x with respect to τ if and only if Fs

t−→ x with respect to τ .

Definition 1.1 [9] Let X be a topological space. A net (xd)d∈D in X is said to I-topology-
converge to a point x ∈ X, where I is an ideal on D, if for every open neighborhood U of

x, {d ∈ D : xd /∈ U} ∈ I. In this case we write (xd)d∈D
I−t−−→ x.
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Definition 1.2 [1] Let X be a poset. A net (xd)d∈D in X is said to order-converge to a
point x ∈ X if there exist subsets A and B of X such that:

(1) A is directed and B is filtered.

(2) x =
∨
A =

∧
B.

(3) For every a ∈ A and b ∈ B, there exists d0 ∈ D such that a � xd � b hold for all
d � d0.

In this case we write (xd)d∈D
o−→ x.

Given a poset X, by T o
X we denote the set consisting of all subsets U of X satisfying

the following property: If (xd)d∈D
o−→ x ∈ U , then there exists d0 ∈ D such that xd ∈ U for

every d � d0. The set T o
X forms a topology on X, which is called the order topology on X

(see [21, 23]).

Definition 1.3 [19] Let X be a poset and x, y, z ∈ X. We define:

(1) x � y, if for any directed subset A ⊆ X, for which
∨
A exists and y �

∨
A, there is

a ∈ A such that x � a.

(2) z � y, if for any filtered subset B ⊆ X, for which
∧
B exists and

∧
B � y, there is

b ∈ B such that b � z.

Clearly, if x, y, z ∈ X, then the following implications hold: x � y ⇒ x � y, and z � x ⇒
z � x.

Definition 1.4 [19] A poset X is called doubly continuous if for each element x ∈ X, the
set {a ∈ X : a � x} is directed, the set {b ∈ X : b� x} is filtered and

x =
∨

{a ∈ X : a � x} =
∧

{b ∈ X : b� x}.

Definition 1.5 [23] The order-convergence in a poset X is called topological, if there exists

a topology τ on X such that for every net (xd)d∈D in X and x ∈ X we have (xd)d∈D
o−→ x

if and only if (xd)d∈D
t−→ x with respect to τ .

Proposition 1.6 [23] Let X be a complete lattice. If X satisfies the two infinite dis-
tributivity (the meet-infinite distributivity and the join-infinite distributivity) laws, then
the following are equivalent:

(1) The order-convergence on X is topological.

(2) X is doubly continuous.

(3) X is a completely distributive lattice.

In the next we recall some definitions and results from [16].

Definition 1.7 Let X be a poset and x, y, z ∈ X. We define:

(1) x �S y, if for every directed subset D of X with
∨
D = y, there exists d ∈ D such

that x � d.

(2) z �S y, if for every filtered subset G of X with
∧
G = y, there exists g ∈ G such that

z � g.

Clearly, if x, y, z ∈ X, then the following implications hold: x � y ⇒ x �S y ⇒ x � y,
and z � x ⇒ z �S x ⇒ z � x. Also for a poset X and x ∈ X we use the following symbols:
⇓Sx = {a ∈ X : a �S x}, ⇑Sx = {b ∈ X : x �S b}, ↓↓Sx = {c ∈ X : x �S c} and
↑↑Sx = {d ∈ X : d�S x}.

Convergence of nets in posets via an ideal
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Definition 1.8 A poset X is called

(1) S-doubly continuous if for each element x ∈ X, the sets ⇓Sx and ↑↑Sx are directed
and filtered, respectively and

∨
⇓Sx =

∧
↑↑Sx = x, and

(2) S∗-doubly continuous if it is S-doubly continuous, and for every x ∈ X, y ∈ ⇓Sx and
z ∈ ↑↑Sx, there exist y0 ∈ ⇓Sx and z0 ∈ ↑↑Sx such that [y0, z0] ⊆ ⇑Sy ∩ ↓↓Sz.

Proposition 1.9 If X is a doubly continuous poset, then X is S∗-doubly continuous.

Definition 1.10 Let X be a poset.

(1) A filter F in X order-converges to x in the sense of Birkhoff if there exist a directed
set D and a filtered set G such that

∨
D = x =

∧
G and [a, b] ∈ F for all a ∈ D and

b ∈ G. In this case, we write F O−→ x.

(2) A subset U of X is called a B-open set if for any filter F that order converges to
x ∈ U , there exists F ∈ F such that F ⊆ U . The set TX of all B-open subsets of X
forms a topology on X, which is called the B-topology on X.

Proposition 1.11 Let X be a poset and U ⊆ X. Then, U ∈ TX if and only if for any
directed subset D of X and any filtered subset G of X with

∨
D =

∧
G = x ∈ U , there

exist d0 ∈ D and g0 ∈ G such that [d0, g0] ⊆ U .

Theorem 1.12 For a poset X, the order-convergence in X is topological if and only if X
is an S∗-doubly continuous poset.

2 Ideal-oder convergence

In this section we introduce the ideal-order-convergence in posets and prove some of its
properties.

Definition 2.1 Let X be a poset. A net (xd)d∈D in X is said to I-order-converge to a
point x ∈ X, where I is an ideal on D, if there exist subsets A and B of X such that:

(1) A is directed and B is filtered.

(2) x =
∨
A =

∧
B.

(3) For every a ∈ A and b ∈ B, {d ∈ D : xd /∈ [a, b]} ∈ I.

Notation 2.2 Let (xd)d∈D be a net in a poset X and let I be a non-trivial ideal on D.
If (xd)d∈D I-order-converges to x ∈ X, then the point x is called the I-o-limit of the net

(xd)d∈D. In this case we write (xd)d∈D
I−o−−−→ x.

The ideal-convergences with respect to non-trivial ideals can be reduced to convergences
of semi-subnets. More precisely, the following fact holds:

Proposition 2.3 Let (xd)d∈D be a net in a poset X and I a non-trivial ideal on D. Then
there exists a semi-subnet (yλ)

ϕI
λ∈ΛI

of (xd)d∈D such that for every A ⊆ X,

{d ∈ D : xd /∈ A} ∈ I if and only if there exists λ0 ∈ ΛI such that yλ ∈ A for all λ � λ0.

In particular, for x ∈ X and a topology τ on X,

(1) (xd)d∈D
I−t−−→ x with respect to τ if and only if (yλ)

ϕI
λ∈ΛI

t−→ x with respect to τ .

(2) (xd)d∈D
I−o−−−→ x if and only if (yλ)

ϕI
λ∈ΛI

o−→ x.
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Proof. Set ΛI = {(d, I) ∈ D × I : d /∈ I} and define a preorder � on ΛI by letting
(d, I) � (d′, I ′) if and only if I ⊆ I ′ for (d, I), (d′, I ′) ∈ ΛI . Since I is non-trivial, (ΛI ,�)
is directed. Let ϕI : ΛI → D such that (d, I) �→ d be the projection. Then the semi-subnet
(yλ)

ϕI
λ∈ΛI

of (xd)d∈D is as required. Indeed, let {d ∈ D : xd /∈ A} ∈ I for some A ⊆ X. If
we set I0 = {d ∈ D : xd /∈ A} and λ0 = (d0, I0), then for each λ = (d, I) � λ0 (i.e. I ⊇ I0)
we have yλ = xd ∈ A.

Conversely, let that for some A ⊆ X there exists λ0 = (d0, I0) ∈ ΛI such that yλ = xd ∈
A for all λ = (d, I) � λ0. Then {d ∈ D : xd /∈ A} ⊆ I0 ∈ I.
(1) Take A = U an arbitrary τ -open neighborhood of x.
(2) Take A = [a, b] an arbitrary interval. �

Proposition 2.4 Suppose that the net (xd)d∈D in X I-order-converges to x, y ∈ X, where
I is a non-trivial ideal on D. Then, x = y.

Proof. It follows directly from Proposition 2.3 and the fact that a limit of order-convergence
is uniquely determined (see Remark 1 in p.15 of [11]). �

Example 2.5 Let (xd)d∈D be a net in a poset X and x ∈ X. We consider the family

{A ⊆ D : A ⊆ {d ∈ D : d � d0} for some d0 ∈ D}.

This family is a non-trivial ideal on D which will be denoted by ID. The net (xd)d∈D

order-converges to x if and only if (xd)d∈D
ID−o−−−−→ x.

Example 2.6 Let X = {x} ∪ {ai : i ∈ N}, where N denotes the set of all natural numbers.
The order � on X is defined as follows:

(O1) ai < x, for every i ∈ N.
(O2) For all i, j ∈ N, if i < j, then ai < aj .

Then, (ai)i∈N
o−→ x. Indeed, for the subsets A = {ai : i ∈ N} and B = {x} of X we have:

(1) A is directed and B is filtered.

(2) x =
∨
A =

∧
B.

(3) For every i ∈ N, there exists j0 ∈ N (j0 = i) such that ai � aj � x hold for all j � j0.

Generally, for every admissible ideal I on N, namely, I contains all finite subsets of N, we
have (ai)i∈N

I−o−−−→ x. Let Ie be the ideal of even numbers on N. Then, the net (ai)i∈N does
not Ie-order-converge to x.

Proposition 2.7 If (xd)d∈D is a net with xd = x for every d ∈ D, then (xd)d∈D
I−o−−−→ x

holds for every ideal I of D.

Proof. The sets A = B = {x} satisfy the conditions of Definition 2.1. Particularly, for the
condition (3) we have {d ∈ D : xd = x /∈ {x}} = ∅ ∈ I. �

Proposition 2.8 If (xd)d∈D
I−o−−−→ x, then for every semi-subnet (yλ)

ϕ
λ∈Λ of the net (xd)d∈D

we have (yλ)
ϕ
λ∈Λ

IΛ(ϕ)−o−−−−−→ x.

Proof. Let (yλ)
ϕ
λ∈Λ be a semi-subnet of the net (xd)d∈D. Suppose that A and B are subsets

of X such that:

(1) A is directed and B is filtered.

Convergence of nets in posets via an ideal
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(2) x =
∨
A =

∧
B.

(3) For every a ∈ A and b ∈ B, {d ∈ D : xd /∈ [a, b]} ∈ I.
It suffices to prove that for every a ∈ A and b ∈ B, {λ ∈ Λ : yλ /∈ [a, b]} ∈ IΛ(ϕ). Let
C = {λ ∈ Λ : yλ /∈ [a, b]}. If C = ∅, then we are done. Suppose that C �= ∅. We
prove that ϕ(C) ∈ I. Let ϕ(λ) ∈ ϕ(C), where λ ∈ C. Since yλ = xϕ(λ) /∈ [a, b], we
have ϕ(λ) ∈ {d ∈ D : xd /∈ [a, b]} which means that ϕ(C) ⊆ {d ∈ D : xd /∈ [a, b]}. Since
{d ∈ D : xd /∈ [a, b]} ∈ I, ϕ(C) ∈ I. �

Proposition 2.9 Let X be a poset and x, y, z ∈ X. If y �S x and z �S x, then for
every net (xd)d∈D in X, which I-order-converges to x, where I is a non-trivial ideal on D,
{d ∈ D : xd /∈ [y, z]} ∈ I.

Proof. Let y �S x, z�S x and (xd)d∈D be a net in X which I-order-converges to x, where
I is a non-trivial ideal on D. Then, there exist subsets A and B of X such that:

(1) A is directed and B is filtered.

(2) x =
∨
A =

∧
B.

(3) For each a ∈ A and b ∈ B, {d ∈ D : xd /∈ [a, b]} ∈ I.
Since y �S x, there exists a0 ∈ A such that y � a0 and since z�Sx, there exists b0 ∈ B such
that b0 � z. By assumption, for a0 ∈ A and b0 ∈ B we have that {d ∈ D : xd /∈ [a0, b0]} ∈ I.
Since {d ∈ D : xd /∈ [y, z]} ⊆ {d ∈ D : xd /∈ [a0, b0]}, we have that {d ∈ D : xd /∈ [y, z]} ∈ I.
�

Corollary 2.10 Let X be a poset and x, y, z ∈ X. If y � x and z � x, then for every
net (xd)d∈D in X, which I-order-converges to x, where I is a non-trivial ideal on D,
{d ∈ D : xd /∈ [y, z]} ∈ I.

Proposition 2.11 Let X be a S-doubly continuous poset, (xd)d∈D be a net in X, x ∈ X,
and I be a non-trivial ideal on D. If for every y, z ∈ X with y �S x and z �S x we have

{d ∈ D : xd /∈ [y, z]} ∈ I, then (xd)d∈D
I−o−−−→ x.

Proof. Is a direct consequence of the Definitions 2.1 and 1.8. �

Proposition 2.12 Let X be a doubly continuous poset, (xd)d∈D be a net in X, x ∈ X,
and I be a non-trivial ideal on D. If for every y, z ∈ X with y � x and z � x we have

{d ∈ D : xd /∈ [y, z]} ∈ I, then (xd)d∈D
I−o−−−→ x.

Proof. Is a direct consequence of the Definitions 2.1 and 1.4. �

3 Topologies in posets

In this section we introduce topologies in posets and we give a sufficient and necessary
condition for the ideal-order-convergence in a poset to be topological.

Proposition 3.1 Let X be a set and let CX be a class consisting of triads ((xd)d∈D, x, I),
where (xd)d∈D is a net in X, x ∈ X, and I is a non-trivial ideal on D. The family

{U ⊆ X : {d ∈ D : xd /∈ U} ∈ I for every ((xd)d∈D, x, I) ∈ CX , x ∈ U}

is a topology τ(CX) on X.

D. N. Georgiou, A. C. Megaritis, I. Naidoo, G. A. Prinos, F. Sereti

CONVERGENCE OF NETS IN POSETS VIA AN IDEALD.N.GEORGIOU,A.C.MEGARITIS,I.NAIDOO,G.A.PRINOS,F.SERETI28



7

Proof. Obviously ∅ ∈ τ(CX). Moreover, since {d ∈ D : xd /∈ X} = ∅ ∈ I, X ∈ τ(CX).
Let U, V ∈ τ(CX) and ((xd)d∈D, x, I) ∈ CX , x ∈ U ∩ V . Then, {d ∈ D : xd /∈ U} ∈ I and
{d ∈ D : xd /∈ V } ∈ I. Therefore,

{d ∈ D : xd /∈ U ∩ V } = {d ∈ D : xd /∈ U} ∪ {d ∈ D : xd /∈ V } ∈ I

which means that the intersection U ∩ V ∈ τ(CX). Now, let Ui ∈ τ(CX), i ∈ I and
((xd)d∈D, x, I) ∈ CX , x ∈ ∪i∈IUi. Then, {d ∈ D : xd /∈ Ui0} ∈ I for some i0 ∈ I. Since

{d ∈ D : xd /∈ ∪i∈IUi} ⊆ {d ∈ D : xd /∈ Ui0} ∈ I,

we have {d ∈ D : xd /∈ ∪i∈IUi} ∈ I. Hence, ∪i∈IUi ∈ τ(CX). �

Proposition 3.2 If ((xd)d∈D, x, I) ∈ CX , then (xd)d∈D
I−t−−→ x with respect to τ(CX).

Proof. Let ((xd)d∈D, x, I) ∈ CX and U be an open neighborhood of x. Since x ∈ U ∈ τ(CX),
by the definition of the topology τ(CX), we have {d ∈ D : xd /∈ U} ∈ I. Therefore,

(xd)d∈D
I−t−−→ x with respect to τ(CX). �

Notation 3.3 For an arbitrary poset X, we denote by Co
X the class consisting of triads

((xd)d∈D, x, I), where (xd)d∈D is a net in X, x ∈ X, and I is a non-trivial ideal on D such

that (xd)d∈D
I−o−−−→ x.

Proposition 3.4 Let X be a poset. Then, τ(Co
X) = T o

X .

Proof. Firstly, we prove that τ(Co
X) ⊆ T o

X . Let U ∈ τ(Co
X) and a net (xd)d∈D

o−→ x ∈ U .

Then by Example 2.5 (xd)d∈D
ID−o−−−−→ x. By the definition of ID it follows that (xd)d∈D is

eventually in U . Thus U ∈ T o
X .

We prove the opposite direction T o
X ⊆ τ(Co

X). Let U ∈ T o
X and a net (xd)d∈D

I−o−−−→ x ∈
U , where I is a non-trivial ideal on D. Then by Proposition 2.3 the net (yλ)

ϕI
λ∈ΛI

o−→ x.
That is, there exists λ0 ∈ ΛI such that yλ ∈ U for all λ � λ0. Thus {d ∈ D : xd /∈ U} ∈ I,
which means that U ∈ τ(Co

X). �

The following result is a characterization of open sets in T o
X .

Lemma 3.5 Let X be a poset and U ⊆ X. Then, U ∈ T o
X if and only if for any directed

subset D of X and any filtered subset F of X with
∨
D =

∧
F = x ∈ U , there exist d0 ∈ D

and f0 ∈ F such that [d0, f0] ⊆ U .

Proof. Let U ∈ T o
X , D be a directed subset of X, F be a filtered subset of X and

∨
D =∧

F = x ∈ U . Suppose that for each d ∈ D and f ∈ F there exist g(d,f) ∈ X with
d � g(d,f) � f and g(d,f) /∈ U . The Cartesian product D × F is directed if we define

(d′, f ′) � (d, f) to mean that d′ � d and f ′ � f . Then, (g(d,f))(d,f)∈D×F
o−→ x, and,

therefore, the net (g(d,f))(d,f)∈D×F converges to x, with respect to T o
X , contradiction. Thus,

for some d0 ∈ D and f0 ∈ F we get [d0, f0] ⊆ U .
Now, let U ⊆ X and suppose that for any directed subset D of X and any filtered subset

F of X with
∨
D =

∧
F = x ∈ U , there exist d0 ∈ D and f0 ∈ F such that [d0, f0] ⊆ U .

Consider a net (xλ)λ∈Λ
o−→ x ∈ U . Then, by Definition 1.2 there exist a directed subset E

of X and a filtered subset G of X with
∨
E =

∧
G = x and for every e ∈ E and g ∈ G,

there exists λe,g ∈ Λ such that xλ ∈ [e, g] for every λ � λe,g. By hypothesis there exist
e0 ∈ E and g0 ∈ G such that [e0, g0] ⊆ U . Consequently, there exists λ0 ∈ Λ such that
xλ ∈ [e0, g0] ⊆ U for every λ � λ0. Hence, by the definition of the topology T o

X we have
U ∈ T o

X . �

Convergence of nets in posets via an ideal
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Lemma 3.6 Let X be a poset and U ⊆ X. Then, U ∈ τ(Co
X) if and only if for any directed

subset D of X and any filtered subset F of X with
∨
D =

∧
F = x ∈ U , there exist d0 ∈ D

and f0 ∈ F such that [d0, f0] ⊆ U .

Proof. The proof is similar to the proof of Lemma 3.5. �

Remark 3.7 We observe that Proposition 3.4 it follows, alternatively, as a direct conse-
quence of the Lemmas 3.5 and 3.6. Also, given a poset X, in view of Lemma 3.5 and
Proposition 1.11 we have that the topology T o

X on X is equal to the B-topology on X (see
Definition 1.10).

Corollary 3.8 Let X be a poset. If (xd)d∈D
I−o−−−→ x, then (xd)d∈D

I−t−−→ x with respect to
T o
X .

Proof. Is similar to Proposition 3.2. �

Proposition 3.9 Let X be a poset. The topology T o
X is the finest topology τ on X such

that ideal-order-convergence implies ideal-topology-convergence with respect to τ .

Proof. Let τ be a topology on X such that ideal-order-convergence implies ideal-topology-
convergence with respect to τ . We prove that τ ⊆ T o

X . Let U ∈ τ . It suffices to prove that
for every ((xd)d∈D, x, I) ∈ Co

X , x ∈ U we have that {d ∈ D : xd /∈ U} ∈ I (see Proposition

3.4). Let ((xd)d∈D, x, I) ∈ Co
X . Then, (xd)d∈D

I−o−−−→ x and, by assumption, (xd)d∈D
I−t−−→ x

with respect to τ . Therefore, {d ∈ D : xd /∈ U} ∈ I. �

Definition 3.10 The ideal-order-convergence in a poset X is called topological, if there
exists a topology τ on X such that for every net (xd)d∈D in X, x ∈ X and for every

non-trivial ideal I of D, (xd)d∈D
I−o−−−→ x if and only if (xd)d∈D

I−t−−→ x with respect to τ .

Proposition 3.11 Let X be a poset such that the ideal-order-convergence is topological and
let τ be the corresponding topology on X. Then, τ ⊆ T o

X .

Proof. Is a direct consequence of the Proposition 3.9. �

Proposition 3.12 The ideal-order-convergence in a poset X is topological if and only if
the order-convergence in X is topological.

Proof. Consider a poset X and suppose that the ideal-order-convergence in X is topological.
Let (xd)d∈D be a net in X and x ∈ X. For the non-trivial ideal ID of D (see Example 2.5)

we have that (xd)d∈D
ID−o−−−−→ x if and only if (xd)d∈D

ID−t−−−→ x with respect to some topology

τ on X. Therefore, (xd)d∈D
o−→ x if and only if (xd)d∈D converges to x with respect to τ .

Thus, the order-convergence in X is topological.
Conversely, suppose that the order-convergence in X is topological. Let (xd)d∈D be a

net in X, I a non-trivial ideal on D and x ∈ X. Then by Proposition 2.3 and hypothesis

we have the following equivalences: (xd)d∈D
I−o−−−→ x if and only if (yλ)

ϕI
λ∈ΛI

o−→ x if and only

if (yλ)
ϕI
λ∈ΛI

t−→ x with respect to some topology τ on X if and only if (xd)d∈D
I−t−−→ x with

respect to τ . Thus, the ideal-order-convergence in X is topological. �

As the study of the notion of the ideal-order-convergence is extended, it raises the
necessity to clarify, in which posets, is the ideal-order-convergence topological. Following
[16] we prove that for a poset X the ideal-order-convergence is topological if and only if X
is an S∗-doubly continuous poset.
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Proposition 3.13 Let X be a poset.

(1) If F is a filter on X and sF is its associated net, then F O−→ x ∈ X (in the sense of

Definition 1.10) if and only if sF
o−→ x (in the sense of Definition 1.2).

(2) If s : M → X is a net in X and Fs is its associated filter, then s
o−→ x ∈ X (in the

sense of Definition 1.2) if and only if Fs
O−→ x (in the sense of Definition 1.10).

Proof. (1) Suppose that F O−→ x ∈ X. Then, there exist a directed set D ⊆ X and a
filtered set G ⊆ X such that ∨D = ∧G = x and [a, b] = E ∈ F for all a ∈ D and b ∈ G.
It follows that for every (f, F ) � (e, E) equivalently F ⊆ E, we have sF (f, F ) = f ∈ F ⊆
E ⇒ a � sF (f, F ) � b. Thus sF

o−→ x.

Conversely, let sF
o−→ x ∈ X. Then, there exist a directed set D ⊆ X and a filtered

set G ⊆ X such that ∨D = ∧G = x and for every a ∈ D and b ∈ G there exists m0 =
(f0, F0) ∈ M such that a � sF (m) � b for all m � m0. Then, for all f ∈ F0 we have

a � sF (f, F0) = f � b, since (f, F0) � (f0, F0). Thus, F0 ⊆ [a, b]. So [a, b] ∈ F and F O−→ x.

(2) Suppose that s
o−→ x ∈ X. Then, there exist a directed set D ⊆ X and a filtered set

G ⊆ X such that ∨D = ∧G = x and for every a ∈ D and b ∈ G there exists m0 ∈ M such
that a � s(m) � b for all m � m0, which means that [a, b] ⊇ {s(m) : m � m0} ∈ Fs and

thus Fs
O−→ x.

Conversely, let Fs
O−→ x ∈ X. Then, there exist a directed set D ⊆ X and a filtered set

G ⊆ X such that ∨D = ∧G = x and [a, b] ∈ Fs for all a ∈ D and b ∈ G. This means that

for some m0 ∈ M we have {s(m) : m � m0} ⊆ [a, b] and thus s
o−→ x. �

We observe that the coincidence of T o
X and B-topology on X is, also, immediate from

Proposition 3.13.

Proposition 3.14 The order-convergence in a poset X (in the sense of Definition 1.2) is
topological if and only if the order-convergence in X (in the sense of Definition 1.10) is
topological.

Proof. Is a direct consequence of Proposition 3.13. �

Proposition 3.15 For a poset X, the ideal-oder convergence is topological for the T o
X topol-

ogy if and only if X is an S∗-doubly continuous poset.

Proof. Is a direct consequence of Theorem 1.12, Remark 3.7, Proposition 3.12 and Propo-
sition 3.14. �

4 Ideal-order-convergence in Cartesian products of posets

In this section we study ideal-order-convergence in the Cartesian product of two posets
X and Y .

For an ideal (resp., filter) I on a set X, let I∗ denote the dual filter (resp., ideal) on I,
that is, I∗ = {A ⊆ X : X \A ∈ I}. For filters F1 and F2 on sets D1 and D2, respectively,
let F1 ×F2 denote the product filter, that is,

F1 ×F2 = {A ⊆ D1 ×D2 : F1 × F2 ⊆ A for some F1 ∈ F1 and some F2 ∈ F2}.

Then the following trivial facts hold:

(1) An ideal (resp., filter) I on a set X is non-trivial if and only if so is the dual filter
(resp., ideal) I∗.

Convergence of nets in posets via an ideal

CONVERGENCE OF NETS IN POSETS VIA AN IDEAL 31



10

(2) If filters F1 and F2 on sets D1 and D2, respectively, are non-trivial, so is the product
filter F1 ×F2.

Proposition 4.1 Let D1, D2 be two directed sets and let I1, I2 be two non-trivial ideals
on D1 and D2, respectively. The family (I∗

1 ×I∗
2 )

∗ is a non-trivial ideal on D1×D2, which
will denote by I1 × I2.

Proof. Is an easy consequence of the above discussion. �

Proposition 4.2 Let X and Y be two posets. Then, we have (xd1)d1∈D1

I1−o−−−→ x and

(yd2)d2∈D2

I2−o−−−→ y, where I1 and I2 are two non-trivial ideals of D1 and D2, respectively

if and only if ((xd1 , yd2))(d1,d2)∈D1×D2

I1×I2−o−−−−−−→ (x, y).

Proof. Let (xd1
)d1∈D1

I1−o−−−→ x and (yd2
)d2∈D2

I2−o−−−→ y. We prove that

((xd1 , yd2))(d1,d2)∈D1×D2

I1×I2−o−−−−−−→ (x, y).

There exist subsets A1, B1 and A2, B2 of X and Y , respectively such that:

(1) A1, A2 are directed and B1, B2 are filtered.

(2) x =
∨
A1 =

∧
B1 and y =

∨
A2 =

∧
B2.

(3) For every a1 ∈ A1 and b1 ∈ B1, {d1 ∈ D1 : xd1
/∈ [a1, b1]} ∈ I1.

(4) For every a2 ∈ A2 and b2 ∈ B2, {d2 ∈ D2 : yd2
/∈ [a2, b2]} ∈ I2.

We set A = A1 ×A2 and B = B1 ×B2. Then:

(5) A is directed and B is filtered.

(6) (x, y) =
∨
A =

∧
B.

Let (a1, a2) ∈ A and (b1, b2) ∈ B. We prove that

{(d1, d2) ∈ D1 ×D2 : (xd1
, yd2

) /∈ [(a1, a2), (b1, b2)]} ∈ I1 × I2.

It suffices to prove that

W = {(d1, d2) ∈ D1 ×D2 : (xd1 , yd2) ∈ [(a1, a2), (b1, b2)]} ∈ I∗
1 × I∗

2 .

We set I1 = {d1 ∈ D1 : xd1 /∈ [a1, b1]} and I2 = {d2 ∈ D2 : yd2 /∈ [a2, b2]}.
Then D1 \I1 = {d1 ∈ D1 : xd1

∈ [a1, b1]} ∈ I∗
1 and D2 \I2 = {d2 ∈ D2 : yd2

∈ [a2, b2]} ∈ I∗
2 .

We see that

(D1 \ I1)× (D2 \ I2) ⊆ W .
Therefore, W ∈ I∗

1 × I∗
2 .

Conversely, let ((xd1
, yd2

))(d1,d2)∈D1×D2

I1×I2−o−−−−−−→ (x, y). We prove that

(xd1)d1∈D1

I1−o−−−→ x.

There exist subsets A and B of X × Y such that:

(7) A is directed and B is filtered.

(8) (x, y) =
∨
A =

∧
B.

(9) For every (a1, a2) ∈ A and (b1, b2) ∈ B,
{(d1, d2) ∈ D1 ×D2 : (xd1

, yd2
) /∈ [(a1, a2), (b1, b2)]} ∈ I1 × I2.
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We set:
A1 = {x1 ∈ X : (x1, y1) ∈ A for some y1 ∈ Y },
B1 = {x1 ∈ X : (x1, y1) ∈ B for some y1 ∈ Y }.

Then A1 is directed, B1 is filtered and x =
∨
A1 =

∧
B1.

We prove that:

(10) For every a1 ∈ A1 and b1 ∈ B1, {d1 ∈ D1 : xd1
/∈ [a1, b1]} ∈ I1.

Let a1 ∈ A1 and b1 ∈ B1. Then, there exist a2, b2 ∈ Y such that (a1, a2) ∈ A and
(b1, b2) ∈ B. Hence,

{(d1, d2) ∈ D1 ×D2 : (xd1 , yd2) /∈ [(a1, a2), (b1, b2)]} ∈ I1 × I2,

or equivalently

W = {(d1, d2) ∈ D1 ×D2 : (xd1 , yd2) ∈ [(a1, a2), (b1, b2)]} ∈ I∗
1 × I∗

2 .

Therefore, there exist I1 ∈ I1 and I2 ∈ I2 such that (D1 \ I1)× (D2 \ I2) ⊆ W . Since

{d1 ∈ D1 : xd1
∈ [a1, b1]} ⊇ D1 \ I1 ∈ I∗

1 ,

we have {d1 ∈ D1 : xd1
/∈ [a1, b1]} ∈ I1. Similarly, we get (yd2

)d2∈D2

I2−o−−−→ y. �

Proposition 4.3 Let X and Y be two posets. Then, (xd)d∈D
I−o−−−→ x and (yd)d∈D

I−o−−−→ y

if and only if ((xd, yd))d∈D
I−o−−−→ (x, y).

Proof. Is similar to the proof of Proposition 4.2. �

Based on the ideas of papers [4–6], we will use Proposition 3.4 to prove the following
two propositions.

Proposition 4.4 Let X and Y be two posets. Then, T o
X × T o

Y ⊆ T o
X×Y .

Proof. Suppose that UX ∈ T o
X and UY ∈ T o

Y . It suffices to prove that UX × UY ∈ T o
X×Y .

Let (((xd, yd))d∈D, (x, y), I) ∈ Co
X×Y , (x, y) ∈ UX × UY . From Proposition 4.3, it follows

that ((xd)d∈D, x, I) ∈ Co
X and ((yd)d∈D, y, I) ∈ Co

Y , where x ∈ UX and y ∈ UY . Therefore,

{d ∈ D : xd /∈ UX} ∈ I and {d ∈ D : yd /∈ UY } ∈ I.

Since {d ∈ D : (xd, yd) /∈ UX × UY } = {d ∈ D : xd /∈ UX} ∪ {d ∈ D : yd /∈ UY } ∈ I,
we conclude that {d ∈ D : (xd, yd) /∈ UX × UY } ∈ I and, consequently, the product
UX × UY ∈ T o

X×Y . �

Proposition 4.5 Let X and Y be two posets. The Cartesian product topology T o
X × T o

Y

coincides with the topology T o
X×Y if the latter has a base of Cartesian product sets.

Proof. By Proposition 4.4 it suffices to prove that T o
X×Y ⊆ T o

X ×T o
Y . Consider any product

UX × UY which is open in the topology T o
X×Y . We prove that UX × UY ∈ T o

X × T o
Y . For

this purpose we show that UX ∈ T o
X and UY ∈ T o

Y . Let ((xd)d∈D, x, I) ∈ Co
X , x ∈ UX . Let

y ∈ UY and consider the net (yd)d∈D, where yd = y for every d ∈ D. By Propositions 2.7 and
4.3 we have (((xd, yd))d∈D, (x, y), I) ∈ Co

X×Y , (x, y) ∈ UX × UY . Since UX × UY ∈ T o
X×Y ,

we have {d ∈ D : (xd, yd) /∈ UX × UY } ∈ I. Now, since

{d ∈ D : xd /∈ UX} ⊆ {d ∈ D : (xd, yd) /∈ UX × UY },

we have {d ∈ D : xd /∈ UX} ∈ I. Therefore, UX ∈ T o
X . Similarly, we can see that UY ∈ T o

Y .
�
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5 Ideal-o2-convergence and ideal-o2-topology

A generalization of the ideal-order-convergence in posets, the so-called ideal-o2-converge-
nce, is discussed in this section. Moreover, an investigation of the topological ideal-o2-
convergence in posets completes this section.

We will need the following notions.

Definition 5.1 [13,18] Let X be a poset. A net (xd)d∈D in X is said to o2-converge to a
point x ∈ X if there exist subsets M and N of X such that:

(1) x =
∨
M =

∧
N .

(2) For each m ∈ M and n ∈ N , there exists d0 ∈ D such that m � xd � n hold for all
d � d0.

In this case we write (xd)d∈D
o2−→ x.

Definition 5.2 [20] Let X be a poset and x, y, z ∈ X. We define:

(1) x �α y, if for every net (xd)d∈D in X with (xd)d∈D
o2−→ y there exists d0 ∈ D such

that xd � x for every d � d0.

(2) z�α y, if for every net (xd)d∈D in X with (xd)d∈D
o2−→ y there exists d0 ∈ D such that

xd � z for every d � d0.

Definition 5.3 [20] A poset X is called α-doubly continuous if for each element x ∈ X,
x =

∨
{a ∈ X : a �α x} =

∧
{b ∈ X : b�α x}.

Definition 5.4 [10] A poset X is called O2-doubly continuous if it satisfies the following
conditions:

(1) X is α-doubly continuous and

(2) if y �α x and z �α x, then there exist A ⊆fin {a ∈ X : a �α x} and B ⊆fin {b ∈ X :
b�α x} such that y �α c and z �α c for each c ∈

⋂
m∈A

⋂
n∈B

[m,n].

Definition 5.5 Let X be a poset. A net (xd)d∈D in X is said to I-o2-converge to a point
x ∈ X, where I is a non-trivial ideal on D, if there exist subsets M and N of X such that:

(1) x =
∨
M =

∧
N .

(2) For each m ∈ M and n ∈ N , {d ∈ D : xd /∈ [m,n]} ∈ I.

Notation 5.6 Let (xd)d∈D be a net in a poset X and let I be a non-trivial ideal on D.
If (xd)d∈D I-o2-converges to x ∈ X, then the point x is called the I-o2-limit of the net

(xd)d∈D. In this case we write (xd)d∈D
I−o2−−−→ x.

Proposition 5.7 Let X be a poset, (xd)d∈D be a net in X and I a non-trivial ideal on D.

Then (xd)d∈D
I−o2−−−→ x if and only if (yλ)

ϕI
λ∈ΛI

o2−→ x.

Proof. Is similar to Proposition 2.3 (2). �

Proposition 5.8 If a net (xd)d∈D in X I-o2-converges to x, y ∈ X, where I is a non-trivial
ideal on D, then x = y.

Proof. It follows directly from Proposition 5.7 and the fact that a limit of o2-convergence
is uniquely determined (see Remark 3 (2) of [20]). �
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Proposition 5.9 Let (xd)d∈D be a net in a poset X and let I be a non-trivial ideal on D.

If (xd)d∈D
I−o−−−→ x, where x ∈ X, then (xd)d∈D

I−o2−−−→ x. Therefore, the I-order-convergence
implies the I-o2-convergence.

Proof. Is a direct consequence of the Definitions 2.1 and 5.5. �

The converse of Proposition 5.9 is not necessarily true as the following example verifies.

Example 5.10 Let (Z,�) be the poset represented by the following diagram:

0

1 2 3 4

−1 −2 −3 −4

Figure 1: The poset (Z,�)

Let I be an admissible ideal on N. For the net (an)n∈N, where an = n, n ∈ N, we have

(an)n∈N
I−o2−−−→ 0. Indeed, for the subsets M = {0} and N = {−n : n ∈ N} of Z we have:

(1) 0 =
∨
M =

∧
N .

(2) For every n ∈ N, {m ∈ N : am /∈ [0,−n]} ∈ I.
But the net (an)n∈N does not I-order-converge to 0, because the subset N of Z is not
filtered.

Remark 5.11 From Proposition 5.9 we can, easily, see that Propositions 2.7, 2.8, Corollary
2.10, and Propositions 4.2, 4.3 are satisfied, also, for the notion of I-o2-convergence.

Notation 5.12 For an arbitrary poset X, we denote by Co2
X the class consisting of triads

((xd)d∈D, x, I), where (xd)d∈D is a net in X, x ∈ X, and I is a non-trivial ideal on D such

that (xd)d∈D
I−o2−−−→ x. The corresponding topology τ(Co2

X ) on X (see Proposition 3.1) is
called the ideal-o2-topology on X.

Proposition 5.13 For any poset X, τ(Co2
X ) = T o2

X ⊆ T o
X .

Proof. The equality is similar to the proof of Proposition 3.4 taking into account Proposition
5.7. The inclusion it follows immediately from the definitions. �

Proposition 5.14 If ((xd)d∈D, x, I) ∈ Co2
X , then (xd)d∈D

I−t−−→ x with respect to τ(Co2
X ).

Proof. It is similar to the proof of Proposition 3.2. �

Remark 5.15 The Corollary 3.8 and the Propositions 3.9, 4.4, 4.5 are satisfied for the
ideal-o2-convergence, replacing the correspondent notions.
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Definition 5.16 The ideal-o2-convergence in a poset X is called topological, if there exists
a topology τ on X such that for every net (xd)d∈D in X, x ∈ X and for every non-trivial

ideal I of D, (xd)d∈D
I−o2−−−→ x if and only if (xd)d∈D

I−t−−→ x with respect to τ .

Proposition 5.17 The ideal-o2-convergence in a poset X is topological if and only if the
o2-convergence in X is topological.

Proof. Is similar to the proof of Proposition 3.12 taking into account Propositions 2.3 and
5.7. �

Proposition 5.18 Let X be a chain and x1, x2 ∈ X. Then, (x1, x2) ∈ τ(Co2
X ).

Proof. It suffices to prove that for every ((xd)d∈D, x, I) ∈ Co2
X , x ∈ (x1, x2) we have that

{d ∈ D : xd /∈ (x1, x2)} ∈ I. Let ((xd)d∈D, x, I) ∈ Co2
X . Then, (xd)d∈D

I−o2−−−→ x. Therefore,
there exist subsets M and N of X such that:

(1) x =
∨
M =

∧
N .

(2) For each m ∈ M and n ∈ N , {d ∈ D : xd /∈ [m,n]} ∈ I.
Let m0 ∈ M and n0 ∈ N such that x1 � m0 < x < n0 � x2. Then,

{d ∈ D : xd /∈ [m0, n0]} ∈ I.

Since

{d ∈ D : xd /∈ (x1, x2)} ⊆ {d ∈ D : xd /∈ [m0, n0]} ,

we have {d ∈ D : xd /∈ (x1, x2)} ∈ I. �

Proposition 5.19 Let X be a poset and x, y, z ∈ X. Then, the following statements hold:

(1) x �α y if and only if for every net (xd)d∈D in X and every non-trivial ideal I on D

such that (xd)d∈D
I−o2−−−→ y we have {d ∈ D : xd � x} ∈ I.

(2) z �α y if and only if for every net (xd)d∈D in X and every non-trivial ideal I on D

such that (xd)d∈D
I−o2−−−→ y we have {d ∈ D : xd � z} ∈ I.

Proof. (1) (⇐) Let (xd)d∈D be net in X such that (xd)d∈D
o2−→ y. Consider the ideal ID.

Then, (xd)d∈D
ID−o2−−−−→ y and therefore, {d ∈ D : xd � x} ∈ ID. By the definition of ID

there exists d0 ∈ D such that {d ∈ D : xd � x} ⊆ {d ∈ D : d � d0}. Therefore, xd � x for
every d � d0.

(⇒) Let (xd)d∈D be a net in X and I a non-trivial ideal on D such that (xd)d∈D
I−o2−−−→ y.

Then, by Proposition 5.7, (yλ)
ϕI
λ∈ΛI

o2−→ y. Thus, there exists λ0 ∈ ΛI such that yλ � x for
all λ � λ0. By Proposition 2.3 {d ∈ D : xd � x} ∈ I.

(2) Is similar to the proof of (1). �

Proposition 5.20 The ideal-o2-convergence in a poset X is topological if and only if X is
an O2-doubly continuous poset.

Proof. According to Theorem 4.11 in [10] and Proposition 5.17 we have the result. �

Corollary 5.21 The ideal-o2-convergence in every finite lattice, every chain or antichain
is topological.
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Proof. Is a direct consequence of Remark 3.3 in [10] and Proposition 5.20. �
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Abstract. Analysis of variance (ANOVA) is tailored for independent observations. Recently,
there has been considerable demand for the ANOVA of high-dimensional and dependent ob-
servations in many fields. Thus, it is important to analyze the differences among big data’s
averages of areas from all over the world, such as the financial and manufacturing industries.
However, the numerical accuracy of ANOVA for such observations has been inadequately de-
veloped. Thus, herein, we study the Edgeworth expansion of distribution of ANOVA tests for
high-dimensional and dependent observations. Specifically, we present the second-order ap-
proximation of classical test statistics proposed for independent observations. We also provide
numerical examples for simulated high-dimensional time-series data.

1 Introduction Analysis of variance (ANOVA) is a type of hypothesis testing method for the
null hypothesis of “no treatment effect”. It is generally used to test the null hypothesis that the
means of three or more populations of within-group means are all equal. Moreover, this method
shows whether the within-group means are equal.

ANOVA has a long history in statistics. Gauss founded it in the late 1800s, and Markoff devel-
oped it in the early 1900s. Many test statistics for ANOVA and multivariate analysis of variance
(MANOVA) have been proposed, primarily under independent disturbances of a MANOVA model.
The early applications can be found in [10] and [14]. In addition, [3] and [4] obtained general
theoretical results. They derived asymptotic expansions of the null and non-null distributions of
the likelihood ratio test-statistics. [2] discussed higher-order approximations (Edgeworth expan-
sions) and their validity. Furthermore, [8] developed higher-order asymptotic expansions of the null
and non-null distributions of the likelihood ratio test statistic, Lawley-Hotelling test statistic, and
Bartlett-Nanda-Pillai test statistic under high-dimensional and i.i.d. settings. Moreover, in a time-
series analysis, [13] discussed the Edgeworth expansions for various statistics. Recently, under a
high-dimensional time-series setting, [12] discussed the first-order asymptotics of Lawley-Hotelling
test statistic, likelihood ratio test statistic, and Bartlett-Nanda-Pillai test statistic.

In the current era of big data, an analysis of high-dimensional time-series data is required in
practical problems, such as those in economics, finance, and bioinformatics. Especially, the accuracy
of statistical decisions for high-dimensional time-series data has become increasingly important.
Many data analysts need accurate methods for the equivalence of the within-group means of big
data, because this analysis is very basic. MANOVA will be useful for these needs. However, from
the viewpoint of the numerical accuracy of approximations, higher-order asymptotics of ANOVA
test statistics for high-dimensional data are not adequately developed. In the present study, we
focus on Edgeworth expansions of distributions of Lawley-Hotelling test statistic, likelihood ratio
test statistic, and Bartlett-Nanda-Pillai test statistic.
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In this paper, we consider a one-way MANOVA model whose disturbance process is generated
by a high-dimensional stationary process.

Herein, let δij be Kronecker’s delta, Ip be the p-dimensional identity matrix, OP (an) be an
order of the probability that is, for a sequence of random variables {Xn} and {an}, 0 < an ∈ R,
{a−1

n Xn} is bounded in probability, and let OU
P (·) be a p×p matrix whose elements are probability

order OP (·) with respect to all elements uniformly. In addition, let | · | be the determinant of ·, ∥·∥
be the Euclidean norm of ·, and 1l be the indicator function.

2 Problems and Preliminaries Throughout this paper, we consider the MANOVA model
under which a q-tuple of p-dimensional time series Xi1, · · · ,Xini , i = 1, . . . , q satisfies

(1) Xit = µ+αi + ϵit, t = 1, · · · , ni, i = 1, · · · , q,

where µ ∈ Rp is the global mean of the model (1), the disturbances ϵi ≡ {ϵi1, · · · ϵini} are kth-order
stationary with mean 0, lag u autocovariance matrix Γ(u) = (Γjk(u))1≤j,k≤p, u ∈ Z, and ni is
the observation length of the ith group. Furthermore, the total observation length of all groups
n =

∑q
i=1 ni and {ϵi}, i = 1, · · · , q are mutually independent. We impose a further standard

assumption, which is called homoscedasticity (e.g., Ch. 8.9 of [1]). Now αi denotes the effect of the
ith treatment, which measures the deviation from µ satisfying

∑q
i=1 αi = 0. Because the treatment

effects sum to zero, we discuss the problem of testing:

(2) H : α1 = · · · = αq= 0 vs. A : αi ̸= 0 for some i.

The null hypothesis H implies that all effects are zero.

For our high-dimensional dependent observations, we use the Lawley-Hotelling test statistic T̃1,
likelihood ratio test statistic T̃2, and Bartlett-Nanda-Pillai test statistic T̃3:

T̃1 ≡ ntrŜH Ŝ−1
E ,

T̃2 ≡ −n log|ŜE |/|ŜE + ŜH |,
T̃3 ≡ ntrŜH(ŜE + ŜH)−1,

where

ŜH ≡
q∑

i=1

ni(X̂i· − X̂··)(X̂i· − X̂··)
′ and ŜE ≡

q∑
i=1

ni∑
t=1

(Xit − X̂i·)(Xit − X̂i·)
′ with

X̂i· =
1

ni

ni∑
t=1

Xit and X̂·· =
1

n

q∑
i=1

ni∑
t=1

Xit.

Now, we call ŜH and ŜE the between-group sums of squares and products (SSP) and the within-
group SSP, respectively. To derive the stochastic expansion of n−1ŜE in Section 4, we introduce

(3) Ŝi ≡ (ni − 1)−1
ni∑
t=1

(Xit − X̂i·)(Xit − X̂i·)
′,

(4) V =

q∑
i=1

√
ni

n
Vi, Vi =

√
ni(Ŝi − Ip).

H. Nagahata
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In addition, to derive the Edgeworth expansion of distributions of the three test statistics under H,
we impose the following assumptions:

Assumption 1

p3/2√
n

→ 0 as n, p → ∞,(5)

ni

n
→ ρi > 0 as n → ∞,(6)

where ρi is a positive constant which is independent of n and p for every i.

Here, the condition (6) implies the orders of ni and n are asymptotically the same.

Assumption 2 For the p-vectors ϵit = (ϵ
(1)
it , · · · , ϵ(p)it )′ given in (1), there exists an ℓ ≥ 0 with

∞∑
t1,...,tk−1=−∞

{1 + |tj |}ℓ|cia1,··· ,ak
(t1, · · · , tk−1)| < ∞,

for j = 1, · · · , k − 1 and any k-tuple a1, · · · , ak∈ {1, · · · , p} and i = 1, · · · , q, when k = 2, 3, · · · .
Here cia1,··· ,ak

(t1, · · · , tk−1) = cum{ϵ(a1)
it1

, · · · , ϵ(ak)
itk

}.

If ϵ
(am1 )
it , · · · , ϵ(amh

)

it for any h-tuplem1, · · · ,mh ∈ {1, · · · , k} are independent of ϵ
(amh+1

)

it , · · · , ϵ(amk
)

it

for the remaining (k − h)-tuple mh+1, · · · ,mk ∈ {1, · · · , k}, then ciam1 ,··· ,amk
(tm1 , · · · , tmk−1) = 0

([5], p. 19). Assumption 2 implies that if the time points of a group of ϵ
(a∗)
itl

’s are well separated

from the remaining time points of ϵ
(a∗)
its

’s, the values of cia1,··· ,ak
(t1, · · · , tk−1) become small (and

hence summable) (see [5, p.19]).This property is natural for stochastic processes with short memory.
We introduce a concrete example of the high-dimensional process ϵi’s which satisfy Assumption 2.
That is DCC-GARCH(p, q) model (9). [9] expressed a typical component of this model as

(7)
∞∑
l=0

∑
jl<jl−1<···<j1<t

bt−j1 · · · bjl−1−jlηj1 · · · ηjl

where ηj ’s are i.i.d. with Eη2j < ∞. By (7), we can easily check this model satisfies Assumption 2.

Assumption 3

(8) Γ(j) = 0 for all j ̸= 0.

Assumption 3 means that the disturbance process {ϵi} is an uncorrelated process. Now, note
that the condition (8) is not very severe because of the very practical nonlinear time-series model
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DCC-GARCH(q, r)

ϵit = Hit
1/2ηit, ηit

i.i.d.∼ (0, Ip) ,

Hit = DitRitDit, Dit = diag

[√
σ
(1)
it , · · · ,

√
σ
(p)
it

]
,

ϵit =




ϵ
(1)
it
...

ϵ
(p)
it


 , σ

(j)
it = cj + aj

r∑
l=1

{
ϵ
(j)
i,t−l

}2

+ bj

q∑
l=1

σ
(j)
i,t−l,(9)

Rit = (diag [Qit])
−1/2

Qit (diag [Qit])
−1/2

,

ϵ̃it =




ϵ̃
(1)
it
...

ϵ̃
(p)
it


 , ϵ̃

(j)
it =

ϵ
(j)
it√
σ
(j)
it

, Qit = (1− α− β)Q̃+ αϵ̃i,t−1ϵ̃
′
i,t−1 + βQi,t−1,

(see [7]) satisfies (8). Here, Q̃, the unconditional correlation matrix, is a constant positive semidef-
inite matrix, and Hit’s are measurable with respect to ηi,t−1,ηi,t−2, · · · .

3 Main Results In what follows, without loss of generality, we assume Γ(0) = Ip, and µ = 0

because the three test statistics T̃1, T̃2, and T̃3 are invariant under linear transformation, our
discussion for Xit remains valid for the case where we apply a linear transformation {Γ(0)}−1/2

to Xit. We derive the stochastic expansion of the standardized versions T1, T2, and T3 of the
three test statistics T̃1 (Lawley-Hotelling test statistic), T̃2 (likelihood ratio test statistic), and T̃3

(Bartlett-Nanda-Pillai test statistic), respectively:

T1 ≡ 1√
2(q − 1)

{
n
√
p
trŜH Ŝ−1

E −√
p(q − 1)

}
,(10)

T2 ≡ − 1√
2(q − 1)

{
n
√
p
log|ŜE |/|ŜE + ŜH |+√

p(q − 1)

}
,(11)

T3 ≡ 1√
2(q − 1)

{
n
√
p
trŜH(ŜE + ŜH)−1 −√

p(q − 1)

}
.(12)

This section provides their Edgeworth expansions. Lemmas and all proofs are provided in Section
4.

Theorem 1 Suppose Assumptions 1-3. Then, under the null hypothesis H, we have the following
Edgeworth expansions:

P (Ti < z) = Φ(z)− ϕ(z)
{
p−1/2 · c3

6
(z2 − 1) + p−1 · c4

24
(z3 − 3z)

}
(13)

+o
(
p−1

)
, (i = 1, 2, 3)

where

Φ(z) =

∫ z

−∞
ϕ(y)dy, ϕ(y) = (2π)−1/2exp

(
−y2

2

)
,

H. Nagahata
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and

c3 =

(
2

q − 1

)3/2
{
q − 3 + 3

q∑
i=1

(ni

n

)2

−
q∑

i=1

(ni

n

)3
}
,

c4 =

(
2

q − 1

)2
{
q − 4 + 6

q∑
i=1

(ni

n

)2

− 4

q∑
i=1

(ni

n

)3

−
q∑

i=1

(ni

n

)4
}
.

Remark 1 This asymptotic result is an extended version of [8] and [12]. Our setting in Section 2
shows we can apply this result to not only high-dimensional i.i.d. data (that was discussed in [8])
but also high-dimensional time series data. Also, an approximation of the three test statistics Ti,
i = 1, 2, 3 in Theorem 1 is more accurate than one of them in [12] because we investigated the higher
order asymptotic structure of Ti, i = 1, 2, 3 by using Edgeworth expansion method.

4 Asymptotic theory for main results In this section, we provide the lemmas and their
proofs. In what follows, we use the same linear transformation as in Section 3. First, the stochastic
expansion of n−1ŜE and ŜH is given.

Lemma 1 Suppose Assumptions 1-3. Then, under null hypothesis H, the following (14)-(16) hold
true;

1

n
ŜE = Ip +

1√
n
V − q

n
Ip +OU

P

(
n−3/2

)
,(14)

{
1

n
ŜE

}−1

= Ip −
1√
n
V +

1

n
(V 2 + qIp) +OU

P

(
n−3/2

)
,(15)

ŜH = OU
P (1) .(16)

Proof (Lemma 1) By (4), write n−1ŜE as

1

n
ŜE =

1

n

q∑
i=1

(ni − 1)Ŝi

=
1

n

q∑
i=1

(ni − 1)

(
Ip +

1
√
ni

Vi

)

= Ip +
1√
n
V − q

n
Ip −

1

n

q∑
i=1

1
√
ni

Vi.(17)

In what follows, for each i, we will show Vi = OU
P (1). By the null hypothesis H and µ = 0, we

rewrite Ŝi as follows:

Ŝi = ni(ni − 1)−1

(
1

ni

ni∑
t=1

XitX
′
it − X̂i·X̂

′
i·

)

= ni(ni − 1)−1 (A−B) (say),(18)

HIGHER ORDER APPROXIMATION OF THE DISTRIBUTION OF
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where A = 1/ni

∑ni

t=1 XitX
′
it and B = X̂i·X̂

′
i·. We observe

E{A} = Ip and

Cov{Ajk, Alm}

=
1

ni

ni−1∑
s=−ni+1

(
1− |s|

ni

)
{cjl(s)ckm(s) + cjm(s)ckl(s) + cijklm(0, s, s)}(19)

= O

(
1

ni

)
= O

(
1

n

)
uniformly in j, k, l,m by Assumption 2.

Hence, A = Ip +OU
P (1/

√
n) . Next, we observe

E(X̂i·) = αi and

Cov{X̂i·, X̂i·}

=

{
1

ni

ni−1∑
s=−ni+1

(
1− |s|

ni

)
cjk(s)

}
(20)

= OU

(
1

ni

)
.

Thus,

(21) B = OU
P

(
1

n

)
.

Therefore,

Ŝi = Ip +OU
P

(
1√
n

)
,

and

(22) Vi = OU
P (1) .

By using (17) and (22), we can get

(14)
1

n
ŜE = Ip +

1√
n
V − q

n
Ip +OU

P

(
n−3/2

)
,

and {
1

n
ŜE

}−1

=

{
Ip +

1√
n
V − q

n
Ip +OU

P

(
n−3/2

)}−1

= {Ip −Mn}−1
(say).

It is known that

(23) {Ip −Mn}−1
=

∞∑
k=0

Mk
n

H. Nagahata

HIGHER ORDER APPROXIMATION OF THE DISTRIBUTION OF 
ANOVA TESTS FOR HIGH-DIMENSIONAL TIME SERIESHIDEAKI NAGAHATA44



7

(see p. 169 of [11]). From Assumption 1, it follows that

M0
n = Ip,

Mn = − 1√
n
V +

q

n
Ip +OU

P

(
n−3/2

)
,

M2
n =

1

n
V 2 +OU

P

(
n−3/2

)
,

Mk
n = OP

(
n− k

2

)
H, k ≥ 3,

where H is a p× p-matrix and H = OU
P (1). Then, we obtain

(15)

{
1

n
ŜE

}−1

= Ip −
1√
n
V +

1

n
(V 2 + qIp) +OU

P

(
n−3/2

)
.

Next, we show ŜH = OU
P (1). To this end, we recall

(24) ŜH =

q∑
i=1

ni(X̂i· − X̂··)(X̂i· − X̂··)
′.

From (20), we observe that X̂i· = αi+OU
P

(
1/
√
ni

)
,
∑q

i=1 αi = 0, and similarly, X̂·· = OU
P (1/

√
n).

Thus, we have

(16) ŜH = OU
P (1) .

Note that (14), (15), and (16) are derived for the multivariate i.i.d. case, e.g., [8, p.164].

Lemma 2 Suppose Assumputions 1-3. Then, under null hypothesis H, it holds that

(25) T̃i = U (0) +
1√
n
U (1) +

1

n

(
U (2) + βiR

(2)
)
+OP

(
p3/2

n

)
, i = 1, 2, 3,

where

U (0) = trŜH ,

U (1) = −tr{ŜHV },
U (2) = tr{ŜH(V 2 + qIp)},
R(2) = tr{Ŝ2

H}, and

(β1, β2, β3) =

(
0,−1

2
,−1

)
.

Proof (Lemma 2) From Lemma 1, it follows that

T̃1 = tr

[
ŜH

{
1

n
ŜE

}−1
]

= tr

[
ŜH

{
Ip −

1√
n
V +

1

n
(V 2 + qIp) +OU

P

(
n−3/2

)}]

= trŜH − 1√
n
tr{ŜHV }+ 1

n
tr{ŜH(V 2 + qIp)}+ tr

{
ŜH ·OU

P

(
n−3/2

)}
.
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From (16),

(25) T̃1 = trŜH − 1√
n
tr{ŜHV }+ 1

n
tr{ŜH(V 2 + qIp)}+OP

(
p3/2

n

)
.

Next, to derive (25), first, note that for every matrix F and the matrix differential operator d

d log|F | = tr(F−1dF ),

dF−1 = −F−1(dF )F−1,

and (23) (e.g., [11]). Then, a modification of Proposition 6.1.5 of [6] and Lemma 1 shows that for

f := n log

����Ip +
1

n
ŜH

{
1

n
Ŝ−1
E

}���� ,

we have that

f =
∞∑

m=0

1

m!
dmf.

where dm’s are m-th differentials of f which are calculated by

d0f = tr{ŜH} − 1

2n
tr{Ŝ2

H}+OP

(
p · n−2

)
,

d1f = − 1√
n
tr{ŜHV }+ 1

n
tr{ŜH(V 2 + qIp)}+OP

(
p2 · n−3/2

)
,

dmf = OP

(
p · n−2

)
, m ≥ 2.

Thus, we obtain

(25) T̃2 = tr{ŜH} − 1√
n
tr{ŜHV }+ 1

n

[
tr{ŜH(V 2 + qIp)} −

1

2
tr{Ŝ2

H}
]
+OP

(
p2 · n−3/2

)
.

From Lemma 1 and (23), it follows that

T̃3 = tr

[
ŜH

{
1

n
ŜE +

1

n
ŜH

}−1
]

= tr

[
ŜH

{
Ip +

1√
n
V +

1

n
(ŜH − qIp) +OU

P

(
n−3/2

)}−1
]

= tr

[
ŜH

∞∑
k=0

{
− 1√

n
V − 1

n
(ŜH − qIp) +OU

P

(
n−3/2

)}k
]
.

From (16),

(25) T̃3 = trŜH − 1√
n
tr{ŜHV }+ 1

n
[tr{ŜH(V 2 + qIp)} − tr{Ŝ2

H}] +OP

(
p3/2

n

)

(for the multivariate i.i.d. case, e.g., [8, p.164]).
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Lemma 3 Suppose Assumptions 1-3. Then, under the null hypothesis H, it holds that

cum(J)(

K� �� �
1
√
p
trŜH , · · ·,

L� �� �
− 1
√
pn

tr{ŜHV }, · · ·,

M� �� �
1

√
pn

tr{ŜHV 2}, · · ·,

M0� �� �
q

√
pn

trŜH , · · ·,

N� �� �
βi√
pn

trŜ2
H , · · ·)

= O
(
p1−J/2+N · n−2L−4M−M0−N

)
(26)

= o
(
p1−J/2−6L−12M−3M0−2N

)
,(27)

where K,L,M,M0, N ≥ 0, J = K + L+M ++M0 +N ≥ 1 and

(β1, β2, β3) =

(
0,−1

2
,−1

)
.

Proof (Lemma 3) First, under µ = 0 and null hypothesis H, we prepare Sjk and Vjk as (j, k)th

components of ŜH and V , respectively:

Sjk =

q∑
i1=1

1

ni1

ni1∑
r=1

ni1∑
s=1

ϵ
(j)
i1r

ϵ
(k)
i1s

− 1

n

q∑
i2=1

q∑
i3=1

ni2∑
t=1

ni3∑
u=1

ϵ
(j)
i2t

ϵ
(k)
i3u

,(28)

Vjk =
1√
n

q∑
i4=1

ni4

ni4 − 1

ni4∑
r=1

ϵ
(j)
i4r

ϵ
(k)
i4r

− 1√
n

q∑
i4=1

1

ni4 − 1

ni4∑
s=1

ni4∑
t=1

ϵ
(j)
i4s

ϵ
(k)
i4t

−
√
nδjk.(29)

Here, we can write

cum(J)(

K� �� �
1
√
p
trŜH , · · ·,

L� �� �
− 1
√
pn

tr{ŜHV }, · · ·,

M� �� �
1

√
pn

tr{ŜHV 2}, · · ·,

M0� �� �
q

√
pn

trŜH , · · ·,

N� �� �
βi√
pn

trŜ2
H , · · ·)

= (−1)LqM0βN
i · p−J/2n−L/2−M−M0−N

× cum(J)(

K+M0� �� �
trŜH , · · ·,

L� �� �
tr{ŜHV }, · · ·,

M� �� �
tr{ŜHV 2}, · · ·,

N� �� �
trŜ2

H , · · ·).(30)

By (28) and (29), a typical term of the cumulant in (30) is

p∑
j1,1

· · ·
p∑

j1,K+M0

p∑
j2,1

· · ·
p∑

j2,L

p∑
j3,1

· · ·
p∑

j3,M

p∑
j4,1

p∑
k4,1

· · ·
p∑

j4,N

p∑
k4,N

ni∑
r1,1

ni∑
s1,1

· · ·
ni∑

r1,K+M0

ni∑
s1,K+M0

ni∑
r2,1

ni∑
s2,1

· · ·
ni∑
r2,L

ni∑
s2,L

ni∑
r3,1

ni∑
s3,1

· · ·
ni∑

r3,M

ni∑
s3,M

ni∑
r4,1

ni∑
s4,1

ni∑
t4,1

ni∑
u4,1

· · ·
ni∑

r4,N

ni∑
s4,N

ni∑
t4,N

ni∑
u4,N

O
(
n−K−5L/2−4M−M0−2N

)

× cum(J)[ϵ
(j1,1)
ir1,1

ϵ
(j1,1)
is1,1

, · · · , ϵ(j2,1)ir2,1
ϵ
(j2,1)
is2,1

, · · · , ϵ(j3,1)ir3,1
ϵ
(j3,1)
is3,1

, · · · ,

ϵ
(j4,1)
ir4,1

ϵ
(k4,1)
is4,1

ϵ
(k4,1)
it4,1

ϵ
(j4,1)
iu4,1

, · · · ].(31)
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By using the properties of the cumulant and Theorem 2.3.2 in [5, p.19-21], the cumulant appearing
in (31) has a typical main-order term

O
(
n−K−5L/2−4M−M0−2N

)
nK+L+M+M0+2N
i

×
p∑

j1,1

· · ·
p∑

j1,K+M0

p∑
j2,1

· · ·
p∑

j2,L

p∑
j3,1

· · ·
p∑

j3,M

p∑
j4,1

· · ·
p∑

j4,N

cj1,1j1,2(0) · · · cj1,K+M0 j2,1
(0)

× cj2,1j2,2(0) · · · cj2,Lj3,1(0) cj3,1j3,2(0) · · · cj3,M j4,1(0) cj4,1j4,2(0) · · · cj4,N j1,1(0)

×
p∑

k4,1

· · ·
p∑

k4,N

ck4,1k4,1(0) · · · ck4,Nk4,N (0)

= O
(
n−K−5L/2−4M−M0−2N

)
nK+L+M+M0+2N
i (By Assumption 3 and Γ(0) = Ip)

×
p∑
j

cjj(0) · · · cjj(0)×
p∑

k4,1

· · ·
p∑

k4,N

ck4,1k4,1(0) · · · ck4,Nk4,N
(0)

= O
(
p1+N · n−3L/2−3M

)
.(32)

Thus, from (32), we rewrite a typical term of (30) as

cum(J)(

K� �� �
1
√
p
trŜH , · · ·,

L� �� �
− 1
√
pn

tr{ŜHV }, · · ·,

M� �� �
1

√
pn

tr{ŜHV 2}, · · ·,

M0� �� �
q

√
pn

trŜH , · · ·,

N� �� �
βi√
pn

trŜ2
H , · · ·),

= p−J/2n−L/2−M−M0−NO
(
p1+N · n−3L/2−3M

)

= O
(
p1−J/2+N · n−2L−4M−M0−N

)

= o
(
p1−J/2−6L−12M−3M0−2N

)
. (By Assumption 1)

Hence, we showed (26) and (27).

Lemma 4 Suppose Assumputions 1-3. Define Wi for every i = 1, 2, 3 by

Wi =
1√

2(q − 1)

{
1
√
p
U (0) +

1
√
pn

U (1) +
1

√
pn

(
U (2) + βiR

(2)
)
−√

p(q − 1)

}
(33)

=
1√

2(q − 1)

{
1
√
p
trŜH − 1

√
pn

tr{ŜHV }+ 1
√
pn

tr{ŜHV 2}+ q
√
pn

trŜH

+
βi√
pn

tr{Ŝ2
H} − √

p(q − 1)

}
,(34)

(β1, β2, β3) =

(
0,−1

2
,−1

)
.
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Then, under the null hypothesis H, the following (35)-(39) hold that

cum(Wi) = 0 + o
(
p−1/2

)
,(35)

cum(Wi,Wi) = 1 + o
(
p−1/2

)
,(36)

cum(Wi,Wi,Wi) = p−1/2

(
2

q − 1

)3/2

(37)

×

{
q − 3 + 3

q∑
i=1

(ni

n

)2

−
q∑

i=1

(ni

n

)3
}

+ o
(
p−1/2

)
,

cum(4)(Wi, · · · ,Wi) = p−1

(
2

q − 1

)2

(38)

×

{
q − 4 + 6

q∑
i=1

(ni

n

)2

− 4

q∑
i=1

(ni

n

)3

−
q∑

i=1

(ni

n

)4
}

+ o
(
p−1

)
,

cum(J)(Wi, · · · ,Wi) = O
(
p1−J/2

)
, (J ≥ 5)(39)

where (39) contains K,L,M,M0, N(≥ 0) of the first, second, third, fourth, and fifth terms of (34),
respectively.

Proof (Lemma 4) Now, from Lemma 3, we obtain from (33)

cum(Wi) =
1√

2(q − 1)

{
1
√
p
{E[U (0)]− p(q − 1)}

}
+ o

(
p−1/2

)
.

Here, under Assumptions 2 and 3, from (28), we get

E[U (0)] =

p∑
j=1

E[Sjj ]

=

p∑
j=1

q∑
i1=1

ni1−1∑
s=−ni1+1

(
1− |s|

ni1

)
cjj(s)−

p∑
j=1

q∑
i2=1

ni2

n

ni2−1∑
r=−ni2+1

(
1− |r|

ni2

)
cjj(r)

= p(q − 1).(40)

Then, we can obtain

cum(Wi) = 0 + o
(
p−1/2

)
. (By Assumption 1)(41)

Similarly, the main-order terms of cum(Wi,Wi) and cum(Wi,Wi,Wi) can be computed as follows.
From (16) and (20),

cum(Wi,Wi) =
1

2p(q − 1)
cum(U (0), U (0)) + o

(
p−1/2

)
(By Lemma 3)

=
1

2p(q − 1)

p∑
j=1

p∑
k=1

cum(Sjj , Skk) + o
(
p−1/2

)

= 1 + o
(
p−1/2

)
.(42)

HIGHER ORDER APPROXIMATION OF THE DISTRIBUTION OF
ANOVA TESTS FOR HIGH-DIMENSIONAL TIME SERIES

HIGHER ORDER APPROXIMATION OF THE DISTRIBUTION OF 
ANOVA TESTS FOR HIGH-DIMENSIONAL TIME SERIES 49



12

In addition, we can obtain

cum(Wi,Wi,Wi) = {2p(q − 1)}−3/2cum(U (0), U (0), U (0)) + o
(
p−1/2

)
, (By Lemma 3)

and

cum(U (0), U (0), U (0))

=

p∑
j=1

p∑
k=1

p∑
l=1

cum(Sjj , Skk, Sll)

=

p∑
j=1

p∑
k=1

p∑
l=1

[

q∑
i1=1

q∑
i2=1

q∑
i3=1

1

ni1

1

ni2

1

ni3

ni1∑
r=1

ni1∑
s=1

ni2∑
t=1

ni2∑
u=1

ni3∑
v=1

ni3∑
w=1

cum{ϵ(j)i1r
ϵ
(j)
i2s

, ϵ
(k)
i2t

ϵ
(k)
i2u

, ϵ
(l)
i3v

ϵ
(l)
i3w

}

−3
1

n

q∑
i1=1

q∑
i2=1

q∑
i3=1

1

ni1

1

ni2

ni1∑
r=1

ni1∑
s=1

ni2∑
t=1

ni2∑
u=1

ni3∑
v=1

ni3∑
w=1

cum{ϵ(j)i1r
ϵ
(j)
i2s

, ϵ
(k)
i2t

ϵ
(k)
i2u

, ϵ
(l)
i3v

ϵ
(l)
i3w

}

+3
1

n2

q∑
i1=1

q∑
i2=1

q∑
i3=1

1

ni1

ni1∑
r=1

ni1∑
s=1

ni2∑
t=1

ni2∑
u=1

ni3∑
v=1

ni3∑
w=1

cum{ϵ(j)i1r
ϵ
(j)
i2s

, ϵ
(k)
i2t

ϵ
(k)
i2u

, ϵ
(l)
i3v

ϵ
(l)
i3w

}

− 1

n3

q∑
i1=1

q∑
i2=1

q∑
i3=1

ni1∑
r=1

ni1∑
s=1

ni2∑
t=1

ni2∑
u=1

ni3∑
v=1

ni3∑
w=1

cum{ϵ(j)i1r
ϵ
(j)
i2s

, ϵ
(k)
i2t

ϵ
(k)
i2u

, ϵ
(l)
i3v

ϵ
(l)
i3w

}

]

=

p∑
j=1

{
q∑

i1=1

8cjj(0)cjj(0)cjj(0)− 3

q∑
i1=1

ni1

n
· 8cjj(0)cjj(0)cjj(0)

+3

q∑
i1=1

(ni1

n

)2

8cjj(0)cjj(0)cjj(0)−
q∑

i1=1

(ni1

n

)3

· 8cjj(0)cjj(0)cjj(0)

}

+O
(
p · n−1

)

= 8p

{
q − 3 + 3

q∑
i=1

(ni

n

)2

−
q∑

i=1

(ni

n

)3
}

+O
(
p · n−1

)
.(43)

Therefore,

(44) cum(Wi,Wi,Wi) = p−1/2

(
2

q − 1

)3/2
{
q − 3 + 3

q∑
i=1

(ni

n

)2

−
q∑

i=1

(ni

n

)3
}

+ o
(
p−1/2

)
.

Similarly, we can compute

cum(4)(Wi, · · · ,Wi) = {2p(q − 1)}−1cum(4)(U (0), · · · , U (0)) + o
(
p−2

)

= {2p(q − 1)}−1

p∑
j1=1

p∑
j2=1

p∑
j3=1

p∑
j4=1

cum(Sj1j1 , · · · , Sj4j4) + o
(
p−1

)
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= p−1

(
2

q − 1

)2
{
q − 4 + 6

q∑
i=1

(ni

n

)2

− 4

q∑
i=1

(ni

n

)3

−
q∑

i=1

(ni

n

)4
}

+o
(
p−1

)
.(45)

Hence, (35), (36), (37), and (38) were shown (from (41), (42), (44), and (45)). Furthermore, we
discuss the Jth order for J ≥ 5 cumulant cum(J)(Wi, · · · ,Wi). From Lemma 3, we obtain

cum(J)(Wi, . . . ,Wi) =
∑

K,L,M,M0,N ;
K+L+M+M0+N=J

{2(q − 1)}−J/2

× cum(J)(

K� �� �
1
√
p
trŜH , · · ·,

L� �� �
− 1
√
pn

tr{ŜHV }, · · ·,

M� �� �
1

√
pn

tr{ŜHV 2}, · · ·,

M0� �� �
q

√
pn

trŜH , · · ·,

N� �� �
βi√
pn

trŜ2
H , · · ·)

=
∑

K,L,M,M0,N ;
K+L+M+M0+N=J

O
(
p1−J/2+N · n−2L−4M−M0−N

)

= max
K,L,M,M0,N

O
(
p1−J/2+N · n−2L−4M−M0−N

)

= O
(
p1−J/2

)
. (L = M = M0 = N = 0)

Then, (39) was shown.

Remark 2 [12] also evaluated the high-order cumulants of Ti, i = 1, 2, 3 but there is a big difference
between this paper and [12]. The order of the stochastic expansion in Lemma 2 is higher than that
in [12], so we needed to derive asymptotics of Wi as in Lemmas 3 and 4.

Proof (Theorem 1) The Edgeworth expansion for a multivariate time series is derived by [13,
p.168-170]. We extend it to the case of high-dimensional time series. First, by the Taylor expansion
and Lemma 4, we write the characteristic function of Wi (i = 1, 2, 3) in Lemma 4 as

E[exp{itWi}]

= exp

{
cum(Wi)(it) +

1

2
cum(Wi,Wi)(it)

2 +
1

6
cum(Wi,Wi,Wi)(it)

3

+
1

24
cum(4)(Wi, · · · ,Wi)(it)

4 + · · ·
}

= exp

(
− t2

2

)
×
{
1 + p−1/2 · 1

6
cum(Wi,Wi,Wi)(it)

3 + p−1 · 1

24
cum(4)(Wi, · · · ,Wi)(it)

4

}

+o
(
p−1/2

)
.

= exp

(
− t2

2

)
×
{
1 + p−1/2 · c3

6
(it)3 + p−1 · c4

24
(it)4

}
+ o

(
p−1/2

)
.(46)

Inverting (46) by the Fourier inverse transform, we have

P (Wi < z) = Φ(z)− ϕ(z)
{
p−1/2 · c3

6
(z2 − 1) + p−1 · c4

24
(z3 − 3z)

}
+ o

(
p−1/2

)
,
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where

Φ(z) =

∫ z

−∞
ϕ(y)dy, ϕ(y) = (2π)−1/2exp

(
−y2

2

)
.

Here, from Lemma 2, we observe that

E[exp{itTi}] = E[exp{itWi}] + o (1) .

This implies (13), so we complete the proof.

5 Simulation to verify the finite sample performance We simulate the Edgeworth expan-
sions of distributions of Ti, i = 1, 2, 3, which are given by Theorem 1. In this section, our purpose
is to show that their Edgeworth expansions P (Ti < z), i = 1, 2, 3 in (13) are more numerically
accurate than the first-order approximation, that is, Φ(z) in (13). Specifically, in the case of an un-
correlated disturbance that is assumed by Assumption 3, DCC-GARCH(1, 1) is a typical example
of that process (see [7]). Therefore, we introduce the following five simulation process steps.

1 Set α1 = α2 = α3 = 0 for the null hypothesis H.

2 Generate 20-dimensional {X1,1, . . . ,X1,5000}, {X2,1, . . . ,X2,5000}, {X3,1, . . . ,X3,5000}, with
DCC-GARCH(1, 1) disturbance.

3 Calculate the test statistics Ti, i = 1, 2, 3.

4 Repeat steps 2 and 3 1,000 times independently and obtain {T (1)
i , . . . , T

(1000)
i ; i = 1, 2, 3}.

5 Calculate F̂i,n(z), i = 1, 2, 3, which is the empirical distribution of {T (1)
i , . . . , T

(1000)
i ; i =

1, 2, 3}.

6 Write the plot of |F̂i,n(z)− Φ(z)| and |F̂i,n(z)− P (Ti < z)|, i = 1, 2, 3, which are plotted by
dotted and thick lines, respectively, in Figures 1, 3, and 5.

7 Write the plot of {|F̂i,n(z) − Φ(z)| − |F̂i,n(z) − P (Ti < z)|}, i = 1, 2, 3, by a dotted line, in
Figures 2, 4, and 6.

We set the 20-dimensional simulation from one-way MANOVA model (1) with a 20-dimensional
vector µ′ = (1, · · · , 1)′ and generate the disturbance process {ϵit} of observations {Xit} in (1) by
using DCC-GARCH(1, 1), whose innovation term is assumed to be Gaussian. The scenarios of
DCC-GARCH(q, r) (see (9)) in ϵit are

p = 20, i = 1, 2, 3, t = 1, · · · , 5000,
j = 1, · · · , 20,
q = r = 1,

aj = 0.2, bj = 0.7, cj = 0.002,

α = 0.1, β = 0.8,

Q̃kl = 0.7(|k−l|),

where Q̃kl is the (k, l)-element of Q̃. We set the observation length ni = 5000, i = 1, 2, 3, because
Table 1 of Section 5.1 in [12] demonstrates that Ti are stable for ni = 2500 or more uncorrelated
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observations (i = 1, 2, 3). The Mathematical code and the “ccgarch” package of R are used for this
algorithm. We compare the numerical accuracy of P (Ti < z) with Φ(z) based on F̂n(z) by using
|F̂i,n(z)−Φ(z)|, |F̂i,n(z)−P (Ti < z)| (see Figures 1, 3, and 5), and {|F̂i,n(z)−Φ(z)|−|F̂i,n(z)−P (Ti <
z)|}, i = 1, 2, 3 (see Figures 2, 4, and 6).

Figures 2, 4, and 6 indicate that the Edgeworth expansions P (Ti < z) of Ti work better than
the normal approximation Φ(z) from the perspective of numerical accuracy.

Figure 1: Plot of |F̂1,n(z)−Φ(z)| and |F̂1,n(z)−P (T1 < z)| by dotted and thick lines, respectively.
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Figure 2: Plot of {|F̂1,n(z)− Φ(z)| − |F̂1,n(z)− P (T1 < z)|} by a dotted line.

Figure 3: Plot of |F̂2,n(z) − Φ(z)| and |F̂2,n(z) − P (T2 < z)| by a dotted line and a thick one,
respectively.
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Figure 4: Plot of {|F̂2,n(z)− Φ(z)| − |F̂2,n(z)− P (T2 < z)|} by a dotted line.

Figure 5: Plot of |F̂3,n(z) − Φ(z)| and |F̂3,n(z) − P (T3 < z)| by a dotted line and a thick one,
respectively.
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Figure 6: Plot of {|F̂3,n(z)− Φ(z)| − |F̂3,n(z)− P (T3 < z)|} by a dotted line.
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Abstract. In this paper, by using the Cauchy-Schwarz inequality for matrices via
the matrix geometric mean due to J.I. Fujii, we show the following matrix version of a
mixed Schwarz inequality for any square matrices: Let A be an n-square matrix. For
any n-square matrices X, Y

|Y ∗AX| ≤ X∗|A|2αX � U∗Y ∗|A∗|2βY U

holds for all α, β ∈ [0, 1] with α + β = 1, where U is a unitary matrix in a polar
decomposition of Y ∗AX = U |Y ∗AX|. As applications, we show matrix Parseval’s
equation, Lin’s type extensions for a weighted version of a mixed Schwarz inequality,
and a weighted version of the Wielandt inequality for matrices.

1 Introduction Let Mm×n = Mm×n(C) be the space of m × n complex matrices and
Mn = Mn×n(C), and denote the matrix absolute value of any A ∈ Mm×n by |A| = (A∗A)1/2.
For A ∈ Mn, we write A ≥ 0 if A is positive semidefinite and A > 0 if A is positive definite;
that is, x∗Ax > 0 for all nonzero column vectors x ∈ Cn. For two Hermitian matrices A
and B of the same size, we write A ≥ B if A − B ≥ 0, and A > B if A − B > 0. For
A ∈ Mm×n, ker A and ran A mean the null space of A and the range of A, respectively.

The Cauchy-Schwarz inequality is one of the most useful and fundamental inequalities
in functional analysis: For any complex n-dimensional column vectors x and y,

(1.1) |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉

and the equality holds if and only if x and y are linearly dependent. As an extension of
(1.1), the following inequality holds: For any positive semidefinite matrix A in Mn,

|〈Ax, y〉|2 ≤ 〈Ax, x〉〈Ay, y〉.

Even if A is an arbitrary matrix in Mn, by virtue of the matrix absolute value of A, we
have a mixed Schwarz inequality

(1.2) |〈Ax, y〉|2 ≤ 〈|A|x, x〉〈|A∗|y, y〉,

also see [5]. In [3], Furuta showed the weighted version of (1.2) as follows: For any A ∈ Mn

(1.3) |〈Ax, y〉|2 ≤ 〈|A|2αx, x〉〈|A∗|2βy, y〉

holds for any x, y ∈ Cn and any α, β ∈ [0, 1] with α+β = 1, and the equality in (1.3) holds if
and only if |A|2αx and A∗y are linearly dependent if and only if Ax and |A∗|2βy are linearly
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dependent. In fact, Furuta has shown the operator version of (1.3). Moreover, Kittaneh
extended (1.3) for two real valued continuous functions f and g under some conditions, also
see [7]. We recall the matrix Cauchy-Schwarz inequality in terms of the matrix geometric
mean due to [1], also see [2]: For any X,Y ∈ Mn

(1.4) |Y ∗X| ≤ X∗X � U∗Y ∗Y U

holds, where U is a unitary matrix in a polar decomposition of Y ∗X = U |Y ∗X| and the
matrix geometric mean A � B is defined by

A � B = A1/2(A−1/2BA−1/2)1/2A1/2

for any positive definite matrices A and B, also see [8].
In this paper, by virtue of the matrix Cauchy-Schwarz inequality (1.4) due to J.I.Fujii

via the matrix geometric mean, we show the matrix version of a weighted mixed Schwarz
inequality (1.3). As applications, we show matrix Parseval’s equations, Lin’s type extensions
for a weighted version of a mixed Schwarz inequality, and a weighted version of the Wielandt
inequality for matrices.

2 Weighted mixed Schwarz inequality In this section, we present a weighted version
of the mixed Schwarz inequality (1.3) for matrices of the same size. As a preparation of our
main assertion, we state the following matrix Cauchy-Schwarz inequality due to J.I.Fujii [2]
via the matrix geometric mean:

Lemma 2.1 (Matrix Cauchy-Schwarz inequality). Let X and Y be matrices in Mn, and
U ∈ Mn a unitary matrix in a polar decomposition of Y ∗X = U |Y ∗X|. Then

(2.1) |Y ∗X| ≤ X∗X � U∗Y ∗Y U

and

(2.2) |X∗Y | ≤ UX∗XU∗ � Y ∗Y.

Under the assumption ker X ⊆ ker Y U (resp. ker Y ⊆ kerXU∗), the equality in (2.1) (resp.
the equality in (2.2) ) holds if and only if there exists W ∈ Mn such that Y U = XW (resp.
XU∗ = Y W ).

For any n-square matrix A, we denote the orthogonal projection on the column space of
A by PA. That is, PA is the range projection of A. By Lemma 2.1, we have the following
matrix version of the weighted Schwarz inequality (1.3) for matrices of the same size:

Theorem 2.2 (Weighted mixed Schwarz inequality). Let A, X and Y be matrices in Mn

and U ∈ Mn a unitary matrix in a polar decomposition of Y ∗AX = U |Y ∗AX|, and V ∈ Mn

a unitary matrix in a polar decomposition of A = V |A|. Then

(2.3) |Y ∗AX| ≤ X∗|A|2αX � U∗Y ∗|A∗|2βY U

and

(2.4) |X∗A∗Y | ≤ UX∗|A|2αXU∗ � Y ∗|A∗|2βY

hold for all α, β ∈ [0, 1] with α + β = 1. Under the assumption kerAX ⊆ kerA∗Y U (resp.
ker A∗Y ⊆ ker AXU∗), the equality in (2.3) (resp. the equality in (2.4)) holds if and only if
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there exists W ∈ Mn such that A∗Y U = |A|2αXW (resp. AXU∗ = |A∗|2βY W ) if and only
if |A∗|2βY U = AXW (resp. |A|2αXU∗ = A∗Y W ).

In particular, for the case of α = 0 in (2.3),

(2.5) |Y ∗AX| ≤ X∗P|A|X � U∗Y ∗|A∗|2Y U.

Under the assumption kerP|A|X ⊆ ker |A|V ∗Y U , the equality in (2.5) holds if and only if
there exists W ∈ Mn such that |A|V ∗Y U = P|A|XW .

For the case of α = 1 in (2.3),

(2.6) |Y ∗AX| ≤ X∗|A|2X � U∗Y ∗P|A∗|Y U.

Under the assumption ker |A|X ⊆ ker P|A∗|V
∗Y U , the equality in (2.6) holds if and only if

there exists W ∈ Mn such that P|A|V
∗Y U = |A|XW .

Proof. Firstly, we show (2.3). For the case of 0 < α < 1, replacing X (resp. Y ) by |A|αX
(resp. |A|βV ∗Y ) in (2.1) of Lemma 2.1, then we obtain

|Y ∗AX| = |(|A|βV ∗Y )∗|A|αX| ≤ X∗|A|2αX � U∗Y ∗V |A|2βV ∗Y U.

It follows from [3] and [4, Theorem 4 in 2.2.2] that

V |A|2βV ∗ = (V |A|V ∗)2β = (V |A||A|V ∗)β = (AA∗)β = |A∗|2β

and we can get the desired inequality (2.3):

|Y ∗AX| ≤ X∗|A|2αX � U∗Y ∗V |A|2βV ∗Y U = X∗|A|2αX � U∗Y ∗|A∗|2βY U.

For the case of α = 0, since |Y ∗AX| = |Y ∗V |A|P|A|X| = |(|A|V ∗Y )∗P|A|X|, by replacing
X (resp. Y ) by P|A|X (resp. |A|V ∗Y ) in (2.1) of Lemma 2.1, we obtain

|Y ∗AX| ≤ X∗P|A|X � U∗Y ∗V |A|2V ∗Y U = X∗P|A|X � U∗Y ∗|A∗|2Y U

and so we have (2.5). For the case of α = 1, we have (2.6) similarly.
For the equality conditions, since kerAX ⊆ kerA∗Y U is equivalent to ker |A|αX ⊆

ker |A|βV ∗Y U for α, β ∈ [0, 1] with α + β = 1, it follows from Lemma 2.1 that under the
assumption ker |A|αX ⊆ ker |A|βV ∗Y U , the equality in (2.3) holds if and only if there exists
W ∈ Mn such that |A|βV ∗Y U = |A|αXW .

By a way similar to (2.3), we can get the inequality (2.4) and the equality condition of
(2.4).

Remark 2.3. Similarly, we can consider the case of α = 0, 1 of (2.4) in Theorem 2.2.
For the case of α = 0, then

|X∗A∗Y | ≤ UX∗P|A|XU∗ � Y ∗|A∗|2Y.

Under the assumption ker |A∗|Y ⊆ kerP|A∗|V XU∗, the equality holds if and only if there
exists W ∈ Mn such that P|A∗|V XU∗ = |A∗|Y W .

For the case of α = 1, then

|X∗A∗Y | ≤ UX∗|A|2XU∗ � Y ∗P|A∗|Y.

Under the assumption ker P|A∗|Y ⊆ ker |A∗|V XU∗, the equality holds if and only if there
exists W ∈ Mn such that |A∗|V XU∗ = P|A∗|Y W .
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3 Weighted mixed Schwarz inequality for an arbitrary matrix In this section,
we present the weighted version of a mixed Schwarz inequality for matrices of any different
sizes. For this, we need the following lemmas, see [6, p.449].

Lemma 3.1 (Polar decomposition). Let A be an m × n matrix in Mm×n.

(i) If m > n, then A = U |A|, in which U ∈ Mm×n consists of orthonormal columns.

(ii) If m = n, then A = U |A|, in which U ∈ Mn is unitary.

(iii) If m < n, then A = |A∗|U , in which U ∈ Mn×m consists of orthonormal rows.

The following lemma is a matrix Cauchy-Schwarz inequality for an arbitrary matrix,
also see [2, Corollary 2.7].

Lemma 3.2. Let X be a matrix in Mk×m and Y in Mk×n.

(i) If m ≤ n, then

(3.1) |Y ∗X| ≤ X∗X � U∗Y ∗Y U,

in which U ∈ Mn×m consists of orthonormal columns and Y ∗X = U |Y ∗X|.

(ii) If m > n, then

(3.2) |X∗Y | ≤ U∗X∗XU � Y ∗Y,

in which U ∈ Mm×n consists of orthonormal columns and X∗Y = U |X∗Y |.

Under the assumption ker X ⊆ kerY U (resp. kerY ⊆ kerXU), the equality in (3.1) (resp.
the equality in (3.2)) holds if and only if there exists W ∈ Mm (resp. W ∈ Mn) such that
Y U = XW (resp. XU∗ = Y W ).

By using a polar decomposition for an arbitrary matrix, we have the following theorem,
whose proof is similar to that of Theorem 2.2.

Theorem 3.3. Let A be a matrix in Mp×m, X in Mm×n, Y in Mp×q. For all α, β ∈ [0, 1]
with α + β = 1, the following inequalities hold.

(i) If q ≥ n, then

(3.3) |Y ∗AX| ≤ X∗|A|2αX � U∗
1 Y ∗|A∗|2βY U1,

in which U1 ∈ Mq×n consists of orthonormal columns and Y ∗AX = U1|Y ∗AX|.

(ii) If q < n, then

(3.4) |X∗A∗Y | ≤ U∗
2 X∗|A|2αXU2 � Y ∗|A∗|2βY,

in which U2 ∈ Mn×q consists of orthonormal columns and X∗A∗Y = U2|X∗A∗Y |.

Under the assumption ker AX ⊆ kerA∗Y U1 (resp. ker A∗Y ⊆ ker AXU2 ), the equality in
(3.3) (resp. the equality in (3.4)) holds if and only if there exists W ∈ Mn (resp. W ∈ Mq)
such that |A∗|2βY U1 = AXW (resp. AXU2 = |A∗|2βY W ).
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Proof. We show (3.3) only. If p ≥ m, then by Lemma 3.1 we have A = V1|A|, in which
V1 ∈ Mp×m consists of orthonormal columns. In this case, we replace X (resp. Y ) by
|A|αX (resp. |A|βV ∗

1 Y ) in (3.1) of Lemma 3.2, and we have |A∗|2β = V1|A|2βV ∗
1 . If p < m,

then we have A = |A∗|V2, in which V2 ∈ Mm×p consists of orthonormal rows. In this case,
we replace X (resp. Y ) by |A∗|αV2X (resp. |A∗|βY ) in (3.1) of Lemma 3.2, and we have
|A|2α = V ∗

2 |A∗|2αV2. Hence we obtain (3.3) and the equality condition.

Inspired by Kittaneh’s result [7, Theorem 1], we show an extension of Theorem 3.3,
which is a generalization of Schwarz inequality for two nonnegative functions f and g.

Theorem 3.4. Let A be in Mp×m, X in Mm×n, Y in Mp×q and f, g real valued continuous
functions on [0,∞) which are nonnegative and satisfying the relation f(t)g(t) = t for all
t ∈ [0,∞). If q ≥ n and p ≥ m, then

(3.5) |Y ∗AX| ≤ X∗f(|A|)2X � U∗Y ∗g(|A∗|)2Y U,

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|.
Under the assumption ker f(|A|)X ⊆ ker g(|A|)V ∗Y U where V ∈ Mp×m consists of

orthonormal columns and A = V |A|, the equality in (3.5) holds if and only if there exists
W ∈ Mn such that g(|A|)V ∗Y U = f(|A|)XW .

Proof. Replacing X and Y by f(|A|)X and g(|A|)V ∗Y respectively in (3.1) of Lemma 3.2,
we obtain (3.5). In fact, we have |A∗| = V |A|V ∗ and V V ∗ ≤ I, and so V g(|A|)2V ∗ ≤
g(V |A|V ∗)2 = g(|A∗|)2. Therefore it follows that

|Y ∗AX| = |Y ∗V |A|X| = |Y ∗V g(|A|)f(|A|)X|
≤ X∗f(|A|)2X � U∗Y ∗V g(|A|)2V ∗Y U

≤ X∗f(|A|)2X � U∗Y ∗g(V |A|V ∗)2Y U

= X∗f(|A|)2X � U∗Y ∗g(|A∗|)2Y U

and the equality condition holds.

4 Lin’s type extensions We consider further extensions of the weighted version of the
mixed Schwarz inequality for matrices. Firstly, inspired by Lin [9], we show that some
orthogonal conditions imply an improvement of the Cauchy-Schwarz inequality for matrices
of any different sizes in Lemma 3.2. For this, we recall the result due to Lin [9], which is
the sharpen (1.1) as follows: If y, z ∈ Cn and y is orthogonal to z, then

(4.1) (|〈x, y〉|2 ≤ ) |〈x, y〉|2 +
〈y, y〉|〈x, z〉|2

〈z, z〉
≤ 〈x, x〉〈y, y〉

for all x ∈ Cn. We show the matrix version of (4.1). For any matrix A, we denote by
P⊥

A (= I − PA) the orthogonal projection on the orthogonal complement of the column
space of A.

Lemma 4.1. Let X be in Mk×m, Y in Mk×n, ZX in Mk×lX and ZY in Mk×lY . Suppose
that X∗ZX = 0, Y ∗ZY = 0 and Z∗

Y ZX = 0.

(i) If n ≥ m, then

(4.2) |Y ∗X| ≤ X∗P⊥
ZY

X � U∗Y ∗P⊥
ZX

Y U (≤ X∗X � U∗Y ∗Y U),

in which U ∈ Mn×m consists of orthonormal columns and Y ∗X = U |Y ∗X|.
Under the assumption kerP⊥

ZY
X ⊆ kerP⊥

ZX
Y U , the equality in (4.2) holds if and only

if there exists W ∈ Mm such that P⊥
ZX

Y U = P⊥
ZY

XW .
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(ii) If n < m, then

|X∗Y | ≤ U∗X∗P⊥
ZY

XU � Y ∗P⊥
ZX

Y (≤ U∗X∗XU � Y ∗Y ),

in which U ∈ Mm×n consists of orthonormal columns and X∗Y = U |X∗Y |.
Under the assumption kerP⊥

ZX
Y ⊆ kerP⊥

ZY
XU , the equality holds if and only if there

exists W ∈ Mn such that P⊥
ZY

XU = P⊥
ZX

Y W .

Proof. We only show (4.2). Put X1 = P⊥
ZY

X and Y1 = P⊥
ZX

Y . Since X∗ZX = Y ∗ZY =
Z∗

Y ZX = 0, we have PZX
X = Y ∗PZY

= PZX
PZY

= 0 and it follows that

Y ∗
1 X1 = Y ∗P⊥

ZX
P⊥

ZY
X = Y ∗(I − PZX )(I − PZY )X = Y ∗X.

Hence it follows from Lemma 3.2 that

|Y ∗X| = |Y ∗
1 X1| ≤ X∗

1X1 � U∗Y ∗
1 Y1U = X∗P⊥

ZY
X � U∗Y ∗P⊥

ZX
Y U,

and so we have the desired inequality (4.2) and the equality condition holds.

Nextly, we focus on Parseval’s equation: Let x, y be in Ck and {ei}k
i=1 a complete

orthonormal system in Ck. Then

(4.3) ‖x‖2 =
k∑

i=1

|〈x, ei〉|2

and

(4.4) 〈x, y〉 =
k∑

i=1

〈x, ei〉〈ei, y〉.

The next result is a matrix generalization of Parseval’s equation (4.3). It follows from a
way similar to Gram-Schmidt orthogonalization.

Lemma 4.2. Let X be in Mk×m, Y in Mk×n, Z(X, 1), . . . , Z(X,x) in Mk×lX and Z(Y, 1),
. . . , Z(Y, y) in Mk×lY . Then

(4.5) X∗X =
y∑

j=0

S∗
j PZ(Y,j+1)Sj

and

Y ∗Y =
x∑

i=0

T ∗
i PZ(X,i+1)Ti,

where S0 = X, Sj = P⊥
Z(Y,j)Sj−1 for j = 1, 2, . . . , y, T0 = Y , Ti = P⊥

Z(X,i)Ti−1 for i =
1, 2, . . . , x and Z(Y, y + 1) (resp. Z(X, x + 1)) satisfies ranSy ⊆ ranZ(Y, y + 1) ( resp.
ranTx ⊆ ranZ(X, x + 1) ).

Proof. We only show (4.5). The following equation holds by induction:

S∗
ySy = (S∗

y−1 − S∗
y−1PZ(Y,y))(Sy−1 − PZ(Y,y)Sy−1)

= S∗
y−1Sy−1 − S∗

y−1PZ(Y,y)Sy−1

...
= S∗

0S0 − S∗
0PZ(Y,1)S0 − · · · − S∗

y−1PZ(Y,y)Sy−1

= X∗X −
y−1∑
j=0

S∗
j PZ(Y,j+1)Sj .
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(ii) If n < m, then

|X∗Y | ≤ U∗X∗P⊥
ZY

XU � Y ∗P⊥
ZX

Y (≤ U∗X∗XU � Y ∗Y ),

in which U ∈ Mm×n consists of orthonormal columns and X∗Y = U |X∗Y |.
Under the assumption kerP⊥

ZX
Y ⊆ kerP⊥

ZY
XU , the equality holds if and only if there

exists W ∈ Mn such that P⊥
ZY

XU = P⊥
ZX

Y W .

Proof. We only show (4.2). Put X1 = P⊥
ZY

X and Y1 = P⊥
ZX

Y . Since X∗ZX = Y ∗ZY =
Z∗

Y ZX = 0, we have PZX
X = Y ∗PZY

= PZX
PZY

= 0 and it follows that

Y ∗
1 X1 = Y ∗P⊥

ZX
P⊥

ZY
X = Y ∗(I − PZX )(I − PZY )X = Y ∗X.

Hence it follows from Lemma 3.2 that

|Y ∗X| = |Y ∗
1 X1| ≤ X∗

1X1 � U∗Y ∗
1 Y1U = X∗P⊥

ZY
X � U∗Y ∗P⊥

ZX
Y U,

and so we have the desired inequality (4.2) and the equality condition holds.

Nextly, we focus on Parseval’s equation: Let x, y be in Ck and {ei}k
i=1 a complete

orthonormal system in Ck. Then

(4.3) ‖x‖2 =
k∑

i=1

|〈x, ei〉|2

and

(4.4) 〈x, y〉 =
k∑

i=1

〈x, ei〉〈ei, y〉.

The next result is a matrix generalization of Parseval’s equation (4.3). It follows from a
way similar to Gram-Schmidt orthogonalization.

Lemma 4.2. Let X be in Mk×m, Y in Mk×n, Z(X, 1), . . . , Z(X, x) in Mk×lX and Z(Y, 1),
. . . , Z(Y, y) in Mk×lY . Then

(4.5) X∗X =
y∑

j=0

S∗
j PZ(Y,j+1)Sj

and

Y ∗Y =
x∑

i=0

T ∗
i PZ(X,i+1)Ti,

where S0 = X, Sj = P⊥
Z(Y,j)Sj−1 for j = 1, 2, . . . , y, T0 = Y , Ti = P⊥

Z(X,i)Ti−1 for i =
1, 2, . . . , x and Z(Y, y + 1) (resp. Z(X,x + 1)) satisfies ran Sy ⊆ ran Z(Y, y + 1) ( resp.
ranTx ⊆ ranZ(X,x + 1) ).

Proof. We only show (4.5). The following equation holds by induction:

S∗
ySy = (S∗

y−1 − S∗
y−1PZ(Y,y))(Sy−1 − PZ(Y,y)Sy−1)

= S∗
y−1Sy−1 − S∗

y−1PZ(Y,y)Sy−1

...
= S∗

0S0 − S∗
0PZ(Y,1)S0 − · · · − S∗

y−1PZ(Y,y)Sy−1

= X∗X −
y−1∑
j=0

S∗
j PZ(Y,j+1)Sj .
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Since the assumption ran Sy ⊆ ran Z(Y, y + 1) implies PZ(Y,y+1)Sy = Sy, we have

S∗
yPZ(Y,y+1)Sy = X∗X −

y−1∑
j=0

S∗
j PZ(Y,j+1)Sj

and so we have the desired equation (4.5).

The following remak is a vector version of Lemma 4.2, see [9].
Remark 4.3. Let x, z1, . . . , zn ∈ Ck. Then we have a generalization of Parseval’s equation
(4.3):

〈x, x〉 =
n∑

i=0

|〈ui, zi+1〉|2

〈zi+1, zi+1〉
,

where u0 = x, ui = ui−1−
〈ui−1, zi〉
〈zi, zi〉

zi for i = 1, 2, . . . , n and zn+1 =
1

‖un‖
un. If {z1, . . . , zk}

is a complete orthonormal system in Ck, then we can just get Parseval’s equation (4.3).
Under orthogonal conditions, we have the following matrix version of Parseval’s equation

(4.4).

Theorem 4.4. Let X be in Mk×m, Y in Mk×n, Z1, . . . , Zp in Mk×l and Z∗
i Zj = 0 for all

i �= j, i, j ∈ {1, . . . , p}. Then

(4.6) Y ∗X =
p−1∑
q=0

Y ∗PZq+1X + T ∗
p Sp

where S0 = X, Sj = P⊥
Zj

Sj−1 for j = 1, . . . , p, T0 = Y and Ti = P⊥
Zi

Ti−1 for i = 1, . . . , p.

Proof. Since Z∗
i Zj = 0, we have PZiPZj = 0 for all i �= j, i, j ∈ {1, . . . , p} and it follows

that

PZj Sj−1 = PZj (I − PZj−1)Sj−2

= PZj Sj−2

= · · · = PZj X

and similarly we have
PZj Tj−1 = PZj Y.

Hence it follows that

T ∗
p Sp = T ∗

p−1(I − PZp)(I − PZp)Sp−1

= T ∗
p−1Sp−1 − T ∗

p−1PZpSp−1

...
= T ∗

0 S0 − T ∗
0 PZ1S0 − · · · − T ∗

p−1PZpSp−1

= Y ∗X −
p−1∑
q=0

T ∗
q PZq+1Sq

= Y ∗X −
p−1∑
q=0

Y ∗PZq+1X

and hence we have the desired equality (4.6).
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Remark 4.5. We can consider a vector version of Theorem 4.4. Let x, y, z1, . . . , zp be in Ck

and 〈zi, zj〉 = 0 for all i �= j, i, j ∈ {1, . . . , p}. Then we have a generalziation of Parseval’s
equation (4.4):

〈x, y〉 =
p−1∑
i=0

〈x, zi+1〉〈zi+1, y〉
〈zi+1, zi+1〉

+ 〈up, vp〉,

where u0 = x, uj = uj−1 −
〈uj−1, zj〉
〈zj , zj〉

zj for j = 1, . . . , p, v0 = y and vi = vi−1 −
〈vi−1, zi〉
〈zi, zi〉

zi

for i = 1, . . . , p.
In [9], Lin showed the following refinement of a weighted mixed Schwarz inequality (1.3):

Let A be a bounded linear operator on a complex Hilbert space H and 0 �= y ∈ H. If A∗y
is orthogonal to a vector z ∈ H with Az �= 0, then

(4.7) |〈Ax, y〉|2 +
〈|A∗|2βy, y〉|〈|A|2αx, z〉|2

〈|A|2αz, z〉
≤ 〈|A|2αx, x〉〈|A∗|2βy, y〉

for all x ∈ H and α, β ∈ [0, 1] with α + β = 1. The next theorem is a matrix version of
(4.7).

Theorem 4.6. Let X be in Mm×n, Y in Mp×q, ZX in Mm×lX , ZY in Mp×lY and A
in Mp×m. Suppose that X∗|A|2αZX = 0, Y ∗|A∗|2βZY = 0 and Z∗

Y AZX = 0 for given
α, β ∈ [0, 1] with α + β = 1. If q ≥ n and p ≥ m, then

|Y ∗AX| ≤ X∗|A|αP⊥
|A∗|ZY

|A|αX � U∗Y ∗V |A|βP⊥
|A|ZX

|A|βV ∗Y U

(≤ X∗|A|2αX � U∗Y ∗|A∗|2βY U),

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|, and V ∈
Mp×m consists of orthonormal columns and A = V |A|.

Under the assumption kerP⊥
|A∗|ZY

|A|αX ⊆ ker P⊥
|A|ZX

|A|βV ∗Y U , the equality holds if
and only if there exists W ∈ Mn such that P⊥

|A|ZX
|A|βV ∗Y U = P⊥

|A∗|ZY
|A|αXW .

Proof. Replacing X by |A|αX, Y by |A|βV ∗Y , ZX by |A|αZX and ZY by |A|βV ∗ZY in
(4.2) of Lemma 4.1, then we obtain the desired inequality and the equality condition.

The next result is a multivariate extension of Lemma 4.1, which is a refinement of matrix
Cauchy-Schwarz inequality (2.1) of Lemma 2.1:

Lemma 4.7. Let X be in Mk×m, Y in Mk×n, Z(X, 1), . . . , Z(X,x) in Mk×lX and Z(Y, 1),
. . . , Z(Y, y) in Mk×lY . Suppose that X∗Z(X, i) = 0, Y ∗Z(Y, j) = 0 and Z(Y, j)∗Z(X, i) = 0
for i = 1, 2, . . . , x, j = 1, 2, . . . , y If n ≥ m, then

|Y ∗X| ≤ (X∗X −
y−1∑
j=0

S∗
j PZ(Y,j+1)Sj) � U∗(Y ∗Y −

x−1∑
i=0

T ∗
i PZ(X,i+1)Ti)U

(≤ X∗X � U∗Y ∗Y U),

in which U ∈ Mn×m consists of orthonormal columns and Y ∗X = U |Y ∗X|, where S0 = X,
Sj = P⊥

Z(Y,j)Sj−1 for j = 1, 2, . . . , y, T0 = Y and Ti = P⊥
Z(X,i)Ti−1 for i = 1, 2, . . . , x.

Under the assumption ker(
y∏

b=1

P⊥
(Y,y−b+1))X ⊆ ker(

x∏
a=1

P⊥
(X,x−a+1))Y U , the equality holds

if and only if there exists W ∈ Mm such that (
x∏

a=1

P⊥
(X,x−a+1))Y U = (

y∏
b=1

P⊥
(Y,y−b+1))XW .
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Remark 4.5. We can consider a vector version of Theorem 4.4. Let x, y, z1, . . . , zp be in Ck

and 〈zi, zj〉 = 0 for all i �= j, i, j ∈ {1, . . . , p}. Then we have a generalziation of Parseval’s
equation (4.4):

〈x, y〉 =
p−1∑
i=0

〈x, zi+1〉〈zi+1, y〉
〈zi+1, zi+1〉

+ 〈up, vp〉,

where u0 = x, uj = uj−1 −
〈uj−1, zj〉
〈zj , zj〉

zj for j = 1, . . . , p, v0 = y and vi = vi−1 −
〈vi−1, zi〉
〈zi, zi〉

zi

for i = 1, . . . , p.
In [9], Lin showed the following refinement of a weighted mixed Schwarz inequality (1.3):

Let A be a bounded linear operator on a complex Hilbert space H and 0 �= y ∈ H. If A∗y
is orthogonal to a vector z ∈ H with Az �= 0, then

(4.7) |〈Ax, y〉|2 +
〈|A∗|2βy, y〉|〈|A|2αx, z〉|2

〈|A|2αz, z〉
≤ 〈|A|2αx, x〉〈|A∗|2βy, y〉

for all x ∈ H and α, β ∈ [0, 1] with α + β = 1. The next theorem is a matrix version of
(4.7).

Theorem 4.6. Let X be in Mm×n, Y in Mp×q, ZX in Mm×lX , ZY in Mp×lY and A
in Mp×m. Suppose that X∗|A|2αZX = 0, Y ∗|A∗|2βZY = 0 and Z∗

Y AZX = 0 for given
α, β ∈ [0, 1] with α + β = 1. If q ≥ n and p ≥ m, then

|Y ∗AX| ≤ X∗|A|αP⊥
|A∗|ZY

|A|αX � U∗Y ∗V |A|βP⊥
|A|ZX

|A|βV ∗Y U

(≤ X∗|A|2αX � U∗Y ∗|A∗|2βY U),

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|, and V ∈
Mp×m consists of orthonormal columns and A = V |A|.

Under the assumption kerP⊥
|A∗|ZY

|A|αX ⊆ ker P⊥
|A|ZX

|A|βV ∗Y U , the equality holds if
and only if there exists W ∈ Mn such that P⊥

|A|ZX
|A|βV ∗Y U = P⊥

|A∗|ZY
|A|αXW .

Proof. Replacing X by |A|αX, Y by |A|βV ∗Y , ZX by |A|αZX and ZY by |A|βV ∗ZY in
(4.2) of Lemma 4.1, then we obtain the desired inequality and the equality condition.

The next result is a multivariate extension of Lemma 4.1, which is a refinement of matrix
Cauchy-Schwarz inequality (2.1) of Lemma 2.1:

Lemma 4.7. Let X be in Mk×m, Y in Mk×n, Z(X, 1), . . . , Z(X, x) in Mk×lX and Z(Y, 1),
. . . , Z(Y, y) in Mk×lY . Suppose that X∗Z(X, i) = 0, Y ∗Z(Y, j) = 0 and Z(Y, j)∗Z(X, i) = 0
for i = 1, 2, . . . , x, j = 1, 2, . . . , y If n ≥ m, then

|Y ∗X| ≤ (X∗X −
y−1∑
j=0

S∗
j PZ(Y,j+1)Sj) � U∗(Y ∗Y −

x−1∑
i=0

T ∗
i PZ(X,i+1)Ti)U

(≤ X∗X � U∗Y ∗Y U),

in which U ∈ Mn×m consists of orthonormal columns and Y ∗X = U |Y ∗X|, where S0 = X,
Sj = P⊥

Z(Y,j)Sj−1 for j = 1, 2, . . . , y, T0 = Y and Ti = P⊥
Z(X,i)Ti−1 for i = 1, 2, . . . , x.

Under the assumption ker(
y∏

b=1

P⊥
(Y,y−b+1))X ⊆ ker(

x∏
a=1

P⊥
(X,x−a+1))Y U , the equality holds

if and only if there exists W ∈ Mm such that (
x∏

a=1

P⊥
(X,x−a+1))Y U = (

y∏
b=1

P⊥
(Y,y−b+1))XW .

MIXED SCHWARZ INEQUALITIES VIA THE MATRIX GEOMETRIC MEAN 9

Proof. By Lemma 4.2, the following equations hold:

S∗
ySy = X∗X −

y−1∑
j=0

S∗
j PZ(Y,j+1)Sj

and

T ∗
x Tx = Y ∗Y −

x−1∑
i=0

T ∗
i PZ(X,i+1)Ti.

Since X∗Z(X, i) = 0, Y ∗Z(Y, j) = 0 and Z(Y, j)∗Z(X, i) = 0, we have PZ(X,i)X =
Y ∗PZ(Y,j) = PZ(X,i)PZ(Y,j) = 0 for i = 1, 2, . . . , x and j = 1, 2, . . . , y. Then it follows
that

T ∗
x Sy = T ∗

x−1P
⊥
Z(X,x)P

⊥
Z(Y,y)Sy−1

= Y ∗


I +

x∑
s=1


 ∑

1≤c1<···<cs≤x

s∏
p=1

(−1)sPZ(X,cp)




+
y∑

t=1


 ∑

1≤d1<···<dt≤y

t∏
q=1

(−1)tPZ(Y,dt+1−q)




X

= Y ∗X.

So, we can get the desired inequality by Lemma 3.2:

|Y ∗X| = |T ∗
x Sy|

≤ S∗
ySy � U∗T ∗

x TxU

= (X∗X −
y−1∑
j=0

S∗
j PZ(Y,j+1)Sj) � U∗(Y ∗Y −

x−1∑
i=0

T ∗
i PZ(X,i+1)Ti)U.

Since Sy = (
y∏

b=1

P⊥
(Y,y−b+1))X and Tx = (

x∏
a=1

P⊥
(X,x−a+1))Y , we have the equality condition

by Lemma 3.2.

Moreover, Lin showed the following multivariate extension of (4.7): Under the hypothe-
ses of (4.7), if A∗y is orthogonal to a set of vectors {z1, . . . , zn} ⊆ H with Azi �= 0,
i = 1, . . . , n, then

(4.8) |〈Ax, y〉|2 + 〈|A∗|2βy, y〉
n∑

i=1

|〈|A|2αui−1, zi〉|2

〈|A|2αzi, zi〉
≤ 〈|A|2αx, x〉〈|A∗|2βy, y〉

for every x ∈ H, where ui = ui−1 −
〈|A|2αui−1, zi〉
〈|A|2αzi, zi〉

zi, i = 1, . . . , n with u0 = x. The next

result is a multivariate extension of Theorem 4.6 and a matrix version of (4.8).

Theorem 4.8. Let X be in Mm×n, Y in Mp×q, Z(X, 1), . . . , Z(X,x) in Mm×lX , Z(Y, 1),
. . . , Z(Y, y) in Mp×lY , and A in Mp×m. Suppose that X∗|A|2αZ(X, i) = 0, Y ∗|A∗|2βZ(Y, j)
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= 0, Z(Y, j)∗AZ(X, i) = 0 for i = 1, 2, . . . , x, j = 1, 2, . . . , y for given α, β ∈ [0, 1] with
α + β = 1. If q ≥ n and p ≥ m, then

|Y ∗AX| ≤ (X∗|A|2αX −
y−1∑
j=1

S∗
j P|A∗|Z(Y,j+1)Sj) � U∗(Y ∗|A∗|2βY −

x−1∑
i=1

T ∗
i P|A|Z(X,i+1)Ti)U

(≤ X∗|A|2αX � U∗Y ∗|A∗|2βY U),

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|, and V ∈
Mp×m consists of orthonormal columns and A = V |A|, where S0 = |A|αX, Sj = P⊥

|A∗|Z(Y,j)Sj−1

for j = 1, 2, . . . , y, T0 = |A|βV Y and Ti = P⊥
|A|Z(X,i)Ti−1 for i = 1, 2, . . . , x.

Under the assumption ker(
y∏

b=1

P⊥
|A∗|Z(Y,y−b+1))|A|αX ⊆ ker(

x∏
a=1

P⊥
|A|Z(X,x−a+1))|A|βV ∗Y U ,

the equality holds if and only if there exists W ∈ Mn such that (
x∏

a=1

P⊥
|A|Z(X,x−a+1))|A|βV ∗Y U

= (
y∏

b=1

P⊥
|A∗|Z(Y,y−b+1))|A|αXW , where V ∈ Mp×m consists of orthonormal columns and

A = V |A|.

Proof. Replacing X by |A|αX, Y by |A|βV ∗Y , Z(X, i) by |A|αZ(X, i) and Z(Y, j) by
|A|βV ∗Z(Y, j) in Lemma 4.7 for all i = 1, 2, . . . , x and j = 1, 2, . . . , y, then we obtain the
desired inequality and the equality condition.

We note that the vector version of Theorem 4.8 is a matrix version of Theorem 4 in
[9]: Let x be in Cm, y in Cp, z(x, 1), . . . , z(x, a) in Cm, z(y, 1), . . . , z(y, b) in Cp, and A in
Mp×m. Suppose that 〈|A|2αz(x, i), x〉 = 0, 〈|A∗|2βz(y, j), y〉 = 0, 〈Az(x, i), z(y, j)〉 = 0 for
i = 1, 2, . . . , a, j = 1, 2, . . . , b for given α, β ∈ [0, 1] with α + β = 1. If p ≥ m, then

|〈Ax, y〉|2 ≤


〈|A|2αx, x〉 −

b−1∑
j=1

|〈|A∗|z(y, j + 1), sj〉|2

〈|A∗|2z(y, j + 1), z(y, j + 1)〉




×

(
〈|A∗|2βy, y〉 −

a−1∑
i=1

|〈|A|z(x, i + 1), ti〉|2

〈|A|2z(x, i + 1), z(x, i + 1)〉

)
,

in which V ∈ Mp×m consists of orthonormal columns and A = V |A|, s0 = |A|αx, sj =
P⊥
|A∗|z(y,j)sj−1 for j = 1, 2, . . . , b, t0 = |A|βV y and ti = P⊥

|A|z(x,i)ti−1 for i = 1, 2, . . . , a.

5 Weighted Wielandt inequality We consider a different way of a refinement of a
weighted Schwarz inequality in §4. We show a weighted version of matrix Wielandt in-
equality. We proved a matrix version of Wielandt inequality, see [2]: Let A be a positive
semidefinite matrix in Mk, with rank(A) = r, λ1 ≥ · · · ≥ λr > 0 eigenvalues of A, and X,Y
in Mk×n such that Y ∗PAX = 0 where PA is the orthogonal projection on the column space
of A. Then

(5.1) |Y ∗AX| ≤
(

λ1 − λr

λ1 + λr

)
(X∗AX � U∗Y ∗AY U),

in which U ∈ Mn is a unitary matrix such that Y ∗AX = U |Y ∗AX|. The following theorem
is a weighted version of (5.1).
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= 0, Z(Y, j)∗AZ(X, i) = 0 for i = 1, 2, . . . , x, j = 1, 2, . . . , y for given α, β ∈ [0, 1] with
α + β = 1. If q ≥ n and p ≥ m, then

|Y ∗AX| ≤ (X∗|A|2αX −
y−1∑
j=1

S∗
j P|A∗|Z(Y,j+1)Sj) � U∗(Y ∗|A∗|2βY −

x−1∑
i=1

T ∗
i P|A|Z(X,i+1)Ti)U

(≤ X∗|A|2αX � U∗Y ∗|A∗|2βY U),

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|, and V ∈
Mp×m consists of orthonormal columns and A = V |A|, where S0 = |A|αX, Sj = P⊥

|A∗|Z(Y,j)Sj−1

for j = 1, 2, . . . , y, T0 = |A|βV Y and Ti = P⊥
|A|Z(X,i)Ti−1 for i = 1, 2, . . . , x.

Under the assumption ker(
y∏

b=1

P⊥
|A∗|Z(Y,y−b+1))|A|αX ⊆ ker(

x∏
a=1

P⊥
|A|Z(X,x−a+1))|A|βV ∗Y U ,

the equality holds if and only if there exists W ∈ Mn such that (
x∏

a=1

P⊥
|A|Z(X,x−a+1))|A|βV ∗Y U

= (
y∏

b=1

P⊥
|A∗|Z(Y,y−b+1))|A|αXW , where V ∈ Mp×m consists of orthonormal columns and

A = V |A|.

Proof. Replacing X by |A|αX, Y by |A|βV ∗Y , Z(X, i) by |A|αZ(X, i) and Z(Y, j) by
|A|βV ∗Z(Y, j) in Lemma 4.7 for all i = 1, 2, . . . , x and j = 1, 2, . . . , y, then we obtain the
desired inequality and the equality condition.

We note that the vector version of Theorem 4.8 is a matrix version of Theorem 4 in
[9]: Let x be in Cm, y in Cp, z(x, 1), . . . , z(x, a) in Cm, z(y, 1), . . . , z(y, b) in Cp, and A in
Mp×m. Suppose that 〈|A|2αz(x, i), x〉 = 0, 〈|A∗|2βz(y, j), y〉 = 0, 〈Az(x, i), z(y, j)〉 = 0 for
i = 1, 2, . . . , a, j = 1, 2, . . . , b for given α, β ∈ [0, 1] with α + β = 1. If p ≥ m, then

|〈Ax, y〉|2 ≤


〈|A|2αx, x〉 −

b−1∑
j=1

|〈|A∗|z(y, j + 1), sj〉|2

〈|A∗|2z(y, j + 1), z(y, j + 1)〉




×

(
〈|A∗|2βy, y〉 −

a−1∑
i=1

|〈|A|z(x, i + 1), ti〉|2

〈|A|2z(x, i + 1), z(x, i + 1)〉

)
,

in which V ∈ Mp×m consists of orthonormal columns and A = V |A|, s0 = |A|αx, sj =
P⊥
|A∗|z(y,j)sj−1 for j = 1, 2, . . . , b, t0 = |A|βV y and ti = P⊥

|A|z(x,i)ti−1 for i = 1, 2, . . . , a.

5 Weighted Wielandt inequality We consider a different way of a refinement of a
weighted Schwarz inequality in §4. We show a weighted version of matrix Wielandt in-
equality. We proved a matrix version of Wielandt inequality, see [2]: Let A be a positive
semidefinite matrix in Mk, with rank(A) = r, λ1 ≥ · · · ≥ λr > 0 eigenvalues of A, and X,Y
in Mk×n such that Y ∗PAX = 0 where PA is the orthogonal projection on the column space
of A. Then

(5.1) |Y ∗AX| ≤
(

λ1 − λr

λ1 + λr

)
(X∗AX � U∗Y ∗AY U),

in which U ∈ Mn is a unitary matrix such that Y ∗AX = U |Y ∗AX|. The following theorem
is a weighted version of (5.1).
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Theorem 5.1. Let A be a matrix in Mp×m, with rank(A)=r, σ1 ≥ · · · ≥ σr > 0 singular
values of A, X ∈ Mm×n and Y ∈ Mp×q. For all α, β ∈ [0, 1] with α + β = 1, if p ≥ m,
q ≥ n and Y ∗V P|A|X = 0, then

|Y ∗AX| ≤
(

σ1 − σr

σ1 + σr

)
(X∗|A|2αX � U∗Y ∗|A∗|2βY U),

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|, and V ∈
Mp×m consists of orthonormal columns and A = V |A|.

Proof. Let c =
2σ1σr

σ1 + σr
. Since σ1P|A| − |A| and |A| − σrP|A| are positive semidefinite and

they commute, it follows that (σ1P|A| − |A|)(|A| − σrP|A|) ≥ 0 and hence

(5.2) (P|A| − c|A|†)2 ≤

(
σ1 − σr

σ1 + σr

)2

I,

where |A|† means the Moore-Penrose generalized inverse of |A|. So, we can get the desired
inequality:

|Y ∗AX| = |Y ∗AX − cY ∗V P|A|X| = |Y ∗V |A|β(P|A| − c|A|†)|A|αX|
= |(P|A| − c|A|†)|A|βV ∗Y )∗(|A|αX)|
≤ X∗|A|2αX � U∗Y ∗V |A|β(P|A| − c|A|†)2|A|βV ∗Y U by Lemma 3.2

≤ X∗|A|2αX � U∗Y ∗V |A|β
(

σ1 − σr

σ1 + σr

)2

|A|βV ∗Y U by (5.2)

=
(

σ1 − σr

σ1 + σr

)
(X∗|A|2αX � U∗Y ∗|A∗|2βY U).

Lastly, we consider a Wielandt version of Theorem 3.4 by a way similar to the proof of
Theorem 5.1.

Theorem 5.2. Let A be a matrix in Mp×m, with rank(A)=r, σ1 ≥ · · · ≥ σr > 0 singular
values of A, X ∈ Mm×n, Y ∈ Mp×q and f, g complex functions on [0,∞) which are con-
tinuous and satisfying the relation f(t)g(t) = t for all t ∈ [0,∞) For all α, β ∈ [0, 1] with
α + β = 1, if p ≥ m, q ≥ n and Y ∗V P|A|X = 0, then

|Y ∗AX| ≤
(

σ1 − σr

σ1 + σr

)
(X∗|f(|A|)|2X � U∗Y ∗|g(|A∗|)|2Y U),

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|, and V ∈
Mp×m consists of orthonormal columns and A = V |A|.
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Scientiae Mathematicae Japonicae 1

ON A DUALITY BETWEEN THE OPERATORS AND THE SPACE OF
SEQUENCES

Abstract. On a space of sequences, the multiplication operator and the Hankel
operator are defined and investigated. On the other hand, the concept of a space of
sequences is basic, but its properties are not well known nevertheless. In this paper,
we prove some properties of the space of sequences, and by means of this, we show
certain modification of H1-BMOA duality and L1-L∞ duality (Theorem 5.2) from the
viewpoint of theory of these operators.

1 Introduction. The multiplication operator is naturally defined on the Lebesgue space
Lp as well as on the space �p. The Hankel operator is also defined on the Hardy space Hp

as well as on the space �p
+. These operators are well investigated, but properties of a space

of sequences are not well known nevertheless. In this paper, we shall prove some properties
of the space obtained from these operators (Section 3), of the space of sequences (Section
4), and show certain modification of H1-BMOA duality and L1-L∞ duality (Theorem 5.2)
from the viewpoint of theory of these operators.

Let T be the unit circle in the complex plane and Lp be the Lp space of functions on T
with respect to Lebesgue measure. We denote by Hp the Hardy space defined by

Hp := {f ∈ Lp | (f)n = 0 for n < 0} ,

where (f)n means the n-th Fourier coefficient of f . We also denote by Hp
0 the space of

functions in Hp whose zeroth Fourier coefficient is zero, and by BMOA the set of all
analytic functions of bounded mean oscillation on T .

Let 1 < p < ∞. It is known that for a in L1, a function a is in L∞ if and only if the
multiplication operator M(a) is defined on Lp, and L∞ is isomorphic to (L1)∗. It is also
known that for a in H2, a function a is in BMOA if the Hankel operator H(χ1a) is defined
on Hp, where χj(θ) := e

√
−1jθ (0 ≤ θ ≤ 2π), and BMOA is isomorphic to (H1)∗ (cf. [1],

[5]).
Now we consider the discrete versions of these topics. Let �p be the Banach space of

sequences of complex numbers defined by

�p :=

{
ϕ = {ϕn}n∈Z | ‖ϕ‖�p := (

∑
n∈Z

|ϕn|p)
1
p < ∞

}
,

and �p
+ be the space defined by

�p
+ := {ϕ ∈ �p | ϕn = 0 for n < 0} .

Let 1 ≤ p < ∞. For a ∈ L1, a function a is in a subspace Mp ⊂ L1 given in Section 2
if and only if the multiplication operator M(a) is defined on �p. For a ∈ H2, a function a
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is in a subspace Mp
+ ∩ H2

0 given in Section 3 if and only if the Hankel operator H(χ1a) is
defined on �p

+.
Therefore it is a natural question whether there are normed spaces V p and V p

+ such that
Mp and Mp

+∩H2
0 are isomorphic to (V p)∗ and (V p

+)∗, respectively. We will show such spaces
V p and V p

+ exist by construction. These are certain modification of H1-BMOA duality and
L1-L∞ duality.

Acknowledgements. We are grateful to Professor Hiroshige Shiga for his helpful advices.

2 Preliminaries. In this section, we shall give some basic facts on the multiplication
operators and the Hankel operators.

We denote by B(X) the set of all bounded linear operators on a Banach space X to
itself, and by (a)n the n-th Fourier coefficient of a. Let ej := {δj,n}n∈Z (δ : Kronecker’s
delta).

For 1 < p < ∞ and a ∈ L∞, the multiplication operator M(a) on Lp is defined by

M(a) : Lp −→ Lp : f �−→ a · f,

and it is easy to see that ‖a‖L∞ = ‖M(a)‖B(Lp). Note that the j-th Fourier coefficient
(a · f)j of a · f is equal to

∑
k∈Z(a)j−k(f)k for all j ∈ Z.

For a function a in L1 and a sequence ϕ, we put

a ∗ ϕ :=

{∑
k∈Z

(a)j−kϕk

}

j∈Z

,

whenever the sequence a ∗ ϕ can be defined. For 1 ≤ p < ∞, a vector space Mp is defined
by

Mp :=
{
a ∈ L1 | ‖a‖Mp := sup {‖a ∗ ϕ‖�p | ‖ϕ‖�p ≤ 1} < ∞

}
.

It is obvious that ‖ · ‖Mp is a norm on Mp. For a ∈ Mp, the multiplication operator M(a)
on �p is defined by

M(a) : �p −→ �p : ϕ �−→ a ∗ ϕ,

and ‖a‖Mp = ‖M(a)‖B(�p).
The following properties of Mp are basic to our argument (cf. [1]).

Proposition 2.1. 1. For 1 < p < ∞ and 1
p + 1

q = 1, ‖ · ‖Mp = ‖ · ‖Mq and Mp = Mq.

2. ‖ · ‖M2 = ‖ · ‖L∞ and M2 = L∞.

3. M1 =
{
a ∈ L1 |

∑
n∈Z |(a)n| < ∞

}
and ‖a‖M1 =

∑
n∈Z |(a)n|.

4. For 1 ≤ p ≤ r ≤ 2, ‖ · ‖M2 ≤ ‖ · ‖Mr ≤ ‖ · ‖Mp ≤ ‖ · ‖M1 and M1 ⊂ Mp ⊂ Mr ⊂ M2.

5. For 1 ≤ p < ∞, Mp is a Banach algebra with respect to ‖ · ‖Mp .

Now we define the Hankel operators. Let 1 < p < ∞. The flip operator J on Lp is
defined by

J : Lp −→ Lp :
∑
n∈Z

(f)nχn �−→
∑
n∈Z

(f)nχ−n−1,

ON A DUALITY BETWEEN THE OPERATORS AND THE SPACE OF 
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the Riesz projection P is defined by

P : Lp −→ Hp :
∑
n∈Z

(f)nχn �−→
∑
n≥0

(f)nχn,

and it is well known that

cp := sup {‖P (f)‖p | ‖f‖p ≤ 1} < ∞

by the M. Riesz theorem (cf. [2]). Let I be the identity operator on Lp, and Q := I − P .
For a ∈ L∞, the Hankel operator H(a) on Hp is defined by

H(a) : Hp −→ Hp : f �−→ PM(a)QJf.

The discrete versions of these operators are similarly defined. Let 1 ≤ p < ∞. The flip
operator J on �p is given by

J : �p −→ �p : {ϕn}n∈Z �−→ {ϕ−n−1}n∈Z ,

the Riesz projection P is

P : �p −→ �p
+ : {ϕn}n∈Z �−→ {ϕn}n≥0 ,

and Q := I − P (I : the identity operator on �p). For a ∈ Mp, the Hankel operator H(a)
on �p

+ is defined by

H(a) : �p
+ −→ �p

+ : ϕ �−→ PM(a)QJϕ.

3 New classes Mp
+ and Np

+. Note that H(a) {ϕj}j≥0 is equal to
{∑

k≥0(a)j+k+1ϕk

}
j≥0

.

We consider a new class Mp
+ to extend the domain of the Hankel operator. For a function

a in L1 and a sequence ϕ, we define a sequence a � ϕ by

a � ϕ :=




∑
k≥0

(a)j+k+1ϕk




j≥0

,

whenever the sequence a � ϕ can be defined.

Definition 3.1. For 1 ≤ p < ∞, we define a vector space Mp
+ as

Mp
+ :=

{
a ∈ L1 | ‖a‖Mp

+
:= sup

{
‖a � ϕ‖�p

+
| ‖ϕ‖�p

+
≤ 1

}
< ∞

}
.

For a ∈ Mp
+, we define the Hankel operator H(a) on �p

+ as

H(a) : �p
+ −→ �p

+ : ϕ �−→ a � ϕ,

and ‖a‖Mp
+

= ‖H(a)‖B(�p
+).

It is easy to see that ‖ · ‖Mp
+

≤ ‖ · ‖Mp and Mp ⊂ Mp
+. Indeed, let �p

− be the space
defined by

�p
− := {ϕ ∈ �p | ϕn = 0 for n ≥ 0} ,
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and

‖a‖Mp
+

= sup





∑

j≥0

|
∑

k≤−1

(a)j−kϕk|p



1
p

| ‖ϕ‖�p
−
≤ 1




= sup
{
‖P (a ∗ ϕ)‖�p

+
| ‖ϕ‖�p

−
≤ 1

}

≤ sup
{
‖a ∗ ϕ‖�p | ‖ϕ‖�p

−
≤ 1

}

≤ sup {‖a ∗ ϕ‖�p | ‖ϕ‖�p ≤ 1}
= ‖a‖Mp .

Hence, we extended the domain of the Hankel operator to Mp
+.

Here, ‖ · ‖Mp
+

is actually a norm on Mp
+ ∩H2

0 . In fact, it is a semi-norm and we see that


∑

n≥1

|(a)n|p



1
p

=


∑

n≥0

|(a)n+1|p



1
p

≤ sup





∑

j≥0

|
∑
k≥0

(a)j+k+1ϕk|p



1
p

| ‖ϕ‖�p
+
≤ 1




= ‖a‖Mp
+

for a ∈ Mp
+. Thus ‖ · ‖Mp

+
is a norm on Mp

+ ∩ H2
0 . The real inner product 〈·, ·〉R is defined

by

〈{an}n∈Z , {bn}n∈Z〉R :=
∑
n∈Z

anbn.

The space Mp
+ has the following properties like Mp.

Proposition 3.2. 1. M1
+ ∩ H2

0 = M1 ∩ H2
0 .

2. For 1 < p < ∞ and 1
p + 1

q = 1, ‖ · ‖Mp
+

= ‖ · ‖Mq
+

and Mp
+ = Mq

+.

3. For 1 < p ≤ r ≤ 2, ‖ · ‖M2
+
≤ ‖ · ‖Mr

+
≤ ‖ · ‖Mp

+
and Mp

+ ⊂ Mr
+ ⊂ M2

+.

Proof. 1. We show

M1
+ ∩ L2 =


a ∈ L2 |

∑
n≥1

|(a)n| < ∞


 .

It is already proved that
∑

n≥1 |(a)n| ≤ ‖a‖M1
+

for a ∈ M1
+. For a ∈ L2 with

∑
n≥1 |(a)n| <

∞, we have
H(a) = H(

∑
n∈Z

(a)nχn) = H(
∑
n≥1

(a)nχn) =
∑
n≥1

(a)nH(χn).

Therefore
‖a‖M1

+
≤

∑
n≥1

|(a)n|‖χn‖M1
+
≤

∑
n≥1

|(a)n|,
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and we conclude

M1
+ ∩ L2 =



a ∈ L2 |

∑
n≥1

|(a)n| < ∞



 .

This implies the conclusion.
2. Let a ∈ Mp

+. Since 〈ej , H(a)ek〉R = (a)j+k+1 = 〈H(a)ej , ek〉R holds for j, k ≥ 0,
〈ϕ, H(a)ψ〉R = 〈H(a)ϕ, ψ〉R holds for ϕ, ψ ∈ �0+. Thus

‖a‖Mp
+

= sup
{
‖H(a)ϕ‖�p

+
| ‖ϕ‖�p

+
≤ 1

}

= sup
{
〈H(a)ϕ,ψ〉R | ‖ϕ‖�p

+
, ‖ψ‖�q

+
≤ 1

}

= sup
{
〈ϕ,H(a)ψ〉R | ‖ϕ‖�p

+
, ‖ψ‖�q

+
≤ 1

}

= sup
{
‖H(a)ψ‖�q

+
| ‖ψ‖�q

+
≤ 1

}

= ‖a‖Mq
+

and a ∈ M q
+. This implies the conclusion.

3. Let a ∈ Mp
+ and 1 < p ≤ r ≤ 2. Since H(a) ∈ B(�p

+) ∩ B(�q
+), ‖H(a)ϕ‖�r

+
≤

‖H(a)‖1−t
B(�p

+)
‖H(a)ϕ‖t

B(�q
+)

(0 ≤ t ≤ 1) by the Riesz-Thorin interpolation theorem. Hence

‖a‖M2
+
≤ ‖a‖Mr

+
≤ ‖a‖Mp

+
.

We also consider another new class Np
+ to extend the domain of the Hankel operator

on the Hardy space. Note that the j-th Fourier coefficient (H(a)f)j of H(a)f is equal to∑
k≥0(a)j+k+1(f)k for all j ≥ 0.

Definition 3.3. For 1 < p < ∞, we define a vector space Np
+ as

Np
+ :=


a ∈ L1 | ‖a‖Np

+
:= sup


‖

∑
j≥0

∑
k≥0

(a)j+k+1(f)kχj‖Hp | ‖f‖Hp ≤ 1


 < ∞


 .

For a ∈ Np
+, we define the Hankel operator H(a) on Hp as

H(a) : Hp −→ Hp : f �−→
∑
j≥0

∑
k≥0

(a)j+k+1(f)kχj ,

and ‖a‖Np
+

= ‖H(a)‖B(Hp).

It is easy to see that ‖ · ‖Np
+
≤ c2

p‖ · ‖L∞ and L∞ ⊂ Np
+. Indeed,

‖a‖Np
+

= sup {‖P (a · (QJf))‖Hp | ‖f‖Hp ≤ 1}
≤ sup {cp‖a‖L∞cq‖f‖Hp | ‖f‖Hp ≤ 1}
≤ c2

p‖a‖L∞ .

Hence, the domain of the Hankel operator is extended to Np
+.

Here, ‖ · ‖Np
+

is actually a norm on Np
+ ∩H2

0 . In fact, it is a semi-norm and we see that

‖a‖Hp = ‖P (a · χ−1)‖Hp

= ‖P (a · (QJχ0))‖Hp

≤ ‖a‖Np
+
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for a ∈ H2
0 . Thus ‖ · ‖Np

+
is a norm on Np

+ ∩ H2
0 .

The space Np
+ has the following properties like Mp too.

Proposition 3.4. 1. For 1 < p < ∞ and 1
p + 1

q = 1, ‖ · ‖Np
+

= ‖ · ‖Nq
+

and Np
+ = Nq

+.

2. For 1 < p ≤ r ≤ 2, ‖ · ‖N2
+
≤ ‖ · ‖Nr

+
≤ ‖ · ‖Np

+
and Np

+ ⊂ Nr
+ ⊂ N2

+.

3. For 1 < p < ∞, Np
+ ∩H2

0 is isomorphic to the subspace of BMOA as normed spaces,
via the isomorphism :

a �−→ χ−1a

.

4. ‖ · ‖M2
+

= ‖ · ‖N2
+

and M2
+ = N2

+.

5. M2
+ ∩ H2

0 is isomorphic to the subspace of BMOA as normed spaces.

6. For 1 ≤ p < ∞, Mp
+ ∩ H2

0 is a Banach space with respect to ‖ · ‖Mp
+
.

Proof. 1. The proof is the same as that of Proposition 3.2.2.
2. The proof is the same as that of Proposition 3.2.3.
3. The statement is the known fact by the proof of the Nehari Theorem (cf. [1], [5]).
4. A unitary operator

U : H2 −→ �2+ :
∑
n≥0

ϕnχn �−→ {ϕn}n≥0

implies the conclusion.
5. 3 and 4 imply the conclusion.
6. For 1 < p < ∞, 3, 4 and Proposition 3.2.3 show the statement. For p = 1, Proposition

2.1.5 and Proposition 3.2.1 show the statement too.

In Section 5, we will prove that Mp and Mp
+ ∩ H2

0 are not only Banach spaces but also
dual spaces of some spaces.

Let c0 and c0
+ be subspaces of �∞ given by

c0 :=
{
{ϕn}n∈Z | ‖ϕ‖c0 := supn∈Z|ϕn| < ∞, limn→±∞ϕn = 0

}

and

c0
+ :=

{
ϕ ∈ c0 | ϕn = 0 for n < 0

}
,

respectively. For two sequences ϕ and ψ, we define a sequence ϕ ∗ ψ by

ϕ ∗ ψ :=

{∑
k∈Z

ϕj−kψk

}

j∈Z

,

whenever the sequence ϕ ∗ ψ can be defined.
We show the following norm estimates of Mp

+ ∩ H2
0 and Mp.

Proposition 3.5. Let 1 ≤ p < ∞, and a ∈ L1.

1. ‖a‖Mp
+

= sup
{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | ‖ϕ‖�p

+
, ‖ψ‖�q

+
≤ 1

}
holds. When p = 1, we

replace �q
+ with c0

+ in the right-hand side.
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2. ‖a‖Mp = sup
{
|〈{(a)n}n∈Z , ϕ ∗ ψ〉R| | ‖ϕ‖�p , ‖ψ‖�q ≤ 1

}
holds. When p = 1, we re-

place �q with c0 in the right-hand side.

Proof. 1. Let 1 < p ≤ 2. For ϕ ∈ �p
+ with ‖ϕ‖�p

+
≤ 1, a linear mapping

Dϕ : �q
+ −→ C : ψ �−→ 〈ψ, a � ϕ〉R

satisfies

‖a � ϕ‖�p
+

= ‖Dϕ‖(�q
+)∗

= sup
{
|〈ψ, a � ϕ〉R| | ‖ψ‖�q

+
≤ 1

}

≤ sup
{
|〈a � ϕ,ψ〉R| | ‖ϕ‖�p

+
, ‖ψ‖�q

+
≤ 1

}

= sup
{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | ‖ϕ‖�p

+
, ‖ψ‖�q

+
≤ 1

}
.

It implies

‖a‖Mp
+

= sup
{
‖a � ϕ‖�p

+
| ‖ϕ‖�p

+
≤ 1

}

≤ sup
{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | ‖ϕ‖�p

+
, ‖ψ‖�q

+
≤ 1

}
.

Conversely,

‖a‖Mp
+

= ‖H(a)‖B(�p
+)

≥ sup
{
|G(H(a)ϕ)| | ‖ϕ‖�p

+
, ‖G‖(�p

+)∗ ≤ 1
}

= sup
{
|〈H(a)ϕ, g〉R| | ‖ϕ‖�p

+
, ‖g‖�q

+
≤ 1

}

= sup
{
|〈{(a)n+1}n≥0 , ϕ ∗ g〉R| | ‖ϕ‖�p

+
, ‖g‖�q

+
≤ 1

}
.

Now let p = 1. ‖a‖M1
+
≤ sup

{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | ‖ϕ‖�1+

, ‖ψ‖c0
+
≤ 1

}
holds from

as above. Conversely,

‖a‖M1
+

= ‖H(a)‖B(�1+)

≥ sup
{
|G(H(a)ϕ)| | ‖ϕ‖�1+

, ‖G‖(�1+)∗ ≤ 1
}

= sup
{
|〈H(a)ϕ, g〉R| | ‖ϕ‖�1+

, ‖g‖�∞+
≤ 1

}

≥ sup
{
|〈{(a)n+1}n≥0 , ϕ ∗ g〉R| | ‖ϕ‖�1+

, ‖g‖c0
+
≤ 1

}
.

When 2 < p < ∞, Proposition 3.2.2 leads the conclusion.
2. For ϕ = {ϕn}n∈Z ∈ �∞, we define ϕb as ϕb := {ϕ−n}n∈Z.
Let 1 < p ≤ 2. For ϕ ∈ �p with ‖ϕ‖�p ≤ 1, a linear mapping

Dϕ : �q −→ C : ψ �−→ 〈ψ, a ∗ ϕ〉R

satisfies

‖a ∗ ϕ‖�p = ‖Dϕ‖(�q)∗

= sup {|〈ψ, a ∗ ϕ〉R| | ‖ψ‖�q ≤ 1}
≤ sup {|〈a ∗ ϕ,ψ〉R| | ‖ϕ‖�p , ‖ψ‖�q ≤ 1}
= sup

{
|〈{(a)n}n∈Z , ϕb ∗ ψ〉R| | ‖ϕ‖�p , ‖ψ‖�q ≤ 1

}

= sup
{
|〈{(a)n}n∈Z , ϕ ∗ ψ〉R| | ‖ϕ‖�p , ‖ψ‖�q ≤ 1

}
.
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It implies

‖a‖Mp = sup {‖a ∗ ϕ‖�p | ‖ϕ‖�p ≤ 1}
≤ sup

{
|〈{(a)n}n∈Z , ϕ ∗ ψ〉R| | ‖ϕ‖�p , ‖ψ‖�q ≤ 1

}
.

Conversely,

‖a‖Mp = ‖M(a)‖B(�p)

≥ sup
{
|G(M(a)ϕ)| | ‖ϕ‖�p , ‖G‖(�p)∗ ≤ 1

}

= sup {|〈M(a)ϕ, g〉R| | ‖ϕ‖�p , ‖g‖�q ≤ 1}
= sup

{
|〈{(a)n}n∈Z , ϕ ∗ g〉R| | ‖ϕ‖�p , ‖g‖�q ≤ 1

}
.

Hence ‖a‖Mp = sup
{
|〈{(a)n}n∈Z , ϕ ∗ ψ〉R| | ‖ϕ‖�p , ‖ψ‖�q ≤ 1

}
.

Now let p = 1. ‖a‖M1 ≤ sup
{
|〈{(a)n}n∈Z , ϕ ∗ ψ〉R| | ‖ϕ‖�1 , ‖ψ‖c0 ≤ 1

}
from as above.

Conversely,

‖a‖M1 = ‖M(a)‖B(�1)

≥ sup
{
|G(M(a)ϕ)| | ‖ϕ‖�1 , ‖G‖(�1)∗ ≤ 1

}

= sup {|〈M(a)ϕ, g〉R| | ‖ϕ‖�1 , ‖g‖�∞ ≤ 1}
≥ sup

{
|〈{(a)n}n∈Z , ϕ ∗ g〉R| | ‖ϕ‖�1 , ‖g‖c0 ≤ 1

}
.

When 2 < p < ∞, Proposition 2.1.1 leads the conclusion.

4 Some spaces of sequences. In this section, we show some properties of spaces which
are linearization of sets of all ϕ ∗ ψ. Namely,

Definition 4.1. For 1 ≤ p ≤ ∞, we define V p
+ and V p as

V p
+ :=

{
ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn | n ∈ N, ϕ1, · · · , ϕn ∈ �p

+, ψ1, · · · , ψn ∈ �q
+

}
,

and

V p :=
{
ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn | n ∈ N, ϕ1, · · · , ϕn ∈ �p, ψ1, · · · , ψn ∈ �q

}
.

When p = 1, we replace �q
+ and �q with c0

+ and c0 in the right-hand side, respectively. When
p = ∞, we also replace �p

+ and �p with c0
+ and c0 in the right-hand side, respectively.

If f = ϕ1 ∗ψ1 + · · ·+ ϕn ∗ψn and g = Φ1 ∗Ψ1 + · · ·+ Φm ∗Ψm belong to each of above
sets, then

f + g = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn + Φ1 ∗ Ψ1 + · · · + Φm ∗ Ψm

belongs to the same sets. Thus it is easy to see that V p
+ and V p are vector spaces, respec-

tively.

Definition 4.2. For f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn ∈ V p
+, we define ‖f‖V p

+
as

‖f‖V p
+

:= inf




∑
1≤j≤n

‖ϕj‖�p
+
‖ψj‖�q

+
| representations of f in V p

+


 .

For f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn ∈ V p, we define ‖f‖V p as

‖f‖V p := inf




∑
1≤j≤n

‖ϕj‖�p‖ψj‖�q | representations of f in V p


 .
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These spaces have the following properties.

Proposition 4.3. 1. For ϕ ∈ �p
+ and ψ ∈ �q

+, there are Φ ∈ �p
+ and Ψ ∈ �q

+ with
ϕ ∗ ψ = Φ ∗ Ψ and ‖Φ‖�p

+
= ‖Ψ‖�q

+
.

2. For f ∈ V p
+, supj≥0|fj | ≤ ‖f‖V p

+
.

3. V p
+ ⊂ c0

+.

4. For f ∈ �q
+, ‖f‖V p

+
≤ ‖f‖�q

+
.

5. ‖ · ‖V 1
+

= ‖ · ‖c0
+

and V 1
+ = c0

+.

6. ‖ · ‖V p
+

= ‖ · ‖V q
+

and V p
+ = V q

+.

7. V 2
+ and H1 are isometrically isomorphic via the isomorphism :

{(f)j}j≥0 ←→ f whose Fourier coefficients are {(f)j}j≥0 .

Proof. 1. If we set Φ :=
√

‖ψ‖q

‖ϕ‖p
ϕ and Ψ :=

√
‖ϕ‖p

‖ψ‖q
ψ, then ϕ ∗ ψ = Φ ∗ Ψ and ‖Φ‖p =√

‖ϕ‖p‖ψ‖q = ‖Ψ‖q.
2. Take f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn ∈ V p

+. By the Hölder’s inequality,

|fj | ≤ |(ϕ1 ∗ ψ1)j | + · · · + |(ϕn ∗ ψn)j |
≤ ‖ϕ1‖�p

+
‖ψ1‖�q

+
+ · · · + ‖ϕn‖�p

+
‖ψn‖�q

+

for j ≥ 0. Thus supj≥0|fj | ≤ ‖f‖V p
+
.

3. For any � > 0, ϕ = {ϕj}j≥0 ∈ �p
+, ψ = {ψj}j≥0 ∈ �q

+, there is an N ∈ N such that
‖ {ϕj}j≥N ‖p < �

2‖ψ‖q
and ‖ {ψj}j≥N ‖q < �

2‖ϕ‖p
. By the Hölder’s inequality,

|(ϕ ∗ ψ)j | = |
∑
k≥0

ϕj−N+kψN−k +
∑
k≥1

ϕj−N−kψN+k|

≤ |
∑
k≥0

ϕj−N+kψN−k| + |
∑
k≥1

ϕj−N−kψN+k|

≤ ‖ {ϕj−N+k}k≥0 ‖p‖ {ψN−k}k≥0 ‖q + ‖ {ϕj−N−k}k≥1 ‖p‖ {ψN+k}k≥1 ‖q

<
�

2‖ψ‖q
‖ψ‖q + ‖ϕ‖p

�

2‖ϕ‖p
= �

hold for any j ≥ 2N .
Thus, for any � > 0, f = ϕ1∗ψ1+· · ·+ϕm∗ψm ∈ V p

+, if we put �n := �
(n+1)2 (1 ≤ n ≤ m),

then there exist N1, · · · , Nm ∈ N such that

|fj | ≤ |(ϕ1 ∗ ψ1)j | + · · · + |(ϕn ∗ ψn)j |
< �1 + · · · + �m < �

for any j ≥ 2max1≤n≤m Nn. This and 2 mean the conclusion.
4. Let f ∈ �q

+. We regard f as e0 ∗ f , and therefore ‖f‖V p
+
≤ ‖e0‖�p

+
‖f‖�q

+
= ‖f‖�q

+
.

5. By 3 and 4, it is immediately seen.
6. By ϕ ∗ ψ = ψ ∗ ϕ, it is easy to see.

ON A DUALITY BETWEEN THE OPERATORS AND THE SPACE OF 
SEQUENCES 79



10 A. Hoshida

7. Since �2+ and H2 are isometrically isomorphic via the isomorphism : {(ϕ)j}j≥0 ←→
ϕ =

∑
j≥0(ϕ)jχj , we can see easily that V 2

+ and

{
ϕ1ψ1 + · · · + ϕnψn | n ∈ N, ϕ1, · · · , ϕn ∈ H2, ψ1, · · · , ψn ∈ H2

}

are isometrically isomorphic, whenever a norm of the space of the right-hand side is defined
by

‖f‖ := inf
{
‖ϕ1‖H2‖ψ1‖H2 + · · · + ‖ϕn‖H2‖ψn‖H2 | representations of f

}
.

We show that this normed space is equal to H1. By the Hölder’s inequality,
∫

|ϕ1ψ1 + · · · + ϕnψn| dθ

2π
≤

∫
|ϕ1ψ1| dθ

2π
+ · · · +

∫
|ϕnψn| dθ

2π

≤ ‖ϕ1‖H2‖ψ1‖H2 + · · · + ‖ϕn‖H2‖ψn‖H2 ,

therefore ‖ · ‖H1 ≤ ‖ · ‖. Conversely, let f ∈ H1. By the inner-outer factorization theorem,
there are an inner function g ∈ H∞ and an outer function h ∈ H1 satisfying f = gh. If we
set ϕ := gh

1
2 ∈ H2 and ψ := h

1
2 ∈ H2, then f = gh = ϕψ and ‖f‖ ≤ ‖ϕ‖H2‖ψ‖H2 = ‖f‖H1 .

Consequently, V 2
+ and H1 are isometrically isomorphic.

Proposition 4.4. 1. For ϕ ∈ �p and ψ ∈ �q, there are Φ ∈ �p and Ψ ∈ �q with ϕ ∗ ψ =
Φ ∗ Ψ and ‖Φ‖�p = ‖Ψ‖�q .

2. For f ∈ V p, supj∈Z|fj | ≤ ‖f‖V p .

3. V p ⊂ c0.

4. For f ∈ �q, ‖f‖V p ≤ ‖f‖�q .

5. ‖ · ‖V 1 = ‖ · ‖c0 and V 1 = c0.

6. ‖ · ‖V p = ‖ · ‖V q and V p = V q.

7. V 2 and L1 are isometrically isomorphic via the isomorphism :

{(f)j}j∈Z ←→ f whose Fourier coefficients are {(f)j}j∈Z .

Proof. The proof is the same as that of Proposition 4.3.

Remark 4.5. By Proposition 4.3.2 and Proposition 4.4.2, it is seen that ‖ · ‖V p
+

and ‖ · ‖V p

are norms on V p
+ and V p, respectively.

Now, we consider what representations of an element of these spaces we can take. In
general, it doesn’t say that a representation ϕ1 ∗ψ1 + · · ·+ϕn ∗ψn of an element f satisfies

‖ϕ1‖p‖ψ1‖q � · · · � ‖ϕn‖p‖ψn‖q.

However, the following result says that there is such a representation for all f .

Theorem 4.6. Let �, �′ > 0.

1. For f ∈ V p
+, there is a representation of f , f = Φ1 ∗ Ψ1 + · · · + ΦN ∗ ΨN such that

‖f‖V
p
+
−�′

N < ‖Φj‖2
�p
+

<
‖f‖V

p
+

+�

N and ‖Φj‖�p
+

= ‖Ψj‖�q
+

for 1 ≤ j ≤ N .
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2. For f ∈ V p, there is a representation of f , f = Φ1 ∗ Ψ1 + · · · + ΦN ∗ ΨN such that
‖f‖V p−�′

N < ‖Φj‖2
�p < ‖f‖V p+�

N and ‖Φj‖�p = ‖Ψj‖�q for 1 ≤ j ≤ N .

Proof. 1. If we take an f ∈ V p
+, then by Proposition 4.3.1, there is a representation of f ,

f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn such that

‖f‖V p
+
≤ ‖ϕ1‖2

p + · · · + ‖ϕn‖2
p < ‖f‖V p

+
+ �

and ‖ϕj‖p = ‖ψj‖q for 1 ≤ j ≤ n.
Assume n ≥ 2 and ‖ϕ1‖2

p ≤ · · · ≤ ‖ϕn‖2
p.

We show that it may assume ‖ϕ1‖2
p > 0 without loss of generality. Indeed, assume

‖ϕn‖2
p > 0 and ‖ϕ1‖2

p = 0. We take 2 ≤ k ≤ n with ‖ϕk‖2
p > 0 and ‖ϕk−1‖2

p = 0. If we set

Φi :=

{
ϕk

√
k
, 1 ≤ i ≤ k

ϕi, k + 1 ≤ i ≤ n
and Ψi :=

{
ψk

√
k
, 1 ≤ i ≤ k

ψi, k + 1 ≤ i ≤ n,

then f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn = Φ1 ∗ Ψ1 + · · · + Φn ∗ Ψn and 0 < ‖Φ1‖2
p ≤ · · · ≤ ‖Φn‖2

p.

When ‖f‖V p
+

> �′, if we take an �′′ with 0 < �′′ ≤
‖f‖V

p
+

‖f‖V
p
+
−�′ − 1, then we can take rj ∈ Q

satisfying

‖ϕj‖2
p ≤ rj < min

{
‖ϕj‖2

p(‖f‖V p
+

+ �)

‖ϕ1‖2
p + · · · + ‖ϕn‖2

p

, ‖ϕj‖2
p(1 + �′′)

}

for 1 ≤ j ≤ n, and take kj ∈ N satisfying the ratio

r1 : · · · : rn = k1 : · · · : kn

for 1 ≤ j ≤ n.
Let k0 := 0 and N :=

∑
0≤�≤n k�. If we set Φj := ϕi

√
ki

and Ψj := ψi

√
ki

for 1 ≤ i ≤ n and∑
0≤�≤i−1 k� + 1 ≤ j ≤

∑
0≤�≤i−1 k� + ki, then we see that

f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn = Φ1 ∗ Ψ1 + · · · + ΦN ∗ ΨN

and
‖f‖V

p
+
−�′

N < ‖Φj‖2
p = ‖Ψj‖2

q <
‖f‖V

p
+

+�

N for 1 ≤ j ≤ N . Indeed, for 1 ≤ i ≤ n and∑
0≤�≤i−1 k� + 1 ≤ j ≤

∑
0≤�≤i−1 k� + ki,

‖Φj‖2
p = ‖ ϕi

√
ki

‖2
p =

‖ϕi‖2
p

ri
· ri

ki
=

‖ϕi‖2
p

ri
· r1 + · · · + rn

k1 + · · · + kn
=

‖ϕi‖2
p

ri
· r1 + · · · + rn

N
,

and

‖f‖V p
+
− �′

N
≤

‖f‖V p
+

N(1 + �′′)

≤
‖ϕ1‖2

p + · · · + ‖ϕn‖2
p

N(1 + �′′)

≤ r1 + · · · + rn

N(1 + �′′)

<
‖ϕi‖2

p

ri
· r1 + · · · + rn

N

≤ r1 + · · · + rn

N

<
‖f‖V p

+
+ �

N
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hold.
When ‖f‖V p

+
≤ �′, we can take rj ∈ Q satisfying

‖ϕj‖2
p ≤ rj <

‖ϕj‖2
p(‖f‖V p

+
+ �)

‖ϕ1‖2
p + · · · + ‖ϕn‖2

p

for 1 ≤ j ≤ n, and take kj ∈ N satisfying the ratio

r1 : · · · : rn = k1 : · · · : kn

for 1 ≤ j ≤ n.
Let k0 := 0 and N :=

∑
0≤�≤n k�. If we set Φj := ϕi

√
ki

and Ψj := ψi

√
ki

, then we see that

‖f‖V p
+
− �′

N
≤ 0

< ‖Φj‖2
p

=
‖ϕi‖2

p

ri
· r1 + · · · + rn

N

≤ r1 + · · · + rn

N

<
‖f‖V p

+
+ �

N

hold for 1 ≤ i ≤ n and
∑

0≤�≤i−1 k� +1 ≤ j ≤
∑

0≤�≤i−1 k� + ki. This leads the conclusion.
2. The proof is the same as that of 1.

Remark 4.7. The auther generalized Theorem 4.6 to Theorem 2.2 of [4] after this paper
submitted.

5 Duality theorems. Here, we extend Proposition 3.5 to V p
+ and V p.

Proposition 5.1. Let 1 ≤ p < ∞, and a ∈ L1.

1. ‖a‖Mp
+

= sup
{
|〈{(a)k+1}k≥0 , f〉R| | ‖f‖V p

+
≤ 1

}
holds.

2. ‖a‖Mp = sup
{
|〈{(a)k}k∈Z , f〉R| | ‖f‖V p ≤ 1

}
holds.

Proof. 1. Since
{

ϕ ∗ ψ | ‖ϕ‖�p
+
, ‖ψ‖�q

+
≤ 1

}
⊂

{
f ∈ V p

+ | ‖f‖V p
+
≤ 1

}
,

‖a‖Mp
+

= sup
{
|〈{(a)k+1}k≥0 , ϕ ∗ ψ〉R| | ‖ϕ‖�p

+
, ‖ψ‖�q

+
≤ 1

}

≤ sup
{
|〈{(a)k+1}k≥0 , f〉R| | ‖f‖V p

+
≤ 1

}

hold by Proposition 3.5.1.
Conversely, for any �, �′ > 0, f ∈ V p

+, there is a representation of f in V p
+, f =

∑
1≤j≤n φj ∗ ψj such that

‖f‖V
p
+
−�′

n < ‖φj‖2
�p = ‖ψj‖2

�q <
‖f‖V

p
+

+�

n for all 1 ≤ j ≤ n by
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Theorem 4.6.1. Thus

|〈{(a)k+1}k≥0 , f〉R| ≤
∑

1≤j≤n

|〈{(a)k+1}k≥0 , ϕj ∗ ψj〉R|

≤
∑

1≤j≤n

sup

{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | (ϕ, ψ) ∈ Ep

+, ‖ϕ‖�p , ‖ψ‖�q ≤
‖f‖V p

+
+ �

n

}

= n ·
‖f‖V p

+
+ �

n
sup

{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | (ϕ, ψ) ∈ Ep

+, ‖ϕ‖�p , ‖ψ‖�q ≤ 1
}

= (‖f‖V p
+

+ �)‖a‖Mp
+

hold by Proposition 3.5.1. Hence,

sup
{
|〈{(a)k+1}k≥0 , f〉R| | ‖f‖V p

+
≤ 1

}
≤ ‖a‖Mp

+
.

2. The proof is the same as that of 1.

Finally, we show the main results.

Theorem 5.2. Let 1 ≤ p < ∞.

1. Mp
+ ∩ H2

0 and (V p
+)∗ are isometrically isomorphic as normed spaces.

2. Mp and (V p)∗ are isometrically isomorphic as normed spaces.

Proof. 1. Let a ∈ Mp
+ ∩ H2

0 . By Proposition 5.1.1,

D : V p
+ −→ C : f �−→ 〈f, {(a)n+1}n≥0〉R

satisfies ‖D‖(V p
+)∗ = sup

{
|〈{(a)k+1}k≥0 , f〉R| | ‖f‖V p

+
≤ 1

}
= ‖a‖Mp

+
and D ∈ (V p

+)∗.

Coversely, let D ∈ (V p
+)∗ and let an+1 := D(en) n ≥ 0.

When 1 < p ≤ 2, since

D(f) =
∑
n≥0

fnD(en) =
∑
n≥0

fnan+1 = 〈f, {an+1}n≥0〉R

holds for f =
∑

n≥0 fnen ∈ V p
+,

∞ > ‖D‖(V p
+)∗ = sup

{
|〈f, {an+1}n≥0〉R| | ‖f‖V p

+
≤ 1

}

≥ sup
{
|〈f, {an+1}n≥0〉R| | ‖f‖�q

+
≤ 1

}
.

This implies {an+1}n≥0 ∈ (�q
+)∗ ∼= �p

+ ⊂ �2+
∼= H2 and a :=

∑
n≥1 anχn ∈ H2

0 . Thus,

by Proposition 5.1.1, ‖a‖Mp
+

= sup
{
|〈{(a)k+1}k≥0 , f〉R| | ‖f‖V p

+
≤ 1

}
= ‖D‖(V p

+)∗ and

a ∈ Mp
+.

When p = 1, we replace �q
+ with c0

+. When 2 < p < ∞, it is soon from Mp
+ ∩ H2

0 =
Mq

+ ∩ H2
0 and V p

+ = V q
+.

2. Let a ∈ Mp. By Proposition 5.1.2,

D : V p −→ C : f �−→ 〈f, {(a)n}n∈Z〉R
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satisfies ‖D‖(V p)∗ = sup
{
|〈{(a)k}k∈Z , f〉R| | ‖f‖V p ≤ 1

}
= ‖a‖Mp and D ∈ (V p)∗.

Coversely, let D ∈ (V p)∗ and let an := D(en) n ∈ Z.
When 1 < p ≤ 2, since

D(f) =
∑
n∈Z

fnD(en) =
∑
n∈Z

fnan = 〈f, {an}n∈Z〉R

holds for f =
∑

n∈Z fnen ∈ V p,

∞ > ‖D‖(V p)∗ = sup
{
|〈f, {an}n∈Z〉R| | ‖f‖V p ≤ 1

}

≥ sup
{
|〈f, {an}n∈Z〉R| | ‖f‖�q ≤ 1

}
.

This implies {an}n∈Z ∈ (�q)∗ ∼= �p ⊂ �2 ∼= L2 and a :=
∑

n∈Z anχn ∈ L2. Thus, by
Proposition 5.1.2, ‖a‖Mp = sup

{
|〈{(a)k}k∈Z , f〉R| | ‖f‖V p ≤ 1

}
= ‖D‖(V p)∗ and a ∈ Mp.

When p = 1, we replace �q with c0. When 2 < p < ∞, it is soon from Mp = M q and
V p = V q.

Remark 5.3. Theorem 5.2.1 is the modification of the H1-BMOA duality because of Propo-
sition 3.4.5 and Proposition 4.3.7. Also Theorem 5.2.2 is the modification of the classical
L1-L∞ duality because of Proposition 2.1.2 and Proposition 4.4.7.
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Kitakaturagi-gun, Nara, 635-0832, Japan  
(b’) y.yasui@kio.ac.jp  
(c) General Topology  
 
 
 

6



 7 

(a) Eiichi Nakai 
(b) Department of Mathematics, Ibaraki University, Mito, Ibaraki 310-8512, Japan 
(b') eiichi.nakai.math@vc.ibaraki.ac.jp 
(c) Real analysis, harmonic analysis, Fourier analysis, function spaces, singular and fractional integrals 
 
(a) Jun Kawabe  
(b) Division of Mathematics and Physics, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan  
(b') jkawabe@shinshu-u.ac.jp  
(c) Measure and integration, Vector measure, Nonadditive measure  
 
(a) Shizu Nakanishi  
(b) non-public 
(b’) shizu.nakanishi@nifty.ne.jp  
(c) measures and integrations  
 
 
(a) Jun Ichi Fujii 
(b) Department of  Educational Collaboration(Science, Mathematics and Information),Osaka Kyoiku 

University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan 
(b') fujii@cc.osaka-kyoiku.ac.jp 
(c) Operator Theory 
 
(a) Masaru Nagisa  
(b) Department of Mathematics and Informatics, Graduate School of Science, Chiba University, Yayoi-cho,  

Chiba, 263-8522, Japan  
(b’) nagisa@math.s.chiba-u.ac.jp  
(c) operator algebra, operator theory  
 
(a) Hiroyuki Osaka 
(b) Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu,  

Shiga 525-8577 Japan  
(b') osaka@se.ritsumei.ac.jp 
(c) Operator Theory and Operator Algebras 
 
(a) Masatoshi Fujii  
(b) non-public 
(b’) mfujii@cc.osaka-kyoiku.ac.jp  
(c) Operator Theory  
 
(a) Wataru Takahashi  
(b) Keio Research and Education Center for Natural Science,Keio University,Kouhoku-ko,Yokohama 223-8521, 
   Japan 
(b’) wataru@is.titech.ac.jp, wataru@a00.itscom.net  
(c) Nonlinear Functional Analysis  
 
(a) Shigeo Akashi 
(b) Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, 

2641, Yamazaki, Noda-City, Chiba-Prefecture, 278-8510, Japan 
(b’) akashi@is.noda.tus.ac.jp 
(c) Information Theory, Entropy Analysis, Applied Mathematics, Functional Analysis 
 
(a) Yoshitsugu Kabeya 
(b) Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku,  
   Sakai, Osaka 599-8531, Japan 
(b’) kabeya@ms.osakafu-u.ac.jp 
(c) Partial Differential Equations, Ordinary Differential Equations 
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(a) Atsushi Yagi  
(b) Dept. of Applied Physics, Graduate School of Engineering, Osaka Univ., 2-1 Yamadaoka, Suita, Osaka 565-0871, 

Japan  
(b’) yagi@ap.eng.osaka-u.ac.jp  
(c) Nonlinear partial differential equations, Infinite-dimensional dynamical systems  
 
(a) Yoshimasa Nakamura 
(b) Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan 
(b)’ ynaka@i.kyoto-u.ac.jp 
(c) integrable systems, numerical linear algebra, special functions 
 
(a) Yasumasa Fujisaki 
(b) Department of Information and Physical Sciences, Graduate School of Information Science and Technology, 
   Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan 
(b’) fujisaki@ist.osaka-u.ac.jp 
(c) Control Systems Theory 
 
(a) Naruhiko Aizawa 
(b) Department of Physical Science, Graduate School of Science, Osaka Prefecture  
   University,Sakai,Osaka 599-8531,Japan 
(b’)aizawa@p.s.osakafu-u.ac.jp 
(c) representation theory 
 
(a) Hisao Nagao  
(b) non-public 
(b’) nagao.hisao@aqua.plala.or.jp 
(c) Multivariate Analysis, Sequential Analysis, Jackknife Statistics and Bootstrap Method  
 
(a) Masanobu Taniguchi  
(b) Dept. of Applied Mathematics, School of Fundamental Science & Engineering, Waseda University,  

3-4-1, Okubo, Shinjuku-ku, Tokyo,169-8555, Japan, Tel & Fax: 03-5286-8386  
(b’) taniguchi@waseda.jp  
(c) Statistical Inference for Stochastic Processes 
 
(a) Masao Kondo  
(b) non-public 
(b’) kondo@sci.kagoshima-u.ac.jp  
(c) Time Series Analysis  
 
(a) Masao Fukushima 
(b) Dept. of Systems and Mathematical Science, Faculty of Science and Engineering, 

Nanzan University, Nagoya, Aichi 466-8673, Japan 
(b)’ fuku@nanzan-u.ac.jp 
(c) Mathematical Programming, Nonlinear Optimization 
 
(a) Ryusuke Hohzaki 
(b) Department of Computer Science, National Defense Academy, 1-10-20, Hashirimizu, 

Yokosuka, 239-8686, Japan 
(b’) hozaki@cc.nda.ac.jp 
(c) Reviewable area: Operations Research, Search theory, Game theory 
 
(a) Hiroaki Ishii  
(b) Department of Mathematical Sciences, School of Science and Technology, Kwansei Gakuin University  
2-1 Gakuen, Sanda, Hyogo 669-1337, Japan  
(b’) ishiroaki@yahoo.co.jp  
(c) Operations Research and Fuzzy Theory, especially Mathematical Programming (Stochastic Programming, 

Combinatorial Optimization, Fuzzy Programming), Scheduling Theory, Graph and Network Theory, Inventory control, 
Mathematical evaluation method  

non-public
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(a) Atsushi Yagi  
(b) Dept. of Applied Physics, Graduate School of Engineering, Osaka Univ., 2-1 Yamadaoka, Suita, Osaka 565-0871, 

Japan  
(b’) yagi@ap.eng.osaka-u.ac.jp  
(c) Nonlinear partial differential equations, Infinite-dimensional dynamical systems  
 
(a) Yoshimasa Nakamura 
(b) Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan 
(b)’ ynaka@i.kyoto-u.ac.jp 
(c) integrable systems, numerical linear algebra, special functions 
 
(a) Yasumasa Fujisaki 
(b) Department of Information and Physical Sciences, Graduate School of Information Science and Technology, 
   Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan 
(b’) fujisaki@ist.osaka-u.ac.jp 
(c) Control Systems Theory 
 
(a) Naruhiko Aizawa 
(b) Department of Physical Science, Graduate School of Science, Osaka Prefecture  
   University,Sakai,Osaka 599-8531,Japan 
(b’)aizawa@p.s.osakafu-u.ac.jp 
(c) representation theory 
 
(a) Hisao Nagao  
(b) non-public 
(b’) nagao.hisao@aqua.plala.or.jp 
(c) Multivariate Analysis, Sequential Analysis, Jackknife Statistics and Bootstrap Method  
 
(a) Masanobu Taniguchi  
(b) Dept. of Applied Mathematics, School of Fundamental Science & Engineering, Waseda University,  

3-4-1, Okubo, Shinjuku-ku, Tokyo,169-8555, Japan, Tel & Fax: 03-5286-8386  
(b’) taniguchi@waseda.jp  
(c) Statistical Inference for Stochastic Processes 
 
(a) Masao Kondo  
(b) non-public 
(b’) kondo@sci.kagoshima-u.ac.jp  
(c) Time Series Analysis  
 
(a) Masao Fukushima 
(b) Dept. of Systems and Mathematical Science, Faculty of Science and Engineering, 

Nanzan University, Nagoya, Aichi 466-8673, Japan 
(b)’ fuku@nanzan-u.ac.jp 
(c) Mathematical Programming, Nonlinear Optimization 
 
(a) Ryusuke Hohzaki 
(b) Department of Computer Science, National Defense Academy, 1-10-20, Hashirimizu, 

Yokosuka, 239-8686, Japan 
(b’) hozaki@cc.nda.ac.jp 
(c) Reviewable area: Operations Research, Search theory, Game theory 
 
(a) Hiroaki Ishii  
(b) Department of Mathematical Sciences, School of Science and Technology, Kwansei Gakuin University  
2-1 Gakuen, Sanda, Hyogo 669-1337, Japan  
(b’) ishiroaki@yahoo.co.jp  
(c) Operations Research and Fuzzy Theory, especially Mathematical Programming (Stochastic Programming, 

Combinatorial Optimization, Fuzzy Programming), Scheduling Theory, Graph and Network Theory, Inventory control, 
Mathematical evaluation method  

ryu-hoh@outlook.jp
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(a) Junzo Watada  
(b) Universiti Teknologi PETRONAS Department of Computer & Information Sciences 32610 Seri Iskandar,Perak Darul 

Ridzuam,Malaysia Office Phone: 
   +60-5-368-7517 Mobile:+60-13-598-0208  
   Professor Emeritus,Waseda University,Japan 
(b’) junzow@osb.att.ne.jp  
(c) Fuzzy systems, Management Engineering 
 
(a) Kensaku Kikuta 
(b) School of Business Administration, University of Hyogo, 

 8-2-1  Gakuen-nishi-machi, Nishi-ku, Kobe City 651-2197 JAPAN 
(b’) kikuta@biz.u-hyogo.ac.jp 
(c) Game Theory, Operations Research, 
 
(a) Wuyi Yue  
(b) Dept. of Intelligence and Informatics, Faculty of Intelligence and Informatics, Konan University, 8-9-1 Okamoto, 

Higashinada-ku , Kobe 658-8501, JAPAN  
(b’) yue@konan-u.ac.jp  
(c) Queueing Networks, Performance Analysis and Modeling, Communications Networks, Operations Research, Markov 

Processes, Probabilistic Methods, Systems Engineering  
 
(a) Hiroaki Sandoh 
(b) Faculty of Policy Studies Kwansei Gakuin University 2-1, Gakuen, Sanda-shi, Hyogo 669-1337 Japan  
(b’) sandoh@kwansei.ac.jp 
(c) Operations Research and Management Science, Stochastic modeling 
 
 
(a) Katsunori Ano 
(b) Department of Mathematical Sciences, Shibaura Institute of Technology, 307 Fukasaku Minuma-ku 
   Saitama-city, 337-8570, Japan 
(b’) k-ano@shibaura-it.ac.jp 
(c) Optimal Stopping, Mathematical Finance, Applied Probability 
 
 
(a) Koyu Uematsu 
(b) Graduate School of Management and Information Sciense Faculty of Global Business ,Osaka International University  

6-21-57 Tohdacho, Moriguchi-Shi, Osaka,570-8555,Japan 
(b’) uematsu@oiu.jp 
(c) Stochastic Process and its Applications,Reliability Analysis,and Game Theory 
 
 
(a) Yoshiki Kinoshita  
(b) Dept. of Information Sciences , Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka-shi, Kanagawa 

259-1293, Japan 
(b’) yoshiki@kanagawa-u.ac.jp 
(c) Software Science, Programming language semantics  
 
 
(a) Shunsuke Sato 
(b) non-public 
(b’)ss_22362@nifty.com  
(c) Mathematical biology in general 
 
(a)Tadashi Takahashi 
(b)Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto, 

Higashinada, Kobe, Hyogo 658-8501, Japan 
(b’) takahasi@konan-u.ac.jp 
(c)Mathematics Education 
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(a) Benoit Collins 
(b) Department of Mathematics, Faculty of Science, Kyoto University 
(b') collins@math.kyoto-u.ac.jp 
(c) Random Matrix Theory, Free Probability, Quantum Information Theory 
   Quantum Groups (operator algebra side), Operator Algebra 
 
 
(a) Yoko Watamori  
(b) Department of Mathematics and Information Sciences, Graduate School of Science, Osaka Prefecture University,      
Sakai, Osaka 599-8531, Japan  
(b') watamori@mi.s.osakafu-u.ac.jp  
(c) Directional statistics, Multivariate Analysis 
 
 
(a) Koichi Osaki  
(b)Department of Mathematical Sciences,School of Science and Technology, Kwansei Gakuin University,  
2-1 Gakuen, Sanda, 669-1337, Japan.  
(b')osaki@kwansei.ac.jp  
(c)Nonlinear partial differential equations, Infinite-dimensional dynamical systems 
*****************************************************************************************  

 
Managing Editor 
Koyu Uematsu  (Professor of  Osaka International University) 

International Society for Mathematical Sciences 
   1-5-12-202 Kaorigaoka-cho, Sakai-ku, Sakai-city, 590-0011,Japan 
   uematsu@jams.jp 
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Submission to the SCMJ 
 
In September 2012, the way of submission to Scientiae Mathematicae Japonicae 
(SCMJ) was changed.  Submissions should be sent electronically (in PDF file) to the 
editorial office of International Society for Mathematical Sciences (ISMS).  
 
(1) Preparation of files and Submission 

a. Authors who would like to submit their papers to the SCMJ should make 
source files of their papers in LaTeX2e using the ISMS style file (scmjlt2e.sty) 
Submissions should be in PDF file compiled from the source files.  Send the 
PDF file to s1bmt@jams.jp . 

b. Prepare a Submission Form and send it to the ISMS.  The required items to 
be contained in the form are:  

  1. Editor’s name whom the author chooses from the Editorial Board 
(http://www.jams.or.jp/hp/submission_f.html )and would like to take in 
charge of the paper for refereeing.  

2. Title of the paper.   
3. Authors’ names.   
4. Corresponding author’s name, e-mail address and postal address (affiliation).  
5. Membership number in case the author is an ISMS member.   
 
Japanese authors should write 3 and 4 both in English and in Japanese.  
 
At http://www.jams.or.jp/hp/submission_f.html, the author can find the 
Submission Form. Fulfill the Form and sent it to the editorial office by pushing 
the button “transmission”.  Or, without using the Form, the author may send 
an e-mail containing the items 1-5 to s1bmt@jams.jp 

 
(2) Registration of Papers 

When the editorial office receives both a PDF file of a submitted paper and a 
Submission Form, we register the paper.  We inform the author of the 
registration number and the received date.  At the same time, we send the PDF 
file to the editor whom the author chooses in the Submission Form and request 
him/her to begin the process of refereeing. (Authors need not send their papers to 
the editor they choose.) 
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(3) Reviewing Process 
a. The editor who receives, from the editorial office, the PDF file and the request 

of starting the reviewing process, he/she will find an appropriate referee for 
the paper.   

b. The referee sends a report to the editor.  When revision of the paper is 
necessary, the editor informs the author of the referee’s opinion. 

c. Based on the referee report, the editor sends his/her decision (acceptance of 
rejection) to the editorial office. 

 
(4) a. Managing Editor of the SCMJ makes the final decision to the paper valuing the  

editor’s decision, and informs it to the author. 
b. When the paper is accepted, we ask the author to send us a source file and 

a PDF file of the final manuscript.  
c. The publication charges for the ISMS members are free if the membership dues 

have been paid without delay. If the authors of the accepted papers are not the 
ISMS members, they should become ISMS members and pay ¥6,000 (US$75, 
Euro55) as the membership dues for a year, or should just pay the same 
amount without becoming the members. 

 
 
 
 

Items required in Submission Form 
1. Editor’s name who the authors wish will take in charge of the paper 
2. Title of the paper 
3. Authors’ names 
3’.  3. in Japanese for Japanese authors 
4. Corresponding author’s name and postal address (affiliation) 
4’.  4. in Japanese for Japanese authors 
5. ISMS membership number 
6. E-mail address   
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Call for ISMS Members 
 

Call for Academic and Institutional Members 
 

Discounted subscription price: When organizations become the Academic and Institutional 
Members of the ISMS, they can subscribe our journal Scientiae Mathematicae Japonicae at the 
yearly price of US$225.  At this price, they can add the subscription of the online version upon 
their request.    

 
Invitation of two associate members: We would like to invite two persons from the 

organizations to the associate members with no membership fees. The two persons will enjoy 
almost the same privileges as the individual members.  Although the associate members 
cannot have their own ID Name and Password to read the online version of SCMJ, they can 
read the online version of SCMJ at their organization. 

 
To apply for the Academic and Institutional Member of the ISMS, please use the following 

application form. 
 
----------------------------------------------------------------------------------------------------------- 
 

Application for Academic and Institutional Member of ISMS 
Subscription of SCMJ 

Check one of the two. 

 

□Print               □Print ＋ Online 

(US$225)                 (US$225) 

University (Institution) 

 

 

Department 

 

 

Postal Address 

where SCMJ should be 

sent 

 

E-mail address 

 

 

Person in charge 

Name: 

Signature: 

 

Payment 

Check one of the two. 
□Bank transfer        □Credit Card (Visa, Master) 

Name of Associate Membership 

1.  

 

2.  
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Call for Individual Members 

 
We call for individual members.  The privileges to them and the membership dues are shown 

in “Join ISMS !” on the inside of the back cover. 
 

 
 Items required in Membership Application Form 
   

1. Name 
2. Birth date 
3. Academic background 
4. Affiliation 
5. 4’s address 
6. Doctorate 
7. Contact address 
8. E-mail address 
9. Special fields 
10. Membership category (See Table 1 in “Join ISMS !”) 
 

Individual Membership Application Form 
 
1. Name 
 

 

 
2. Birth date 
 

 

3. 
Academic background 
 

 

 
4. Affiliation 
 

 

 
5. 4’s address 
 
 

 

 
6. Doctorate 
 

 

 
7. Contact address 
 
 

 

  
8.  E-mail address 
 

 

 
9.  Special fields 
 

 

10.  
Membership 

    category 
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Contributions (Gift to the ISMS) 
We deeply appreciate your generous contributions to support the activities of our 

society. 
The donation are used (1) to make medals for the new prizes (Kitagawa Prize, 
Kunugi Prize, and ISMS Prize),  (2) to support the IVMS at Osaka University 
Nakanoshima Center, and (3) for a special fund designated by the contributors. 
 
Your remittance to the following accounts of ours will be very much appreciated. 

 
(1)  Through a post office, remit to our giro account ( in Yen only ): 

         No. 00930-1-11872, Japanese Association of Mathematical Sciences (JAMS ) 
   or send International Postal Money Order (in US Dollar or in Yen) to our 

address: 
       International Society for Mathematical Sciences 

         2-1-18 Minami Hanadaguchi, Sakai-ku, Sakai, Osaka 590-0075, Japan 
 
(2)   A/C 94103518, ISMS 

CITIBANK, Japan Ltd., Shinsaibashi Branch 
           Midosuji Diamond Building 
           2-1-2 Nishi Shinsaibashi, Chuo-ku, Osaka 542-0086, Japan 
 

 
 

******************************************************************************** 
Payment Instructions: 

Payment can be made through a post office or a bank, or by credit card. Members may 
choose the most convenient way of remittance. Please note that we do not accept payment by 
bank drafts (checks). For more information, please refer to an invoice. 
 

Methods of Overseas Payment: 
Payment can be made through (1) a post office, (2) a bank, (3) by credit card, or (4) 
UNESCO Coupons.  

Authors or members may choose the most convenient way of remittance as are shown below. 
Please note that we do not accept payment by bank drafts (checks). 
(1) Remittance through a post office to our giro account No. 00930-1-11872 or send 
International Postal Money Order to our postal address (2) Remittance through a 
bank to our account No. 94103518 at Shinsaibashi Branch of CITIBANK (3) Payment 
by credit cards (AMEX, VISA, MASTER or NICOS), or (4) Payment by UNESCO 
Coupons. 
 

Methods of Domestic Payment: 
Make remittance to: 

(1) Post Office Transfer Account - 00930-3-73982 or  
(2) Account No.7726251 at Sakai Branch, SUMITOMO MITSUI BANKING 
CORPORATION, Sakai, Osaka, Japan. 
All of the correspondences concerning subscriptions, back numbers, individual and 
institutional memberships, should be addressed to the Publications Department, 
International Society for Mathematical Sciences. 
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Join ISMS ! 
ISMS Publications: We published Mathematica Japonica (M.J.) in print, 

which was first published in 1948 and has gained an international reputation in 
about sixty years, and its offshoot Scientiae Mathematicae (SCM) both online 
and in print. In January 2001, the two publications were unified and changed to 
Scientiae Mathematicae Japonicae (SCMJ), which is the “21st Century New 
Unified Series of Mathematica Japonica and Scientiae Mathematicae” and 
published both online and in print.  Ahead of this, the online version of SCMJ 
was first published in September 2000.  The whole number of SCMJ exceeds 270, 
which is the largest amount in the publications of mathematical sciences in 
Japan. The features of SCMJ are: 
1) About 80 eminent professors and researchers of not only Japan but also 20 

foreign countries join the Editorial Board. The accepted papers are 
published both online and in print. SCMJ is reviewed by Mathematical 
Review and Zentralblatt from cover to cover. 

2) SCMJ is distributed to many libraries of the world. The papers in SCMJ 
are introduced to the relevant research groups for the positive exchanges 
between researchers. 

3) ISMS Annual Meeting: Many researchers of ISMS members and 
non-members gather and take time to make presentations and discussions 
in their research groups every year. 

 
The privileges to the individual ISMS Members:  
(1) No publication charges 
(2) Free access (including printing out) to the online version of SCMJ 

 (3) Free copy of each printed issue  
 
The privileges to the Institutional Members:  
Two associate members can be registered, free of charge, from an institution.  

 
 
Table 1: Membership Dues for 2013 
Categories Domestic Overseas Developing 

countries 
1-year Regular 
member 

     ￥6,000  US$75 ,  €55 US$45,  €33 
 

1-year Student 
member 

     ￥4,000 US$50,  €37 US$30,  €22 
Life member* Calculated  

as below* 
       NA    NA 

 
Honorary member     Free        Free    Free 

 
 
* Regular member between 63 - 73 years old can apply the category. 
   (73－age ) × ¥3,000 
Regular member over 73 years old can maintain the qualification and the 
privileges of the ISMS members, if they wish. 
 
Categories of 3-year members were abolished. 
  
 

INTERNATIONAL SOCIETY FOR MATHEMATICAL SCIENCES
Scientiae Mathematicae Japonicae, Notices from the ISMS

The International Society for Mathematical Sciences (ISMS) is an international soci-
ety consisting of mathematical scientists throughout the world.

The main activities of the ISMS are to publish (1) the (print and online) journal
Scientiae Mathematicae Japonicae (SCMJ) and (2) Notices from the ISMS and to
hold assembly meeetings in Japan and international internet meetings (distance
symposium) of mathematical sciences (IVMS) accessible from all over the world.

SCMJ is the 21st Century New Unified Series of Mathematica Japonica (MJ) and
Scientiae Mathematicae (SCM). MJ was first published in 1948 and was one of the
oldest mathematical journals in Japan. SCM was an online and print journal started in
1998 in celebration of the semi-centurial anniversary and received 26000 visits per month
from 50 countries in the world. SCMJ contains original papers in mathematical sciences
submitted from all over the world and receives 38000 visits per month now. Not only
papers in pure and applied mathematics but those devoted to mathematical statistics,
operations research, informatics, computer science, biomathematics, mathematical eco-
nomics and other mathematical sciences are also welcome. The journal is published in
January, March, May, July, September, and November in each calendar year.

The ISMS has enhanced the journal, begining from July 1995, by including excel-
lent Research-Expository papers in the section “International Plaza for Mathematical
Sciences ” as well as original research papers. The section provides papers dealing with
broad overviews of contemporary mathmatical sciences, written by experts mainly at
our invitation. Papers shedding lights on open problems or new directions or new break-
throughs for future research are especially welcome.

As is shown in the Editorial Board of SCMJ, we have invited many distin-
guished professors of 20 countries as editors, who will receive and referee the papers
of their special fields with their high standard.

Beginning from 2007, we make the online version of SCMJ more readable and conve-
nient to the readers by adding the specialized contents. By this, the readers can access
to the online version, in which the papers appear in the order of acceptance, from (i)
the contents of the printed version, and (ii) the specialized contents of a volume. From
2007, the subscription fee of the printed version plus the online version of SCMJ becomes
lower and the same of the printed version only. Therefore, the subscribers of the printed
version can read the online version without no additional cost.

For benefit of the ISMS members, we publish ”Notices from the ISMS” 6 times a year.
We are enhancing it by adding interesting articles, including book reviewing, written by
eminent professors.

The ISMS has set up a videoconferencing system (IVMS) which can connect up
to twenty sites of a reserch group in the same or different countries in the world.
Using this system, speakers of the session can write on a white board or an OHP sheet
or use PowerPoint. On the other hand participants can ask questions or make comments
from any connected site in the world. All these are performed similarly to the traditional
meetings.

To connect with our system, you can use your own videoconferencing system only if
it satisfies the International Telecommunication Union-Technical Committee Standards
(ITU-T Standard).

Copyright Transfer Agreement

A copyright transfer agreement is required before a paper is published in this journal.
By submitting a paper to this journal, authors are regarded to certify that the manuscript
has not been submitted to nor is it under consideration for publication by another journal,
conference proceedings or similar publication.

For more information, please visit http://www.jams.or.jp.

Copyright Copyright c©2014 by International Society for Mathematical Sciences.
All rights reserved.

Categories Domestic Overseas Developing 
countries

1-year� Regular
member ￥8,000  US$80 ，Euro75  US$50， Euro47

1-year� Students 
member ￥4,000  US$50 ，Euro47  US$30 ，Euro28

Life member* Calculated
as below*  US$750 ，Euro710  US$440， Euro416

Honorary member Free Free Free

Membership Dues for ２０１9

　(Regarding submitted papers,we apply above presented new fee after April 15 in 
2015 on registoration date.) * Regular member between 63 - 73 years old can apply 
the category.
(73－age ) × ￥3,000
Regular member over 73 years old can maintain the qualification and the privileges 
of the ISMS members, if they wish.

Categories of 3-year members were abolished.
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