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AN INVESTIGATION OF UNITARILY INVARIANT NORM INEQUALITIES OF
LÖWNER–HEINZ TYPE

M. Fujii1, M.S. Moslehian2, R. Nakamoto3 and M. Tominaga4
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Abstract. We utilize some 2×2 matrix tricks to obtain several unitarily invariant norm inequali-
ties corresponding to the Löwner–Heinz inequality, the arithmetic–geometric mean inequality and
the Corach–Porta–Recht inequality. Among others, we establish some norm inequalities for uni-
tarily invariant norms implying an extended Löwner–Heinz inequality.

1 Introduction. Let B(H ) be the C∗-algebra of all bounded linear operators on a complex
Hilbert space (H , 〈·, ·〉) and let I be its identity. We write A ≥ 0 if A is a positive operator in the
sense that 〈Ax, x〉 ≥ 0 for all x ∈ H . Further, A ≥ B if A and B are self-adjoint and A − B ≥ 0.
By a strictly positive operator A, denoted by A > 0, we mean a positive operator being invertible. If

A,B are operators in B(H ), we write the direct sum A ⊕ B for the 2 × 2 operator matrix
[
A 0
0 B

]
,

regarded as an operator on H ⊕H . Let K(H ) denote the ideal of compact operators on H . For any
operator A ∈ K(H ), let s1(A), s2(A), · · · be the eigenvalues of |A| = (A∗A)

1
2 in decreasing order and

repeated according to multiplicity. If A ∈ Mn, we take sk(A) = 0 for k > n. A unitarily invariant
norm in K(H ) is a map ||| · ||| : K(H ) → [0,∞] given by |||A||| = g(s(A)), A ∈ K(H ), where g is a
symmetric gauge function; cf. [12]. The set I = I|||·||| = {A ∈ K(H ) : |||A||| < ∞} is a (two-sided)
ideal of B(H ) by the basic property (1) in the below. An operator A ∈ K(H ) is said to be in
the Schatten p-class Cp (1 ≤ p < ∞), if

∑
j sj(A)p < ∞. The Schatten p-norm of A is defined by

‖A‖p =
(∑

j sj(A)p
) 1

p

, which is a typical example of a unitarily invariant norm. Other examples of

unitarily invariant norms are the operator norm and the Ky Fan norms ‖A‖(k) :=
∑k

j=1 sj(A), k ∈ N
under decreasingly arranged on j. Some of basic properties are as follow:

(1) If B ∈ I, then |||B||| = ||||B|||| = |||B∗||| and |||ABC||| ≤ ‖A‖ |||B||| ‖C‖ for any A,C ∈ B(H ).

(2) It follows from the Fan dominance principle (see e.g. [1]) that |||A||| ≤ |||B||| for all unitarily
invariant norms if and only if |||A ⊕ 0||| ≤ |||B ⊕ 0||| for all unitarily invariant norms.

Let ΛkH be the subspace of the k-fold tensor product ⊗kH spanned by antisymmetric tensors.
Then the k-fold product ⊗kA of an operator A on H leaves this space invariant and the restriction of
⊗kA to it, denoted by ΛkA, is called the exterior power of A. Λk is multiplicative, ∗-preserving and
unital. We denote the weak-log majorization and the weak majorization , ≺w−log and ≺w, respectively.
The following relations among them are known; cf. [1]. Let X,Y ∈ K(H ). Then

|X| ≺w−log |Y | (i.e.,
∥∥ΛkX

∥∥ ≤
∥∥ΛkY

∥∥ for any k ≤ n)
⇒ |X| ≺w |Y | (i.e., ‖X‖(k) ≤ ‖Y ‖(k) for any k ≤ n).

So the Fan Dominance theorem is rephrased as

|X| ≺w−log |Y | =⇒ |||X||| ≤ |||Y ||| .

2010 Mathematics Subject Classification. Primary 47A30; Secondary 47A63,47B10,47B15.
Key words and phrases. Löwner–Heinz inequality, Heinz inequality, Corach–Porta–Recht inequality, unitarily in-

variant norm, norm inequality, positive operator.
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Now, let us pay attention to some literature reviews. The Heinz inequality states that for A,B,X ∈
B(H ) with A,B ≥ 0,

‖AX + XB‖ ≥
∥∥AαXB1−α + A1−αXBα

∥∥
for 0 ≤ α ≤ 1, which is one of essential inequalities in operator theory.

McIntosh [11] proved that for all A,B,X ∈ B(H ),

(1.1) ‖A∗AX + XB∗B‖ ≥ 2 ‖AXB∗‖ ,

which is called the arithmetic-geometric mean inequality; see also [7]. Bhatia and Kittaneh [4] proved
that (1.1) holds for any unitarily invariant norm.

If A ∈ B(H ) is invertible and self-adjoint, Corach et al. [6] proved that
∥∥A−1XA + AXA−1

∥∥ ≥ 2 ‖X‖

for every X ∈ B(H ). It plays a key role in the study of differential geometry of self-adjoint operators,
and it has been investigated in [8] as well as [5]. On the other hand, it is known that the Löwner–Heinz
inequality

A ≥ B ≥ 0 implies Ap ≥ Bp for all 0 ≤ p ≤ 1

is equivalent to the Araki–Cordes inequality (see [1], [8])

(1.2) ‖AB‖p ≥ ‖ApBp‖ for all A,B ≥ 0 and 0 ≤ p ≤ 1.

In particular, the case p = 1
2 in (1.2), i.e.

(1.3)
∥∥A2B2

∥∥ ≥
∥∥AB2A

∥∥ for all A,B ≥ 0,

is essential, which is implied by the Heinz inequality; see [7] and [8].
In this paper, we investigate several unitarily invariant norm inequalities corresponding to the

Löwner–Heinz inequality, the arithmetic–geometric mean inequality and the Corach–Porta–Recht in-
equality. Among others, we propose some norm inequalities for unitarily invariant norms implying an
extended Löwner–Heinz inequality.

2 Löwner–Heinz type inequalities. As stated in [1], a Heinz type inequality can be regarded
as the arithmetic–geometric mean inequality as follows: Let A ≥ 0 be a matrix and X a self-adjoint
matrix. Then

|||Re (αAX + (1 − α)XA)||| ≥
∣∣∣∣∣∣Re (AαXA1−α)

∣∣∣∣∣∣ for α ∈ [0, 1].

We note that the equivalence among Heinz type inequalities for matrices is discussed by Furuta
[9]. Now we recall some relations among the Heinz inequality, the Löwner–Heinz inequality and
corresponding norm inequalities for the operator norm ‖·‖; see [7]:

Heinz inequality ⇐⇒ ‖Re AX‖ ≥ ‖XA‖ if A ≥ 0 and XA is self-adjoint,
Löwner–Heinz inequality ⇐⇒ ‖AX‖ ≥ ‖XA‖ if A ≥ 0 and XA is self-adjoint.

In the above inequality, if we take X = AY for any Y = Y ∗, then we have the inequality
∥∥A2Y

∥∥ ≥
‖AY A‖ for A ≥ 0. In other word, we have

(2.1) ‖AX‖ ≥
∥∥∥A1/2XA1/2

∥∥∥ for A ≥ 0 and X = X∗.

Conversely, if we assume that (2.1) holds for A ≥ 0 and X = X∗, then it implies

‖AB‖ ≥
∥∥∥A1/2B1/2

∥∥∥
2

,

that is, (1.3) is obtained and so it ensures the Löwner–Heinz inequality. Namely it is proved that (2.1)
is equivalent to the Löwner–Heinz inequality.
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We here remark that (2.1) does not hold for nonselfadjoint X in general. As a matter of fact, we
have a counterexample as follows: Let

A =
(

1 0
0 2

)
and X =

(
0 3
1 0

)
.

Then ‖A2X‖ = 4 and ‖AXA‖ = 6.
In succession, we consider the convexity of the function

h(t) =
∥∥AtXA1−t

∥∥ for t ∈ [0, 1],

where A ≥ 0 and X = X∗.

Theorem 2.1. The function h(t) defined above is convex.

Proof. For µ < ν, we take t = (µ + ν)/2 and p = t − µ = ν − t > 0. Then

h(t)2 =
∥∥∥AtXA2(1−t)XAt

∥∥∥
= r(AtXA2(1−t)XAt) = r(AµXA1−µA1−νXAν)

≤
∥∥AµXA1−µA1−νXAν

∥∥
≤

∥∥AµXA1−µ
∥∥∥∥AνXA1−ν

∥∥ = h(µ) · h(ν),

where r(C) denotes the spectral radius of the operator C ∈ B(H ). Therefore

h(t) ≤ h(µ)1/2h(ν)1/2 ≤ 1
2
(h(µ) + h(ν))

so that the continuous function h(t) is convex.

Next we consider the function

(2.2) g(t) :=
∣∣∣∣∣∣AtXA1−t

∣∣∣∣∣∣ for t ∈ [0, 1],

where A ≥ 0 and X ∈ I with X = X∗. Here we remark that every normalized unitarily invariant
norm is submultiplicative (see [1, p.94]):

(2.3) |||AB||| ≤ |||A||| · |||B||| for all A,B ∈ K(H ).

Corollary 2.2. If |||·||| is normalized and X = X∗, then the function g(t) defined in (2.2) is log-convex
on [0, 1] and is symmetric at 1

2 . Consequently, g(t) is convex for arbitrary unitarily invariant norm
and so g(t) ≥ g( 1

2 ).

Proof. As in the proof of Theorem 2.1, we have, under the same notation,
∥∥Λk(AtXA1−t)

∥∥2
=

∥∥(ΛkAt)(ΛkX)(ΛkA1−t)
∥∥2

≤
∥∥(ΛkAµ)(ΛkX)(ΛkA1−µ)(ΛkA1−ν)(ΛkX)(ΛkAν)

∥∥
=

∥∥Λk(AµXA1−µ · A1−νXAν)
∥∥ ,

whence ∣∣∣∣∣∣AtXA1−t
∣∣∣∣∣∣2 ≤

∣∣∣∣∣∣AµXA1−µ · A1−νXAν
∣∣∣∣∣∣ .

Moreover, since every normalized unitarily invariant norm is submultiplicative, we get
∣∣∣∣∣∣AtXA1−t

∣∣∣∣∣∣2 ≤
∣∣∣∣∣∣AµXA1−µ

∣∣∣∣∣∣ ∣∣∣∣∣∣A1−νXAν
∣∣∣∣∣∣ ,

that is, g(t)2 ≤ g(µ)g(ν). Therefore g(t) is log-convex and so

g(t) ≤ 1
2
(g(µ) + g(ν)).

Hence the continuous function g(t) is convex. In addition, since the convexity is invariant under
positive scalar multiple, g(t) is convex for any arbitrary unitarily invariant norm.
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As a result, the following inequalities are obtained:

Corollary 2.3. (1) The following inequality holds:

(2.4) |||AX||| ≥
∣∣∣∣∣∣AαXA1−α

∣∣∣∣∣∣ for A ≥ 0, X = X∗ ∈ I and 0 ≤ α ≤ 1.

(2) The function g(t) defined in (2.2) is monotone decreasing on [0, 1
2 ] and monotone increasing

on [12 , 1] and consequently

∣∣∣∣∣∣AtXA1−t
∣∣∣∣∣∣ ≥

∣∣∣
∣∣∣
∣∣∣A 1

2 XA
1
2

∣∣∣
∣∣∣
∣∣∣ (0 ≤ t ≤ 1) and |||AX||| ≥

∣∣∣
∣∣∣
∣∣∣A 1

2 XA
1
2

∣∣∣
∣∣∣
∣∣∣ .

Remark 2.4. We should mention that inequality (2.4) follows from [2, Theorem 2], and (2) of Corol-
lary 2.3 follows from the generalized Heinz inequality proved by Bhatia and Davis in [3], but our both
approaches are rather different.

Under these preparations, we have several Löwner–Heinz type inequalities as follows:

Theorem 2.5. The following mutually equivalent inequalities hold:
∣∣∣∣∣∣AXA−1

∣∣∣∣∣∣ ≥ |||X||| for any invertible A and X = X∗ ∈ I;(2.5)

|||AX||| ≥ |||XA||| for any invertible A and X ∈ I such that XA is selfadjoint;(2.6)

|||AA∗X||| ≥ |||A∗XA||| for any invertible A and X = X∗ ∈ I.(2.7)

Proof. First of all, by putting α = 1
2 and replacing A by AA∗ = |A∗|2 in (2.4), (2.7) is obtained:

|||AA∗X||| ≥ ||||A∗|X|A∗|||| = |||A∗XA|||

because A∗ = U |A∗| with unitary U .
Next we show that (2.5) ⇒ (2.6) ⇒ (2.7) ⇒ (2.5).
(2.5) ⇒ (2.6): Since XA is selfadjoint, it follows from (2.5) that

|||XA||| ≤
∣∣∣∣∣∣A(XA)A−1

∣∣∣∣∣∣ = |||AX||| .

(2.6) ⇒ (2.7): Since a given X is selfadjoint, so is A∗XA. Hence (2.7) is obtained by replacing X
by X1 = A∗X in (2.6), that is,

|||AA∗X||| = |||AX1||| ≥ |||X1A||| = |||A∗XA||| .

(2.7) ⇒ (2.5): It is obtained by replacing X by A∗−1XA−1 in (2.7).

Theorem 2.6. For A,B ≥ 0 and X ∈ I it holds that

|||AX ⊕ BX∗||| ≥
∣∣∣∣∣∣AαXB1−α ⊕ BαX∗A1−α

∣∣∣∣∣∣ for 0 ≤ α ≤ 1.(2.8)

Consequently,

(2.9)
∣∣∣∣∣∣A2m+nXB−n ⊕ B2m+nX∗A−n

∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣A2mX ⊕ B2mX∗∣∣∣∣∣∣ ,

where m,n are arbitrary nonnegative integers.

Proof. We note that

|||AX ⊕ BX∗||| =
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
AX 0
0 BX∗

]∣∣∣∣
∣∣∣∣
∣∣∣∣
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=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
A 0
0 B

] [
X 0
0 X∗

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
A 0
0 B

] [
X 0
0 X∗

] [
0 I
I 0

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
A 0
0 B

] [
0 X

X∗ 0

]∣∣∣∣
∣∣∣∣
∣∣∣∣

and
∣∣∣∣∣∣AαXB1−α ⊕ BαX∗A1−α

∣∣∣∣∣∣ =
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
Aα 0
0 Bα

] [
X 0
0 X∗

] [
B1−α 0

0 A1−α

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
Aα 0
0 Bα

] [
X 0
0 X∗

] [
0 I
I 0

] [
0 I
I 0

] [
B1−α 0

0 A1−α

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
Aα 0
0 Bα

] [
0 X

X∗ 0

] [
A1−α 0

0 B1−α

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
[
A 0
0 B

]α [
0 X

X∗ 0

] [
A 0
0 B

]1−α
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ .

Hence the desired inequality (2.8) is ensured by (2.4). Inequality (2.9) can be obtained from (2.8) if we
replace A, B, X by A2m+2n, B2m+2n, A−nXB−n, respectively and put α = (2m+n)(2m+2n)−1.

Remark 2.7. Related to inequality (2.8), we have the following complementary inequality:
∣∣∣∣∣∣AβXB1−β ⊕ BβX∗A1−β

∣∣∣∣∣∣ ≥ |||AX ⊕ BX∗||| (β �∈ (0, 1)).

Indeed, it can be shown by replacing A, B, X and α by A2β−1, B2β−1, A1−βXB1−β and β
2β−1 ,

respectively in (2.8).
If A and B are positive invertible, then (2.7) holds for β �∈ (0, 1).

Corollary 2.8. The following inequalities hold and equivalent:

|||A∗AX ⊕ B∗BX∗||| ≥ |||AXB∗ ⊕ BX∗A∗||| for A,B ∈ B(H ) and X ∈ I;(2.10) ∣∣∣∣∣∣AXB−1 ⊕ BX∗A−1
∣∣∣∣∣∣ ≥ |||X ⊕ X∗||| for any invertible A, B and X ∈ I.(2.11)

Proof. First of all, we show (2.10) by utilizing (2.8). Let A = U |A| and B = V |B| be the polar
decompositions of A and B, respectively. We replace A and B by A∗A and B∗B, respectively, in (2.8)
and put α = 1

2 . Then we have

|||A∗AX ⊕ B∗BX∗||| ≥ ||||A|X|B| ⊕ |B|X∗|A||||
= ‖U ⊕ V ‖ ||||A|X|B| ⊕ |B|X∗|A|||| ‖V ∗ ⊕ U∗‖
≥ |||(U ⊕ V )(|A|X|B| ⊕ |B|X∗|A|)(V ∗ ⊕ U∗)|||
= |||AXB∗ ⊕ BX∗A∗||| .(2.12)

Next (2.10) ⇒ (2.11) has been mentioned in [10]. We state its proof for the sake of completeness.
Replacing X by A−1XB∗−1 in (2.10), we have

∣∣∣∣∣∣A∗XB∗−1 ⊕ B∗X∗A∗−1
∣∣∣∣∣∣ ≥ |||X ⊕ X∗||| ,

so that (2.11) is obtained by replacing A∗ and B∗ by A and B, respectively.
Finally we show (2.11) ⇒ (2.10). Let A = U |A| and B = V |B| be the polar decompositions of A

and B. We may assume that |A|, |B| are invertible. It follows from (2.11) that

|||A∗AX ⊕ B∗BX∗||| =
∣∣∣∣∣∣|A|(|A|X|B|)|B|−1 ⊕ |B|(|B|X∗|A|)|A|−1

∣∣∣∣∣∣
≥ ||||A|X|B| ⊕ |B|X∗|A||||
≥ |||AXB∗ ⊕ BX∗A∗|||

as we observed in (2.12).
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=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
A 0
0 B

] [
X 0
0 X∗

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
A 0
0 B

] [
X 0
0 X∗

] [
0 I
I 0

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
A 0
0 B

] [
0 X

X∗ 0

]∣∣∣∣
∣∣∣∣
∣∣∣∣

and
∣∣∣∣∣∣AαXB1−α ⊕ BαX∗A1−α

∣∣∣∣∣∣ =
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
Aα 0
0 Bα

] [
X 0
0 X∗

] [
B1−α 0

0 A1−α

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
Aα 0
0 Bα

] [
X 0
0 X∗

] [
0 I
I 0

] [
0 I
I 0

] [
B1−α 0

0 A1−α

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[
Aα 0
0 Bα

] [
0 X

X∗ 0

] [
A1−α 0

0 B1−α

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
[
A 0
0 B

]α [
0 X

X∗ 0

] [
A 0
0 B

]1−α
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ .

Hence the desired inequality (2.8) is ensured by (2.4). Inequality (2.9) can be obtained from (2.8) if we
replace A, B, X by A2m+2n, B2m+2n, A−nXB−n, respectively and put α = (2m+n)(2m+2n)−1.

Remark 2.7. Related to inequality (2.8), we have the following complementary inequality:
∣∣∣∣∣∣AβXB1−β ⊕ BβX∗A1−β

∣∣∣∣∣∣ ≥ |||AX ⊕ BX∗||| (β �∈ (0, 1)).

Indeed, it can be shown by replacing A, B, X and α by A2β−1, B2β−1, A1−βXB1−β and β
2β−1 ,

respectively in (2.8).
If A and B are positive invertible, then (2.7) holds for β �∈ (0, 1).

Corollary 2.8. The following inequalities hold and equivalent:

|||A∗AX ⊕ B∗BX∗||| ≥ |||AXB∗ ⊕ BX∗A∗||| for A,B ∈ B(H ) and X ∈ I;(2.10) ∣∣∣∣∣∣AXB−1 ⊕ BX∗A−1
∣∣∣∣∣∣ ≥ |||X ⊕ X∗||| for any invertible A, B and X ∈ I.(2.11)

Proof. First of all, we show (2.10) by utilizing (2.8). Let A = U |A| and B = V |B| be the polar
decompositions of A and B, respectively. We replace A and B by A∗A and B∗B, respectively, in (2.8)
and put α = 1

2 . Then we have

|||A∗AX ⊕ B∗BX∗||| ≥ ||||A|X|B| ⊕ |B|X∗|A||||
= ‖U ⊕ V ‖ ||||A|X|B| ⊕ |B|X∗|A|||| ‖V ∗ ⊕ U∗‖
≥ |||(U ⊕ V )(|A|X|B| ⊕ |B|X∗|A|)(V ∗ ⊕ U∗)|||
= |||AXB∗ ⊕ BX∗A∗||| .(2.12)

Next (2.10) ⇒ (2.11) has been mentioned in [10]. We state its proof for the sake of completeness.
Replacing X by A−1XB∗−1 in (2.10), we have

∣∣∣∣∣∣A∗XB∗−1 ⊕ B∗X∗A∗−1
∣∣∣∣∣∣ ≥ |||X ⊕ X∗||| ,

so that (2.11) is obtained by replacing A∗ and B∗ by A and B, respectively.
Finally we show (2.11) ⇒ (2.10). Let A = U |A| and B = V |B| be the polar decompositions of A

and B. We may assume that |A|, |B| are invertible. It follows from (2.11) that

|||A∗AX ⊕ B∗BX∗||| =
∣∣∣∣∣∣|A|(|A|X|B|)|B|−1 ⊕ |B|(|B|X∗|A|)|A|−1

∣∣∣∣∣∣
≥ ||||A|X|B| ⊕ |B|X∗|A||||
≥ |||AXB∗ ⊕ BX∗A∗|||

as we observed in (2.12).
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Remark 2.9. We comment that (2.11) is implied by (2.7). Put C =
[
A 0
0 B

]
and Y =

[
0 X

X∗ 0

]
. It

follows from (2.7) that

∣∣∣∣∣∣AXB−1 ⊕ BX∗A−1
∣∣∣∣∣∣ =

∣∣∣∣
∣∣∣∣
∣∣∣∣
[

0 AXB−1

BX∗A−1 0

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣∣∣CY C−1

∣∣∣∣∣∣ =
∣∣∣∣∣∣C2(C−1Y C−1)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣C(C−1Y C−1)C
∣∣∣∣∣∣ = |||Y ||| = |||X ⊕ X∗||| .
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Abstract. Let a random distribution P on the real line R have the mixture of Dirich-
let processes. Let S(n) = (S1, · · · , Sn) be the random partition of the positive integer
n based on a sample of size n from P. For the number Kn = S1 + · · · + Sn of distinct
observations among the sample, Yamato (2012) gives the asymptotic distribution of
Kn and the rate O(1/ log1/3 n) of its convergence. In this pager we give the Edgeworth
expansion for Kn with the rate O(1/ log2/5 n) and the rate O(1/ log3/7 n).

1 Introduction. Let H0 be a continuous distribution on the real line R and B be the
σ-field which consists of the subsets of R. Let θ be a positive random variable having the
distribution γ. Given θ, let the random distribution P have the Dirichlet process D(θH0)
on (R, B) with parameters θ and H0. Then this random distribution P has the mixture of
Dirichlet processes D(θH0) with the mixing distribution γ (Antoniak (1974)). For a sample
of size n from the random distribution P, S1 denotes the number of observations which
occur only once, S2 the number of observations which occur exactly twice, ... and so on.
Then Kn = S1 + · · · + Sn denotes the number of distinct observations among the sample.
For the convergence of Kn, Yamato (2012) gives

sup
−∞<x<∞

����P
(

Kn

log n
≤ x

)
− γ(x)

���� = O

(
1

log1/3 n

)
.

In case the distribution γ is degenerate at θ0, that is the θ equals to a positive constant
θ0, the random distribution P has the Dirichlet process D(θ0H0). Then, Kn has the well-
known Ewens sampling formula and the asymptotic normality, whose Edgeworth expansion
is given by

P

(
Kn − θ0 log n√

θ0 log n
≤ x

)
= Φ(x) − 1

6
√

θ0 log n
φ(x)

[
x2 − 1 − 6θ0ψ(θ0)

]
+ O

(
1

log n

)
,

which holds uniformly in x ∈ R (Yamato (2013))       Φ and φ are the distribution func-
tion and the density function of the standard normal distribution, respectively, and ψ is the
digamma function defined by ψ(x) = Γ

′
(x)/Γ(x), where Γ(x) is the gamma function. The

purpose of this paper is to give the Edgeworth expansion for Kn, in case P has the mixture
of Dirichlet processes D(θH0) with the mixing distribution γ which is not degenerate. We
denote the distribution function (d.f) of the distribution γ by G(x). Let g be the bounded
density function of the d.f. G.

In the section 2 , we give the Edgeworth expansion for Kn with the rate O(1/ log2/5 n).
In the section 3, we give it with the rate O(1/ log3/7 n). In the section 4, we show numerical
examples.

2000 Mathematics Subject Classification. Primary 62E20; Secondary 60E99.
Key words and phrases. Edgeworth expansion, mixture of Dirichlet processes, random partition, rate

of convergence, smoothing lemma.
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2 The Edgeworth expansion with the rate 1/ log2/5 n. We first note the random
variable P ∗

n , which has the Poisson distribution with the mean θ(log n−ψ(θ)), given θ. By
Lemma 2.1 of Yamato (2013), we have

Lemma 2.1 Under the condition that Eγθ and Eγθ−1 are finite ,

(2.1) sup
B⊂Z+

��P (Kn ∈ B) − P (P ∗
n ∈ B)

�� = O

(
1

log n

)
, n → ∞,

where where Z+ = {0, 1, 2, · · · } and Eγ denotes the expectation with respect to the distribu-
tion γ.

In this section 2, we suppose that Eγ(θ−1), Eγ(θ2), and Eγ [θ2ψ(θ)2] exist. The following
conditions are necessary for the proof of the proposition 2.2 using the smoothing lemma (see,
for example, Petrov (1995; Theorem 5.2)); (i) g(x) is twice differentiable, (ii) xψ(x+1)g(x),
g(x) and xg′(x) are the functions of bounded variation, (iii) g′(x), xg′′(x) and [xψ(x +
1)g(x)]′ are bounded, and (iv) g(x) → 0, xg′(x) → 0 as x → 0, and xψ(x + 1)g(x) → 0,
xg′(x) → 0 as x → +∞. Note that for x ≥ 0, ψ(x + 1) is monotone increasing and
ψ(x + 1) ≥ ψ(1), where −ψ(1) equals Euler’s constant (= 0.57721 · · · ). Then we have

Proposition 2.2 For n > 3, we have

(2.2) sup
−∞<x<∞

�����P
(

Kn

log n
≤ x

)
−

[
G(x) +

1
2 log n

{[
2xψ(x + 1) − 1

]
g(x) + xg′(x)

}]�����

= O

(
1

log2/5 n

)
.

In the following proof, we use the well-known relations for any complex number z such that

ez = 1 + z +
c1

2
| z |2,(2.3)

= 1 + z +
1
2
z2 +

c2

6
| z |3,(2.4)

where for i = 1, 2 ci is a complex number satisfying | ci |≤ 1 .

Proof of Proposition 2.2. Given θ, the characteristic function of P ∗
n/ log n is given

by the following; For −∞ < t < ∞,

(2.5) E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp

{
θ[log n − ψ(θ)

][
eit/ log n − 1

]}
,

which is written as

= exp θ

{[
log n − ψ(θ)

][ it

log n
− t2

2 log2 n
+

c1n

6
| t |3

log3 n

]}

by (2.4), where c1n is a complex number such that | c1n |≤ 1. Thus we have

(2.6) E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp θ{it + A1} = eitθ × eθA1

where

A1 = −ψ(θ)
it

log n
− t2

2 log n
+ ψ(θ)

t2

2 log2 n
+

c1n

6
| t |3

log2 n
− ψ(θ)

c1n

6
| t |3

log3 n
.

:

:
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where d11 is a positive constant. Since Eγeitθ is the characteristic function of the distribution
function G, that is, it is the Fourier transform of the distribution function G(x). Similarly,
−itEγ [θψ(θ)eitθ] is the Fourier transform of the function xψ(x)g(x), and −t2Eγ [θeitθ] is
the Fourier transform of the function {xg(x)}′

= g(x) + xg
′
(x). Therefore, by applying the

smoothing lemma to (2.12), we have the following.

(2.13) sup
x

�����P
(

P ∗
n

log n
≤ x

)
−

[
G(x) +

1
log n

xψ(x)g(x) +
1

2 log n

{
g(x) + xg′(x)

}]�����

≤ d11

log4/5 n

∫ log2/5 n

0

dt +
d12

log2/5 n
= O

(
1

log2/5 n

)
,

where d12 is positive constant depending only on d11. We get (2.2) by (2.1) and (2.13),
using the relation xψ(x) = xψ(x + 1) − 1.

3 The Edgeworth expansion with the rate 1/ log3/7 n. In addition to the assump-
tion of the section 2, we assume that g(x) is differentiable four times, {x2g(x)}3 is the
function of bounded variation and {x2g(x)}4 is bounded. Besides, we suppose Eγ(θ3) and
E[θ3|ψ(θ)|3] exist. Then we have

Proposition 3.1 For n > 3, we have

(3.1) sup
−∞<x<∞

�����P
(

Kn

log n
≤ x

)
−

[
G(x) +

1
2 log n

{[
2xψ(x + 1) − 1

]
g(x) + xg′(x)

}

+
1

8 log2 n
{x2g(x)}(3)

]����� = O

(
1

log3/7 n

)
.

In the following proof, in addition to (2.4) we use the well-known relation for any complex
number z such that

(3.2) ez = 1 + z +
1
2
z2 +

1
6
z3 +

c3

24
| z |4,

where c3 is a complex number satisfying | c3 |≤ 1.

Proof of Proposition 3.1. Given θ, the characteristic function (2.5) of P ∗
n/ log n is

written as

E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp

{
θ[log n − ψ(θ)]

[
it

log n
− t2

2 log2 n
− it3

6 log3 n
+

c3n

24
t4

log4 n

]}
,

by (3.2), where −∞ < t < ∞ and c3n is a complex number satisfying | c3n |≤ 1. Thus we
can write

(3.3) E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp θ{it + A2} = eitθ × eθA2 ,

where

A2 = −ψ(θ)
it

log n
− t2

2 log n
+ψ(θ)

t2

2 log2 n
− it3

6 log2 n
+ψ(θ)

it3

6 log3 n
+

c3n

24
t4

log3 n
−c3n

24
ψ(θ)

t4

log4 n
.

:
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By using (2.3) to the term eθA1 of the right-hand side of (2.6), we have

E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= eitθ

{
1 + θA1 +

c2n(θ)
2

θ2 | A1 |2
}

,

where c2n(θ) is a complex number such that | c2n(θ) |≤ 1. This is written as

E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= eitθ

{
1 − θψ(θ)

it

log n
− θt2

2 log n
+ B1

}
,

where

(2.7) B1 = θB10 +
c2n(θ)

2
θ2 | A1 |2, B10 =

[
ψ(θ)

t2

2 log2 n
+

c1n

6
| t |3

log2 n
−ψ(θ)

c1n

6
| t |3

log3 n

]
.

Thus we get

(2.8)

�����E
[

exp
{

it
P ∗

n

log n

} ��� θ

]
− eitθ

{
1 − θψ(θ)

it

log n
− θt2

2 log n

}����� ≤ | B1 | .

About B10, for | t |< log2/5 n (n > 3) we have

(2.9) | B10 |≤ | t |
log4/5 n

[
1
6

+
2
3
| ψ(θ) |

]
,

because of the following relations,

| t |
log2 n

<
1

log8/5 n
<

1

log4/5 n
,

t2

log2 n
<

1

log6/5 n
<

1

log4/5 n
and

t2

log3 n
<

1

log4/5 n
.

The similar inequalities to these are used, hereafter. About |A1|, for |t| < log2/5 n (n > 3),
by t2 < log n and log n > 1 we have

| A1 |2 ≤
{

| ψ(θ) | | t |
log n

+
t2

2 log n
+ | ψ(θ) | t2

2 log n
+

| t |
6 log n

+ | ψ(θ) | | t |
6 log n

}2

=
{ (

7
6
| ψ(θ) | +

1
6

)
| t |
log n

+
(
| ψ(θ) | +1

) t2

2 log n

}2

≤ 2
{(

7
6
| ψ(θ) | +

1
6

)2
t2

log2 n
+

(
| ψ(θ) | +1

)2 t4

4 log2 n

}

≤ 2
{(

7
6
| ψ(θ) | +

1
6

)2

+
1
4
(
| ψ(θ) | +1

)2
}

| t |
log4/5 n

.(2.10)

By applying (2.9) and (2.10) to (2.7), for |t| < log2/5 n (n > 3),

(2.11) | B1 |≤ | t |
log4/5 n

[
1
6
θ +

2
3
θ | ψ(θ) | +

{(
7
6
θ | ψ(θ) | +

1
6
θ

)2

+
1
4
(
θ | ψ(θ) | +θ

)2
}]

.

Therefore, for |t| < log2/5 n (n > 3), by Eγ(θ2) and Eγ [θ2ψ(θ)2] < ∞, (2.8) and (2.11) yield
(2.12)����E

[
exp

{
it

P ∗
n

log n

}]
−

{
Eγeitθ − it

log n
Eγ

[
θψ(θ)eitθ

]
− t2

2 log n
Eγ

[
θeitθ

]}���� ≤ d11
| t |

log4/5 n
,
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where d11 is a positive constant. Since Eγeitθ is the characteristic function of the distribution
function G, that is, it is the Fourier transform of the distribution function G(x). Similarly,
−itEγ [θψ(θ)eitθ] is the Fourier transform of the function xψ(x)g(x), and −t2Eγ [θeitθ] is
the Fourier transform of the function {xg(x)}′

= g(x) + xg
′
(x). Therefore, by applying the

smoothing lemma to (2.12), we have the following.

(2.13) sup
x

�����P
(

P ∗
n

log n
≤ x

)
−

[
G(x) +

1
log n

xψ(x)g(x) +
1

2 log n

{
g(x) + xg′(x)

}]�����

≤ d11

log4/5 n

∫ log2/5 n

0

dt +
d12

log2/5 n
= O

(
1

log2/5 n

)
,

where d12 is positive constant depending only on d11. We get (2.2) by (2.1) and (2.13),
using the relation xψ(x) = xψ(x + 1) − 1.

3 The Edgeworth expansion with the rate 1/ log3/7 n. In addition to the assump-
tion of the section 2, we assume that g(x) is differentiable four times, {x2g(x)}3 is the
function of bounded variation and {x2g(x)}4 is bounded. Besides, we suppose Eγ(θ3) and
E[θ3|ψ(θ)|3] exist. Then we have

Proposition 3.1 For n > 3, we have

(3.1) sup
−∞<x<∞

�����P
(

Kn

log n
≤ x

)
−

[
G(x) +

1
2 log n

{[
2xψ(x + 1) − 1

]
g(x) + xg′(x)

}

+
1

8 log2 n
{x2g(x)}(3)

]����� = O

(
1

log3/7 n

)
.

In the following proof, in addition to (2.4) we use the well-known relation for any complex
number z such that

(3.2) ez = 1 + z +
1
2
z2 +

1
6
z3 +

c3

24
| z |4,

where c3 is a complex number satisfying | c3 |≤ 1.

Proof of Proposition 3.1. Given θ, the characteristic function (2.5) of P ∗
n/ log n is

written as

E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp

{
θ[log n − ψ(θ)]

[
it

log n
− t2

2 log2 n
− it3

6 log3 n
+

c3n

24
t4

log4 n

]}
,

by (3.2), where −∞ < t < ∞ and c3n is a complex number satisfying | c3n |≤ 1. Thus we
can write

(3.3) E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp θ{it + A2} = eitθ × eθA2 ,

where

A2 = −ψ(θ)
it

log n
− t2

2 log n
+ψ(θ)

t2

2 log2 n
− it3

6 log2 n
+ψ(θ)

it3

6 log3 n
+

c3n

24
t4

log3 n
−c3n

24
ψ(θ)

t4

log4 n
.

:
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where d11 is a positive constant. Since Eγeitθ is the characteristic function of the distribution
function G, that is, it is the Fourier transform of the distribution function G(x). Similarly,
−itEγ [θψ(θ)eitθ] is the Fourier transform of the function xψ(x)g(x), and −t2Eγ [θeitθ] is
the Fourier transform of the function {xg(x)}′

= g(x) + xg
′
(x). Therefore, by applying the

smoothing lemma to (2.12), we have the following.

(2.13) sup
x

�����P
(

P ∗
n

log n
≤ x

)
−

[
G(x) +

1
log n

xψ(x)g(x) +
1

2 log n

{
g(x) + xg′(x)

}]�����

≤ d11

log4/5 n

∫ log2/5 n

0

dt +
d12

log2/5 n
= O

(
1

log2/5 n

)
,

where d12 is positive constant depending only on d11. We get (2.2) by (2.1) and (2.13),
using the relation xψ(x) = xψ(x + 1) − 1.

3 The Edgeworth expansion with the rate 1/ log3/7 n. In addition to the assump-
tion of the section 2, we assume that g(x) is differentiable four times, {x2g(x)}3 is the
function of bounded variation and {x2g(x)}4 is bounded. Besides, we suppose Eγ(θ3) and
E[θ3|ψ(θ)|3] exist. Then we have

Proposition 3.1 For n > 3, we have

(3.1) sup
−∞<x<∞

�����P
(

Kn

log n
≤ x

)
−

[
G(x) +

1
2 log n

{[
2xψ(x + 1) − 1

]
g(x) + xg′(x)

}

+
1

8 log2 n
{x2g(x)}(3)

]����� = O

(
1

log3/7 n

)
.

In the following proof, in addition to (2.4) we use the well-known relation for any complex
number z such that

(3.2) ez = 1 + z +
1
2
z2 +

1
6
z3 +

c3

24
| z |4,

where c3 is a complex number satisfying | c3 |≤ 1.

Proof of Proposition 3.1. Given θ, the characteristic function (2.5) of P ∗
n/ log n is

written as

E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp

{
θ[log n − ψ(θ)]

[
it

log n
− t2

2 log2 n
− it3

6 log3 n
+

c3n

24
t4

log4 n

]}
,

by (3.2), where −∞ < t < ∞ and c3n is a complex number satisfying | c3n |≤ 1. Thus we
can write

(3.3) E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp θ{it + A2} = eitθ × eθA2 ,

where

A2 = −ψ(θ)
it

log n
− t2

2 log n
+ψ(θ)

t2

2 log2 n
− it3

6 log2 n
+ψ(θ)

it3

6 log3 n
+

c3n

24
t4

log3 n
−c3n

24
ψ(θ)

t4

log4 n
.

:
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By using (2.4) to the term eθA2 of the right-hand side of (3.3), we have

E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= eitθ

{
1 + θA2 +

1
2
θ2A2

2 +
c4n(θ)

6
θ3 | A2 |3

}
,

where c4n(θ) is a complex number such that | c4n(θ) |≤ 1. This is written as

(3.4) E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= eitθ

{
1 − θψ(θ)

it

log n
− θt2

2 log n
+

θ2t4

8 log2 n
+ B2

}
,

where

B2 = θB21 +
θ2

2
B22 +

c4n(θ)
6

θ3 | A2 |3,

B21 = ψ(θ)
t2

2 log2 n
− it3

6 log2 n
+ ψ(θ)

it3

6 log3 n
+

c3n

24
t4

log3 n
− c3n

24
ψ(θ)

t4

log4 n
,

B22 = A2
2 −

t4

4 log2 n
.

For |t| < log3/7 n (n > 3), by |t| < log1/2 n we have

(3.5) | B21 |≤
(

5
24

+
17
24

| ψ(θ) |
)

| t |
log n

<

(
5
24

+
17
24

| ψ(θ) |
)

| t |
log6/7 n

.

About | A2 |, at first for |t| < log3/7 n (n > 3), by |t| < log1/2 n we have

| A2 |≤| ψ(θ) | | t |
log n

+
t2

2 log n
+ | ψ(θ) | t2

2 log2 n
+

| t |3

6 log2 n

+ | ψ(θ) | | t |3

6 log3 n
+

t4

24 log3 n
+ | ψ(θ) | t4

24 log4 n

≤| ψ(θ) | | t |
log n

+
t2

2 log n
+ | ψ(θ) | | t |

2 log3/2 n
+

| t |
6 log n

+ | ψ(θ) | | t |
6 log2 n

+
| t |

24 log3/2 n
+ | ψ(θ) | | t |

24 log5/2 n
.

Thus, for |t| < log3/7 n (n > 3), we have

(3.6) | A2 |≤ | t |
log n

η(θ) +
t2

2 log n
where η(θ) =

41
24

| ψ(θ) | +
5
24

.

Therefore, for |t| < log3/7 n (n > 3) we have

(3.7) | A2 |3≤ 4
{

| t |3

log3 n
η(θ)3 +

t6

8 log3 n

}
≤ 4

{
η(θ)3 +

1
8

}
| t |

log6/7 n
.

For the evaluation of B22, at first we write A2 as

A2 = − t2

2 log n
+ A21
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where

A21 = −ψ(θ)
it

log n
+ ψ(θ)

t2

2 log2 n
− it3

6 log2 n
+ ψ(θ)

it3

6 log3 n
+

c3n

24
t4

log3 n
− c3n

24
ψ(θ)

t4

log4 n
.

Then we

(3.8) | B22 |≤ t2

log n
| A21 | + | A21 |2 .

We note that A21 is obtained by deleting −t2/(2 log n) from A2. Similarly to (3.6), for
|t| < log3/7 n (n > 3), we have

(3.9) | A21 |≤ | t |
log n

η(θ).

Applying (3.9) to (3.8), for |t| < log3/7 n (n > 3), we have

(3.10) | B22 |≤ | t |3

log2 n
η(θ) +

t2

log2 n
η(θ)2 ≤

{
η(θ) + η(θ)2

} | t |
log n

.

From (3.4) we get

(3.11)
����E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
− eitθ

{
1 − θψ(θ)

it

log n
− θt2

2 log n
+

θ2t4

8 log2 n

}���� ≤ B2,

and from (3.5), (3.7) and (3.10) we have

(3.12) | B2 |≤ θ

(
5
24

+
17
24

| ψ(θ) |
)

| t |
log6/7 n

+
1
2
θ2

{
η(θ) + η(θ)2

} | t |
log n

+
2
3
θ3

{
η(θ)3 +

1
8

}
| t |

log6/7 n
.

Therefore, for |t| < log3/7 n (n > 3), under the condition Eγ(θ3), Eγ [θ3|ψ(θ)|3] < ∞, (3.11)
and (3.12) give

�����E
[

exp
{

it
P ∗

n

log n

}]
−

{
Eγeitθ − it

log n
Eγ

[
θψ(θ)eitθ

]

− t2

2 log n
Eγ

[
θeitθ

]
+

t4

8 log2 n
Eγ

[
θ2eitθ

]}
����� ≤ d21

|t|
log6/7 n

,

where d21 is a positive constant. Since t4Eγ [θ2eitθ] is the Fourier transform of the function
{xg(x)}(3), by the reason similar to (2.13) we have

(3.13) sup
x

�����P
(

P ∗
n

log n
≤ x

)
−

[
G(x) +

1
log n

xψ(x)g(x) +
1

2 log n

{
g(x) + xg′(x)

}

+
1

8 log2 n
{x2g(x)}(3)

]����� = O

(
1

log3/7 n

)
.

Therefore we get (3.1) by (2.1) and (3.13), using the relation xψ(x) = xψ(x + 1) − 1.
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where d11 is a positive constant. Since Eγeitθ is the characteristic function of the distribution
function G, that is, it is the Fourier transform of the distribution function G(x). Similarly,
−itEγ [θψ(θ)eitθ] is the Fourier transform of the function xψ(x)g(x), and −t2Eγ [θeitθ] is
the Fourier transform of the function {xg(x)}′

= g(x) + xg
′
(x). Therefore, by applying the

smoothing lemma to (2.12), we have the following.

(2.13) sup
x

�����P
(

P ∗
n

log n
≤ x

)
−

[
G(x) +

1
log n

xψ(x)g(x) +
1

2 log n

{
g(x) + xg′(x)

}]�����

≤ d11

log4/5 n

∫ log2/5 n

0

dt +
d12

log2/5 n
= O

(
1

log2/5 n

)
,

where d12 is positive constant depending only on d11. We get (2.2) by (2.1) and (2.13),
using the relation xψ(x) = xψ(x + 1) − 1.

3 The Edgeworth expansion with the rate 1/ log3/7 n. In addition to the assump-
tion of the section 2, we assume that g(x) is differentiable four times, {x2g(x)}3 is the
function of bounded variation and {x2g(x)}4 is bounded. Besides, we suppose Eγ(θ3) and
E[θ3|ψ(θ)|3] exist. Then we have

Proposition 3.1 For n > 3, we have

(3.1) sup
−∞<x<∞

�����P
(

Kn

log n
≤ x

)
−

[
G(x) +

1
2 log n

{[
2xψ(x + 1) − 1

]
g(x) + xg′(x)

}

+
1

8 log2 n
{x2g(x)}(3)

]����� = O

(
1

log3/7 n

)
.

In the following proof, in addition to (2.4) we use the well-known relation for any complex
number z such that

(3.2) ez = 1 + z +
1
2
z2 +

1
6
z3 +

c3

24
| z |4,

where c3 is a complex number satisfying | c3 |≤ 1.

Proof of Proposition 3.1. Given θ, the characteristic function (2.5) of P ∗
n/ log n is

written as

E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp

{
θ[log n − ψ(θ)]

[
it

log n
− t2

2 log2 n
− it3

6 log3 n
+

c3n

24
t4

log4 n

]}
,

by (3.2), where −∞ < t < ∞ and c3n is a complex number satisfying | c3n |≤ 1. Thus we
can write

(3.3) E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp θ{it + A2} = eitθ × eθA2 ,

where

A2 = −ψ(θ)
it

log n
− t2

2 log n
+ψ(θ)

t2

2 log2 n
− it3

6 log2 n
+ψ(θ)

it3

6 log3 n
+

c3n

24
t4

log3 n
−c3n

24
ψ(θ)

t4

log4 n
.

:
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4 numerical examples. We examine the Propositions 2.2 and 3.1 graphically by using
the gamma distribution as γ whose density is given by gc(x) = xc−1e−x/Γ(c). The distri-
bution function of Kn/ log n is obtained approximately by using the random numbers of R
and described by the step function.

At first, for the examination of (2.2) by taking c > 1. Then, the conditions of the
Propositions 2.2 are satisfied. The approroximate function G1(x) = G(x) +

{
[2xψ(x + 1)−

1]g(x)+xg′(x)
}
/(2 log n) is described by the broken curve. The distribution function Gc of

gc(x) is described by the dotted curve. For n = 50, the Figure’s 1, 2, 3 and 4 give the cases
of c = 1.1, c = 1.5, c = 2 and c = 3. If c is small and near 1, then the function G1(x) is good
approximation to the distribution function of Kn/ log n. Even if c increases, the function
G1(x) is better than Gc(x) as the approximation to the distribution function of Kn/ log n.
But, the tail is not good approximation, similar to the usual Edgeworth expansion.

     



























     



























     



























     



























Next, we examine the relation (3.5) by taking c = 4. Then, the conditions of the
Propositions 3.1 are satisfied.

The approximate distribution G1 is described by the broken curve. The approximate
function G2(x) = G(x) +

{
[2xψ(x + 1)− 1]g(x) + xg′(x)

}
/(2 log n) + {x2g(x)}(3)/(8 log2 n)
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is described by the dot-broken curve. The distribution function Gc of gc(x) is described by
the dotted curves. For c = 4, the Figure’s 5 and 6 give the cases of n = 50 and n = 100,
respectively. Both the functions G1 and G2 give a little good approximate to the distribution
function of Kn/ log n. But there are no obvious difference between G1 and G2, becuase the
value of G2(x) − G1(x) = {x2g(x)}(3)/(8 log2 n) is small. The little difference may be seen
at the left tail.
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where d11 is a positive constant. Since Eγeitθ is the characteristic function of the distribution
function G, that is, it is the Fourier transform of the distribution function G(x). Similarly,
−itEγ [θψ(θ)eitθ] is the Fourier transform of the function xψ(x)g(x), and −t2Eγ [θeitθ] is
the Fourier transform of the function {xg(x)}′

= g(x) + xg
′
(x). Therefore, by applying the

smoothing lemma to (2.12), we have the following.

(2.13) sup
x

�����P
(

P ∗
n

log n
≤ x

)
−

[
G(x) +

1
log n

xψ(x)g(x) +
1

2 log n

{
g(x) + xg′(x)

}]�����

≤ d11

log4/5 n

∫ log2/5 n

0

dt +
d12

log2/5 n
= O

(
1

log2/5 n

)
,

where d12 is positive constant depending only on d11. We get (2.2) by (2.1) and (2.13),
using the relation xψ(x) = xψ(x + 1) − 1.

3 The Edgeworth expansion with the rate 1/ log3/7 n. In addition to the assump-
tion of the section 2, we assume that g(x) is differentiable four times, {x2g(x)}3 is the
function of bounded variation and {x2g(x)}4 is bounded. Besides, we suppose Eγ(θ3) and
E[θ3|ψ(θ)|3] exist. Then we have

Proposition 3.1 For n > 3, we have

(3.1) sup
−∞<x<∞

�����P
(

Kn

log n
≤ x

)
−

[
G(x) +

1
2 log n

{[
2xψ(x + 1) − 1

]
g(x) + xg′(x)

}

+
1

8 log2 n
{x2g(x)}(3)

]����� = O

(
1

log3/7 n

)
.

In the following proof, in addition to (2.4) we use the well-known relation for any complex
number z such that

(3.2) ez = 1 + z +
1
2
z2 +

1
6
z3 +

c3

24
| z |4,

where c3 is a complex number satisfying | c3 |≤ 1.

Proof of Proposition 3.1. Given θ, the characteristic function (2.5) of P ∗
n/ log n is

written as

E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp

{
θ[log n − ψ(θ)]

[
it

log n
− t2

2 log2 n
− it3

6 log3 n
+

c3n

24
t4

log4 n

]}
,

by (3.2), where −∞ < t < ∞ and c3n is a complex number satisfying | c3n |≤ 1. Thus we
can write

(3.3) E

[
exp

{
it

P ∗
n

log n

} ��� θ

]
= exp θ{it + A2} = eitθ × eθA2 ,

where

A2 = −ψ(θ)
it

log n
− t2

2 log n
+ψ(θ)

t2

2 log2 n
− it3

6 log2 n
+ψ(θ)

it3

6 log3 n
+

c3n

24
t4

log3 n
−c3n

24
ψ(θ)

t4

log4 n
.

:



     
  

 

　　　　　　　　　　　　　　　　　 

 

 

        
           
          
         
         
  

 

　　　　　　　　　　　　　 

               
                 
                
                
           
                 
              
                
             
                
  
               

                
                 
                       
            


     

                
             
      
               

            
                 
             
            
            
            

       
           

 



Received July 27, 2014

Scientiae Mathematicae Japonicae 78, Jo.3（2015）（243-249） 243



  

                  
             
          
           

           
                 
             
                  
           
          
             
           
            
            

              
              
            
              
            
           
           

 

             
               
                
            
                  
                 
                  
             
          
             

             
                 
                  
          
              
         
                       

                    
                  
                   
       
                  

                  
              

  

                  
             
          
           

           
                 
             
                  
           
          
             
           
            
            

              
              
            
              
            
           
           

 

             
               
                
            
                  
                 
                  
             
          
             

             
                 
                  
          
              
         
                       

                    
                  
                   
       
                  

                  
              

244



    

               
                 
      


           

                  
                
   

 

             
                  

             
              
    


   

      
      
                   

                    
                   
       


            

          




 

  






       

            
          

   
  

  
  


 








  



  


 



         



         




                   
   

             


    
                 
 

             
  


           

          





           





                  
                 
           

    

               
                 
      


           

                  
                
   

 

             
                  

             
              
    


   

      
      
                   

                    
                   
       


            

          




 

  






       

            
          

   
  

  
  


 








  



  


 



         



         




                   
   

             


    
                 
 

             
  


           

          





           





                  
                 
           

245



  

                
                 
               
           

               
                
                
             

             
                       
                

               
                   
                     
                
                    
                    
                   
                  
        


     

                  
                 

      
             
              
          


        

                
                   
          
            

 

                
        

     
                  

      
                 

               

            
         

                 


      
     
                 

         

  

                  
             
          
           

           
                 
             
                  
           
          
             
           
            
            

              
              
            
              
            
           
           

 

             
               
                
            
                  
                 
                  
             
          
             

             
                 
                  
          
              
         
                       

                    
                  
                   
       
                  

                  
              

246



    

                  
                    


  


       

       
          

             

                   
                
                     

                
                
              
                

                 
        

               
             
             
                  
                       
                    

 

 





 

 



 







 

  










  




  








  





              
                 
              
            
            
            
  


        

      
                     
   


 


   


    

                   
                      
       

                
              
            
              
                  

    

               
                 
      


           

                  
                
   

 

             
                  

             
              
    


   

      
      
                   

                    
                   
       


            

          




 

  






       

            
          

   
  

  
  


 








  



  


 



         



         




                   
   

             


    
                 
 

             
  


           

          





           





                  
                 
           

247



  

       

  


      

    

   

       
               
             
                 
                     
               
                
                  


  

                
                 


  

             
                  
                   
      

          
               
               
               
             
   



               
    

               
 

                 
      

             
         

            
 

                
         
              
      

              


              
                 

   
              


              

 
            
          


              
             
               



  

                  
             
          
           

           
                 
             
                  
           
          
             
           
            
            

              
              
            
              
            
           
           

 

             
               
                
            
                  
                 
                  
             
          
             

             
                 
                  
          
              
         
                       

                    
                  
                   
       
                  

                  
              

248



  

       

  


      

    

   

       
               
             
                 
                     
               
                
                  


  

                
                 


  

             
                  
                   
      

          
               
               
               
             
   



               
    

               
 

                 
      

             
         

            
 

                
         
              
      

              


              
                 

   
              


              

 
            
          


              
             
               



    

            
  

            
    

           
           
               



 

 

            
     

   

Communicated by Adrian Petrusel

    

               
                 
      


           

                  
                
   

 

             
                  

             
              
    


   

      
      
                   

                    
                   
       


            

          




 

  






       

            
          

   
  

  
  


 








  



  


 



         



         




                   
   

             


    
                 
 

             
  


           

          





           





                  
                 
           

249





Scientiae Mathematicae Japonicae 78, Jo.3（2015）（251-257） 251



252



253



254



255



256



257





Scientiae Mathematicae Japonicae 1

Abstract. It is our pedagogical challenge to introduce various mathematical concept
in an educationally acceptable way and to prepare course materials that make students
understand that deeply. As described in this paper, we present some of our attempts
to verify the effects of using carefully prepared course materials with high-quality
graphs in collegiate education of mathematics. Through our experiment, we detected
the change of students’ brain activity by conducting behavioral observation and neu-
roimaging simultaneously. In an experiment aimed at helping students understand
the concept of an exponential growth comparing exponential and power functions, we
prepared several graphs for that purpose. Seven students observed the graphs while
we tracked their responses. Simultaneously, we monitored their brain activities using
electroencephalography (EEG). Three students altered their judgments, we found, on
viewing the triggering graph. Some changes in the trend of their EEG signal were
recognized while they were viewing the graph. These results of our experiments show
that the use of favorable graphs as course materials might promote learners’ reasoning
processes.

1 Introduction According to our questionnaire survey, a major opinion of teachers of
collegiate mathematics in Japan denies the necessity of using high-quality graphs as course
materials[4]. However our experiences indicate that the use of graphs plays a crucial role in
some classroom environments. Educators usually use various graphs edited using a popular
TEX tool as course materials. Additionally, we have verified the effectiveness of using graphs
by comparing the responses of students to whom we showed high-quality graphs to those of
students to whom we did not do that[3]. Generation of high-quality graphs is preferably done
by computer algebra system (CAS) because of its computing and programming capabilities.
However, it is not always easy to handle graphical images of outputs in documents edited
using TEX. For instance, some elaborations are necessary to locate generated images to
suitable positions in documents and to arrange the layout of other components flexibly and
in a balanced manner. Although some TEX graphic systems exist such as PStricks[7] and
TikZ[8], their computing capabilities remain restricted. As a handy tool for both generation
of high-quality graphs with CAS and the easy arrangement of TEX document components,
we have been using KETpic, a macro package designed to generate TEX-readable code for
CAS-created graphical output. That package and related documentation can be freely
downloaded from the website: http://ketpic.com.

The aim of this paper is to present some new attempts to verify the effectiveness of
using carefully prepared course materials with high-quality graphs in collegiate mathematics
education. Based on this experimental study, we claim that our methodology demonstrates
great possibilities for providing an objective means to verify the effects of course materials
of various types in collegiate education of mathematics.
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2 How to teach the nature of exponential growth The exponential function is an
important item in science and engineering education. Exponential growth is the most fun-
damental and the most discriminative natures in various characteristics of the exponential
function. In Section 7.2 of his book titled Calculus[6], Stewart wrote, showing Figure 4,”Fig-
ure 4 shows how the exponential function y = 2x compares with the power function y = x2.
The graphs intersect three times, but ultimately the exponential curve y = 2x grows far
more rapidly than the parabola y = x2 (see also Figure 5)”.

Figure 1. Graphs in Section 7.2 of Stewart’s book

This nature is connected closely with the differential equation of dy
dx = ky (k is any positive

constant) that appears in phenomena treated in science and engineering. At Section 7.3∗

of the same book, he wrote for the case of k = 1. ”The geometric interpretation of Formula
8 (i.e. the above Formula) is that the slope of a tangent line to the curve y = ex at any
point is equal to the y-coordinate of the point. This property implies that the exponential
curve y = ex grows very rapidly”. Whereas the exponential growth is represented by
ax > xn : a > 1, n is any natural number. Also x is large unboundedly. It is our
pedagogical challenge to demonstrate this characteristic in an educationally acceptable way
and to prepare course materials that make students understand that deeply.

Approaches to this matter in high school and college in our country are inappropriate. In
high school mathematics textbooks (from major five textbook publishers), the description
of

lim
x→∞

ex

xn
= ∞, lim

x→∞

xn

ex
= 0 (for every natural number n)

is done to supplement the inequality of ex > 1 + x, ex > 1 + x + 1
2 x

2 in the section of
application of differential calculus to inequality, as a tip. Furthermore, the textbook from
Suken Shuppan exceptionally describes the following. ”Therefore, y = ex increases more
rapidly than xn when x → ∞”. Our experience has just taught us that the concept of ”grows
more rapidly” is tough even for college students, and high school students. In standard
textbooks and reference books for college mathematics, it is designated as a problem for
which l’Hopital’s rule is applied.

An animated course material displayed by a projector has been developed to promote
deep understanding and fixing of the concept of ”exponential growth”. In the first frame,
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two graphs of power function y = x4 and exponential function y = 2x are drawn with x-y
axes with the same scale reduction. With scale reduction of the y-axis increase, two graphs
begin to intersect with each other. Then they exchange their magnitude relation. The
animation comprises 37 frames. The final scale reduction of the y-axis is 1

10,000 .

1 5 10 15

500 y = 2xy = x4

x

y

O 1 5 10 15

70000

y = 2x
y = x4

x

y

O

Figure 2. Examples of animation.

We used the program feature of the KETpic command ”Texcom” for automatic generation
of a TEX file that shows graphs for each scale reduction by the KETpic slide of TEX. The
programming is extremely simple, as shown below.

Openfile(’SisuPR.tex’);

FC=0;

for K=[1,10,100,1000,10000],

if K==10000 then JJ=[1];

else JJ=[1,2,3,4,5,6,7,8,9]; end

for J=JJ,

I=J*K;FC=FC+1;

Texcom(’\newslide[0]{}%’);

Texcom(’\begin{layer}{130}{0}’);

Texcom(’\putnotese{35}{0}{{\Large Scale of $y=$ 1/’+string(I)+’}}’);

Texcom(’\putnotese{5}{15}{\input{’+Fname+string(FC)+’Zu.tex}}’);

Texcom(’\end{layer}’);

Texcom(’%’);

end

end

Closefile();

Avoiding movement of the coordinate axis and comments in the graph is the most important
tip to demonstrate a series of slides as an animation. It is the layer environment which
realizes that allocating figures, mathematical symbols, and sentences to the desired place
in a page[5].

Using this course material, we taught a class for about 50 students at Shibaura Insti-
tute of Technology. Then we obtained their favorable responses. The questionnaire, which
surveyed their understanding of exponential growth before and after the class, revealed the
following: 69.4% of students did not know that before the class but understood it correctly
after the class, 14.3% students reported after the class, that their understanding of it had
been inaccurate before the class. Summing the first two groups above, 83.7% of students
reported gaining a correct understanding of the concept through the class. It is noteworthy
that 12.2% knew the material even before the class. The remaining 4.1% students did not
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understand it well even after the class. Although collecting students’ opinions and feel-
ings through questionnaire surveys or interviews is important to improve course material,
it might not work as an objective evaluation for a course materials. The KETpic research
group has been performing an objective evaluation for the course materials using a statisti-
cal method. In academic year 2013, we taught an experimental lesson at Nagano National
College of Technology and Gunma National College of Technology, making use of course
materials for trigonometric functions and polar coordinates and dividing subjects into exper-
imental and control groups for purposes of statistical analysis[2]. Although this analytical
procedure is necessary to guarantee statistical objectivity, it requires too many subject stu-
dents and might interfere with other ordinary lessons. Selecting a proper method to analyze
statistical data from an objective standpoint is among several challenges and difficulties in
this type of experiment.

Recently some researchers, mainly from Nakagawa Laboratory, Nagaoka University of
Technology, have developed a method to capture a time-series of brain activities by analysis
of emotional information collected through electroencephalography (EEG). This study was
conducted for objective evaluation of course materials to teach the concept of ”exponential
growth” using evolution of time-series brain activity captured using EEG.

3 Developments until measuring experiments Recently, researchers mainly from
Nakagawa Laboratory, Nagaoka University of Technology have strived to develop a method
to trace activation in the brain using fractal analysis of time-series data of blood currents
in the brain measured through Near Infrared Red Spectroscopy (NIRS). Employing this
method, we conducted NIRS measurement for 20 first-year students in March, 2013 at
Kisarazu National College of Technology. The target was to draw a graph of trigonometric
functions including other fundamental items. Kurimoto Laboratory was also involved.

Experiments with and without EEG measurements are described below. The task for
these experiments was exclusively to understand ”exponential growth”. Although the mea-
suring task in August 2014 and the improvement to it are introduced below, the prior tasks
were the same as those shown here We passed out the first handout (sheet) describing the
task. It reads as follows:

Shall we find on the graph the difference of growth rates between power and
exponential functions when x tends to infinity unboundedly?

Time measurements started when the second handout was passed out and subjects were
asked to answer Sheets 1∼7 with one minute each. In sheet 1, y = x2 and y = x4 were
compared. Two curves were drawn on the same coordinate plane in the range of 0 ≤ y ≤ 10.
The problem read:

1. Which one increases more rapidly when x increases unboundedly?
(1) y = x2 (2) y = x4

2. What is the magnitude of y =
x2

x4
when x increases unboundedly?

On Sheet 2, y = x2 and y = 2x were compared, two curves were drawn as in Sheet 1. The
problem were similar to those in Sheet 1, as well. Sheets 3∼7 posed the main problems
related to the task. There, y = x4 and y = 2x were compared. Two curves were drawn on
the same coordinate plain in the range of 0 ≤ x ≤ 15. The scale reductions of y-axis on
each sheet were 1, 1

10 ,
1

100 ,
1

1,000 ,
1

10,000 , respectively. The problems were similar to those
of other sheets.
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In collaboration with Nakagawa Laboratory of the Nagaoka University of Technology,
we monitored brain waves using two electrodes concurrently with NIRS measurements in
March 2014. Subjects were three fifth-year Technical College students: two men and one
woman. We later recognized the importance of recording the answering time in conjunction
with the action observation. All three subjects made mistakes at the beginning, noticed the
mistake, and answered correctly afterward. Comparison of records of answering time and
brain waves revealed that the standard deviation SD of brain wave when they noticed their
mistake was quite different from that of other instances. After they realized their mistake
and answered confidently, they answered more quickly than ever. They answered slowly
when wavering, we found. Table 1 presents the answering time (s) and Right-Wrong R/W
ratios of each subject.

Sheet1 Sheet2 1/1 1/10 1/100 1/1,000 1/10,000
Sub1 16, R 10, W 18, W 13, W 09, W 17, R 15, R
Sub2 28, R 32, W 33, W 36, W 45, R 15, R 16, R
Sub3 18, R 18, W 15, W 14, W 10, W 17, W 45, R

Table 1. Answering time and Right-Wrong

Motivated by this experiment, similar experiments for the same task, but without brain
wave monitoring, were conducted at Pennsylvania State University and Toho University
for some 20 first-year students in May, 2014. After these experiments, we improved the
method of task explanation and question posing because the concept of ”difference of two
functions in increasing speed” was difficult and subjects did not understand that, we found.
We improved the explanation of the task direction as presented below.

Shall we find which of power function and exponential function grows larger
when x is extremely large?

Problems were improved as presented below (these are questions for Sheet 4).

Problem 1. Which of the following three ranges does include the value of x for which
y = 500 in the graph of y = 2x?

(1-1) 0 < x < 5 (1-2) 5 < x < 10 (1-3) 10 < x < 15

Problem 2. Which of the following three is right when x is made very large?
(2-1) x4 > 2x (2-2) x4 < 2x (2-3) None of them

Problem 1 is the reference problem for Problem 2. It is explained in the next section. In
Problem 2, subjects were asked to select a correct inequality. It asked a simple magnitude
relation.

At the end of this section, the major improvement on methods of selecting answers and
measuring the answering time is to be reported. In the experiment in August, subjects
simply pushed down switches of a Response Analyzer instead of putting a mark on a sheet
by writing material. This eliminated unnecessary movement of the body and electric noise
caused by it. The Response Analyzer is a test product of one of the authors (Usui). It has
since been modified. The special features of this device are the following:

• Many devices (extensions) can be connected to a base unit by wireless communication,
enabling simultaneous counting.

• Base unit is Raspberry Pi.

• Equipped with Linux-based OS
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materials[4]. However our experiences indicate that the use of graphs plays a crucial role in
some classroom environments. Educators usually use various graphs edited using a popular
TEX tool as course materials. Additionally, we have verified the effectiveness of using graphs
by comparing the responses of students to whom we showed high-quality graphs to those of
students to whom we did not do that[3]. Generation of high-quality graphs is preferably done
by computer algebra system (CAS) because of its computing and programming capabilities.
However, it is not always easy to handle graphical images of outputs in documents edited
using TEX. For instance, some elaborations are necessary to locate generated images to
suitable positions in documents and to arrange the layout of other components flexibly and
in a balanced manner. Although some TEX graphic systems exist such as PStricks[7] and
TikZ[8], their computing capabilities remain restricted. As a handy tool for both generation
of high-quality graphs with CAS and the easy arrangement of TEX document components,
we have been using KETpic, a macro package designed to generate TEX-readable code for
CAS-created graphical output. That package and related documentation can be freely
downloaded from the website: http://ketpic.com.

The aim of this paper is to present some new attempts to verify the effectiveness of
using carefully prepared course materials with high-quality graphs in collegiate mathematics
education. Based on this experimental study, we claim that our methodology demonstrates
great possibilities for providing an objective means to verify the effects of course materials
of various types in collegiate education of mathematics.
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• High scalability

• Allow future network communication

The Response Analyzer improved the precision of the measurement of answering time
and provided great merits of visualization of subjects’ thinking processes. Many exten-
sions might be used to monitor subjects with the same task. Analysis of data from such
experiments will bring about a new method of evaluating course materials.

4 Method and result of measurement We conducted brain wave measurements to
be discussed in this report on August 4 and 5 at Nagaoka University of Technology. To
collect emotional information of five different kinds (Complete rest, Pleasant, Unpleasant,
Joyful, Angry), measurements were done at 16 positions based on the International 10-20
system. Electrodes were set at positions 1∼16 as shown in Fig. 3, 18 at the top of the head
were to remove noise caused by eye movement; A2 at the right ear was designed to remove
that caused by heart beats (Fig. 3). Seven male subjects were tested, 6 graduate students
(Sub 1 through Sub 6) and one-fourth year student of technical college (Sub 7). A TEAC
Polymate V (16 channel, 8000 [Hz]) was used as the measuring instrument.

Two measurement tasks were set: one collected data used as reference data of emotion
analysis and another data for mathematical task. Reference data of emotion analysis were:

Wait, Complete rest, Rest, Pleasant, Rest, Unpleasant, Rest, Joyful, Rest, Angry
All measurements were taken for one minute.

The mathematical task was done using seven handouts (sheets). Subjects were asked
to be seated on their chairs along a long table. Handouts were put on the desk with the
reverse side up. Therefore, the task description was hidden. Subjects flipped the handouts
one by one and read the task. Each handout posed two multiple-choice questions. Sheets
1∼6 (Tasks A1 through A6) had to be answered in one minute each. Sheets 7 (Task A7) in
three minutes. Although subjects were able to look at digital-clocks in front of them, the
ending of answering time was declared orally by a time-keeper. Because that declaration
was made to subjects, they were able to concentrate on the task with no concern about
running out of time. Subjects answered by pushing down any one of four buttons of the
Response Analyzer set up at the right-hand side of each subject. The Response Analyzer
played an important role in this measurement, as explained in the previous section. Table
2 presents a description in this section.

18A1 A210

6

21

3

7
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15 16

14

9

17

8

19

54

12 13

Figure 3. The positions where electrodes are attached
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Abstract. It is our pedagogical challenge to introduce various mathematical concept
in an educationally acceptable way and to prepare course materials that make students
understand that deeply. As described in this paper, we present some of our attempts
to verify the effects of using carefully prepared course materials with high-quality
graphs in collegiate education of mathematics. Through our experiment, we detected
the change of students’ brain activity by conducting behavioral observation and neu-
roimaging simultaneously. In an experiment aimed at helping students understand
the concept of an exponential growth comparing exponential and power functions, we
prepared several graphs for that purpose. Seven students observed the graphs while
we tracked their responses. Simultaneously, we monitored their brain activities using
electroencephalography (EEG). Three students altered their judgments, we found, on
viewing the triggering graph. Some changes in the trend of their EEG signal were
recognized while they were viewing the graph. These results of our experiments show
that the use of favorable graphs as course materials might promote learners’ reasoning
processes.

1 Introduction According to our questionnaire survey, a major opinion of teachers of
collegiate mathematics in Japan denies the necessity of using high-quality graphs as course
materials[4]. However our experiences indicate that the use of graphs plays a crucial role in
some classroom environments. Educators usually use various graphs edited using a popular
TEX tool as course materials. Additionally, we have verified the effectiveness of using graphs
by comparing the responses of students to whom we showed high-quality graphs to those of
students to whom we did not do that[3]. Generation of high-quality graphs is preferably done
by computer algebra system (CAS) because of its computing and programming capabilities.
However, it is not always easy to handle graphical images of outputs in documents edited
using TEX. For instance, some elaborations are necessary to locate generated images to
suitable positions in documents and to arrange the layout of other components flexibly and
in a balanced manner. Although some TEX graphic systems exist such as PStricks[7] and
TikZ[8], their computing capabilities remain restricted. As a handy tool for both generation
of high-quality graphs with CAS and the easy arrangement of TEX document components,
we have been using KETpic, a macro package designed to generate TEX-readable code for
CAS-created graphical output. That package and related documentation can be freely
downloaded from the website: http://ketpic.com.

The aim of this paper is to present some new attempts to verify the effectiveness of
using carefully prepared course materials with high-quality graphs in collegiate mathematics
education. Based on this experimental study, we claim that our methodology demonstrates
great possibilities for providing an objective means to verify the effects of course materials
of various types in collegiate education of mathematics.
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Term Substance

Subject Male

EEG Device TEAC Polymate V(16ch, 8000[Hz])

Measuring Sites 16 positions(1∼16) in the international 10-20 system

Task To understand the concept of ”exponential growth”

Table 2. Measurement environment

The mathematical task proceeded as below. The first handout merely explained the
contents of task and subjects’ operations to answer questions. No measurement was done
for this handout. Having written the improvement in the method of explaining task in the
previous section (no description such as ”difference of two functions in increasing speed”)
we merely introduced the tips in operation for answering questions here. These were added
and modified on the introduction of Response Analyzer.

⋄ You are asked to turn to the next page when you hear ”All right!”.
⋄ Each option goes like (Number of problem−Number of answer).
⋄ When you answer, you push the Number of the problem first and then the Number

of the answer.
Example: For (1-3), you push button 1, 3, For (2-2), you push button 2, 2.

⋄ Unless otherwise noted, you can read one page for one minute each.
When one minute has elapsed, you will hear ”All right!”.

⋄ You can change your answer as many times as you wish during the answering time
allowed.
When you change your answer, push the number of the problem first and then
the number of the answer.
When you forgot how you pushed, you can push again.
Example: To change to (1-4), you push button 1, 4
Example: To select (1-3) again for confirmation, you push button 1, 3

Then timing measurement started and subjects entered into the first task (Task A1). Task
A1 was a reference task for other mathematical tasks. It was similar to all other mathe-
matical tasks. Any subject might have answered correctly. The reference task worked as
the reference data for brain wave analysis later. Subjects answered, examining the graphs,
two questions about magnitude relation between y = x2 and y = 2x In addition, Problem
1 was the reference task for Task A1.

Problem 1. Which of the following two curves passes through origin?
(1-1) y = x2 (1-2) y = 2x

Problem 2. Which of the following three is right when x is very large?
(2-1) x2 > 2x (2-2) x2 < 2x (2-3) None of them

Tasks A1 through A6 were structured similarly to Task A1. Subjects answered, examining
graphs, two questions about the magnitude relation between y = x4 and y = 2x Problem
1 was the reference one; Problem 2 purposeful one. Graphs for these tasks are presented
below. We monitored the change of subjects’ brain activity when they examined graphs
with scale reductions of y-axis 1

1 ,
1
10 ,

1
100 ,

1
1,000 , and

1
10,000 , serially. These graphs in

Figure 4 respectively correspond to Tasks A2, A4, A5, and A6.
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Abstract. It is our pedagogical challenge to introduce various mathematical concept
in an educationally acceptable way and to prepare course materials that make students
understand that deeply. As described in this paper, we present some of our attempts
to verify the effects of using carefully prepared course materials with high-quality
graphs in collegiate education of mathematics. Through our experiment, we detected
the change of students’ brain activity by conducting behavioral observation and neu-
roimaging simultaneously. In an experiment aimed at helping students understand
the concept of an exponential growth comparing exponential and power functions, we
prepared several graphs for that purpose. Seven students observed the graphs while
we tracked their responses. Simultaneously, we monitored their brain activities using
electroencephalography (EEG). Three students altered their judgments, we found, on
viewing the triggering graph. Some changes in the trend of their EEG signal were
recognized while they were viewing the graph. These results of our experiments show
that the use of favorable graphs as course materials might promote learners’ reasoning
processes.

1 Introduction According to our questionnaire survey, a major opinion of teachers of
collegiate mathematics in Japan denies the necessity of using high-quality graphs as course
materials[4]. However our experiences indicate that the use of graphs plays a crucial role in
some classroom environments. Educators usually use various graphs edited using a popular
TEX tool as course materials. Additionally, we have verified the effectiveness of using graphs
by comparing the responses of students to whom we showed high-quality graphs to those of
students to whom we did not do that[3]. Generation of high-quality graphs is preferably done
by computer algebra system (CAS) because of its computing and programming capabilities.
However, it is not always easy to handle graphical images of outputs in documents edited
using TEX. For instance, some elaborations are necessary to locate generated images to
suitable positions in documents and to arrange the layout of other components flexibly and
in a balanced manner. Although some TEX graphic systems exist such as PStricks[7] and
TikZ[8], their computing capabilities remain restricted. As a handy tool for both generation
of high-quality graphs with CAS and the easy arrangement of TEX document components,
we have been using KETpic, a macro package designed to generate TEX-readable code for
CAS-created graphical output. That package and related documentation can be freely
downloaded from the website: http://ketpic.com.

The aim of this paper is to present some new attempts to verify the effectiveness of
using carefully prepared course materials with high-quality graphs in collegiate mathematics
education. Based on this experimental study, we claim that our methodology demonstrates
great possibilities for providing an objective means to verify the effects of course materials
of various types in collegiate education of mathematics.
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Figure 4. Graphs used for the EEG measurement

The last task of Task B asked subjects to understand the nature of exponential growth
through Taylor’s theorem. It used examples of exponential function y = ex and power
function y = x2 and asked subjects to read the explanation and answer questions in 3 min.

The next table presents a summary of records of answering time and right or wrong of
the answer R/W measured using the Response Analyzer. Subjects were asked to push the
button twice for each problem. The first push inputted the Number of the problem, which
was k1 in the table. The second push inputted the Number of the answer and k2 in the
table is R/W of that answer.

Task

A1

A2

A3

A4

A5

A6

B

Sub1
Time k1 k2 R/W

0:13.0 1 1 R
0:41.7 2 2 R
1:08.4 1 1 R
1:17.3 2 1 W

2:29.6 1 2 R
2:49.8 2 1 W
3:31.6 1 3 W
3:46.1 2 1 W
4:14.5 1 3 R
4:52.5 2 1 W
5:20.5 1 3 R
5:34.8 2 1 W
5:52.5 2 2 R
7:52.7 1 3 R
8:22.6 2 2 R

Sub2
Time k1 k2 R/W

0:12.7 1 1 R
0:23.4 2 2 R
1:10.5 1 1 R
1:21.2 2 2 R

2:59.5 1 2 R

3:15.3 1 2 R
3:19.9 2 2 R
4:16.7 1 3 R
4:21.8 2 2 R
5:11.3 1 3 R
5:19.6 2 2 R

7:17.5 1 1 W
7:39.8 2 1 W

Sub3
Time k1 k2 R/W

0:12.1 1 1 R
0:23.3 2 2 R
1:08.5 1 1 R
1:18.4 2 2 R

2:20.9 1 2 R
2:32.0 2 2 R
3:15.3 1 2 R
3:22.8 2 2 R
4:12.5 1 3 R
4:21.4 2 2 R
5:22.6 1 3 R
5:50.9 2 2 R

7:08.2 1 3 R
7:19.0 2 1 W

Sub4
Time k1 k2 R/W

0:44.7 1 1 R
1:01.9 2 2 R
1:34.1 1 1 R
1:51.0 1 1 R
1:56.8 2 1 W
2:26.3 1 2 R
2:44.6 2 1 W
3:14.3 1 2 R
3:32.3 2 1 W
4:13.1 1 3 R
4:22.6 2 1 W
5:31.4 1 3 R
5:35.3 2 2 R

6:36.8 1 3 R
7:06.6 2 2 R

Table 3-1. Answering time, buttons that had been pushed, and Right-Wrong
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Abstract. It is our pedagogical challenge to introduce various mathematical concept
in an educationally acceptable way and to prepare course materials that make students
understand that deeply. As described in this paper, we present some of our attempts
to verify the effects of using carefully prepared course materials with high-quality
graphs in collegiate education of mathematics. Through our experiment, we detected
the change of students’ brain activity by conducting behavioral observation and neu-
roimaging simultaneously. In an experiment aimed at helping students understand
the concept of an exponential growth comparing exponential and power functions, we
prepared several graphs for that purpose. Seven students observed the graphs while
we tracked their responses. Simultaneously, we monitored their brain activities using
electroencephalography (EEG). Three students altered their judgments, we found, on
viewing the triggering graph. Some changes in the trend of their EEG signal were
recognized while they were viewing the graph. These results of our experiments show
that the use of favorable graphs as course materials might promote learners’ reasoning
processes.

1 Introduction According to our questionnaire survey, a major opinion of teachers of
collegiate mathematics in Japan denies the necessity of using high-quality graphs as course
materials[4]. However our experiences indicate that the use of graphs plays a crucial role in
some classroom environments. Educators usually use various graphs edited using a popular
TEX tool as course materials. Additionally, we have verified the effectiveness of using graphs
by comparing the responses of students to whom we showed high-quality graphs to those of
students to whom we did not do that[3]. Generation of high-quality graphs is preferably done
by computer algebra system (CAS) because of its computing and programming capabilities.
However, it is not always easy to handle graphical images of outputs in documents edited
using TEX. For instance, some elaborations are necessary to locate generated images to
suitable positions in documents and to arrange the layout of other components flexibly and
in a balanced manner. Although some TEX graphic systems exist such as PStricks[7] and
TikZ[8], their computing capabilities remain restricted. As a handy tool for both generation
of high-quality graphs with CAS and the easy arrangement of TEX document components,
we have been using KETpic, a macro package designed to generate TEX-readable code for
CAS-created graphical output. That package and related documentation can be freely
downloaded from the website: http://ketpic.com.

The aim of this paper is to present some new attempts to verify the effectiveness of
using carefully prepared course materials with high-quality graphs in collegiate mathematics
education. Based on this experimental study, we claim that our methodology demonstrates
great possibilities for providing an objective means to verify the effects of course materials
of various types in collegiate education of mathematics.
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Task

A1

A2

A3

A4

A5

A6

B

Sub5
Time k1 k2 R/W

0:17.2 1 1 R
0:58.9 2 2 R
1:14.0 1 1 R
1:44.2 2 1 W

2:22.7 1 2 R

3:20.0 1 2 R
3:37.5 2 2 R
4:12.9 1 3 R
4:32.3 2 2 R
5:13.7 1 3 R
5:30.5 2 2 R

6:54.9 1 3 R
7:19.0 2 2 R

Sub6
Time k1 k2 R/W

0:18.6 1 1 R
0:30.5 2 2 R
1:11.2 1 1 R
1:54.2 2 2 R

2:37.3 1 2 R
2:46.0 2 2 R
3:19.0 1 2 R
3:23.8 2 2 R
4:15.7 1 3 R
4:22.7 2 2 R
5:16.5 1 2 W
5:18.0 1 3 R
5:23.1 2 2 R
7:15.0 1 3 R
7:40.8 2 2 R

Sub7
Time k1 k2 R/W

0:11.0 1 1 R
0:24.5 2 2 R
1:06.0 1 1 R
1:52.0 2 2 R

2:18.1 1 2 R
2:59.2 2 1 W
3:15.1 1 2 R
3:58.0 2 1 W
4:09.4 1 3 R
4:32.0 2 2 R
5:07.3 1 3 R
5:08.2 2 2 R

6:53.1 1 3 R
7:03.5 2 2 R

Table 3-2. Answering time, buttons that had been pushed, and Right-Wrong

Although data of brain waves at 16 positions for emotion analysis were collected, we have
not conducted emotion analysis itself. We calculated the variance property α(t) from brain
waves monitored at electrodes 4 and 5 using self-similarity analysis. Then we discussed the
characteristics of brain activity. An outline of the relation between variance property and
electrode voltage is shown here[1]. First we calculated the next quantity comparable to
deviation of electrode voltage x(t).

a variogram at lag τ : V (τ) =
1

2
E

[
(x(t)− x(t+ τ))2

]

We set as τ = 0.25 s. If x(t) has self-similarity, then proportionality of V (τ) ≈ |τ |α holds.
On taking logarithm of both sides of this equation, we obtain the following.

log V (τ) = logA+ α log |τ | , A is a constant of proportionality

Consequently, an almost linear relation is obtained when log V (τ) is shown against log |τ |
on the logarithmic graph and α is the slope of the curve. Graphs of α(t) for Subject 7 are
portrayed below. In these graphs red line represent the graph of α(t) for EEG channel 4
(left brain) and green line that for channel 5 (right brain).
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Figure 5-1. Task A4
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Figure 5-2. Task A5
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Abstract. It is our pedagogical challenge to introduce various mathematical concept
in an educationally acceptable way and to prepare course materials that make students
understand that deeply. As described in this paper, we present some of our attempts
to verify the effects of using carefully prepared course materials with high-quality
graphs in collegiate education of mathematics. Through our experiment, we detected
the change of students’ brain activity by conducting behavioral observation and neu-
roimaging simultaneously. In an experiment aimed at helping students understand
the concept of an exponential growth comparing exponential and power functions, we
prepared several graphs for that purpose. Seven students observed the graphs while
we tracked their responses. Simultaneously, we monitored their brain activities using
electroencephalography (EEG). Three students altered their judgments, we found, on
viewing the triggering graph. Some changes in the trend of their EEG signal were
recognized while they were viewing the graph. These results of our experiments show
that the use of favorable graphs as course materials might promote learners’ reasoning
processes.

1 Introduction According to our questionnaire survey, a major opinion of teachers of
collegiate mathematics in Japan denies the necessity of using high-quality graphs as course
materials[4]. However our experiences indicate that the use of graphs plays a crucial role in
some classroom environments. Educators usually use various graphs edited using a popular
TEX tool as course materials. Additionally, we have verified the effectiveness of using graphs
by comparing the responses of students to whom we showed high-quality graphs to those of
students to whom we did not do that[3]. Generation of high-quality graphs is preferably done
by computer algebra system (CAS) because of its computing and programming capabilities.
However, it is not always easy to handle graphical images of outputs in documents edited
using TEX. For instance, some elaborations are necessary to locate generated images to
suitable positions in documents and to arrange the layout of other components flexibly and
in a balanced manner. Although some TEX graphic systems exist such as PStricks[7] and
TikZ[8], their computing capabilities remain restricted. As a handy tool for both generation
of high-quality graphs with CAS and the easy arrangement of TEX document components,
we have been using KETpic, a macro package designed to generate TEX-readable code for
CAS-created graphical output. That package and related documentation can be freely
downloaded from the website: http://ketpic.com.

The aim of this paper is to present some new attempts to verify the effectiveness of
using carefully prepared course materials with high-quality graphs in collegiate mathematics
education. Based on this experimental study, we claim that our methodology demonstrates
great possibilities for providing an objective means to verify the effects of course materials
of various types in collegiate education of mathematics.
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Figure 5-3. Task A6

Figure 5. Graph of α(t) for Subject 7

5 Summary and future challenge Making use of a few graphs of variance property
α(t) in the previous section, we analyzed their characteristics. Herein, we provide conclu-
sions to that analysis. The variance property is 1 ≤ α ≤ 2 if the input signal x(t) does not
include much noise and has little bias. If the brain activity is in the state of rest, then α
oscillates at around 1.2. When α oscillates around a high value, the brain is estimated as
activated with a number of synchronized brain signals. Herein, we examine data of Subject
7 when he engaged in Task A.

1. When he noticed the essence of the problem and changed his wrong answer to the
correct one, it was reflected in the data (Fig. 5-2 Task A5).

2. Data show that he answered with certainty (Fig. 5-3 Task A6).

(1) In Fig. 5-2, we show that oscillation of α around a high value and long duration of it
after answering correctly demonstrates his consent to his answer. In Figure 5-1, the rise of
α value reflecting brain activity after selecting the wrong answer is apparent at left end of
the figure for Task A3 and at the right end of the figure for Task A4. However, the rise of
α value is not remarkable. Moreover, its duration is extremely short .
(2) Figure 5-3 shows oscillation of α around a high value and long duration of it when
answered correctly to Problem 2 immediately after answering Problem 1 correctly.

Subject 7 answered our questionnaire after the tasks describing that ”Although I did not
know the magnitude relation between power function and exponential function, I noticed it
at Task A5 and was convinced it at Task A6”.

He answered all tasks of Problem 1 correctly. His brain wave was stable after pushing
the button. No special activation was observed. Furthermore, because he answered Problem
2 of Task A6 just 0.9 s after answering Problem 1 of the same task, no change of α value
reflecting activity related to Problem 1 was extracted.

The following three points remain as important challenges for future study.

1. Performing emotion analysis using brain wave data collected in this study to find new
information.

2. Continuing similar experimental measurements using proper course materials to facil-
itate the development of course materials.

3. Continual improvement of the Response Analyzer to establish a course material eval-
uation method.
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Abstract. It is our pedagogical challenge to introduce various mathematical concept
in an educationally acceptable way and to prepare course materials that make students
understand that deeply. As described in this paper, we present some of our attempts
to verify the effects of using carefully prepared course materials with high-quality
graphs in collegiate education of mathematics. Through our experiment, we detected
the change of students’ brain activity by conducting behavioral observation and neu-
roimaging simultaneously. In an experiment aimed at helping students understand
the concept of an exponential growth comparing exponential and power functions, we
prepared several graphs for that purpose. Seven students observed the graphs while
we tracked their responses. Simultaneously, we monitored their brain activities using
electroencephalography (EEG). Three students altered their judgments, we found, on
viewing the triggering graph. Some changes in the trend of their EEG signal were
recognized while they were viewing the graph. These results of our experiments show
that the use of favorable graphs as course materials might promote learners’ reasoning
processes.

1 Introduction According to our questionnaire survey, a major opinion of teachers of
collegiate mathematics in Japan denies the necessity of using high-quality graphs as course
materials[4]. However our experiences indicate that the use of graphs plays a crucial role in
some classroom environments. Educators usually use various graphs edited using a popular
TEX tool as course materials. Additionally, we have verified the effectiveness of using graphs
by comparing the responses of students to whom we showed high-quality graphs to those of
students to whom we did not do that[3]. Generation of high-quality graphs is preferably done
by computer algebra system (CAS) because of its computing and programming capabilities.
However, it is not always easy to handle graphical images of outputs in documents edited
using TEX. For instance, some elaborations are necessary to locate generated images to
suitable positions in documents and to arrange the layout of other components flexibly and
in a balanced manner. Although some TEX graphic systems exist such as PStricks[7] and
TikZ[8], their computing capabilities remain restricted. As a handy tool for both generation
of high-quality graphs with CAS and the easy arrangement of TEX document components,
we have been using KETpic, a macro package designed to generate TEX-readable code for
CAS-created graphical output. That package and related documentation can be freely
downloaded from the website: http://ketpic.com.

The aim of this paper is to present some new attempts to verify the effectiveness of
using carefully prepared course materials with high-quality graphs in collegiate mathematics
education. Based on this experimental study, we claim that our methodology demonstrates
great possibilities for providing an objective means to verify the effects of course materials
of various types in collegiate education of mathematics.
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Abstract. It is our pedagogical challenge to introduce various mathematical concept
in an educationally acceptable way and to prepare course materials that make students
understand that deeply. As described in this paper, we present some of our attempts
to verify the effects of using carefully prepared course materials with high-quality
graphs in collegiate education of mathematics. Through our experiment, we detected
the change of students’ brain activity by conducting behavioral observation and neu-
roimaging simultaneously. In an experiment aimed at helping students understand
the concept of an exponential growth comparing exponential and power functions, we
prepared several graphs for that purpose. Seven students observed the graphs while
we tracked their responses. Simultaneously, we monitored their brain activities using
electroencephalography (EEG). Three students altered their judgments, we found, on
viewing the triggering graph. Some changes in the trend of their EEG signal were
recognized while they were viewing the graph. These results of our experiments show
that the use of favorable graphs as course materials might promote learners’ reasoning
processes.

1 Introduction According to our questionnaire survey, a major opinion of teachers of
collegiate mathematics in Japan denies the necessity of using high-quality graphs as course
materials[4]. However our experiences indicate that the use of graphs plays a crucial role in
some classroom environments. Educators usually use various graphs edited using a popular
TEX tool as course materials. Additionally, we have verified the effectiveness of using graphs
by comparing the responses of students to whom we showed high-quality graphs to those of
students to whom we did not do that[3]. Generation of high-quality graphs is preferably done
by computer algebra system (CAS) because of its computing and programming capabilities.
However, it is not always easy to handle graphical images of outputs in documents edited
using TEX. For instance, some elaborations are necessary to locate generated images to
suitable positions in documents and to arrange the layout of other components flexibly and
in a balanced manner. Although some TEX graphic systems exist such as PStricks[7] and
TikZ[8], their computing capabilities remain restricted. As a handy tool for both generation
of high-quality graphs with CAS and the easy arrangement of TEX document components,
we have been using KETpic, a macro package designed to generate TEX-readable code for
CAS-created graphical output. That package and related documentation can be freely
downloaded from the website: http://ketpic.com.

The aim of this paper is to present some new attempts to verify the effectiveness of
using carefully prepared course materials with high-quality graphs in collegiate mathematics
education. Based on this experimental study, we claim that our methodology demonstrates
great possibilities for providing an objective means to verify the effects of course materials
of various types in collegiate education of mathematics.
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A NOTE ON A TWO-PERSON ZERO-SUM STOPPING
GAME

Abstract. In this short note, a two-person zero-sum stopping game when the observation processes
are exponential Brownian motions is formulated and solved explicitly under certain conditions. The
present problem extends the planar Brownian motion case treated by Vinnichenko and Mazalov [6].

1 Introduction For a planar Brownian motion on a closed interval [0, 1] and absorbed at the end
points, a two-person zero-sum stopping game is considered by Vinnichenko and Mazalov [6]. It is
proved therein that the optimal stopping times are the so-called Azéma-Yor stopping times [2] and
the value of the game is the smallest upper convex function of the payoff (see Dynkin and Yushkevich
[3]), both given explicitly. The proof is essentially a result of decomposing the zero-sum stopping
game into two pure optimal stopping problems [5]. In the one-dimensional case, a variant of the
zero-sum stopping game in [6] is treated by Yasuda [7]. The main purpose of this note is to extend
the result by Vinnichenko and Mazalov [6] to the case of exponential Brownian motions. We note
that our method of proof is based on similar arguments used in [6]. However, it must be stressed
that our main result is not contained in [6].

For the reader’s convenience, we shall use similar notation as in [6]. We consider the following
two-person zero sum stopping game. Let i = 1, 2 and x

(i)
t be a geometric Brownian motion starting

at ai in the closed interval [0, 1] and absorbed at the end points, with drift-diffusion coefficients
(µix

i, σix
i) where µi < 0 and σi > 0 are fixed and given constants. The strategy of player i is the

stopping time τi with respect to the process x
(i)
t . Players stop their observation processes at the

states x
(1)
τ1 , x

(2)
τ2 , respectively. Then if x

(1)
τ1 > x

(2)
τ2 the payoff of player 1 is +1; if x

(1)
τ1 < x

(2)
τ2 then the

payoff is −1. Otherwise, the payoff is assumed to be zero. Player 1 seeks to maximize the expected
payoff

H(τ1, τ2) = E
{

I{x
(1)
τ1 >x

(2)
τ2 } − I{x

(1)
τ1 <x

(2)
τ2 }

}

with player 2 seeking to minimize it, where IA denotes the indicator function of the set A.

The motivation of the present problem arises from an application in mathematical finance. Consider
two investors observing the evolution of prices of two types of stocks. The problem is that of deciding
when to invest depending on the values of the two stocks.

2 Main result Fix i = 1, 2. Let ∆i = 1 − 2µi

σ2
i

, where µi < 0 and σi > 0 are fixed and given
constants. Now following [6], we let a1 ≤ a2, ∆1 ≤ ∆2 and put

a = min

{(
2

∆2
(∆2 + 1)a2

2

)1/(∆2+1)

, (2 − 2a2)1/∆2

}
.

Define

ψ1(x) = 1 − a1

a2
+

a1

2a2
2

x∆1 , ψ2(x) =
1

2a2
x∆2
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Keywords and phrases: Azéma-Yor stopping times, Optimal stopping problem, Zero-sum stopping game.

 

 

Scienticae  Mathematicae  Japonicae

Received September 23,2014 ; revised November 14, 2014

Cloud Makasu

Scientiae Mathematicae Japonicae 78, Jo.3（2015）（271-273） 271



and

s∗i (x) =




0 if x < 0

ψi(x) if 0 ≤ x < a

ψi(a) if a ≤ x < 1

1 if x ≥ 1.

(1)

To this end, we shall also introduce the following barycenter function

gi(x) = ai +
1

1 − s∗i (x − 0)

∫ 1

x

(u − ai)ds∗i (u) =




ai if x = 0

min
{

1, a2 + ∆2x∆2

2a2−x∆2

(
a2
∆2

− x
∆2+1

)}
if 0 < x ≤ 1

and the Azéma-Yor stopping times

τ∗
i = inf

{
t : gi(x

(i)
t ) ≤ sup

0≤s≤t
x(i)

s

}
.(2)

The main result of this note is stated in the next theorem.

THEOREM 2.1. Let i = 1, 2 and x
(i)
t be an exponential Brownian motion starting at ai in the

closed interval [0, 1] and absorbed at the end points, with drift-diffusion coefficients (µix
i, σix

i)
where µi < 0 and σi > 0 are fixed and given constants. For a1 ≤ a2 and ∆1 ≤ ∆2, the value of the
two-person zero-sum stopping game

sup
τ1

inf
τ2

E
{

I{x
(1)
τ1 >x

(2)
τ2 } − I{x

(1)
τ1 <x

(2)
τ2 }

}
= inf

τ2
sup
τ1

E
{

I{x
(1)
τ1 >x

(2)
τ2 } − I{x

(1)
τ1 <x

(2)
τ2 }

}

is given by H∗ = a
∆2
1 −a2

a2
and the pair of stopping times (τ∗

1 , τ∗
2 ) given by (2) is the equilibrium point

provided that

2a1a2 − a1a
∆1
2 − a2a

∆2
1 = 0.

Proof. This follows with minor modifications of the proof in [6]. Hence, we shall omit the details.

REMARK 2.1. In the special case when ∆1 = ∆2 = 1, then the above result coincides with the
result in [6] for the planar Brownian motion case.

3 Conclusion A two-person zero-sum stopping game when the observation processes are assumed
to be exponential Brownian motions is solved explicitly, under certain conditions. The present result
extends the one obtained by Vinnichenko and Mazalov [6] for the planar Brownian motion case, and
has several applications in mathematical finance.
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Soft BCI-positive implicative ideals of
soft BCI-algebras 

Abstract

The notion of soft BCI-positive implicative ideals and BCI-positive
implicative idealistic soft BCI-algebras is introduced and their basic
properties are discussed. Relations between soft ideals and soft BCI-
positive implicative ideals of soft BCI-algebras are provided. Also
idealistic soft BCI-algebras and BCI-positive implicative idealistic soft
BCI-algebras are being related. The intersection, union, “AND” op-
eration and “OR” operation of soft BCI-positive implicative ideals
and BCI-positive implicative idealistic soft BCI-algebras are estab-
lished. The characterizations of (fuzzy) BCI-positive implicative ideals
in BCI-algebras are given by using the concept of soft sets. Relations
between fuzzy BCI-positive implicative ideals and BCI-positive im-
plicative idealistic soft BCI-algebras are discussed.

Keywords: Soft set; (BCI-positive implicative idealistic) soft BCI-algebra;
Soft ideal; Soft BCI-positive implicative ideal.

1 Introduction

The real world is inherently uncertain, imprecise and vague. Because of vari-
ous uncertainties, classical methods are not successful for solving complicated
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problems in economics, engineering and environment. The theories such as
the probability theory, the (intuitionistic) fuzzy sets theory, the vague set
theory, the theory of interval mathematics and the rough set theory, which
are used for handling uncertainties have their own difficulties. One of the
reasons for these difficulties is due to the inadequacy of the parametrization
tool of the theory, which was pointed out by Molodtsov [16]. To overcome
these difficulties, Molodtsov introduced the concept of soft sets as a new
mathematical tool for dealing with uncertainties. Soft set is a parameter-
ized general mathematical tool which deals with a collection of approximate
description of objects. In the soft set theory, the initial description of the
object has an approximate nature and there is no need to introduce the no-
tion of exact solution. The absence of any restrictions on the approximate
description in soft set theory makes this theory very convenient and easily
applicable in practice. Applications of soft set theory in different disciplines
and real life problems are now catching momentum some of which are being
discussed here.
Min [15] studied the concept of similarity between soft sets, which is an ex-
tension of the equality for soft set theory. He introduced the concepts of
conjunction parameter and disjunction parameter of ordered pair parameter
for soft set theory and investigated modified operations of soft set theory in
terms of ordered parameters. Yang and Guo [19] introduced the notions of
anti-reflexive kernel, symmetric kernel, reflexive closure and symmetric clo-
sure of a soft set relation. Soft set relation mappings and inverse soft set
relation mappings were also discussed. Kalayathankal and Singh [9] intro-
duced a fuzzy soft flood alarm model which was applied to five selected sites
of Karal, India to predict potential flood. Shabir and Naz [18] introduced
soft topological spaces defined over an initial universe with a fixed set of
parameters. They introduced the notions of soft open sets, soft closed sets,
soft closure, soft interior points, soft neighborhood of a point and soft sepa-
ration axioms. Zhan and Jun [20] discussed soft BL-algebras based on fuzzy
sets. They proved that a soft set is an implicative filteristic soft BL-algebra
if and only if it is both a positive implicative filteristic soft BL-algebra and
a fantastic filteristic soft BL-algebra. Z. Zhang [21] presented a rough set
approach to intuitionistic fuzzy soft set based decision making. Jiang et al.
[4] discussed interval-valued intuitionistic fuzzy soft sets and their properties.
Agarwal et al. [1] generalized the concept of intuitionistic fuzzy soft set by
including a parameter reflecting a moderator’s opinion about the validity of
the information provided. We refer the readers to [2, 17] for further informa-
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tion regarding development of soft set theory.
Jun [5] applied the concept of soft sets by Molodtsov to the theory of BCK/BCI-
algebras. He introduced the notion of soft BCK/BCI-algebras and soft
subalgebras. Jun and song [8] defined soft subalgebras and soft ideals in
BCK/BCI-algebras related to fuzzy set theory. Jun et al. [6] introduced the
notion of soft p-ideals and p-idealistic soft BCI-algebras and provided the
relations between fuzzy p-ideals and p-idealistic soft BCI-algebras. In this
paper, we introduce the notion of soft BCI-positive implicative ideals and
BCI-positive implicative idealistic soft BCI-algebras. Using soft sets, we give
characterizations of (fuzzy) BCI-positive implicative ideals in BCI-algebras.
We provide relations between fuzzy BCI-positive implicative ideals and BCI-
positive implicative idealistic soft BCI-algebras.

2. Basic results on BCI-algebras

BCK/BCI-algebras are important classes of logical algebras introduced
by Y. Imai and K. Iséki [3] and were extensively investigated by several
researchers.

An algebra (X, ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the
following conditions:

(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0
(II) (x ∗ (x ∗ y)) ∗ y = 0
(III) x ∗ x = 0
(IV) x ∗ y = 0 and y ∗ x = 0 imply x = y

for all x, y, z ∈ X. In a BCI-algebra X, we can define a partial ordering
“ ≤ ” by putting x ≤ y if and only if x ∗ y = 0.

If a BCI-algebra X satisfies the identity:
(V) 0 ∗ x = 0,
for all x ∈ X, then X is called a BCK-algebra.

In any BCI-algebra the following hold:

(VI) (x ∗ y) ∗ z = (x ∗ z) ∗ y
(VII) x ∗ 0 = x
(VIII) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x
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(IX) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)
(X) x ∗ (x ∗ (x ∗ y)) = (x ∗ y)
(XI) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y

for all x, y, z ∈ X.

A non-empty subset S of a BCI-algebras X is called a subalgebra of X
if x ∗ y ∈ S for all x, y ∈ S. A non-empty subset I of a BCI-algebra X is
called an ideal of X if for any x ∈ X

(I1) 0 ∈ I
(I2) x ∗ y ∈ I and y ∈ I implies x ∈ I

Any ideal I of a BCI-algebra X satisfies the following implication:

x ≤ y and y ∈ I ⇒ x ∈ I, ∀ x ∈ X

A non-empty subset I of a BCI-algebra X is called an BCI-positive im-
plicative ideal (see Liu and Zhang [12]) of X if it satisfies (I1) and

(I3) ((x ∗ z) ∗ z) ∗ (y ∗ z) ∈ I and y ∈ I ⇒ x ∗ z ∈ I for all x, z ∈ X.

We know that every BCI-positive implicative ideal of a BCI-algebra X is
also an ideal of X.

We refer the readers to [11, 14] for further study about ideals in BCK/BCI-
algebras.

3. Basic results on soft sets

In [16] the soft set is defined in the following way: Let U be an initial
universe set and E be a set of parameters. Let P(U) denotes the power set
of U and A ⊂ E.

Definition 3.1 (Molodtsov [16]). A pair (F , A) is called a soft set over
U , where F is a mapping given by

F : A → P(U)
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In other words, a soft set over U is a parameterized family of subsets of the
universe U . For a ∈ A, F(a) may be considered as the set of a-approximate
elements of the soft set (F , A).

Definition 3.2 (Maji et al. [13]). Let (F , A) and (G, B) be two soft
sets over a common universe U . The intersection of (F , A) and (G, B) is
defined to be the soft set (H, C) satisfying the following conditions:

(i) C = A ∩ B
(ii) H(x) = F(x) or G(x) for all x ∈ C, (as both are same sets)

In this case, we write (F , A) ∩̃ (G, B) = (H, C).

Definition 3.3 (Maji et al. [13]). Let (F , A) and (G, B) be two soft
sets over a common universe U . The union of (F , A) and (G, B) is defined
to be the soft set (H, C) satisfying the following conditions:

(i) C = A ∪ B
(ii) for all x ∈ C,

H(x) =





F(x) if x ∈ A \ B
G(x) if x ∈ B \ A
F(x) ∪ G(x) if x ∈ A ∩ B

In this case, we write (F , A) ∪̃ (G, B) = (H, C).

Definition 3.4 (Maji et al. [13]). Let (F , A) and (G, B) be two soft
sets over a common universe U . Then “(F , A) AND (G, B)” denoted by
(F , A) ∧̃ (G, B) is defined as (F , A) ∧̃ (G, B) = (H, A × B), where
H(x, y) = F(x) ∩ G(y) for all (x, y) ∈ A × B.

Definition 3.5 (Maji et al. [13]). Let (F , A) and (G, B) be two soft
sets over a common universe U . Then “(F , A) OR (G, B)” denoted by
(F , A) ∨̃ (G, B) is defined as (F , A) ∨̃ (G, B) = (H, A × B), where
H(x, y) = F(x) ∪ G(y) for all (x, y) ∈ A × B.
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Definition 3.6 (Maji et al. [13]). For two soft sets (F , A) and (G, B)
over a common universe U , we say that (F , A) is a soft subset of (G, B),
denoted by (F , A) ⊂̃ (G, B), if it satisfies:

(i) A ⊂ B
(ii) For every a ∈ A, F(a) and G(a) are identical approximations.

4. Soft BCI-positive implicative ideals

In what follows let X and A be a BCI-algebra and a nonempty set, respec-
tively and R will refer to an arbitrary binary relation between an element
of A and an element of X, that is, R is a subset of A × X without oth-
erwise specified. A set valued function F : A → P(X) can be defined as
F(x) = {y ∈ X | xRy} for all x ∈ A. The pair (F , A) is then a soft set over
X.

Definition 4.1 (Jun and Park [7]). Let S be a subalgebra of X. A
subset I of X is called an ideal of X related to S (briefly, S-ideal of X),
denoted by I � S, if it satisfies:

(i) 0 ∈ I
(ii) x ∗ y ∈ I and y ∈ I ⇒ x ∈ I for all x ∈ S

Definition 4.2. Let S be a subalgebra of X. A subset I of X is called a BCI-
positive implicative ideal of X related to S (briefly, S − (BCI − PI)−ideal
of X), denoted by I �bci−pi S, if it satisfies:

(i) 0 ∈ I

(ii) ((x ∗ z) ∗ z) ∗ (y ∗ z) ∈ I and y ∈ I ⇒ x ∗ z ∈ I for all x, z ∈ S

Example 4.3. Let X = {0, a, b, c} be a BCI-algebra with the following
Cayley table:
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∗ 0 a b c
0 0 0 0 c
a a 0 0 c
b b b 0 c
c c c c 0

Then S = {0, b} is a subalgebra of X and I = {0, a, b} is an S − (BCI −
PI)−ideal of X.

Note that every S − (BCI − PI)−ideal of X is an S-ideal of X.

Definition 4.4 (Jun [5]). Let (F , A) be a soft set over X. Then (F , A) is
called a soft BCI-algebra over X if F(x) is a subalgebra of X for all x ∈ A.

Definition 4.5 (Jun and Park [7]). Let (F , A) be a soft BCI-algebra
over X. A soft set (G, I) over X is called a soft ideal of (F , A), denoted
(G, I) �̃ (F , A), if it satisfies:

(i) I ⊂ A
(ii) G(x) � F(x) for all x ∈ I

Definition 4.6. Let (F , A) be a soft BCI-algebra over X. A soft set
(G, I) over X is called a soft BCI-positive implicative ideal of (F , A), de-
noted (G, I) �̃bci−pi (F , A), if it satisfies:

(i) I ⊂ A
(ii) G(x) �bci−pi F(x) for all x ∈ I

Let us illustrate this definition using the following example.

Example 4.7. Consider a BCI-algebra X = {0, a, b, c} which is given in Ex-
ample 4.3. Let (F , A) be a soft set over X, where A = X and F : A → P(X)
is a set-valued function defined by:

F(x) = {0} ∪ {y ∈ X | y ∗ (y ∗ x) ∈ {0, a}}

for all x ∈ A. Then F(0) = F(a) = X, F(b) = {0, a, c}, F(c) = {0},
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which are subalgebras of X. Hence (F , A) is a soft BCI-algebra over X. Let
I = {0, a, b} ⊂ A and G : I → P(X) be a set-valued function defined by:

G(x) =

{
Z({0, a}) if x = b
{0} if x ∈ {0, a}

where Z({0, a}) = {x ∈ X | 0 ∗ (0 ∗ x) ∈ {0, a}}. Then G(0) = {0} �bci−pi

X = F(0), G(a) = {0} �bci−pi X = F(a), G(b) = {0, a, b} �bci−pi {0, a, c} =
F(b). Hence (G, I) is a soft BCI-positive implicative ideal of (F , A).

Note that every soft BCI-positive implicative ideal is a soft ideal but the
converse is not true as seen in the following example.

Example 4.8. Let X = {0, a, b, c, d} be a BCK-algebra and hence a BCI-
algebra, with the following Cayley table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 0 0
b b b 0 0 0
c c c c 0 0
d d d d c 0

Let (F , A) be a soft set over X, where A = X and F : A → P(X) is a
set-valued function defined by:

F(x) = {y ∈ X | y ∗ (y ∗ x) ∈ {0, a}}

for all x ∈ A. Then F(0) = F(a) = X, F(b) = {0, a, c, d} and F(c) =
F(d) = {0, a}, which are subalgebras of X. Hence (F , A) is a soft BCI-
algebra over X.
Let (G, I) be a soft set over X, where I = {a, b} ⊂ A and G : I → P(X)
be a set-valued function defined by:

G(x) = {y ∈ X | y ∗ x = 0}

for all x ∈ I. Then G(a) = {0, a} � X = F(a), G(b) = {0, a, b} �
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{0, a, c, d} = F(b). Hence (G, I) is a soft ideal of (F , A) but it is not a soft
BCI-positive implicative ideal of (F , A) because G(a) is not a BCI-positive
implicative ideal of X related to F(a) since ((d ∗ c) ∗ c) ∗ (0 ∗ c) = 0 ∈ G(a)
and 0 ∈ G(a) but d ∗ c = c /∈ G(a).

Theorem 4.9. Let (F , A) be a soft BCI-algebra over X. For any soft
sets (G1, I1) and (G2, I2) over X where I1 ∩ I2 �= ∅, we have

(G1, I1) �̃bci−pi (F , A), (G2, I2) �̃bci−pi (F , A) ⇒ (G1, I1) ∩̃ (G2, I2) �̃bci−pi (F , A)

Proof. Using Definition 3.2, we can write

(G1, I1) ∩̃ (G2, I2) = (G, I)

where I = I1 ∩ I2 and G(e) = G1(e) or G2(e) for all e ∈ I. Obviously,
I ⊂ A and G : I → P(X) is a mapping. Hence (G, I) is a soft set over X.
Since (G1, I1) �̃bci−pi (F , A) and (G2, I2) �̃bci−pi (F , A), it follows that
G(e) = G1(e) �bci−pi F(e) or G(e) = G2(e) �bci−pi F(e) for all e ∈ I. Hence

(G1, I1) ∩̃ (G2, I2) = (G, I) �̃bci−pi (F , A)

This completes the proof. �

Corollary 4.10. Let (F , A) be a soft BCI-algebra over X. For any soft
sets (G, I) and (H, I) over X, we have

(G, I) �̃bci−pi (F , A), (H, I) �̃bci−pi (F , A) ⇒ (G, I) ∩̃ (H, I) �̃bci−pi (F , A)

Proof. Straightforward. �

Theorem 4.11. Let (F , A) be a soft BCI-algebra over X. For any soft
sets (G, I) and (H, J ) over X in which I and J are disjoint, we have

(G, I) �̃bci−pi (F , A), (H, J ) �̃bci−pi (F , A) ⇒ (G, I) ∪̃ (H, J ) �̃bci−pi (F , A)

Proof. Assume that (G, I) �̃bci−pi (F , A) and (H, J ) �̃bci−pi (F , A).
By means of Definition 3.3, we can write (G, I) ∪̃ (H, J ) = (R, U), where
U = I ∪ J and for every e ∈ U ,
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R(x) =





G(e) if e ∈ I \ J
H(e) if e ∈ J \ I
G(e) ∪H(e) if e ∈ I ∩ J

Since I ∩ J = ∅, either e ∈ I \ J or e ∈ J \ I for all e ∈ U . If
e ∈ I \ J , then R(e) = G(e) �bci−pi F(e) since (G, I) �̃bci−pi (F , A).
If e ∈ J \ I, then R(e) = H(e) �bci−pi F(e) since (H, J ) �̃bci−pi (F , A).
Thus R(e) �bci−pi F(e) for all e ∈ U and so

(G, I) ∪̃ (H, J ) = (R, U) �̃bci−pi (F , A) �

It I and J are not disjoint in Theorem 4.11, then Theorem 4.11 is not
true in general as seen in the following example.

Example 4.12. Let X = {0, a, b, c, d} be a BCK-algebra and hence a BCI-
algebra, with the following Cayley table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 0 0
b b b 0 b 0
c c c c 0 0
d d d c b 0

Let (F , A) be a soft set over X, where A = X and F : A → P(X) is a
set-valued function defined by:

F(x) = {y ∈ X | y ∗ (y ∗ x) ∈ {0, b}}

for all x ∈ A. Then F(0) = X, F(a) = F(b) = {0, b, c, d} and F(c) =
F(d) = {0, b}, which are subalgebras of X. Hence (F , A) is a soft BCI-
algebra over X.
Let (G, I) be a soft set over X, where I = {b, c, d} ⊂ A and G : I → P(X)
be a set-valued function defined by:

G(x) = {y ∈ X | y ∗ x = 0}
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for all x ∈ I. Then G(b) = {0, a, b} �bci−pi {0, b, c, d} = F(b), G(c) =
{0, a, c} �bci−pi {0, b} = F(c), G(d) = X �bci−pi {0, b} = F(d). Hence
(G, I) is a soft BCI-positive implicative ideal of (F , A).
Now consider J = {b} which is not disjoint with I and let H : J → P(X)
be a set valued function by:

H(x) = {y ∈ X | y ∗ (y ∗ x) = 0}}

for all x ∈ J . Then H(b) = {0, c} �bci−pi {0, b, c, d} = F(b). Hence
(H, J ) is a soft BCI-positive implicative ideal of (F , A). But if (R, U) =
(G, I) ∪̃ (H, J ), then R(b) = G(b) ∪ H(b) = {0, a, b, c}, which is not a
BCI-positive implicative ideal of X related to F(b) since
((d ∗ 0) ∗ 0) ∗ (b ∗ 0) = d ∗ b = c ∈ R(b) and b ∈ R(b) but d ∗ 0 = d /∈ R(b).
Hence (R, U) = (G, I) ∪̃ (H, J ) is not a soft BCI-positive implicative ideal
of (F , A).

5. BCI-positive implicative idealistic soft BCI-algebras

Definition 5.1 (Jun and Park [7]). Let (F , A) be soft set over X.
Then (F , A) is called an idealistic soft BCI-algebra over X if F(x) is an
ideal of X for all x ∈ A.

Definition 5.2. Let (F , A) be soft set over X. Then (F , A) is called
a BCI-positive implicative idealistic soft BCI-algebra over X if F(x) is a
BCI-positive implicative ideal of X for all x ∈ A.

Example 5.3. Consider a BCI-algebra X = {0, a, b, c} which is given in Ex-
ample 4.3. Let (F , A) be a soft set over X, where A = X and F : A → P(X)
is a set-valued function defined by:

F(x) =

{
Z({0, a}) if x ∈ {b, c}
X if x ∈ {0, a}

where Z({0, a}) = {x ∈ X | 0 ∗ (0 ∗ x) ∈ {0, a}}. Then (F , A) is a BCI-
positive implicative idealistic soft BCI-algebra over X.

For any element x of a BCI-algebra X, we define the order of x, denoted
by o(x), as
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o(x) = min{n ∈ N | 0 ∗ xn = 0}
where 0 ∗ xn = (...((0 ∗ x) ∗ x)...) ∗ x, in which x appears n-times.

Example 5.4. Let X = {0, a, b, c, d, e, f, g} be a BCI-algebra defined by
the following Cayley table:

∗ 0 a b c d e f g
0 0 0 0 0 d d d d
a a 0 0 0 e d d d
b b b 0 0 f f d d
c c b a 0 g f e d
d d d d d 0 0 0 0
e e d d d a 0 0 0
f f f d d b b 0 0
g g f e d c b a 0

Let (F , A) be a soft set over X, where A = {a, b, c} ⊂ X and F : A → P(X)
is a set-valued function defined by:

F(x) = {y ∈ X | o(x) = o(y)}

for all x ∈ A. Then F(a) = F(b) = F(c) = {0, a, b, c} is a BCI-positive
implicative ideal of X. Hence (F , A) is a BCI-positive implicative idealistic
soft BCI-algebra over X. But if we take B = {a, b, f, g} ⊂ X and defined a
set-valued function G : B → P(X) by:

G(x) = {0} ∪ {y ∈ X | o(x) = o(y)}

for all x ∈ B, then (G, B) is not a BCI-positive implicative idealistic soft
BCI-algebra over X, since G(f) = {0, d, e, f, g} is not a BCI-positive implica-
tive ideal of X because ((g ∗ d) ∗ d) ∗ (f ∗ d) = g ∗ b = e ∈ G(f) and f ∈ G(f)
but g ∗ d = c /∈ G(f).

Example 5.5 Consider a BCI-algebra X = {0, a, b, c} with the following
cayley table:
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∗ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Let (F , A) be a soft set over X, where A = X and F : A → P(X) is a
set-valued function defined by:

F(x) = {y ∈ X | y = xn, n ∈ N}

for all x ∈ A. Then F(0) = {0}, F(a) = {0, a}, F(b) = {0, b}, F(c) =
{0, c}, which are BCI-positive implicative ideals of X. Hence (F , A) is a
BCI-positive implicative idealistic soft BCI-algebra over X.

Obviously, every BCI-positive implicative idealistic soft BCI-algebra over
X is an idealistic soft BCI-algebra over X, but the converse is not true in
general as seen in the following example.

Example 5.6. Consider a BCI-algebra X := Y × Z, where (Y, ∗, 0) is a
BCI-algebra and (Z,−, 0) is the adjoint BCI-algebra of the additive group
(Z, +, 0) of integers. Let F : X → P(X) be a set-valued function defined as
follows:

F(y, n) =

{
Y × N◦ if n ∈ N◦
{(0, 0)} otherwise

for all (y, n) ∈ X, where N◦ is the set of all non-negative integers. Then
(F , X) is an idealistic soft BCI-algebra over X but it is not a BCI-positive
implicative idealistic soft BCI-algebra over X since {(0, 0)} may not be a
BCI-positive implicative ideal of X.

Proposition 5.7. Let (F , A) and (F , B) be soft sets over X where
B ⊆ A ⊆ X. If (F , A) is a BCI-positive implicative idealistic soft BCI-
algebra over X, then so is (F , B).

Proof. Straightforward. �
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The converse of Proposition 5.7 is not true in general as seen in the fol-
lowing example.

Example 5.8. Consider a BCI-positive implicative idealistic soft BCI-
algebra over X which is described in Example 5.4. If we take B = {a, b, c, d} ⊇
A, then (F , B) is not a BCI-positive implicative idealistic soft BCI-algebra
over X since F(d) = {d, e, f, g} is not a BCI-positive implicative ideal of X.

Theorem 5.9. Let (F , A) and (G, B) be two BCI-positive implicative
idealistic soft BCI-algebras over X. If A ∩ B �= ∅, then the intersection
(F , A) ∩̃ (G, B) is a BCI-positive implicative idealistic soft BCI-algebra
over X.

Proof. Using Definition 3.2, we can write

(F , A) ∩̃ (G, B) = (H, C)

where C = A ∩ B and H(e) = F(e) or G(e) for all e ∈ C. Note that
H : C → P(X) is a mapping, therefore (H, C) is a soft set over X. Since
(F , A) and (G, B) are BCI-positive implicative idealistic soft BCI-algebras
over X, it follows that H(e) = F(e) is a BCI-positive implicative ideal of
X or H(e) = G(e) is a BCI-positive implicative ideal of X for all e ∈ C.
Hence (H, C) = (F , A) ∩̃ (G, B) is a BCI-positive implicative idealistic
soft BCI-algebra over X. �

Corollary 5.10. Let (F , A) and (G, A) be two BCI-positive implicative
idealistic soft BCI-algebras over X. Then their intersection (F , A) ∩̃ (G, A)
is a BCI-positive implicative idealistic soft BCI-algebra over X.

Proof. Straightforward. �

Theorem 5.11. Let (F , A) and (G, B) be two BCI-positive implicative
idealistic soft BCI-algebras over X. If A and B are disjoint, then the union
(F , A) ∪̃ (G, B) is a BCI-positive implicative idealistic soft BCI-algebra
over X.

Proof. By means of Definition 3.3, we can write (F , A) ∪̃ (G, B) = (H, C),

 

70

Soft BCI-positive implicative ideals of
soft BCI-algebras 

Abstract

The notion of soft BCI-positive implicative ideals and BCI-positive
implicative idealistic soft BCI-algebras is introduced and their basic
properties are discussed. Relations between soft ideals and soft BCI-
positive implicative ideals of soft BCI-algebras are provided. Also
idealistic soft BCI-algebras and BCI-positive implicative idealistic soft
BCI-algebras are being related. The intersection, union, “AND” op-
eration and “OR” operation of soft BCI-positive implicative ideals
and BCI-positive implicative idealistic soft BCI-algebras are estab-
lished. The characterizations of (fuzzy) BCI-positive implicative ideals
in BCI-algebras are given by using the concept of soft sets. Relations
between fuzzy BCI-positive implicative ideals and BCI-positive im-
plicative idealistic soft BCI-algebras are discussed.

Keywords: Soft set; (BCI-positive implicative idealistic) soft BCI-algebra;
Soft ideal; Soft BCI-positive implicative ideal.

1 Introduction

The real world is inherently uncertain, imprecise and vague. Because of vari-
ous uncertainties, classical methods are not successful for solving complicated

 

Scientiae Mathematicae Japonicae online e-2015,　57-78　　　　　　　　　　　　　　　　                57

Received 13 October,2014

M. ASLAM MALIK ∗AND M. TOUQEER †

 
288



where C = A ∪ B and for every e ∈ C,

H(x) =





F(e) if e ∈ A \ B
G(e) if e ∈ A \ B
F(e) ∪ G(e) if e ∈ A ∩ B

Since A ∩ B = ∅, either e ∈ A \ B or e ∈ B \ A for all e ∈ C. If
e ∈ A \ B, then H(e) = F(e) is a BCI-positive implicative ideal of X
since (F , A) is a BCI-positive implicative idealistic soft BCI-algebra over
X. If e ∈ B \ A, then H(e) = G(e) is a BCI-positive implicative ideal of X
since (G, B) is a BCI-positive implicative idealistic soft BCI-algebra over X.
Hence (H, C) = (F , A) ∪̃ (G, B) is a BCI-positive implicative idealistic
soft BCI-algebra over X. �

Theorem 5.12. Let (F , A) and (G, B) be two BCI-positive implicative
idealistic soft BCI-algebras over X, then (F , A) ∧̃ (G, B) is a BCI-positive
implicative idealistic soft BCI-algebra over X.

Proof. By means of Definition 3.4, we know that

(F , A) ∧̃ (G, B) = (H, A × B),

where H(x, y) = F(x) ∩ G(y) for all (x, y) ∈ A × B. Since F(x) and
G(y) are BCI-positive implicative ideals of X, the intersection F(x) ∩ G(y)
is also a BCI-positive implicative ideal of X. Hence H(x, y) is a BCI-positive
implicative ideal of X for all (x, y) ∈ A × B.
Hence (F , A) ∧̃ (G, B) = (H, A×B) is a BCI-positive implicative idealistic
soft BCI-algebra over X. �

Definition 5.13. A BCI-positive implicative idealistic soft BCI-algebra
(F , A) over X is said to be trivial (resp., whole) if F(x) = 0 (resp.,
F(x) = X) for all x ∈ A.

Example 5.14. Let X be a BCI-algebra which is given in Example 5.5
and let F : X → P(X) be a set-valued function defined by

F(x) = {0} ∪ {y ∈ X | o(x) = o(y)}
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for all x ∈ X. Then F(0) = {0} and F(a) = F(b) = F(c) = X, which
are BCI-positive implicative ideals of X. Hence (F , {0}) is a trivial BCI-
positive implicative idealistic soft BCI-algebra over X and (F , X \ {0}) is a
whole BCI-positive implicative idealistic soft BCI-algebra over X.

The proofs of the following three lemmas are straightforward, so they are
omitted.

Lemma 5.15. Let f : X → Y be an onto homomorphism of BCI-algebras.
If I is an ideal of X, then f(I) is an ideal of Y .

Lemma 5.16. Let f : X → Y be an isomorphism of BCI-algebras. If I
is a BCI-positive implicative ideal of X, then f(I) is a BCI-positive implica-
tive ideal of Y .

Let f : X → Y be a mapping of BCI-algebras. For a soft set (F , A)
over X, (f(F), A) is soft set over Y , where f(F) : A → P(Y ) is defined by
f(F)(x) = f(F(x)) for all x ∈ A.

Lemma 5.17 Let f : X → Y be an isomorphism of BCI-algebras. If
(F , A) is a BCI-positive implicative idealistic soft BCI-algebra over X, then
(f(F), A) is a BCI-positive implicative idealistic soft BCI-algebra over Y .

Theorem 5.18. Let f : X → Y be an isomorphism of BCI-algebras and let
(F , A) be a BCI-positive implicative idealistic soft BCI-algebra over X.

(1) If F(x) = ker(f) for all x ∈ A, then (f(F), A) is a trivial BCI-positive
implicative idealistic soft BCI-algebra over Y .

(2) If (F , A) is whole, then (f(F), A) is a whole BCI-positive implica-
tive idealistic soft BCI-algebra over Y .

Proof. (1) Assume that F(x) = ker(f) for all x ∈ A. Then f(F)(x) =
f(F(x)) = {0Y } for all x ∈ A. Hence (F , A) is a trivial BCI-positive im-
plicative idealistic soft BCI-algebra over Y by Lemma 5.17 and Definition
5.13.
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(2) Suppose that (F , A) is whole. Then F(x) = X for all x ∈ A and
so f(F)(x) = f(F(x)) = f(X) = Y for all x ∈ A. It follows from Lemma
5.17 and Definition 5.13 that (f(F), A) is a whole BCI-positive implicative
idealistic soft BCI-algebra over Y . �

Definition 5.19 (Liu and Meng [11]). A fuzzy set µ in X is called a
fuzzy BCI-positive implicative ideal of X, if for all x, y, z ∈ X,

(i) µ(0) ≥ µ(x)
(ii) µ(x ∗ z) ≥ min{µ(((x ∗ z) ∗ z) ∗ (y ∗ z)), µ(y)}

The transfer principle for fuzzy sets described in [10] suggest the follow-
ing theorem.

Lemma 5.20 (Liu and Meng [11]). A fuzzy set µ in X is a fuzzy BCI-
positive implicative ideal of X if and only if for any t ∈ [0, 1], the level subset
U(µ; t) := {x ∈ X | µ(x) ≥ t} is either empty or a BCI-positive implicative
ideal of X.

Theorem 5.21. For every fuzzy BCI-positive implicative ideal µ of X, there
exists a BCI-positive implicative idealistic soft BCI-algebra (F , A) over X.

Proof. Let µ be a fuzzy BCI-positive implicative ideal of X. Then U(µ; t) :=
{x ∈ X | µ(x) ≥ t} is an BCI-positive implicative ideal of X for all t ∈ Im(µ).
If we take A = Im(µ) and consider a set valued function F : A → P(X)
given by F(t) = U(µ; t) for all t ∈ A, then (F , A) is a BCI-positive implica-
tive idealistic soft BCI-algebra over X. �

Conversely, the following theorem is straightforward.

Theorem 5.22. For any fuzzy set µ in X, if a BCI-positive implicative
idealistic soft BCI-algebra (F , A) over X is given by A = Im(µ) and
F(t) = U(µ; t) for all t ∈ A, then µ is a fuzzy BCI-positive implicative
ideal of X.

Let µ be a fuzzy set in X and let (F , A) be a soft set over X in which
A = Im(µ) and F : A → P(X) is a set-valued function defined by
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F(t) = {x ∈ X | µ(x) + t > 1} (5.2)

for all t ∈ A. Then there exists t ∈ A such that F(t) is not a BCI-positive
implicative ideal of X as seen in the following example.

Example 5.23. For any BCI-algebra X, define a fuzzy set µ in X by
µ(0) = t◦ < 0.5 and µ(x) = 1 − t◦ for all x �= 0. Let A = Im(µ)
and F : A → P(X) be a set-valued function defined by (5.2). Then
F(1 − t◦) = X \ {0}, which is not a BCI-positive implicative ideal of X.

Theorem 5.24. Let µ be a fuzzy set in X and let (F , A) be a soft set
over X in which A = [0, 1] and F : A → P(X) is given by (5.2). Then the
following assertions are equivalent:

(1) µ is a fuzzy BCI-positive implicative ideal of X.

(2) for every t ∈ A with F(t) �= ∅, F(t) is an BCI-positive implicative
ideal of X.

Proof. Assume that µ is a fuzzy BCI-positive implicative ideal of X.
Let t ∈ A be such that F(t) �= ∅. Then for any x ∈ F(t), we have
µ(0)+ t ≥ µ(x)+ t > 1, that is, 0 ∈ F(t). Let ((x∗z)∗z)∗ (y ∗z) ∈ F(t) and
y ∈ F(t) for any t ∈ A and x, y, z ∈ X. Then µ(((x ∗ z) ∗ z) ∗ (y ∗ z)) + t > 1
and µ(y) + t > 1. Since µ is a fuzzy BCI-positive implicative ideal of X, it
follows that

µ(x ∗ z) + t ≥ min{µ(((x ∗ z) ∗ z) ∗ (y ∗ z)), µ(y)} + t

= min{µ(((x ∗ z) ∗ z) ∗ (y ∗ z)) + t, µ(y) + t} > 1

so that x ∗ z ∈ F(t). Hence F(t) is a BCI-positive implicative ideal of
X for all t ∈ A such that F(t) �= ∅.

Conversely, suppose that (2) is valid. If there exists x◦ ∈ X such that
µ(0) < µ(x◦), then there exists t◦ ∈ A such that µ(0) + t◦ ≤ 1 < µ(x◦) + t◦.
It follows that x◦ ∈ F(t◦) and 0 /∈ F(t◦), which is a contradiction. Hence
µ(0) ≥ µ(x) for all x ∈ X. Now assume that

µ(x◦ ∗ z◦) < min{µ(((x◦ ∗ z◦) ∗ z◦) ∗ (y◦ ∗ z◦)), µ(y◦)}
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for some x◦, y◦, z◦ ∈ X. Then there exists some s◦ ∈ A such that

µ(x◦ ∗ z◦) + s◦ ≤ 1 < min{µ(((x◦ ∗ z◦) ∗ z◦) ∗ (y◦ ∗ z◦)), µ(y◦)} + s◦

⇒ µ(x◦ ∗ z◦) + s◦ ≤ 1 < min{µ(((x◦ ∗ z◦) ∗ z◦) ∗ (y◦ ∗ z◦)) + s◦, µ(y◦) + s◦}

which implies that ((x◦ ∗ z◦) ∗ z◦) ∗ (y◦ ∗ z◦) ∈ F(s◦) and y◦ ∈ F(s◦) but
x◦ ∗ z◦ /∈ F(s◦). This is a contradiction. Therefore

µ(x ∗ z) ≥ min{µ(((x ∗ z) ∗ z) ∗ (y ∗ z)), µ(y)} for all x, y, z ∈ X

Thus µ is fuzzy BCI-positive implicative ideal of X. �

Corollary 5.25. Let µ be a fuzzy set in X such that µ(x) > 0.5 for all
x ∈ X and let (F , A) be a soft set over X in which

A := {t ∈ Im(µ) | t > 0.5}

and F : A → P(X) is given by (5.2). If µ is a fuzzy BCI-positive im-
plicative ideal of X, then (F , A) is a BCI-positive implicative idealistic soft
BCI-algebra over X.

Proof. Straightforward. �

Theorem 5.26. Let µ be a fuzzy set in X and let (F , A) be a soft set
over X in which A = (0.5, 1] and F : A → P(X) is defined by

F(t) = U(µ; t) for all t ∈ A

Then F(t) is a BCI-positive implicative ideal of X for all t ∈ A with F(t) �= ∅
if and only if the following assertions are valid:

(1) max{µ(0), 0.5} ≥ µ(x) for all x ∈ X.

(2) max{µ(x∗z), 0.5} ≥ min{µ(((x∗z)∗z)∗(y∗z)), µ(y)} for all x, y, z ∈ X.

Proof. Assume that F(t) is a BCI-positive implicative ideal of X for all t ∈ A
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with F(t) �= ∅. If there exists x◦ ∈ X such that max{µ(0), 0.5} < µ(x◦),
then there exists t◦ ∈ A such that max{µ(0), 0.5} < t◦ ≤ µ(x◦). It follows
that µ(0) < t◦, so that x◦ ∈ F(t◦) and 0 /∈ F(t◦). This is a contradiction.
Therefore (1) is valid. Suppose that there exist a, b, c ∈ X such that

max{µ(a ∗ c), 0.5} < min{µ(((a ∗ c) ∗ c) ∗ (b ∗ c)), µ(b)}

Then there exists s◦ ∈ A such that

max{µ(a ∗ c), 0.5} < s◦ ≤ min{µ(((a ∗ c) ∗ c) ∗ (b ∗ c)), µ(b)}

which implies that ((a∗c)∗c)∗(b∗c) ∈ F(s◦) and b ∈ F(s◦), but a∗c /∈ F(s◦).
This is a contradiction. Hence (2) is valid.
Conversely, suppose that (1) and (2) are valid. Let t ∈ A with F(t) �= ∅.
Then for any x ∈ F(t), we have

max{µ(0), 0.5} ≥ µ(x) ≥ t > 0.5

which implies µ(0) ≥ t and thus 0 ∈ F(t). Let ((x ∗ z) ∗ z) ∗ (y ∗ z) ∈ F(t)
and y ∈ F(t), for any x, y, z ∈ X. Then µ(((x ∗ z) ∗ z) ∗ (y ∗ z)) ≥ t and
µ(y) ≥ t. It follows from the second condition that

max{µ(x ∗ z), 0.5} ≥ min{µ(((x ∗ z) ∗ z) ∗ (y ∗ z)), µ(y)} ≥ t > 0.5

⇒ µ(x ∗ z) ≥ t

so that x ∗ z ∈ F(t). Therefore F(t) is a BCI-positive implicative ideal
of X for all t ∈ A with F(t) �= ∅. �

CONCLUSION

The concept of soft set, which is introduced by Molodtsov [16], is a new
mathematical tool for dealing with uncertainties that is free from the dif-
ficulties that have troubled the usual theoretical approaches. Soft sets are
deeply related to fuzzy sets and rough sets. We introduced the notion of
soft BCI-positive implicative ideals and BCI-positive implicative idealistic
soft BCI-algebras and discussed related properties. We established the inter-
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section, union, “AND” operation and “OR” operation of soft BCI-positive
implicative ideals and BCI-positive implicative idealistic soft BCI-algebras.
From the above discussion it can be observed that fuzzy BCI-positive im-
plicative ideals can be characterized using the concept of soft sets. For a soft
set (F , A) over X, a fuzzy set µ in X is a fuzzy BCI-positive implicative ideal
of X if and only if for every t ∈ A with F(t) = {x ∈ X | µ(x) + t > 1} �= ∅,
F(t) is a BCI-positive implicative ideal of X. Finally we have discussed the
relations between fuzzy BCI-positive implicative ideals and BCI-positive im-
plicative idealistic soft BCI-algebras.
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Takahiro Sudo

Abstract. We consider classification of homeomorphism classes of connected sums of
closed surfaces by the Euler characteristic and the K-theory ranks of C∗-algebras.
We next consider classification of those of connected sums of higher dimensional,
closed topological manifolds by the Euler characteristic and the K-theory ranks of
C∗-algebras.

1 Introduction In this paper, first of all, we consider classification (of homeomorphism
classes) of connected sums of closed surfaces such as the real two-dimensional, sphere, torus,
and the real projective plane, by the Euler characteristic in the K-theory of C∗-algebras.
We obtain the Euler characteristic formula for the C∗-algebras corresponding to connected
sums of closed surfaces and show that the classification list obtained by Euler characteristic
in K-theory for the corresponding C∗-algebras is the same as the classification list for
connected sums of closed surfaces by the Euler characteristic in homology, well known
(see for instance, [5] inspired or [4]). As well, we consider another classification of these
two-dimensional topological manifolds by the K-theory group (free) ranks (i.e. the Betti
numbers) of the corresponding C∗-algebras.

We next consider classification (of homeomorphism classes) of connected sums of higher
dimensional, closed topological manifolds such as higher dimensional, spheres, tori, and real
projective spaces, by the Euler characteristic in the K-theory of C∗-algebras. We obtain
the Euler characteristic formulae for the C∗-algebras corresponding to connected sums of
the closed topological manifolds and do the classification list for connected sums of the
closed topological manifolds by the K-theory Euler characteristic for the corresponding C∗-
algebras. As well, we consider another classification of these higher dimensional, closed
topological manifolds by the K-theory group (free) ranks (i.e. the Betti numbers) (as well
as the K-theory torsion ranks in some cases) of the corresponding C∗-algebras.

In the process, and in the end we obtain the list of K-theory groups for the C∗-algebras
considered so far in this paper, and as well we show that those closed topological manifolds
are classifiable (up to homeomorphism) by K-theory data for C∗-algebras (together with
dimension for spaces).

As a generalization from connected sums of topological manifolds, in the final section we
define and consider connected sums of C∗-algebras viewed as noncommutative connected
sums and obtain their Euler characteristic formula and K-theory rank formulae.

Now recall that the Euler characteristic (in K-theory) of a C∗-algebra A is (first intro-
duced by Hiroshi Takai and) defined to be the alternative sum of the Betti numbers of the
K-theory groups of A:

χ(A) = b0(A) − b1(A) ≡ rankZK0(A) − rankZK1(A),
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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where each rankZKj(A) means the (free) Z-rank of the free summmand of the abelian group
Kj(A) of A (j = 0, 1). We say that a C∗-algebra A has Euler number n if χ(A) = n, where
n is an integer, or may as well be +∞ or −∞ (or formally ±∞−±∞).

We denote by K the C∗-algebra of all compact operators on a separable, infinite dimen-
sional, Hilbert space. Denote by Mn(C) the n×n matrix C∗-algebra over the complex field
C. We denote by C(X) the C∗-algebra of all complex-valued, continuous functions on a
compact Hausdorff space X. Denote by C0(X) the C∗-algebra of all C-valued, continuous
functions on a locally compact Hausdorff space X vanishing at infinity.

Recall some basic facts on the Euler characteristic for C∗-algebras, which can be found
in [8] or [9] and are used in the following sections without mentioning.

• Group isomorphisms K0(C) ∼= K0(Mn(C)) ∼= K0(K) ∼= Z, and K1(C) ∼= K1(Mn(C)) ∼=
K1(K) ∼= 0, so that χ(C) = χ(Mn(C)) = χ(K) = 1.

• K0(C0(R2n)) ∼= Z and K1(C0(R2n)) ∼= 0 by the Bott periodicity, so that χ(C0(R2n)) =
1. Also, K0(C0(R2n+1)) ∼= 0 and K1(C0(R2n+1)) ∼= Z, so that χ(C0(R2n+1)) = −1. Indeed,
χ(C0(X × R)) = χ(SC0(R)) = −χ(C0(X)) for X a locally compact Hausdorff space X.
Moreover, χ(SA) = −χ(A) for a C∗-algebra A, with the suspension SA = C0(R) ⊗ A,
because Kj(SA) = Kj+1(A) with j + 1 mod 2.

• We have χ(C(X)) = χ(X) the Euler characteristic of X in homology (or cohomology
in the several definitions) via the Euler-Poincaré formula.

• For a short exact sequence 0 → I → A → A/I → 0 of C∗-algebras, we have χ(A) =
χ(I) + χ(A/I) if each term is finite.

• For a tensor product A ⊗ B of C∗-algebras, we have χ(A ⊗ B) = χ(A) · χ(B) if each
term is finite and if one of the tensor product factors belongs to the bootstrap category or
the UCT class, which is deduced from the Künneth formula in K-theory of C∗-algebras.

Refer to [1] or [10] for some facts on K-theory of C∗-algebras, used below.

2 Connected sums of closed surfaces A closed surface is a compact (real) 2-dimensional
topological manifold without boundary. Let M,N be closed surfaces. The connected
sum M#N of M and N is defined to be the closed surface obtained by removing the
2-dimensional closed unit disks D viewed on M and N from themselves and gluing the
open differences M \ D and N \ D by attaching the unit circle S1 (or the 1-dimensional
torus T) to them as their boundaries.

Theorem 2.1. Let M,N be closed surfaces and M#N be their connected sum. Then

χ(C(M#N)) = χ(C(M)) + χ(C(N)) − 2.

Proof. By the definition of M#N , we have the following short exact sequence of C∗-
algebras:

0 → C0((M \ D) ⊔ (N \ D)) i−−−−→ C(M#N)
q−−−−→ C(T) → 0,

where i is the inclusion map and q is the quotient map since T attached in gluing is closed
in M#N , and ⊔ means the disjoint union, and the closed ideal is isomorphic to the direct
sum C0(M \ D) ⊕ C0(N \ D). Therefore, it follows that

χ(C(M#N)) = χ(C0(M \ D)) + χ(C0(N \ D)) + χ(C(T)),

with χ(C(T)) = 0, which follows from that there is the short exact sequence 0 → C0(R) →
C(T) → C → 0 of C∗-algebras.

Moreover, we have

0 → C0(M \ D) i−−−−→ C(M)
q−−−−→ C(D) → 0,
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so that
χ(C(M)) = χ(C0(M \ D)) + χ(C(D)),

with χ(C(D)) = 1, which follows from that D is contractible.
The same holds for N .

Note that there is a homeomorphism between (2 times)-successive connected sums of
three closed surfaces M1,M2,M3, denoted as

(M1#M2)#M3 ≈ M1#(M2#M3).

We denote both sides by M1#M2#M3 or #3
i=1Mi (called a 3-connected sum) and apply

this convention for more successive connected sums of finitely many closed surfaces.

Corollary 2.2. Let M1#M2 · · ·#Mn be an (n − 1)-successive connected sum of closed
surfaces M1,M2, · · · ,Mn. Then

χ(C(M1#M2 · · ·#Mn)) =
n∑

k=1

χ(C(Mk)) − 2(n − 1).

Example 2.3. Let T2 be the 2-dimensional torus. Denote by #nT2 the (n− 1)-successive
connected sum of n-copies of T2, and we call it the n-connected sum of T2. A closed
surface is said to be an orientable closed surface with genus n if it is homeomorphic to the
n-connected sum #nT2, and we denote it by T (n). Set T (1) ≈ T2. Then, by Theorem 2.1,

χ(C(T (n))) = χ(C(#nT2)) = −2(n − 1) = 2 − 2n,

since C(T (n)) is isomorphic to C(#nT2) and χ(C(T2)) = χ(C(T×T)) = χ(C(T)⊗C(T)) =
χ(C(T)) · χ(C(T)) = 0.

A closed surface is said to be a closed surface with genus zero if it is homeomorphic to
the 2-dimensional sphere S2, and we denote it by S(0). There is the following short exact
sequence of C∗-algebras:

0 → C0(R2) → C(S2) → C → 0,

so that
χ(C(S(0))) = χ(C(S2)) = χ(C0(R2)) + χ(C) = 1 + 1 = 2.

Note that M#S2 is homeomorphic to M for any closed surface M and that

χ(C(M#S(0))) = χ(C(M)) + χ(C(S(0))) − 2 = χ(C(M)).

Let P 2 be the real 2-dimensional projective plane, obtained (in R4) by gluing the bound-
ary of the Möbius band Mb with that of the closed unit disk D of R2, where the Möbius
band Mb is obtained from a 2-dimensional closed interval I by identifying one edge E of four
edges of I with the opposite edge with one twist. Denote by #nP 2 the (n − 1)-successive
connected sum of n-copies of P 2, and we call it the n-connected sum of P 2. A closed
surface is said to be a non-orientable closed surface with genus n if it is homeomorphic to
the n-connected sum #nP 2, and we denote it by P (n). There is the following short exact
sequence of C∗-algebras:

0 → C0(M◦
b ) → C(P 2) → C(D) → 0,

where M◦
b is the interior of Mb. Also,

0 → C0(I◦) → C0(M◦
b ) → C0(E◦) → 0
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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with I◦ ≈ R2 and E◦ ≈ R. Therefore,

χ(C(P 2)) = χ(C0(M◦
b )) + χ(C(D))

= χ(C0(I◦)) + χ(C0(E◦)) + 1

= χ(C0(R2)) + χ(C0(R)) + 1 = 1 − 1 + 1 = 1.

Moreover, by Theorem 2.1,

χ(C(P (n))) = χ(C(#nP 2)) = n · 1 − 2(n − 1) = 2 − n.

Note that the 2-connected sum P 2#P 2 is homeomorphic to the Klein bottle K2, ob-
tained by gluing two Möbius bands Mb along their boundaries homeomorphic to S1. Note
also that T2#P 2 ≈ #3P 2. An intuitive explanation for this fact is that T2 viewed as
a square 2-dimensional closed interval with four edges identified with opposites is trans-
formed by cutting the interval on the diagonal to the Klein bottle K2 viewed as a square
2-dimensional closed interval with two edges identified with opposites (with no twist) and
with the other two edges identified with opposites with one twist in the connected sum
T2#P 2. Moreover, (#mT2)#(#nP 2) ≈ #n+2mP 2.

Refer to [5] or [4] about connected sums of closed surfaces.

It is well known as a remarkable fact in (low dimensional) algebraic topology that closed
surfaces (or compact 2-dimensional topological manifolds without boundary) X are classified
as in the list of the Table 1, which becomes the same list as obtained by our Euler numbers
χ(C(X)) for the C∗-algebras C(X):

Table 1: Classification for closed surfaces

Euler number Orientable Non-orientable
2 S2 ≈ S(0) No
1 No P 2 ≈ P (1)
0 T2 ≈ T (1) P 2#P 2 ≈ P (2) ≈ K2

−1 No #3P 2 ≈ P (3) ≈ T2#P 2

−2 T2#T2 ≈ T (2) #4P 2 ≈ P (4)
3 − 2n No #2n−1P 2 ≈ P (2n − 1)
2 − 2n #nT2 ≈ T (n) #2nP 2 ≈ P (2n)

We now compute K-theory groups.

Theorem 2.4. Let M,N be closed surfaces and M#N be their connected sum. Then

K0(C(M#N)) ∼= Z ⊕ {[(K0(C(M))/Z[1]) ⊕ (K0(C(N))/Z[1])]/∂Z[z]},
K1(C(M#N)) ∼= K1(C(M)) ⊕ K1(C(N)) ⊕ ker(∂),

where each [1] means the K0-class of the unit 1 of C(M) or C(N), with Z[1] ∼= Z, and
[z] means the K1-class of K1(C(T)) corresponding to the coordinate function on T, with
Z[z] = K1(C(T)) ∼= Z, and ∂Z[z] is the image under the associated boundary map ∂, whose
kernel is denoted by ker(∂) and is isomorphic to (a subgroup of ) Z or zero.

Remark. The image ∂Z[z] may not be isomorphic to Z in general, which depends on ker(∂),
and the image may not split into a direct summand of K0(C(M#N)) in general, while
each Z[1] ∼= Z always splits in its K0-group. Also, the K-theory groups may have torsion in
general. Examples are given after the proof below or later.
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Proof. The six-term exact sequence of K-theory groups follows from the short exact sequence
of C(M#N) in the proof of Theorem 2.1:

K0(I) i∗−−−−→ K0(C(M#N))
q∗−−−−→ K0(C(T))

∂

�
�∂

K1(C(T))
q∗←−−−− K1(C(M#N)) i∗←−−−− K1(I)

with I = C0((M \ D) ⊔ (N \ D)) and Kj(C(T)) = Z[z] ∼= Z (j = 0, 1) and

Kj(C0((M \ D) ⊔ (N \ D))) ∼= Kj(C0(M \ D)) ⊕ Kj(C0(N \ D))

(j = 0, 1), where the maps i∗ and q∗ are induced from the maps i and q, and ∂ are boundary
maps (or the index map on the left and the exponential map on the right). The map q∗ on
K0 sends the K0-class of the unit of C(M#N) to that of C(T), and hence is onto. Thus,
∂ on the right is zero by exactness of the diagram.

Moreover, we also have the following diagram:

K0(C0(M \ D)) i∗−−−−→ K0(C(M))
q∗−−−−→ K0(C(D))

∂

�
�∂

K1(C(D))
q∗←−−−− K1(C(M)) i∗←−−−− K1(C0(M \ D))

with K0(C(D)) ∼= K0(C) ∼= Z and K1(C(D)) ∼= K1(C) ∼= 0 since D is contractible. The
map q∗ on K0 sends the K0-class of the unit of C(M) to that of C(D), and hence is onto.
Thus, both of the boundary maps ∂ are zero. Therefore, the diagram implies that

K0(C(M)) ∼= K0(C0(M \ D)) ⊕ Z,

K1(C(M)) ∼= K1(C0(M \ D)),

where the direct summand Z corresponds to the K0-class [1] of the unit 1 of C(M). Note
also that K1(C0(M \D)) ∼= K1(C0(M \D)+), where the C∗-algebra unitization C0(M \D)+

by C is isomorphic to C((M \ D)+), with the one-point compactification (M \ D)+, which
is in fact homeomorphic to M .

The same holds for N .
It then follows from the first six-term diagram above that

K0(C(M#N)) ∼= Z ⊕ {[(K0(C(M))/Z[1]) ⊕ (K0(C(N))/Z[1])]/∂Z[z]},
K1(C(M#N)) ∼= K1(C(M)) ⊕ K1(C(N)) ⊕ ker(∂).

Example 2.5. There is the following short exact sequence of C∗-algebras:

0 → C0((S2 \ D) ⊔ (S2 \ D)) i−−−−→ C(S2#S2)
q−−−−→ C(T) → 0

with S2 \ D ≈ R2 and S2#S2 ≈ S2. The six-term exact sequence of K-theory groups,
associated, becomes:

Z ⊕ Z i∗−−−−→ Z2 q∗−−−−→ Z

∂

�
�∂

Z[z]
q∗←−−−− 0 i∗←−−−− 0 ⊕ 0.
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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Therefore, the boundary map ∂ on the left is nonzero, and as in Theorem 2.4,

K0(C(S2#S2)) ∼= Z ⊕ {[(K0(C(S2))/Z) ⊕ (K0(C(S2))/Z)]}/∂Z[z]
∼= Z ⊕ {[Z ⊕ Z]/∂Z[z]} ∼= Z2,

K1(C(S2#S2)) ∼= K1(C(S2)) ⊕ K1(C(S2)) ⊕ ker(∂) ∼= 0 ⊕ 0 ⊕ 0 ∼= 0.

Note that Z ⊕ Z is torsion free, so that ∂Z[z] ∼= Z and ker(∂) ∼= 0, and that the diagram
above does not involve torsion, so that [Z ⊕ Z]/∂Z[z] ∼= Z.

Next, there is the following short exact sequence of C∗-algebras:

0 → C0((T2 \ D) ⊔ (S2 \ D)) i−−−−→ C(T2#S2)
q−−−−→ C(T) → 0

with T2#S2 ≈ T2. The six-term exact sequence of K-theory groups, associated, becomes:

K0(C0(T2 \ D)) ⊕ Z i∗−−−−→ Z2 q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− Z2 i∗←−−−− K1(C0(T2 \ D)) ⊕ 0.

Moreover, the exact sequence 0 → C0(T2 \ D) → C(T2) → C(D) → 0 implies

K0(C0(T2 \ D)) −−−−→ Z2 −−−−→ Z

∂=0

�
�∂=0

0 ←−−−− Z2 ←−−−− K1(C0(T2 \ D))

so that K0(C0(T2 \D)) ∼= Z and K1(C0(T2 \D)) ∼= Z2. Therefore, the boundary map ∂ on
the left in the second six-term diagram in this example is nonzero, and as in Theorem 2.4,
by the same reasoning as above,

K0(C(T2#S2)) ∼= Z ⊕ {[(K0(C(T2))/Z) ⊕ (K0(C(S2))/Z)]}/∂Z[z]
∼= Z ⊕ {[Z ⊕ Z]/∂Z[z]} ∼= Z2,

K1(C(T2#S2)) ∼= K1(C(T2)) ⊕ K1(C(S2)) ⊕ ker(∂) ∼= Z2 ⊕ 0 ⊕ 0 ∼= Z2.

Now, let M be a closed surface. There is the following short exact sequence of C∗-
algebras:

0 → C0((M \ D) ⊔ (S2 \ D)) i−−−−→ C(M#S2)
q−−−−→ C(T) → 0

with S2 \ D ≈ R2 and M#S2 ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes:

K0(C0(M \ D)) ⊕ Z i∗−−−−→ K0(C(M#S2))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#S2)) i∗←−−−− K1(C0(M \ D)) ⊕ 0.

Moreover, K1(C0(M \D)) ∼= K1(C0(M \D)+) ∼= K1(C(M)). Therefore, the map q∗ on K1

is zero, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼= K0(C0(M \ D)) ⊕ Z.
Thus, as in Theorem 2.4,

K0(C(M#S2)) ∼= Z ⊕ {[K0(C0(M \ D)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ D)) ∼= K0(C(M)),

K1(C(M#S2)) ∼= K1(C(M)) ⊕ K1(C(S2)) ⊕ ker(∂) ∼= K1(C(M)).
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Corollary 2.6. The formula obtained in Theorem 2.1 follows from Theorem 2.4.

Proof. Note that each quotient by Z[1], or by ∂Z[z] together with ker(∂) as a set, in Theorem
2.4 corresponds to either one rank lowering the free ranks of those K0-groups, or either the
same or one rank raising the free ranks of those K1-groups, respectively, where either ∂Z[z]
or ker(∂) has rank one, Hence,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2.

Corollary 2.7. Let Mi (1 ≤ i ≤ n) be closed surfaces and #n
i=1Mi be their successive

connected sum. Then, inductively,

K0(C(#n
i=1Mi))

∼= Z ⊕ {[(K0(C(#n−1
i=1 Mi))/Z[1]) ⊕ (K0(C(Mn))/Z[1])]/∂n−1Z[z]},

∼= Z ⊕ {[((· · · (Z ⊕ {[(K0(C(M1))/Z[1]) ⊕ (K0(C(M2))/Z[1])]/∂1Z[z]})
· · · /Z[1]) ⊕ (K0(C(Mn))/Z[1])]/∂n−1Z[z]},

K1(C(#n
i=1Mi)) ∼= [⊕n

i=1K1(C(Mi))] ⊕ [⊕n−1
i=1 ker(∂i)],

where each [1] means the K0-class of the unit 1 of C(Mi), and [z] ∈ K1(C(T)) the generating
class, and each ∂i = ∂ is the boundary map in each step in induction.

Corollary 2.8. That Corollary 2.2 follows from this Corollary 2.7.

Proof. Note that each quotient by Z[1], or by ∂iZ[z] together with ker(∂i) as a set, in
Corollary 2.7 corresponds to either one rank lowering the free ranks of those K0-groups, or
either the same or one rank raising the free ranks of those K1-groups, respectively, where
either ∂iZ[z] or ker(∂i) has rank one. Hence, inductively,

χ(C(#n
i=1Mi)) = χ(C(#n−1

i=1 Mi)) + χ(C(Mi)) − 2

= · · · =
n∑

i=1

χ(C(Mi)) − 2(n − 1).

Example 2.9. Since Kj(C(T2)) ∼= Z2 (j = 0, 1), it is obtained by Theorem 2.4 that

K0(C(T2#T2)) ∼= Z ⊕ {[(Z2/Z) ⊕ (Z2/Z)]}/∂Z
∼= Z ⊕ {[Z ⊕ Z]/∂Z} ∼= Z2,

K1(C(T2#T2)) ∼= Z2 ⊕ Z2 ⊕ ker(∂) ∼= Z4.

Hence, χ(C(T2#T2)) = (3 − 1) − 4 = −2.
Moreover, it is obtained by Corollary 2.7 that

K0(C(#nT2)) ∼= Z ⊕ {[(· · · ([Z ⊕ Z]/∂1Z) · · · ) ⊕ Z]/∂n−1Z},
K1(C(#nT2)) ∼= [⊕n

i=1Z2] ⊕ [⊕n−1
i=1 ker(∂i)] ∼= Z2n.

Hence, χ(C(#nT2)) = (1 + n − (n − 1)) − 2n = 2 − 2n. Indeed, it is deduced that
K0(C(#nT2)) ∼= Z2 by repeating the reasoning as before.
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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As for the real 2-dimensional, projective plane P 2, the six-term exact sequence of K-
theory groups, associated to the short exact sequence of C(P 2) in Example 2.3, becomes

K0(C0(M◦
b )) −−−−→ K0(C(P 2)) −−−−→ Z

∂=0

�
�∂=0

0 ←−−−− K1(C(P 2)) ←−−−− K1(C0(M◦
b ))

so that

K0(C(P 2)) ∼= Z ⊕ K0(C0(M◦
b )),

K1(C(P 2)) ∼= K1(C0(M◦
b )).

Indeed, P 2 is viewed as the one-point compactification of the interior M◦
b of the Möbius

band Mb. Moreover, the six-term exact sequence of K-theory groups, associated to the
short exact sequence of C0(M◦

b ) in Example 2.3, becomes

Z −−−−→ K0(C0(M◦
b )) −−−−→ 0

∂

�
�∂

Z ←−−−− K1(C0(M◦
b )) ←−−−− 0.

Furthermore, it follows from the diagram that K1(C0(M◦
b )) viewed as a subgroup of Z

without torsion is isomorphic to Z or zero. On the other hand, there is the quotient map
from C0(M◦

b )+ ∼= C((M◦
b )+) to C0(R)+ ∼= C(T), which induces the induced map q∗ on

K1-groups to be zero. In fact, (M◦
b )+ is homeomorphic to the Moore space of order two,

so that K0(C((M◦
b )+)) ∼= Z ⊕ Z2 and K1(C((M◦

b )+)) ∼= 0 (see [7] and [6, 12.3]). Hence it
follows that K0(C0(M◦

b )) ∼= Z2 = Z/2Z and K1(C0(M◦
b )) ∼= 0. Therefore, we do have

K0(C(P 2)) ∼= Z ⊕ (Z/∂Z) ∼= Z ⊕ Z2, K1(C(P 2)) ∼= 0.

Hence χ(C(P 2)) = 1. (Note that these results are compatible with those in homology
theory for P 2 in the sense that the Euler characteristic obtained in homology theory for P 2

coincides with our Euler number for C(P 2). See for instance, [3].)
It is obtained by Theorem 2.4 that

K0(C(P 2#P 2)) ∼= Z ⊕ {[([Z ⊕ (Z/∂Z)]/Z) ⊕ ([Z ⊕ (Z/∂Z)]/Z)]/∂1Z}
∼= Z ⊕ {[(Z/∂Z) ⊕ (Z/∂Z)]/∂1Z}
∼= Z ⊕ Z2 ⊕ Z2 = Z ⊕ Z2

2,

K1(C(P 2#P 2)) ∼= 0 ⊕ 0 ⊕ ker(∂1) ∼= Z

with in fact Z/∂Z ∼= Z2, so that ∂1Z ∼= 0 and ker(∂1) ∼= Z. Hence χ(C(P 2#P 2)) = 1−1 = 0.
Indeed, it follows from [6, 12.3] that the image ∂1Z is zero.

Moreover, it is obtained by Corollary 2.7 that

K0(C(#nP 2)) ∼= Z ⊕ {[(· · · ([(Z/∂Z) ⊕ (Z/∂Z)]/∂1Z) · · · ) ⊕ (Z/∂Z)]/∂n−1Z}
∼= Z ⊕ Zn

2 ,

K1(C(#nP 2)) ∼= [⊕n
i=10] ⊕ [⊕n−1

i=1 ker(∂i)] ∼= Zn−1.

Hence χ(C(#nP 2)) = 1− (n−1) = 2−n. In fact, since Z/∂Z ∼= Z2, we have the image ∂1Z
isomorphic to 0, and inductively, the image ∂n−1Z isomorphic to 0, so that each ker(∂i) is
isomorphic to Z.
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Table 2: Classification for closed surfaces

K0 rank Orientable Non-orientable
2 S2 ≈ S(0) No

T2 ≈ T (1)
#nT2 ≈ T (n)

1 No P 2 ≈ P (1)
P 2#P 2 ≈ P (2) ≈ K2

#nP 2 ≈ P (n)

It follows from the Table 2 that:

Corollary 2.10. The rank of K0-groups for C∗-algebras can not classify homeomorphism
classes of orientable closed surfaces, and as well, the rank of K0-groups for C∗-algebras does
not classify homeomorphism classes of non-orientable closed surfaces.

But, the rank of K0-groups for C∗-algebras does distinguish the class of homeomorphism
classes of orientable, closed surfaces from the class of those of non-orientable, closed sur-
faces.

Table 3: Classification for closed surfaces

K1 rank Orientable Non-orientable
2n #nT2 ≈ T (n) #2n+1P 2 ≈ P (2n + 1)

2n − 1 No #2nP 2 ≈ P (2n)
4 T2#T2 ≈ T (2) #5P 2 ≈ P (5)
3 No #4P 2 ≈ P (4)
2 T2 ≈ T (1) #3P 2 ≈ P (3) ≈ T2#P 2

1 No P 2#P 2 ≈ P (2) ≈ K2

0 S2 ≈ S(0) P 2 ≈ P (1)

It follows from the Table 3 that:

Corollary 2.11. The rank of K1-groups for C∗-algebras does classsify homeomorphism
classes of orientable, closed surfaces and as well, those of non-orientable, closed surfaces.

3 Connected sums of closed topological manifolds A closed topological manifold
is a compact real n-dimensional topological manifold without boundary (n ≥ 1). Let M,N
be n-dimensional closed topological manifolds. The connected sum M#N of M and N is
defined to be the closed topological manifold obtained by removing the n-dimensional closed
unit balls Dn (of Rn) viewed on M and N from themselves and gluing the open differences
M \ Dn and N \ Dn by attaching the (n − 1)-dimensional sphere Sn−1 (or the boundary
∂Dn of Dn) to them as their boundaries (n ≥ 2), where when n = 1, D1 = [−1, 1] the
closed interval and S0 = ∂D1 = {−1, 1} the set of two points.

Theorem 3.1. Let M,N be n-dimensional closed topological manifolds and M#N be their
connected sum (n ≥ 1). If n is even, then

χ(C(M#N)) = χ(C(M)) + χ(C(N)) − 2,
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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and if n is odd, then
χ(C(M#N)) = χ(C(M)) + χ(C(N)).

Proof. By the definition of M#N , we have the following short exact sequence of C∗-
algebras:

0 → C0((M \ Dn) ⊔ (N \ Dn)) → C(M#N) → C(Sn−1) → 0,

where ⊔ means the disjoint union, and the closed ideal is isomorphic to the direct sum
C0(M \ Dn) ⊕ C0(N \ Dn). Therefore, it follows that

χ(C(M#D)) = χ(C0(M \ Dn)) + χ(C0(N \ Dn)) + χ(C(Sn−1)).

Moreover, we have

0 → C0(M \ Dn) → C(M) → C(Dn) → 0,

so that
χ(C(M)) = χ(C0(M \ Dn)) + χ(C(Dn)),

with χ(C(Dn)) = 1 since Dn is contractible to a point, so that C(Dn) is contractible to C,
and the Euler characteristic is stable under homotopy equivalence in C∗-algebras.

The same holds for N . Also, we have

0 → C0(Rn−1) → C(Sn−1) → C → 0

since Sn−1 is viewed as the one-point compactification of Rn−1, so that

χ(C(Sn−1)) =

{
−1 + 1 = 0 if n is even,

1 + 1 = 2 if n is odd

(n ≥ 2), where note that C(S0) ∼= C2, and hence the equation above for n = 1 also
holds.

Corollary 3.2. Let M1#M2 · · ·#Ml be an (l − 1)-successive connected sum of closed n-
dimensional topological manifolds M1,M2, · · · ,Ml. If n is even, then

χ(C(M1#M2 · · ·#Ml)) =
l∑

k=1

χ(C(Mk)) − 2(l − 1),

and if n is odd, then

χ(C(M1#M2 · · ·#Ml)) =
l∑

k=1

χ(C(Mk)).

As an interest, we consider higher dimensional analogues of closed surfaces.

Example 3.3. Let Tn be the n-dimensional torus. Then χ(C(Tn)) = 0 since χ(C(Tn)) =
χ(C(ΠnT)) = χ(⊗nC(T)) = χ(C(T))n = 0n, with ΠnT = T × · · · × T. Therefore, we have

χ(C(#lTn)) =

{
−2(l − 1) = 2 − 2l if n is even,

0 if n is odd.
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Let Sn be the n-dimensional sphere. Then

χ(C(#lSn)) =

{
2l − 2(l − 1) = 2 if n is even,

0 if n is odd.

Note that for M a closed n-dimensional topological manifold,

χ(C(M#Sn)) =

{
χ(C(M)) + χ(C(Sn)) − 2 = χ(C(M)) if n is even,

χ(C(M)) + χ(C(Sn)) = χ(C(M)) if n is odd.

Indeed, M#Sn ≈ M . Thus, in particular, #lSn ≈ Sn.
Let Pn be the real n-dimensional projective space, which is a quotient space of Rn+1\{0}

(or of Sn), where two points x, y in Rn+1 \ {0} are equivalent if there is t ∈ R such that
x = ty. Now we view Pn as obtained by gluing the boundary of the n-dimensional Möbius
band Mn

b with that of the closed unit ball Dn of Rn, where the n-dimensional Möbius band
Mn

b defined by us is obtained from the product space I = [0, 1]× [{−∞}∪ (Pn−1)− ∪{∞}]
by identifying one edge E ≈ [0, 1] at −∞ with the opposite edge at ∞ with one twist,
so that (Pn−1)− ∪ {±∞} ≈ Pn−1 with +∞ = −∞ identified, where (Pn−1)− means our
uncompactification of Pn−1 by removing one point. One can check that this should be true,
as follows. We have the decomposition Sn = Sn

+ ∪ Sn−1 ∪ Sn
− as a disjoint union, where

Sn
+ ∪ Sn

− = Sn \ Sn−1 with the north and south poles contained in Sn
+ and Sn

− respectively.
Then Sn

+ is homeomorphic to the interior of Dn and is identified with Sn
− in Pn, and Pn is

obtained by gluing the boundary Pn−1 of the n-dimensional Möbius band Mn
b with that of

Dn mapped in Pn by the quotient map from Sn to Pn. Refer also [3, Section 2.8] for the
cell decomposition for Pn as Pn = Pn−1 ⊔ Rn a disjoint union.

There is the following short exact sequence of C∗-algebras:

0 → C0((Mn
b )◦) → C(Pn) → C(Dn) → 0,

where (Mn
b )◦ is the interior of Mn

b . Also, we have

0 → C0(I◦) → C0((Mn
b )◦) → C0(E◦) → 0.

Therefore, we get

χ(C(Pn)) = χ(C0((Mn
b )◦)) + χ(C(Dn))

= χ(C0(I◦)) + χ(C0(E◦)) + 1

= χ(C0((Pn−1)− × R)) + χ(C0(R)) + 1

= −χ(C0((Pn−1)−)) − 1 + 1

= −[χ(C(Pn−1)) − 1]

= −χ(C(Pn−1)) + 1,

(n ≥ 1), where we have 0 → C0((Pn−1)−) → C(Pn−1) → C → 0 split, and P 1 ≈ S1 = T,
and P 0 is identified with the quotient {−1 = +1} of S0. The equation obtained above is
converted to

an − 1
2

= −
(

an−1 −
1
2

)

(n ≥ 1) with an = χ(C(Pn)) for n ≥ 1, so that

χ(C(Pn)) =
1
2
(1 + (−1)n) (n ≥ 1)

=

{
1 if n is even,

0 if n is odd.
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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(Note that this result is compatible with that in homology theory for Pn in the sense that
the Euler characteristic in homology theory for Pn coincides with our Euler number for
C(Pn). Indeed,

H0(P 2n) ∼= Z, H2k(P 2n) ∼= 0, and H2k−1(P 2n) ∼= Z/2Z (k = 1, · · · , n),

so that χ(P 2n) = 1. Also,

H0(P 2n+1) ∼= Z, H2k(P 2n+1) ∼= 0, H2n+1(P 2n+1) ∼= Z,

and H2k−1(P 2n+1) ∼= Z/2Z (k = 1, · · · , n),

so that χ(P 2n+1) = 0 (see [3, Section 3.7]).)
Moreover, if n is even, then

χ(C(#lPn)) = l − 2(l − 1) = 2 − l,

and if n is odd, then
χ(C(#lPn)) = 0.

Note that Pn#Pn is homeomorhic to the closed topological manifold obtained by glueing
two n-dimensional Möbius bands Mn

b along with their boundaries homeomorphic to Pn−1,
which we may call it the n-dimensional Klein bottle, and denote it by Kn. Note also that
T2#P 2 ≈ #3P 2, and as well, we may have Tn#Pn ≈ #3Pn (n ≥ 3) (as our consequence).
(Our intuitive explanation for this is that Tn viewed as a square n-dimensional closed
interval with edges identified with opposites (with no twist) is transformed by cutting the
interval on the diagonal to the Klein bottle Kn viewed as a square n-dimensional closed
interval with edges identified with opposites with half twisted and with half no twisted
alternatively in the connected sum Tn#Pn.) Indeed, if n is even,

χ(C(Tn#Pn)) = χ(C(Tn)) + χ(C(Pn)) − 2 = 0 + 1 − 2 = −1,

χ(C(#3Pn)) = 2 − 3 = −1,

and if n is odd, then

χ(C(Tn#Pn)) = χ(C(Tn)) + χ(C(Pn))
= 0 + 0 = 0,

χ(C(#3Pn)) = 0.

Table 4: Classification for closed topological manifolds with dimension even

Euler number Orientable Non-orientable
2 S2n ≈ #lS2n, S0 No
1 No P 2n, P 0

0 T2n P 2n#P 2n = K2n

−1 No #3P 2n

−2 T2n#T2n #4P 2n

3 − 2l No #2l−1P 2n

2 − 2l #lT2n #2lP 2n

Note that #3P 2n ≈ T2n#P 2n by the reason given above. It follows from the Table 4
that
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Corollary 3.4. Let n be a natural number. The Euler characteristic in K-theory of C∗-
algebras classifies even 2n-dimensional orientable topological manifolds in the homeomor-
phism classes of connected sums of the even 2n-dimensional torus T2n and the even 2n-
dimensional sphere S2n, and also does even 2n-dimensional non-orientable topological mani-
folds in the homeomorphism classes of connected sums of the even 2n-dimensional projective
space P 2n.

Table 5: Classification for closed topological manifolds with dimension odd

Euler number Orientable Orientable
0 T2n+1, #lT2n+1 P 2n+1

S2n+1 ≈ #lS2n+1 #lP 2n+1

Note that Pn is orientable if n is odd but not if n is even (see [3]). We also have
P 2n+1#P 2n+1 = K2n+1 and T2n+1#P 2n+1 ≈ #3P 2n+1. It follows from the Table 5 that

Corollary 3.5. Let n be a natural number. The Euler characteristic in K-theory of C∗-
algebras can not classify odd (2n + 1)-dimensional orientable topological manifolds in the
homeomorphism classes of connected sums of the odd (2n+1)-dimensional torus T2n+1 and
the odd (2n + 1)-dimensional sphere S2n+1, and does not classify odd (2n + 1)-dimensional
orientable topological manifolds in the homeomorphism classes of connected sums of the odd
(2n + 1)-dimensional projective space P 2n+1.

We now consider another decomposition for a sort of substitute of Pn in our sense.
As well, one may use the K-theory of its corresponding (different) C∗-algebras to classify
homeomorphism classes of connected sums of Pn.

Example 3.6. As a contrast to Pn, and as a sort of substitute of Pn, we may define Pn

to be a closed topological manifold obtained by gluing the boundary of the n-dimensional
Möbius band Mb,n (the same name as before, but with different fibers) with that of the
closed unit ball Dn of Rn, where the n-dimensional Möbius band Mb,n defined by us is
obtained from the product space I = [0, 1]× [{−∞}∪Rn−1 ∪ {∞}] by identifying one edge
E ≈ [0, 1] at −∞ with the opposite edge at ∞ with one twist, so that Rn−1∪{±∞} ≈ Sn−1

with +∞ = −∞ identified. We have the decomposition Sn = Sn
+ ∪ Sn−1 ∪ Sn

− as a disjoint
union, where Sn

+ ∪ Sn
− = Sn \ Sn−1 with the north and south poles contained in Sn

+ and
Sn
− respectively. Then Sn

+ is homeomorphic to the interior of Dn and is identified with Sn
−

in Pn, and Pn is obtained by gluing the boundary Sn−1 of the n-dimensional Möbius band
Mb,n with that of Dn.

There is the following short exact sequence of C∗-algebras:

0 → C0((Mb,n)◦) → C(Pn) → C(Dn) → 0,

where (Mb,n)◦ is the interior of Mb,n. Also,

0 → C0(I◦) → C0((Mb,n)◦) → C0(E◦) → 0.
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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Therefore, we do obtain

χ(C(Pn)) = χ(C0((Mb,n)◦)) + χ(C(Dn))
= χ(C0(I◦)) + χ(C0(E◦)) + 1
= χ(C0(Rn)) + χ(C0(R)) + 1

=

{
1 − 1 + 1 = 1 if n is even,
−1 − 1 + 1 = −1 if n is odd.

(Note that these results are not compatible with those in homology theory for Pn, so that
the decomposition for Pn should be not applied to Pn, but one can use this result for a more
better classification for connected sums of Pn as compared with that given above, when n
is odd.) Indeed, moreover,

χ(C(#lPn)) =

{
l − 2(l − 1) = 2 − l if n is even,

−l (̸= 0) if n is odd.

(As a question, there must be a suitable topological reason for the last inequality. The
reason may be that Pn is less twisted than Pn.)

Note that Pn#Pn is homeomorhic to the closed topological manifold obtained by glueing
two n-dimensional Möbius bands Mb,n along with their boundaries homeomorphic to Sn−1,
which we may call it the n-dimensional Klein bottle (the same name as before), and denote
it by Kn (slightly different). Note also that we may have that Tn#Pn ≈ #3Pn if n is even,
but not if n is odd. Indeed, if n is even, then

χ(C(Tn#Pn)) = 0 + 1 − 2 = −1,

χ(C(#3Pn)) = 2 − 3 = −1,

but if n is odd, then

χ(C(Tn#Pn)) = 0 + (−1) = −1,

χ(C(#3Pn)) = −3 ̸= −1.

In the following we compute K-theory groups.

Theorem 3.7. Let M,N be n-dimensional closed topological manifolds and M#N be their
connected sum. If n is even, then

K0(C(M#N)) ∼= Z ⊕ {[(K0(C(M))/Z[1]) ⊕ (K0(C(N))/Z[1])]/∂Z[z]},
K1(C(M#N)) ∼= K1(C(M)) ⊕ K1(C(N)) ⊕ ker(∂),

and if n is odd, then

K0(C(M#N)) ∼= Z ⊕ [(K0(C(M))/Z[1]) ⊕ (K0(C(N))/Z[1])],
K1(C(M#N)) ∼= [K1(C(M)) ⊕ K1(C(N))]/∂Z[p],

where each [1] means the K0-class of the unit 1 (of C(M), C(N), and C(Sn−1)), and [z]
means the generating K1-class of K1(C(Sn−1)) ∼= Z when n is even, and [p] means the
non-trivial K0-class of K0(C(Sn−1)) ∼= Z[1] ⊕ Z[p] ∼= Z2 when n is odd, with the image
∂Z[p] ∼= Z.
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Remark. See the Remark for Theorem 2.4 for more details on notes, also applied to the
image ∂Z[p].

Proof. The six-term exact sequence of K-theory groups follows from the short exact sequence
of C(M#N) in the proof of Theorem 3.1:

K0(I) i∗−−−−→ K0(C(M#N))
q∗−−−−→ K0(C(Sn−1))

∂

�
�∂

K1(C(Sn−1))
q∗←−−−− K1(C(M#N)) i∗←−−−− K1(I)

where I = C0((M \ Dn) ⊔ (N \ Dn)), and if n = 2k even and if n = 2k + 1 odd, then
respectively,

Kj(C(S2k−1)) ∼=

{
Z[1] j = 0,

Z[z] j = 1,
Kj(C(S2k)) ∼=

{
Z[1] ⊕ Z[p] j = 0,

0 j = 1,

since 0 → C0(Rn−1) → C(Sn−1) → C → 0 is a split, short exact sequence of C∗-algebras,
and also

Kj(C0((M \ Dn) ⊔ (N \ Dn))) ∼= Kj(C0(M \ Dn)) ⊕ Kj(C0(N \ Dn))

(j = 0, 1), and where the maps i∗ and q∗ are induced from the maps i and q, and ∂ are
boundary maps (or the index map on the left and the exponential map on the right). The
map q∗ on K0 sends the K0-class of the unit of C(M#N) to that of C(Sn−1), and hence is
onto if n is even. Thus, ∂ on the right is zero if n is even. If n is odd, one can see in general
that the kernel ker(∂) contains Z[1].

Moreover, we also have the following diagram:

K0(C0(M \ Dn)) i∗−−−−→ K0(C(M))
q∗−−−−→ K0(C(Dn))

∂

�
�∂

K1(C(Dn))
q∗←−−−− K1(C(M)) i∗←−−−− K1(C0(M \ Dn))

with K0(C(Dn)) ∼= K0(C) ∼= Z and K1(C(Dn)) ∼= K1(C) ∼= 0 since Dn is contractible. The
map q∗ on K0 sends the K0-class of the unit of C(M) to that of C(Dn), and hence is onto.
Thus, both of the boundary maps ∂ are zero. Therefore, the diagram implies that

K0(C(M)) ∼= K0(C0(M \ Dn)) ⊕ Z,

K1(C(M)) ∼= K1(C0(M \ Dn)),

where the direct summand Z corresponds to the K0-class [1] of the unit 1 of C(M). Note also
that K1(C0(M\Dn)) ∼= K1(C0(M\Dn)+), where the unitization C0(M\Dn)+ is isomorphic
to C((M \ Dn)+), with the one-point compactification (M \ Dn)+ homeomorphic to M .

The same holds for N .
Furthermore, the map q∗ on K1 in the first diagram in this proof is zero when n is odd,

so that the kernel ker(∂) = 0.
It then follows consequently that if n is even, then

K0(C(M#N)) ∼= Z ⊕ {[(K0(C(M))/Z[1]) ⊕ (K0(C(N))/Z[1])]/∂Z[z]},
K1(C(M#N)) ∼= K1(C(M)) ⊕ K1(C(N)) ⊕ ker(∂),
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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and also, if n is odd, then

K0(C(M#N)) ∼= Z ⊕ [(K0(C(M))/Z[1]) ⊕ (K0(C(N))/Z[1])],
K1(C(M#N)) ∼= [K1(C(M)) ⊕ K1(C(N))]/∂Z[p],

which follows from exactness of the six-term diagram of K-theory groups above in the first
of the proof, where K0(C(S2k)) ∼= Z[1] ⊕ Z[p] ∼= Z2 with n = 2k + 1, for which ∂[1] = [0]
the zero class, but ∂[p] ̸= [0]. This follows by considering M#N ∼= (M#N)#Sn and by
the several cases and the general case in Example 3.8 below. We indeed have the following
commutative diagram:

C(M#N)
q−−−−→ C(Sn−1) −−−−→ 0

f

�
�g

∥∥∥
C((M#N)#Sn)

q−−−−→ C(Sn−1) −−−−→ 0

with f the isomorphism induced from the homeomorphism and g the isomorphism to make
the diagram commutative, so that the following diagram commutes

K0(C(M#N))
q∗−−−−→ K0(C(Sn−1))

f∗

�
�g∗

K0(C((M#N)#Sn))
q∗−−−−→ K0(C(Sn−1))

with f∗ and g∗ isomorphisms induced from f and g respectively.

Example 3.8. There is the following short exact sequence of C∗-algebras:

0 → C0((Sn \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(Sn#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and Sn#Sn ≈ Sn. The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

Z ⊕ Z i∗−−−−→ Z2 q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− 0 i∗←−−−− 0 ⊕ 0

and if n is odd,

0 ⊕ 0 i∗−−−−→ Z q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− Z i∗←−−−− Z ⊕ Z.

Therefore, if n is even, then

K0(C(Sn#Sn)) ∼= Z ⊕ {[(K0(C(Sn))/Z) ⊕ (K0(C(Sn))/Z)]/∂Z[z]}
∼= Z ⊕ {[Z ⊕ Z]/∂Z[z]} ∼= Z2,

K1(C(Sn#Sn)) ∼= K1(C(Sn)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= 0.
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and if n is odd, then

K0(C(Sn#Sn)) ∼= Z ⊕ [(K0(C(Sn))/Z) ⊕ (K0(C(Sn))/Z)] ⊕ (ker(∂)/Z[1])
∼= Z ⊕ [0 ⊕ 0] ⊕ 0 ∼= Z,

K1(C(Sn#Sn)) ∼= [K1(C(Sn) ⊕ K1(C(Sn))]/∂Z[p]
∼= [Z ⊕ Z]/∂Z[p] ∼= Z.

Note that the diagram above when n is odd involves no torsion.
Next, there is the following short exact sequence of C∗-algebras:

0 → C0((Tn \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(Tn#Sn)
q−−−−→ C(Sn−1) → 0

with Tn#Sn ≈ Tn. The six-term exact sequence of K-theory groups, associated, becomes,
if n is even,

K0(C0(Tn \ Dn)) ⊕ Z i∗−−−−→ Z2n−1 q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− Z2n−1 i∗←−−−− K1(C0(Tn \ Dn)) ⊕ 0

and if n is odd,

K0(C0(Tn \ Dn)) ⊕ 0 i∗−−−−→ Z2n−1 q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− Z2n−1 i∗←−−−− K1(C0(Tn \ Dn)) ⊕ Z.

Moreover, the exact sequence 0 → C0(Tn \ Dn) → C(Tn) → C(Dn) → 0 implies

K0(C0(Tn \ Dn)) −−−−→ Z2n−1 −−−−→ Z

∂=0

�
�∂=0

0 ←−−−− Z2n−1 ←−−−− K1(C0(Tn \ Dn))

so that K0(C0(Tn\Dn)) ∼= Z2n−1−1 and K1(C0(Tn\Dn)) ∼= Z2n−1
. Therefore, the boundary

map ∂ on the left in the first diagram in this case is nonzero when n is even, and if n is
even, then

K0(C(Tn#Sn)) ∼= Z ⊕ {[(K0(C(Tn))/Z) ⊕ (K0(C(Sn))/Z)]}/∂Z[z]

∼= Z ⊕ {[Z2n−1−1 ⊕ Z]/∂Z[z]} ∼= Z2n−1
,

K1(C(Tn#Sn)) ∼= K1(C(Tn)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= Z2n−1
⊕ 0 ⊕ 0,

and if n is odd, then

K0(C(Tn#Sn)) ∼= Z ⊕ [(K0(C(Tn))/Z) ⊕ (K0(C(Sn))/Z)]

∼= Z ⊕ [Z2n−1−1 ⊕ 0] ∼= Z2n−1
,

K1(C(Tn#Sn)) ∼= [K1(C(Tn)) ⊕ K1(C(Sn))]/∂Z[p]

∼= [Z2n−1
⊕ Z]/∂Z[p] ∼= Z2n−1

.
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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Corollary 3.10. Let Mi (1 ≤ i ≤ l) be n-dimensional closed topological manifolds and
#l

i=1Mi be their connected sum. If n is even, then inductively,

K0(C(#l
i=1Mi))

∼= Z ⊕ {[(K0(C(#l−1
i=1Mi))/Z[1]) ⊕ (K0(C(Ml))/Z[1])]/∂l−1Z[z]}

∼= Z ⊕ {[((· · · (Z ⊕ {[(K0(C(M1))/Z[1]) ⊕ (K0(C(M2))/Z[1])]/∂1Z[z]})
· · · )/Z[1]) ⊕ (K0(C(Ml))/Z[1])]/∂l−1Z[z]},

K1(C(#l
i=1Mi)) ∼= [⊕l

i=1K1(C(Mi))] ⊕ [⊕l−1
i=1ker(∂i)],

and if n is odd, then inductively,

K0(C(#l
i=1Mi))

∼= Z ⊕ [(K0(C(#l−1
i=1Mi))/Z[1]) ⊕ (K0(C(Ml))/Z[1])]

∼= Z ⊕ [((· · · (Z ⊕ [(K0(C(M1))/Z[1]) ⊕ (K0(C(M2))/Z[1])])
· · · )/Z[1]) ⊕ (K0(C(Ml))/Z[1])],

K1(C(#l
i=1Mi)) ∼= [K1(C(#l−1

i=1Mi)) ⊕ K1(C(Ml))]/∂l−1Z[p]
∼= [((· · · ([K1(C(M1)) ⊕ K1(C(M2))]/∂1Z[p])
· · · )/∂l−2Z[p]) ⊕ K1(C(Ml))]/∂l−1Z[p],

where each [1] means the K0-class of the unit 1 of C(Mi), and [z] ∈ K1(C(Sn−1)) ∼= Z
when n is even, and [p] ∈ K1(C(Sn−1)) = Z[1]⊕Z[p] ∼= Z2 when n is odd, and each ∂i = ∂
is the boundary map in each step in induction.

Corollary 3.11. That Corollary 3.2 follows from this Corollary 3.10.

Proof. Note that each quotient by Z[1], ∂iZ[z] together with ker(∂i), or ∂iZ[p] in Corollary
3.10, repsectively, corresponds to one rank lowering or one rank raising of the free ranks of
those either K0-groups or K1-groups, respectively. Hence, if n is even, then inductively,

χ(C(#l
i=1Mi)) = 1 + χ(C(#l−1

i=1Mi)) + χ(C(Ml)) − 3

= · · · =
l∑

i=1

χ(C(Mi)) − 2(l − 1),

and if n is odd, then inductively,

χ(C(#l
i=1Mi)) = 1 + χ(C(#l−1

i=1Mi)) + χ(C(Ml)) − 2 + 1

= · · · =
l∑

i=1

χ(C(Mi)).

Example 3.12. Since Kj(C(Tn)) ∼= Z2n−1
(j = 0, 1), it is obtained by Theorem 3.7 that

if n is even, then

K0(C(Tn#Tn)) ∼= Z ⊕ {[(Z2n−1
/Z) ⊕ (Z2n−1

/Z)]/∂Z[z]}
∼= Z ⊕ {[Z2n−1−1 ⊕ Z2n−1−1]/∂Z[z]} ∼= Z2n−2,

K1(C(Tn#Tn)) ∼= Z2n−1
⊕ Z2n−1

⊕ ker(∂) ∼= Z2n

,

75 315CLASSIFICATION OF TOPOLOGICAL MANIFOLDS BY C* -ALGEBRAS



　　　　　　　　　　　　　　　TAKAHIRO SUDO

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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with ∂Z[z] ∼= Z since a finitely many times direct sum of Z is torsion free, so that ker(∂) = 0,
and as well, the K0-group above can not involve torsion because its quotient by q∗ is Z, and
if n is odd, then

K0(C(Tn#Tn)) ∼= Z ⊕ [(Z2n−1
/Z) ⊕ (Z2n−1

/Z)]

∼= Z ⊕ [Z2n−1−1 ⊕ Z2n−1−1] ∼= Z2n−1,

K1(C(Tn#Tn)) ∼= [Z2n−1
⊕ Z2n−1

]/∂Z[p] ∼= Z2n−1.

Hence,

χ(C(Tn#Tn)) =

{
(2n − 2) − 2n = −2 if n is even,
(2n − 1) − (2n − 1) = 0 if n is odd.

Moreover, it is obtained by Corollary 3.10 that if n is even, then

K0(C(#lTn)) ∼= Z ⊕ {[(· · · ([Z2n−1−1 ⊕ Z2n−1−1]/∂1Z[z]) · · · ) ⊕ Z2n−1−1]/∂l−1Z[z]}
∼= Z1+l(2n−1−1)−(l−1) ∼= Z2+l(2n−1−2),

K1(C(#lTn)) ∼= [⊕l
i=1Z2n−1

] ⊕ [⊕l−1
i=1ker(∂i)] ∼= Zl2n−1

,

and if n is odd, then

K0(C(#lTn)) ∼= Z ⊕ [(· · · [Z2n−1−1 ⊕ Z2n−1−1] · · · ) ⊕ Z2n−1−1]

∼= Zl2n−1−l+1,

K1(C(#lTn)) ∼= [(· · · ([Z2n−1
⊕ Z2n−1

]/∂1Z[p]) · · · ) ⊕ Z2n−1
]/∂l−1Z[p] ∼= Zl2n−1−(l−1).

Hence,

χ(C(#lTn)) =

{
[2 + l(2n−1 − 2)] − l2n−1 = 2 − 2l if n is even,
[l2n−1 − l + 1] − (l2n−1 − (l − 1)) = 0 if n is odd.

As for the real n-dimensional projective space Pn, the six-term exact sequence of K-
theory groups, associated to the short exact sequence of C(Pn) in Example 3.3, becomes

K0(C0((Mn
b )◦)) −−−−→ K0(C(Pn)) −−−−→ Z

∂=0

�
�∂=0

0 ←−−−− K1(C(Pn)) ←−−−− K1(C0((Mn
b )◦))

so that

K0(C(Pn)) ∼= Z ⊕ K0(C0((Mn
b )◦)),

K1(C(Pn)) ∼= K1(C0((Mn
b )◦)).

Indeed, Pn is viewed as the one-point compactification of the interior (Mn
b )◦ of the n-

dimensional Möbius band Mn
b . Moreover, the six-term exact sequence of K-theory groups,

associated to the short exact sequence of C0((Mn
b )◦) in Example 3.3, becomes

K1(C0((Pn−1)−)) −−−−→ K0(C0((Mn
b )◦)) −−−−→ 0

∂

�
�∂

Z ←−−−− K1(C0((Mn
b )◦)) ←−−−− K0(C0((Pn−1)−))
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and

K1(C0((Pn−1)−)) ∼= K1(C0((Pn−1)−)+) ∼= K1(C(Pn−1)) and

K0(C0((Pn−1)−)) ∼= K0(C(Pn−1))/Z[1].

We now determine the K-theory groups of C(Pn) inductively by the diagram above, as
follows. Since K0(C(P 2)) ∼= Z ⊕ Z2 and K1(C(P 2)) ∼= 0,

K0(C(P 3)) ∼= Z ⊕ 0 ∼= Z,

K1(C(P 3)) ∼= Z ⊕ Z2,

so that it follows that

K0(C(P 4)) ∼= Z ⊕ Z2,

K1(C(P 4)) ∼= 0

and hence we obtain inductively that for k ≥ 1,
{

K0(C(P 2k)) ∼= Z ⊕ Z2,

K1(C(P 2k)) ∼= 0,

and {
K0(C(P 2k+1)) ∼= Z,

K1(C(P 2k+1)) ∼= Z ⊕ Z2.

(Note that this result is compatible with that in homology mentioned in Example 3.3. In
fact, the compatiblity does imply it.) It is deduced that

χ(C(Pn)) = 1 − χ(C(Pn−1)) (n ≥ 1)

with χ(C(P 2)) = 1 and χ(C(P 1)) = χ(C(S1)) = 0 and C(P 0) ∼= C. Moreover, the equation
obtained above is converted to

an − 1
2

= −
(

an−1 −
1
2

)

(n ≥ 1) with an = χ(C(Pn)), so that we obtain the same formula for χ(C(Pn)) as in
Example 3.3. Let

αn = rankZK0(C(Pn)) and βn = rankZK1(C(Pn)).

If n is even (n ≥ 2), then
αn = 1 and βn = 0,

and if n is odd (n ≥ 3), then
αn = 1 and βn = 1.

It is obtained by Theorem 3.7 that if n is even, then

K0(C(Pn#Pn)) ∼= Z ⊕ {[(K0(C(Pn))/Z[1]) ⊕ (K0(C(Pn))/Z[1])]/∂Z[z]}
∼= Z ⊕ {[Z2 ⊕ Z2]/∂Z[z]}
∼= Z ⊕ [⊕2Z2],

K1(C(Pn#Pn)) ∼= K1(C(Pn)) ⊕ K1(C(Pn)) ⊕ ker(∂)
∼= 0 ⊕ 0 ⊕ Z ∼= Z,
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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and if n is odd, then

K0(C(Pn#Pn)) ∼= Z ⊕ [(K0(C(Pn))/Z[1]) ⊕ (K0(C(Pn))/Z[1])]
∼= Z ⊕ [0 ⊕ 0] ⊕ (ker(∂)/Z[1]) ∼= Z,

K1(C(Pn#Pn)) ∼= [K1(C(Pn)) ⊕ K1(C(Pn))]/∂Z[p]
∼= [(Z ⊕ Z2) ⊕ (Z ⊕ Z2)]/∂Z[p]
∼= [Z2 ⊕ Z2

2]/∂Z[p] ∼= Z ⊕ Z2
2.

Hence, if n is even, then χ(C(Pn#Pn)) = 1−1 = 0, and if n is odd, then χ(C(Pn#Pn)) =
1 − (2 − 1) = 0.

Moreover, it is obtained by Corollary 3.10 that if n is even, then

K0(C(#lPn)) ∼= Z ⊕ {[((· · ·Z ⊕ ([(K0(C(Pn))/Z[1]) ⊕ (K0(C(Pn))/Z[1])]/∂1Z[z])
· · · )/Z[1]) ⊕ (K0(C(Pn))/Z[1])]/∂l−1Z[z]}

∼= Z ⊕ {[((· · · (Z ⊕ ([Z2 ⊕ Z2]/∂1Z[z])

· · · )/Z[1]) ⊕ Z2]/∂l−1Z[z]} ∼= Z ⊕ (Z2)l,

K1(C(#lPn)) ∼= [⊕l
i=1K1(C(Pn))] ⊕ [⊕l−1

i=1ker(∂i)]
∼= 0 ⊕ [⊕l−1

i=1ker(∂i)] ∼= Zl−1,

and if n is odd, then

K0(C(#lPn)) ∼= Z ⊕ [((· · · (Z ⊕ [(K0(C(Pn))/Z[1]) ⊕ (K0(C(Pn))/Z[1])]
· · · )/Z[1]) ⊕ (K0(C(Pn))/Z[1])]

∼= Z ⊕ [(· · · (0 ⊕ [0 ⊕ 0]) · · · ) ⊕ 0] ∼= Z,

K1(C(#lPn)) ∼= [(· · · [K1(C(Pn)) ⊕ K1(C(Pn))]/∂1Z[p]
· · · ) ⊕ K1(C(Pn))]/∂l−1Z[p]

∼= [(· · · [(Z ⊕ Z2) ⊕ (Z ⊕ Z2)]/∂1Z[p]

· · · ) ⊕ (Z ⊕ Z2)]/∂l−1Z[p] ∼= Z ⊕ Zl
2.

Hence, if n is even, then χ(C(#lPn)) = 1−(l−1) = 2−l, and if n is odd, then χ(C(#lPn)) =
1 − (l − (l − 1)) = 0.

Table 6: Classification for closed topological manifolds with dimension even

K0 rank Orientable Non-orientable
2 + l(22n−1 − 2) #lT2n No

22n − 2 T2n#T2n No
22n−1 T2n No

8 T4#T4 No
2 S2n ≈ #lS2n, S0 No

#nT2 ≈ T (n)
1 No P 0, P 2n, #nP 2 ≈ P (n)

P 2n#P 2n, #lP 2n

Note that S0 = {−1, 1} and P 0 is the one point set as the quotient of S0.
It follows from the Table 6 that:
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Corollary 3.13. Let n be a natural number with n ≥ 1. The rank of K0-groups for C∗-
algebras can not classify homeomorphism classes of connected sums of the 2-dimensional,
orientable closed topological manifolds T2 and S2.

But, if n ≥ 2, it does classify homeomorphism classes of connected sums of the 2n-
dimensional, orientable closed topological manifolds T2n and S2n.

And the rank of K0-groups can not classify homeomorphism classes of connected sums
of the 2n-dimensional, non-orientable closed topological manifold P 2n (n ≥ 1).

Table 7: Classification for closed topological manifolds with dimension even

K1 rank Orientable Non-orientable
l22n−1 #lT2n #l22n−1+1P 2, #l22n−1+1P 2k

l2n #lnT2 #l2n+1P 2, #l2n+1P 2k

22n T2n#T2n #22n+1P 2, #22n+1P 2k

22n−1 T2n #22n−1+1P 2, #22n−1+1P 2k

2l #lT2 ≈ T (n) #2l+1P 2, #2l+1P 2n

2l − 1 No #2lP 2, #2lP 2n

4 T2#T2 ≈ T (2) #5P 2, #5P 2n

3 No #4P 2, #4P 2n

2 T2 ≈ T (1) #3P 2, #3P 2n

1 No P 2#P 2 ≈ P (2) ≈ K2

P 2n#P 2n

0 S2n ≈ #lS2n, S0 P 0, P 2 ≈ P (1), P 2n

It follows from the Table 7 that:

Corollary 3.14. Let n be a natural number with n ≥ 1. The rank of K1-groups for C∗-
algebras does classsify homeomorphism classes of connected sums of the 2n-dimensional, ori-
entable closed topological manifolds T2n and S2n, and does classify homeomorphism classes
of connected sums of the 2n-dimensional, non-orientable closed topological manifold P 2n.

Table 8: Classification for closed topological manifolds with dimension odd

K0 rank Orientable Orientable
1 + l(22n − 1) #lT2n+1 No

22n+1 − 1 T2n+1#T2n+1 No
22n T2n+1 No
4 T3 No
1 S1 = T, S2n+1 ≈ #lS2n+1 S1 ≈ P 1, P 2n+1, #lP 2n+1

It follows from the Table 8 that:

Corollary 3.15. Let n be a natural number with n ≥ 1. The rank of K0-groups for C∗-
algebras does classify homeomorphism classes of connected sums of the (2n+1)-dimensional,
orientable closed topological manifolds T2n+1 and S2n+1, but the rank of K0-groups does not
classify homeomorphism classes of connected sums of (2n+1)-dimensional, orientable closed
topological manifold P 2n+1.
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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Table 9: Classification for closed topological manifolds with dimension odd

K1 rank Orientable Orientable
1 + l(22n − 1) #lT2n+1 No

22n+1 − 1 T2n+1#T2n+1 No
22n T2n+1 No
4 T3 No
1 S1 = T, S2n+1 ≈ #lS2n+1 S1 ≈ P 1, P 2n+1, #lP 2n+1

Note that the list of ranks and items in the Table 8 is exactly the same as that in the
Table 9. It follows from the Table 9 that:

Corollary 3.16. Let n be a natural number with n ≥ 1. The rank of K1-groups for C∗-
algebras does classsify homeomorphism classes of connected sums of the (2n+1)-dimensional,
orientable closed topological manifolds T2n+1 and S2n+1, but does not classify homeomor-
phism classes of connected sums of the (2n + 1)-dimensional, orientable closed topological
manifold P 2n+1.

As in the examples considered so far, consequently, one can say that

Corollary 3.17. The free ranks of K-theory groups K0 or K1 of C∗-algebras are more
classifiable or the same level invariants for closed topological manifolds than or as the Euler
characteristic of C∗-algebras, respectively.

But the Euler characteristic of C∗-algebras are more easily computable and more beautiful
numerically than the K-theory group ranks of C∗-algebras.

Remark. It follows from our K-theory group formulae obtained so far that the K-theory
groups written as quotients in some examples and cases may have torsion in general (but
may not in some corresponding cases). But without knowing its information, we could
determine the K-theory group ranks and the Euler characteristic for C∗-algebras. As a
question, it should be of interest to understand more about the K-theory torsion (or torsion
freeness), which in fact could be known from more about the boundary maps.

Table 10: The K-theory groups for the C∗-algebras of topological manifolds

C∗-algebra K0-group K1-group
C(S2n) Z2 0

C(S2n+1) Z Z
C(Tn) Z2n−1 Z2n−1

C(#lT2n) Z2+l(22n−1−2) Zl22n−1

C(#lT2n+1) Z1+l(22n−1) Z1+l(22n−1)

C(P 2n) Z ⊕ Z2 0
C(P 2n+1) Z Z ⊕ Z2

C(#lP 2n) Z ⊕ Zl
2 Zl−1

C(#lP 2n+1) Z Z ⊕ Zl
2

It follows from the Table 10 that
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Corollary 3.18. The torsion rank t0(A) of K0-groups of C∗-algebras A with respect to
Z2 (or any other torsion groups in general) classifies homeomorphism classes of connected
sums of the 2n-dimensional, non-orientable closed topological manifold P 2n.

The torsion rank t1(A) of K1-groups of C∗-algebras A with respect to Z2 (or any other
torsion groups in general) classifies homeomorphism classes of connected sums of the (2n+
1)-dimensional, orientable closed topological manifold P 2n+1.

As well, the torsion freeness for both K0 and K1-groups of C∗-algebras distinguish home-
omorphism classes of connected sums of spheres Sn and tori Tn from those of connected
sums of projective spaces Pn, and becomes a more better invariant than orientaion for
manifolds in this case.

Added before the last minute, as a summary we obtain, with ∅ to mean empty,

Table 11: Do or not classify the closed topological manifolds

Manifolds χ b0 b1 t0 t1
Orientable closed surfaces S2, #lT2 Yes No Yes ∅ ∅
Non-orientable closed surfaces #lP 2 Yes No Yes Yes ∅

Even 2n(≥ 4) dimensional, Yes Yes Yes ∅ ∅
orientable closed manifolds S2n, #lT2n

Even 2n(≥ 4) dimensional, Yes No Yes Yes ∅
non-orientable closed manifolds #lP 2n

Odd 2n + 1(≥ 3) dimensional, No Yes Yes ∅ ∅
orientable closed manifolds S2n+1, #lT2n+1

Odd 2n + 1(≥ 3) dimensional, No No No ∅ Yes
orientable closed manifolds #lP 2n+1

The last table shows that

Corollary 3.19. All the closed topological manifolds X as in the list are classifiable (up to
homeomorphism) by using K-theory data such as either the Euler charactersistic χ(C(X)),
the Betti numbers bj of Kj(C(X)) (j = 0, 1), or the torsion ranks tj of Kj(C(X)) (j = 0, 1),
together with dimension of X (not K-theoretic) and torsion freeness for both K0(C(X)) and
K1(C(X)) (or orientaion of X in part).

Remark. Now comes out a natural question (to be considered), whether one can know that
the converse of that corollary holds or not. Namely, determine the (suitable) class of closed
topological manifolds, which are classifiable by those data as complete invariants.

Furthermore, a moment of thought implies that, as a class to answer the question,

Theorem 3.20. For X and Y two closed topological manifolds as in the list above, X is
homeomophic to Y if and only if

K0(C(X)) ⊕ K1(C(X)) ∼= K0(C(Y )) ⊕ K1(C(Y ))

and dimX = dim Y .

Remark. Moreover, the (covering) dimension for spaces can be replaced with the real rank
for C∗-algebras. Indeed, for X a compact Hausdorff space, dim X = RR(C(X)) (see [2]).

Therefore,

Corollary 3.21. K-theory groups and real rank for C∗-algebras are complete invariants for
those closed topological manifolds X (up to homeomorphism).
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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4 Noncommutative connected sums As a generalization of connected sums of closed
topological manifolds to C∗-algebras, we define a connected sum A#B of two unital C∗-
algebras A and B with a unital C∗-algebra D as a common quotient, having a quotient E,
to be the following extension of E by the direct sum I ⊕ K:

0 → I ⊕ K
i−−−−→ A#B

q−−−−→ E → 0,

where we have
0 → I

i−−−−→ A
q−−−−→ D → 0,

0 → K
i−−−−→ B

q−−−−→ D → 0,

and E is a quotient of D, where each i is the inclusion map and each q is the quotient map.
As a note, in the definition we may replace the closed ideals I, K, and I ⊕ K with

I ⊗ K, K ⊗ K, and [I ⊕ K] ⊗ K, respectively, if necessary as in the extension theory of
C∗-algebras. Also, the connected sum A#B defined may not be unique, which depends on
the extension theory of C∗-algebras and can be unique as an equivalence class in the theory,
so that A#B is one representative of the connected sums defined above. Also, C∗-algebras
A, B, and D in the definition may not be unital. Note that the unital case of C∗-algebras
corresponds to the compact case of spaces, as in this paper, and the non-unital case does
to the non-compact case, not dealt with here.

Theorem 4.1. Let A#B be the connected sum of two unital C∗-algebras A and B with a
common quotient D having a quotient E. Then

χ(A#B) = χ(A) + χ(B) − 2 · χ(D) + χ(E).

Proof. It follows from the definition of A#B above that

χ(A#B) = χ(I) + χ(K) + χ(E),

and also that
χ(A) = χ(I) + χ(D), and χ(B) = χ(K) + χ(D).

Therefore, we obtain

χ(A#B) = χ(A) + χ(B) − 2 · χ(D) + χ(E).

Example 4.2. Let X,Y be compact Hausdorff spaces and C(X), C(Y ) be the C∗-algebras
of all continuous, complex-valued functions on X, Y respectively. Assume that there is a
closed subset D of X which is identified with a closed subset of Y . Let E = ∂D be the
boundary of D, which is closed in D. Then one can define the connected sum C(X)#C(Y )
in our sense to be the following extension:

0 → C0(X \ D) ⊕ C0(Y \ D) → C(X)#C(Y ) → C(E) → 0.

It follows that

χ(C(X)#C(Y )) = χ(C(X)) + χ(C(Y )) − 2 · χ(C(D)) + χ(C(∂D)).

Compare with those formulae in Theorems 2.1 and 3.1, contained in this formula and in
that of Theorem 4.1.
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To define the 2-successive connected sum of three unital C∗-algebras A1, A2, A3 wiht a
common quotient D having a quotient E, we assume that there are short exact sequences
of C∗-algebras:

0 → Ij → Aj → D → 0

(j = 1, 2, 3) and
0 → Ij,k → Aj#Ak → D → 0

(1 ≤ j, k ≤ 3 and j ̸= k). We then define the 2-successive connected sum (Aj#Ak)#Al to
be the following extension:

0 → Ij,k ⊕ Il → (Aj#Ak)#Al → E → 0,

which may not be unique. Also, the associativity for the connected sum may not holds,
i.e., (Aj#Ak)#Al ̸∼= Aj#(Ak#Al) in general. (Checking this should be another task to be
continued elsewhere.) Anyhow, we can define the (n−1)-successive connected sum of unital
C∗-algebras A1, · · · , An with a common quotient D having a quotient E to be inductively
as

A1#A2 · · ·#An = (· · · (A1#A2)#A3 · · · )#An

in this order, where we need to assume that there are short exact sequences of C∗-algebras:

0 → Ij → Aj → D → 0

for 1 ≤ j ≤ n and

0 → I1,2,··· ,k → (· · · (A1#A2) · · · )#Ak → D → 0

(k = 2, · · · , n − 1), so that one can define the following extensions:

0 → I1,2,··· ,k ⊕ Ik+1 → ((· · · (A1#A2) · · · )#Ak)#Ak+1 → E → 0

for 1 ≤ k ≤ n − 1. We omit to write this assumption in what follows.

Corollary 4.3. Let A1#A2 · · ·#An be the (n − 1)-successive connected sum of unital C∗-
algebras A1, · · · , An by a common quotient D with a quotient E. Then

χ(A1#A2 · · ·#An) =
n∑

i=1

χ(Ai) + (n − 1)[χ(E) − 2 · χ(D)].

Proposition 4.4. Let A1#A2 be the connected sum of two unital C∗-algebras A1 and A2

with a common quotient D = A1/I1 = A2/I2 with a quotient E. Then

K0(I1) ⊕ K0(I2)
i∗−−−−→ K0(A1#A2)

q∗−−−−→ K0(E)

∂

�
�∂

K1(E)
q∗←−−−− K1(A1#A2)

i∗←−−−− K1(I1) ⊕ K1(I2)

and
K0(Ij)

i∗−−−−→ K0(Aj)
q∗−−−−→ K0(D)

∂

�
�∂

K1(D)
q∗←−−−− K1(Aj)

i∗←−−−− K1(Ij)
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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(j = 1, 2), from which Kl(Ij) (j, l = 0, 1) are computable in terms of the K-theory groups
of given C∗-algebras, so that

0 → [Kl(I1 ⊕ I2)]/∂Kl+1(E) −−−−→ Kl(A1#A2) −−−−→ q∗(Kl(A1#A2)) → 0∥∥∥
∥∥∥

coker(∂) ker(∂)

(l = 0, 1) and

0 → Kl(Ij)/∂Kl+1(D) −−−−→ Kl(Aj) −−−−→ q∗(Kl(Aj)) → 0∥∥∥
∥∥∥

coker(∂) ker(∂)

(l = 0, 1), where l + 1 (mod 2). It follows that the K-theory groups Kl(A1#A2) as well
as Kl(Aj) are determined by the cokernels coker(∂) and the kernels ker(∂) of the boundary
maps ∂ (up and down arrows) in the left and right sides (that are index and exponential
maps, respectively).

Proposition 4.5. Let #n
j=1Aj be the (n−1)-successive connected sum of unital C∗-algebras

Aj (1 ≤ j ≤ n) by a common quotient D with a quotient E. Then inductively,

K0(I1,··· ,n−1 ⊕ In) i∗−−−−→ K0((#n−1
j=1 Aj)#An)

q∗−−−−→ K0(E)

∂

�
�∂

K1(E)
q∗←−−−− K1((#n−1

j=1 Aj)#An) i∗←−−−− K1(I1,··· ,n−1 ⊕ In)

and
K0(Ij)

i∗−−−−→ K0(Aj)
q∗−−−−→ K0(D)

∂

�
�∂

K1(D)
q∗←−−−− K1(Aj)

i∗←−−−− K1(Ij)

(1 ≤ j ≤ n), in particular, when j = n, and

K0(I1,··· ,n−1)
i∗−−−−→ K0(#n−1

j=1 Aj)
q∗−−−−→ K0(D)

∂

�
�∂

K1(D)
q∗←−−−− K1(#n−1

j=1 Aj)
i∗←−−−− K1(I1,··· ,n−1)

with #n−1
j=1 Aj = (#n−2

j=1 Aj)#An−1 as the next step, from which Kl(I1,··· ,n−1) (l = 0, 1) are
computed inductively in terms of the K-theory groups of given C∗-algebras, so that

0 → Kl(I1,··· ,n−1 ⊕ In)/∂Kl+1(E) = coker(∂)�
Kl((#n−1

j=1 Aj)#An)�
q∗(Kl((#n−1

j=1 Aj)#An)) = ker(∂) → 0
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(l = 0, 1) and

0 → Kl(Ij)/∂Kl+1(D) −−−−→ Kl(Aj) −−−−→ q∗(Kl(Aj)) → 0∥∥∥
∥∥∥

coker(∂) ker(∂)

(l = 0, 1), where l + 1 (mod 2), in particular, when j = n, and

0 → Kl(I1,··· ,n−1)/∂Kl+1(D) = coker(∂)�
Kl(#n−1

j=1 Aj)�
q∗(Kl(#n−1

j=1 Aj)) = ker(∂) → 0

(l = 0, 1) with #n−1
j=1 Aj = (#n−2

j=1 Aj)#An−1, for which its K-theory groups are computed
similarly as the case of #n

j=1Aj above. It follows that the K-theory groups Kl(#n
j=1Aj),

Kl(#n−1
j=1 Aj), · · · , as well as Kl(Aj) are determined inductively by the cokernels coker(∂)

and the kernels ker(∂) of the boundary maps ∂ (up and down arrows) in the left and right
sides (that are index and exponential maps, respectively).

Corollary 4.6. The K-theory groups of successive connected sums of C∗-algebras in our
sense is computable inductively if the six-term diagrams in the proposition are computable
inductively in the sense that the cokernels and the kernels of the boundary maps associated
with the diagrams can be determined.

Example 4.7. Principal examples in the commutative case should be those in Sections 2
and 3 and that of Example 4.2. Principal examples in the even noncommutative case should
be from the tenor product C∗-algebras of the commutative C∗-algebras in the commutative
case, respectively tensored with noncommutative C∗-algebras such as Mn(C), K and any
other C∗-algebras with their K-theory groups computable.

In the case of Mn(C) and K, the noncommutative connected sums have the same Euler
characteristic and the same K-theory as the commutative connected sums without tensoring
with Mn(C) and K by the stability of K-theory groups.

Some more complicated examples can be given by replacing the tensor product C∗-
algebras viewed as the trivial bundle C∗-algebras, with more general bundle C∗-algebras
(or continuous fields of C∗-algebras) (or with crossed product C∗-algebras with suitable
actions, viewed as skewed tensor product C∗-algebras) but their base spaces should have
the topological strucure of connected sums of spaces involved.
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Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.
Let M be an n-dimensional closed topological manifold. There is the following short

exact sequence of C∗-algebras:

0 → C0((M \ Dn) ⊔ (Sn \ Dn)) i−−−−→ C(M#Sn)
q−−−−→ C(Sn−1) → 0

with Sn \ Dn ≈ Rn and M#Sn ≈ M . The six-term exact sequence of K-theory groups,
associated, becomes, if n is even,

K0(C0(M \ Dn)) ⊕ Z i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z

∂

�
�∂=0

Z[z]
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ 0

and if n is odd,

K0(C0(M \ Dn)) ⊕ 0 i∗−−−−→ K0(C(M#Sn))
q∗−−−−→ Z[1] ⊕ Z[p]

∂=0

�
�∂

0
q∗←−−−− K1(C(M#Sn)) i∗←−−−− K1(C0(M \ Dn)) ⊕ Z.

Moreover, K1(C0(M \ Dn)) ∼= K1(C0(M \ Dn)+) ∼= K1(C(M)). Therefore, the map q∗ on
K1 is zero, when n is even, so that ker(∂) = 0. Also, K0(C(M)) ∼= K0(C0(M \ D)+) ∼=
K0(C0(M \ D)) ⊕ Z. Thus, if n is even, then

K0(C(M#Sn)) ∼= Z ⊕ {[K0(C0(M \ Dn)) ⊕ Z]/∂Z[z]}
∼= Z ⊕ K0(C0(M \ Dn)) ⊕ 0 ∼= K0(C(M)),

K1(C(M#Sn)) ∼= K1(C(M)) ⊕ K1(C(Sn)) ⊕ ker(∂) ∼= K1(C(M)),

and if n is odd, then

K0(C(M#Sn)) ∼= Z ⊕ [K0(C0(M \ Dn)) ⊕ 0]
∼= Z ⊕ K0(C0(M \ Dn)) ∼= K0(C(M)),

K1(C(M#Sn)) ∼= [K1(C0(M \ Dn)) ⊕ Z]/∂Z[p] ∼= K1(C(M)).

Note that ker(∂) = Z[1] follows from that ∂Z[p] ∼= Z by the diagram.

Corollary 3.9. The formula obtained in Theorem 3.1 follows from Theorem 3.7.

Proof. Note that each quotient by Z[1], ∂Z[z] together with ker(∂), or ∂Z[p] in Theorem
3.7, respectively, corresponds to one rank lowering or one rank raising of the free ranks of
those K0-groups or K1-groups, respectively. Hence, if n is even,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 3 = χ(C(M)) + χ(C(N)) − 2,

and if n is odd,

χ(C(M#N)) = 1 + χ(C(M)) + χ(C(N)) − 2 − (−1) = χ(C(M)) + χ(C(N)).
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ON THE DECOMPOSITION OF CONTRACTIONS AND

ISOMETRIES

 

Abstract. It is proved (with given different proofs) that the von Neumann-
Wold and the Nagy-Foias-Langer decompositions are valid in more general
classes than the classical W*-algebras.

introduction

Let H be a Hilbert space and let B(H) be the set of all bounded linear operators
on H. The aim of the structure theory analysis is the structure of operators in
B(H). The structure of some operators are well-understood. As for unitaries
a spectral theory and effective functional calculus are available. Another part is
unilateral shifts. An operator a on H is called a unilateral shift if there is a sequence
of pairwise orthogonal subspaces H0,H1, · · · such that H = H0 ⊕ H1 ⊕ · · · and a
maps Hn isometrically onto Hn+1. For a comprehensive discussion about unilateral
shifts, we refer to section 23 of [1].

Two fundamental theorems make the cornerstone of the structure theory. The
first one provides the largest reducing subspace for a given contraction a ∈ B(H)
on which a will be unitary [5][8] and the second one gives much more details when
a is an isometry[10].

Theorem 0.1. The Nagy-Foias-Langer Decomposition To every contraction
a on the Hilbert space H there corresponds a decomposition of H into an orthogonal
sum of two subspaces reducing a, say H = H0 ⊕H1, such that the restriction of a
to H0 is unitary, and the restriction of a to H1 is completely non-unitary. This
decomposition is uniquely determined.

Theorem 0.2. The von Neumann-Wold Decomposition. If x is an isometry
on the Hilbert space H and H0 =

⋂
n x

nH, then H0 reduces x, x|H0
is unitary and

x|H⊥
0

is a unilateral shift.

The strategy of the original proofs of these decompositions are completely based
on the geometry of the underlying Hilbert space. In this discussion, we give different
proofs of these results which are more algebraic in nature than the the well-known
proofs. These proof therefore offer valuable insight as to how one can extend the
results to non-normed topological algebras. This is demonstrated in Section 2,
where it is shown that the results are valid for locally W*-algebras[2], a class of
(generally non-normed) topological *-algebras more general than W*-algebras.
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2 G. A. BAGHERI-BARDI

1. Wold decomposition

Throughout this section M stands for a W*-algebra with the unit 1. At first, we
deal with the decomposition of contractions. To begin we need a convention. Let
x be in M. We denote by [x] the relative unit of the w∗-closed algebra generated
by xx∗ in M and call it the range projection of x.

Remark 1.1. To make an illustration what the projection [x] is in the concrete case,
assume that x is a bounded linear operator on the Hilbert space H. In this case [x]
will be the relative unit of the von Neumann algebra generated by xx∗ in B(H).
One may check that [x] is just the orthogonal projection onto xH.

Let a be a contraction in M. A sequence of projections {en}n∈Z in M is called
a U(a)-solution if {

a∗
n

anen = en n ≥ 0

a−na∗
−n

en = en n ≤ 0

For two given solutions {ejn}n∈Z (j = 1, 2) , we write {e1n}n∈Z � {e2n}n∈Z if e1n ≤ e2n
for all n ∈ Z. Clearly � defines a partial order relation on U(a)-solutions.

Lemma 1.2. Let a be a contraction. The set of U(a)-solutions has a maximal
element.

Proof. Let us consider
{
pn = 1− [1− a∗

n

an] n ≥ 0

pn = 1− [1− a−na∗
−n

] n ≤ 0.

Since [1−a∗
n

an] is the relative unit of the w∗-closed algebra generated by 1−a∗
n

an,
then

(1− (1− a∗
n

an))︸ ︷︷ ︸
a∗nan

(1− [1− a∗
n

an])︸ ︷︷ ︸
pn

= pn.

Similarly one may see that a−na∗
−n

pn = pn when n ≤ 0. It means that {pn}n∈Z is
a U(a)-solution. Assume {qn}n∈Z is another U(a)-solution. We have then

(1− a∗
n

an)qn = 0 =⇒ [1− a∗
n

an]qn = 0

=⇒ qn ≤ 1− [1− a∗
n

an] = pn

for all n ≥ 0. Similarly qn ≤ pn for negative integers n. �

We put v := infn∈N pn where {pn} is the maximum of U(a)-solutions and call v
the unitary projection of a. The unitary projection of a is zero if and only if either

{a∗n

an} or {a−na∗
−n} converges to zero in the w∗-topology. Such a contraction is

called completely non-unitary.

Lemma 1.3. The unitary projection v of a commutes with a. Moreover

va∗av = vaa∗v = v

Proof. We combine some points to obtain the assertion.

• Since v is majorized by p1 then a∗av = v. Therefore ava∗ is a projec-
tion, and hence the unit element of the von Neumann algebra generated by
(ava∗)(ava∗)∗, being [av], is ava∗.
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1. Wold decomposition

Throughout this section M stands for a W*-algebra with the unit 1. At first, we
deal with the decomposition of contractions. To begin we need a convention. Let
x be in M. We denote by [x] the relative unit of the w∗-closed algebra generated
by xx∗ in M and call it the range projection of x.

Remark 1.1. To make an illustration what the projection [x] is in the concrete case,
assume that x is a bounded linear operator on the Hilbert space H. In this case [x]
will be the relative unit of the von Neumann algebra generated by xx∗ in B(H).
One may check that [x] is just the orthogonal projection onto xH.

Let a be a contraction in M. A sequence of projections {en}n∈Z in M is called
a U(a)-solution if {

a∗
n

anen = en n ≥ 0

a−na∗
−n

en = en n ≤ 0

For two given solutions {ejn}n∈Z (j = 1, 2) , we write {e1n}n∈Z � {e2n}n∈Z if e1n ≤ e2n
for all n ∈ Z. Clearly � defines a partial order relation on U(a)-solutions.

Lemma 1.2. Let a be a contraction. The set of U(a)-solutions has a maximal
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Proof. Let us consider
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n

an] n ≥ 0
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−n

] n ≤ 0.

Since [1−a∗
n

an] is the relative unit of the w∗-closed algebra generated by 1−a∗
n

an,
then

(1− (1− a∗
n

an))︸ ︷︷ ︸
a∗nan

(1− [1− a∗
n

an])︸ ︷︷ ︸
pn

= pn.

Similarly one may see that a−na∗
−n

pn = pn when n ≤ 0. It means that {pn}n∈Z is
a U(a)-solution. Assume {qn}n∈Z is another U(a)-solution. We have then

(1− a∗
n

an)qn = 0 =⇒ [1− a∗
n

an]qn = 0

=⇒ qn ≤ 1− [1− a∗
n

an] = pn

for all n ≥ 0. Similarly qn ≤ pn for negative integers n. �

We put v := infn∈N pn where {pn} is the maximum of U(a)-solutions and call v
the unitary projection of a. The unitary projection of a is zero if and only if either

{a∗n

an} or {a−na∗
−n} converges to zero in the w∗-topology. Such a contraction is

called completely non-unitary.

Lemma 1.3. The unitary projection v of a commutes with a. Moreover

va∗av = vaa∗v = v

Proof. We combine some points to obtain the assertion.

• Since v is majorized by p1 then a∗av = v. Therefore ava∗ is a projec-
tion, and hence the unit element of the von Neumann algebra generated by
(ava∗)(ava∗)∗, being [av], is ava∗.
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Proof. Since xpx∗ is itself a projection, then similar to the argument in Lemma 1.3,
x = xpx∗. �

Let x be an isometry. We shift forward the projection p to the projection [xp]
by x and continue this process to obtain the following sequence of projections

p0 = p, p1 = [xp] = xpx∗, · · · , pn = [xpn−1] = xnpx∗n

, · · ·
Such a sequence is called the p-shift spectrum of x with the initial projection p.
This sequence is called an orthogonal p-shift spectrum if the projections pn are
pairwise mutually orthogonal.

Definition 1.7. Assume x is an isometry in M. A projection p in M is called
wandering for x if the corresponding shift spectrum (with the initial projection p)
is orthogonal. If the total summation

∑∞
0 pn (in the sense of w∗-topology) is just

the unit of M then x is called an abstract unilateral shift.

Proposition 1.8. Let x be an isometry in M.

(1) 1− [x] is a wandering projection of x.
(2) If x is an abstract unilateral shift, then there is unique orthogonal shift

spectrum of x with total summation 1. Moreover the initial projection is
1− [x].

Proof. We apply Lemma 1.6 to obtain the following points:

i) [xn+1] = x[xn]x∗

ii) [x([xn−1]− [xn])] = [xn]− [xn+1]

Since [xn+1] is majorized by [xn], then ii) shows that 1−[x] is a wandering projection
of x. As for the second item (2), assume x is an abstract unilateral shift. Let p be
a wandering projection of x whose orthogonal shift spectrum has total summation
1. It means in the sense of w∗-topology that

1 = p+ xpx∗ + x2px∗2

+ · · ·

= p+ x(p+ xpx∗ + x2px∗2

+ · · · )x∗

= p+ xx∗ = p+ [x]

Therefore the initial projection p should be 1− [x]. �

Remark 1.9. Assume that x is a unilateral shift. We have then for every positive
integer n that

i′) [xn] = x∗[xn+1]x
ii′) [x∗([xn+1] − [xn+2])] = [xn] − [xn+1] : To prove this, note that item i′)

shows that the absolute value |x∗([xn+1]− [xn+2])| is the just the projection
[xn]− [xn+1].

iii′) [x∗(1− [x])] = 0

Based on these relations one may say that x∗ acts as a backward shift.

Let x be an isometry and consider the following projections

s =
∑

[xn]− [xn+1] = 1− lim [xn]

u = lim [xn] = inf[xn]

where the limits are taken in the w∗-topology. The pair (s, u) is called the Wold
pair of x. We have the following main result when both s, u are non-trivial.
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1. Wold decomposition

Throughout this section M stands for a W*-algebra with the unit 1. At first, we
deal with the decomposition of contractions. To begin we need a convention. Let
x be in M. We denote by [x] the relative unit of the w∗-closed algebra generated
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assume that x is a bounded linear operator on the Hilbert space H. In this case [x]
will be the relative unit of the von Neumann algebra generated by xx∗ in B(H).
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a U(a)-solution if {

a∗
n

anen = en n ≥ 0

a−na∗
−n

en = en n ≤ 0

For two given solutions {ejn}n∈Z (j = 1, 2) , we write {e1n}n∈Z � {e2n}n∈Z if e1n ≤ e2n
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n
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n

an] = pn

for all n ≥ 0. Similarly qn ≤ pn for negative integers n. �

We put v := infn∈N pn where {pn} is the maximum of U(a)-solutions and call v
the unitary projection of a. The unitary projection of a is zero if and only if either

{a∗n

an} or {a−na∗
−n} converges to zero in the w∗-topology. Such a contraction is

called completely non-unitary.

Lemma 1.3. The unitary projection v of a commutes with a. Moreover

va∗av = vaa∗v = v

Proof. We combine some points to obtain the assertion.

• Since v is majorized by p1 then a∗av = v. Therefore ava∗ is a projec-
tion, and hence the unit element of the von Neumann algebra generated by
(ava∗)(ava∗)∗, being [av], is ava∗.
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Theorem 1.10. Let x be an isometry in a W ∗-algebra M. The Wold pair (s, u)
of x is uniquely determined with the following properties

(1) s and u are mutually orthogonal and s+ u = 1.
(2) Both projections s and u commute with x.
(3) sxs is an abstract unilateral shift in the W ∗-algebra sMs and uxu is a

unitary in the W ∗-algebra uMu.

Proof. The first item is clear and the second one is directly obtained by the defini-
tion of the Wold pair (s, u). As for (3), since s commutes with x, then sxs is an
isometry in the W*-algebra sMs. The projection 1− [x] is majorized by s and so
is a projection in sMs. We apply the second item of the Proposition 1.8 to obtain
1− [x] is a wandering projection for sxs. Moreover

∑
(sxns)([xn]− [xn+1])(sx∗n

s) = s(
∑

xn([xn]− [xn+1])x∗n

)s = s

which shows that sxs is an abstract unilateral shift in sMs. The definition of u
shows that u ≤ [x]. Since u commutes with x

(uxu)(ux∗u) = u[x]u = u

Therefore uxu is unitary in uMu.
Assume that (s1, u1) is a pair satisfying in conditions (1), (2) and (3). We have
then

1− [x] = (s1 ⊕ u1)− [x(s1 ⊕ u1)]

= (s1 ⊕ u1)− (s1[x]s1 ⊕ u1[x]u1)

= s1 − s1[x]s1.

We conclude x and s1xs1 have the same orthogonal shift spectrum with intial
projection 1− [x] which implies that s1 = s and so u1 = u. �

This theorem says that any isometry x is decomposed into an abstract unilateral
shift and a unitary, which is exactly the von-Neumann-Wold decomposition:

x = sxs⊕ uxu.

Remark 1.11. Assume x is an isometry in B(H) and p is a wandering projection
of x. Let us denote Hn to be the range of the projection pn = xnpx∗n

. Then
H0,H1, · · · form pairwise orthogonal closed subspaces and x maps Hn isometrically
onto Hn+1. Therefore abstract unilateral shifts coincide with the unilateral shifts
in B(H) . Moreover the corresponding Wold pair of x induces reducing subspaces
H0 and H1 on which x is decomposed into a unitary and a unilateral shift.

The Wold decomposition is concerned with the structure of an isometry. It is
extended for a particular finite sequence of isometries. We examine the current
method for two such items.

The structure of an isometric tuple of operators in B(H) is given in [6] as an
extension of the Wold decomposition of an isometry. An n-tuple of operators
(x1, · · · , xn) acting on H is said to be isometric if the row operator [x1, · · · , xn] :
Hn → H is an isometry. In fact, an isometric n-tuple is a sequence of isometries
x1, · · · , xn such that the xi’s have pairwise orthogonal ranges. It is equivalent to
say that the sequence of isometries x1, · · · , xn satisfies the Cuntz relations:

x∗
i xj =

{
1 i = j

0 i �= j.
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We now follow the structure of an isometric n-tuple in any arbitrary W ∗-algebra.
Let x1, · · · , xn be a sequence of isometries in M. The following are equivalent:

(1) The Cuntz relations hold for the sequence x1, · · · , xn.
(2) If i and j are distinct then [xi][xj ] = 0.
(3)

∑n
i=1[xi] ≤ 1.

Assume that x1, · · · , xn is a sequence of isometries satisfying the Cuntz relations.
We take Fm,n to be the set of all functions from {1, · · · ,m} to {1, · · · , n}. For given
f ∈ F , we set

xf := xf(1) · · ·xf(m) , x∗
f := x∗

f(m) · · ·x
∗
f(1).

We also put x0 = xf(0) = 1 and F =
⋃

m≥0 Fm. Let us consider p = 1 −
∑

[xi].

A direct calculation shows that [xfp][xgp] = 0 (see Lemma 1.6) for all distinct
functions f, g ∈ F . It allows us to say that p = 1 −

∑
[xi] plays the role of

a wandering projection for the isometric n-tuple (x1, · · · , xn). Let us consider the
total summation s :=

∑
f∈F [xfp]. If s = 1 then x1, · · · , xn is called an n-orthogonal

shift.
Just like the case n = 1, an n-orthogonal shift has a unique wandering projection

with the total summation 1. To see this, assume q is a wandering projection for an
isometric n-tuple x1, · · · , xn with

∑
f∈F [xfq] = 1. Then in the sense of w∗-topology

1 =
∑

f∈F

[xfq]

= q + (
∑

f(1)=1

[xfq]) + · · ·+ (
∑

f(1)=n

[xfq])

= q + x1(
∑

f∈F

[xfq])x
∗
1 + · · ·+ xn(

∑

f∈F

[xfq])x
∗
n

= q +

n∑

i=1

[xi].

We put u := 1 − s and call (s, u) the Wold pair of x1, · · · , xn. One may apply
Lemma 1.6 to conclude that both projections u, s commute with all xi’s. To sum
up:

Theorem 1.12. Let x1, · · · , xn be an isometric n-tuple in M. Then the Wold pair
(s, u) is uniquely determined with the following properties

(1) s and u are mutually orthogonal and s+ u = 1.
(2) Both projections s and u commute with all xi’s.
(3) sx1s, · · · , sxns is an n-orthogonal unilateral shift in the W ∗-algebra sMs

and ∑
uxix

∗
i u = u

Finally we examine the method for doubly commuting isometries in W*-algebras.
A pair of commuting isometries (x1, x2) is called double commuting if xix

∗
j = x∗

jxi.
In [7] Slocinski obtained an analogous result of the Wold decomposition for a pair
of doubly commuting isometries.

Theorem 1.13. Let x = (x1, x2) be a pair of doubly commuting isometries on the
Hilbert space H. Then there exists a unique decomposition

H = Hss ⊕Hsu ⊕Hus ⊕Huu
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1. Wold decomposition

Throughout this section M stands for a W*-algebra with the unit 1. At first, we
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We put v := infn∈N pn where {pn} is the maximum of U(a)-solutions and call v
the unitary projection of a. The unitary projection of a is zero if and only if either
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−n} converges to zero in the w∗-topology. Such a contraction is

called completely non-unitary.

Lemma 1.3. The unitary projection v of a commutes with a. Moreover

va∗av = vaa∗v = v

Proof. We combine some points to obtain the assertion.

• Since v is majorized by p1 then a∗av = v. Therefore ava∗ is a projec-
tion, and hence the unit element of the von Neumann algebra generated by
(ava∗)(ava∗)∗, being [av], is ava∗.
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We now follow the structure of an isometric n-tuple in any arbitrary W ∗-algebra.
Let x1, · · · , xn be a sequence of isometries in M. The following are equivalent:

(1) The Cuntz relations hold for the sequence x1, · · · , xn.
(2) If i and j are distinct then [xi][xj ] = 0.
(3)

∑n
i=1[xi] ≤ 1.

Assume that x1, · · · , xn is a sequence of isometries satisfying the Cuntz relations.
We take Fm,n to be the set of all functions from {1, · · · ,m} to {1, · · · , n}. For given
f ∈ F , we set

xf := xf(1) · · ·xf(m) , x∗
f := x∗

f(m) · · ·x
∗
f(1).

We also put x0 = xf(0) = 1 and F =
⋃

m≥0 Fm. Let us consider p = 1 −
∑

[xi].

A direct calculation shows that [xfp][xgp] = 0 (see Lemma 1.6) for all distinct
functions f, g ∈ F . It allows us to say that p = 1 −

∑
[xi] plays the role of

a wandering projection for the isometric n-tuple (x1, · · · , xn). Let us consider the
total summation s :=

∑
f∈F [xfp]. If s = 1 then x1, · · · , xn is called an n-orthogonal

shift.
Just like the case n = 1, an n-orthogonal shift has a unique wandering projection

with the total summation 1. To see this, assume q is a wandering projection for an
isometric n-tuple x1, · · · , xn with

∑
f∈F [xfq] = 1. Then in the sense of w∗-topology

1 =
∑

f∈F

[xfq]

= q + (
∑

f(1)=1

[xfq]) + · · ·+ (
∑

f(1)=n

[xfq])

= q + x1(
∑

f∈F

[xfq])x
∗
1 + · · ·+ xn(

∑

f∈F

[xfq])x
∗
n

= q +

n∑

i=1

[xi].

We put u := 1 − s and call (s, u) the Wold pair of x1, · · · , xn. One may apply
Lemma 1.6 to conclude that both projections u, s commute with all xi’s. To sum
up:

Theorem 1.12. Let x1, · · · , xn be an isometric n-tuple in M. Then the Wold pair
(s, u) is uniquely determined with the following properties

(1) s and u are mutually orthogonal and s+ u = 1.
(2) Both projections s and u commute with all xi’s.
(3) sx1s, · · · , sxns is an n-orthogonal unilateral shift in the W ∗-algebra sMs

and ∑
uxix

∗
i u = u

Finally we examine the method for doubly commuting isometries in W*-algebras.
A pair of commuting isometries (x1, x2) is called double commuting if xix

∗
j = x∗

jxi.
In [7] Slocinski obtained an analogous result of the Wold decomposition for a pair
of doubly commuting isometries.

Theorem 1.13. Let x = (x1, x2) be a pair of doubly commuting isometries on the
Hilbert space H. Then there exists a unique decomposition

H = Hss ⊕Hsu ⊕Hus ⊕Huu

ON THE DECOMPOSITION OF CONTRACTIONS AND ISOMETRIES 7

where Hij are joint x-reducing subspaces of H. Moreover x1 on Hij is a shift if
i = 1 and unitary if i = u and x2 is a shift if j = s and unitary if j = u.

Let x = (x1, x2) be a pair of doubly commuting isometries in W*-algebra M.
Let (s1, u1) be the Wold pair of x1 (see Theorem 1.10). Both projections s1 and u1

commute with x2, since xix
∗
j = x∗

jxi. We again apply Theorem 1.10 for isometries
s1x2s1 and u1x2u1 in W*-algebras s1Ms1 and u1Mu1 respectively. We then obtain
two Wold pairs as follow {

u1 = wuu ⊕ wus

s1 = wsu ⊕ wss

One may check all these projections wαβ ’s commute with both x1 and x2. Moreover



wαβx1wαβ is a unitary in wαβMwαβ if α = u

wαβx1wαβ is a unilateral shift in wαβMwαβ if α = s

wαβx2wαβ is a unitary in wαβMwαβ if β = u

wαβx2wαβ is a unilateral shift in wαβMwαβ if β = s

2. application

Let us have a look at the proof of lemmas 1.2 and 1.3 again. We observe that
the following points are used.

(1) Every W*-algebra is unital.
(2) The lattice of projections in any W*-algebra is complete.
(3) There is a partial ordered relation on the hermitian part of A and any

positive element has unique square root.

In the current decomposition of an isometry in any W*-algebra, in addition to
the above points, the following are also applied

(4) Any monotone sequence of projections is w∗-convergent to a projection.
(5) Assume a ≤ b. For given x ∈ M we have then x∗ax ≤ x∗bx.

Hence one may conclude fundamental decompositions theorems 0.1 and 0.2 in
any dual topological *-algebra satisfying these properties. A well behaved of these
structures are locally W*-algebras. We recall these structures.

In [3] Inoue introduced the notion of locally Hilbert space and the analogue of
B(H) as well. Let Λ be a directed index set and {Hα}α∈Λ a family of Hilbert spaces
such that Hα is embedded in Hβ where α ≤ β.

Let H be the direct limit of {Hα}α∈Λ

H := lim
→

Hα =
⋃
α∈Λ

Hα.

EndowH with the inductive limit topology, that is the finest locally convex topology
making the injections Hα ↪→ H continuous. Then H is called a locally Hilbert
space which is not a Hilbert space in general. Let ιαβ : Hα ↪→ Hβ be the canonical
injection, and define L(H) to be the set of all continuous linear maps T : H → H
for which Tβ ◦ ιαβ = ιαβ ◦ Tα, where Tα ∈ B(Hα) is the restriction of T to Hα. We
have then that L(H) is the inverse limit of {B(Hα)}α∈Λ that is,

L(H) = lim
←−

B(Hα),

333
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where L(H) is endowed with the inverse limit topology

σ := lim
←−

σα with σα = σ(B(Hα), B(Hα)∗).

The topology σ on L(H) is called σ-weak topology. The σ-weakly closed *-subalgebras
of L(H) are concrete locally W*-algebras [2]:

Theorem 2.1. Every locally W*-algebra M endowed with the inverse limit topology
σ coincides, within an isomorphism of topological *-algebras, with a σ-weakly closed
*-subalgebra of L(H) for some locally Hilbert space H.

A continuous linear map x : H → H in L(H) is called an isometry (contraction) if
xα (the restriction of x on Hα) is an isometry (contraction) in B(Hα). Equivalently,
x is an isometry (contraction) if x∗x = 1 (x∗x ≤ 1).

Inoue proved any locally C*-algebra satisfies in (3) and (5). To conclude, for
Theorems 0.1 and 0.2, it is enough to show that items (1), (2) and (4) are also valid
in locally W*-algebras. They are routine based on Theorem 2.1.
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1. Wold decomposition

Throughout this section M stands for a W*-algebra with the unit 1. At first, we
deal with the decomposition of contractions. To begin we need a convention. Let
x be in M. We denote by [x] the relative unit of the w∗-closed algebra generated
by xx∗ in M and call it the range projection of x.

Remark 1.1. To make an illustration what the projection [x] is in the concrete case,
assume that x is a bounded linear operator on the Hilbert space H. In this case [x]
will be the relative unit of the von Neumann algebra generated by xx∗ in B(H).
One may check that [x] is just the orthogonal projection onto xH.

Let a be a contraction in M. A sequence of projections {en}n∈Z in M is called
a U(a)-solution if {

a∗
n

anen = en n ≥ 0

a−na∗
−n

en = en n ≤ 0

For two given solutions {ejn}n∈Z (j = 1, 2) , we write {e1n}n∈Z � {e2n}n∈Z if e1n ≤ e2n
for all n ∈ Z. Clearly � defines a partial order relation on U(a)-solutions.

Lemma 1.2. Let a be a contraction. The set of U(a)-solutions has a maximal
element.

Proof. Let us consider
{
pn = 1− [1− a∗

n

an] n ≥ 0

pn = 1− [1− a−na∗
−n

] n ≤ 0.

Since [1−a∗
n

an] is the relative unit of the w∗-closed algebra generated by 1−a∗
n

an,
then

(1− (1− a∗
n

an))︸ ︷︷ ︸
a∗nan

(1− [1− a∗
n

an])︸ ︷︷ ︸
pn

= pn.

Similarly one may see that a−na∗
−n

pn = pn when n ≤ 0. It means that {pn}n∈Z is
a U(a)-solution. Assume {qn}n∈Z is another U(a)-solution. We have then

(1− a∗
n

an)qn = 0 =⇒ [1− a∗
n

an]qn = 0

=⇒ qn ≤ 1− [1− a∗
n

an] = pn

for all n ≥ 0. Similarly qn ≤ pn for negative integers n. �

We put v := infn∈N pn where {pn} is the maximum of U(a)-solutions and call v
the unitary projection of a. The unitary projection of a is zero if and only if either

{a∗n

an} or {a−na∗
−n} converges to zero in the w∗-topology. Such a contraction is

called completely non-unitary.

Lemma 1.3. The unitary projection v of a commutes with a. Moreover

va∗av = vaa∗v = v

Proof. We combine some points to obtain the assertion.

• Since v is majorized by p1 then a∗av = v. Therefore ava∗ is a projec-
tion, and hence the unit element of the von Neumann algebra generated by
(ava∗)(ava∗)∗, being [av], is ava∗.
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where L(H) is endowed with the inverse limit topology

σ := lim
←−

σα with σα = σ(B(Hα), B(Hα)∗).

The topology σ on L(H) is called σ-weak topology. The σ-weakly closed *-subalgebras
of L(H) are concrete locally W*-algebras [2]:

Theorem 2.1. Every locally W*-algebra M endowed with the inverse limit topology
σ coincides, within an isomorphism of topological *-algebras, with a σ-weakly closed
*-subalgebra of L(H) for some locally Hilbert space H.

A continuous linear map x : H → H in L(H) is called an isometry (contraction) if
xα (the restriction of x on Hα) is an isometry (contraction) in B(Hα). Equivalently,
x is an isometry (contraction) if x∗x = 1 (x∗x ≤ 1).

Inoue proved any locally C*-algebra satisfies in (3) and (5). To conclude, for
Theorems 0.1 and 0.2, it is enough to show that items (1), (2) and (4) are also valid
in locally W*-algebras. They are routine based on Theorem 2.1.
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Submission to the SCMJ 
 
In September 2012, the way of submission to Scientiae Mathematicae Japonicae 
(SCMJ) was changed.  Submissions should be sent electronically (in PDF file) to the 
editorial office of International Society for Mathematical Sciences (ISMS).  
 
(1) Preparation of files and Submission 

a. Authors who would like to submit their papers to the SCMJ should make 
source files of their papers in LaTeX2e using the ISMS style file (scmjlt2e.sty) 
Submissions should be in PDF file compiled from the source files.  Send the 
PDF file to s1bmt@jams.jp . 

b. Prepare a Submission Form and send it to the ISMS.  The required items to 
be contained in the form are:  

  1. Editor’s name whom the author chooses from the Editorial Board 
(http://www.jams.or.jp/hp/submission_f.html )and would like to take in 
charge of the paper for refereeing.  

2. Title of the paper.   
3. Authors’ names.   
4. Corresponding author’s name, e-mail address and postal address (affiliation).  
5. Membership number in case the author is an ISMS member.   
 
Japanese authors should write 3 and 4 both in English and in Japanese.  
 
At http://www.jams.or.jp/hp/submission_f.html, the author can find the 
Submission Form. Fulfill the Form and sent it to the editorial office by pushing 
the button “transmission”.  Or, without using the Form, the author may send 
an e-mail containing the items 1-5 to s1bmt@jams.jp 

 
(2) Registration of Papers 

When the editorial office receives both a PDF file of a submitted paper and a 
Submission Form, we register the paper.  We inform the author of the 
registration number and the received date.  At the same time, we send the PDF 
file to the editor whom the author chooses in the Submission Form and request 
him/her to begin the process of refereeing. (Authors need not send their papers to 
the editor they choose.) 
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 2

(3) Reviewing Process 
a. The editor who receives, from the editorial office, the PDF file and the request 

of starting the reviewing process, he/she will find an appropriate referee for 
the paper.   

b. The referee sends a report to the editor.  When revision of the paper is 
necessary, the editor informs the author of the referee’s opinion. 

c. Based on the referee report, the editor sends his/her decision (acceptance of 
rejection) to the editorial office. 

 
(4) a. Managing Editor of the SCMJ makes the final decision to the paper valuing the  

editor’s decision, and informs it to the author. 
b. When the paper is accepted, we ask the author to send us a source file and 

a PDF file of the final manuscript.  
c. The publication charges for the ISMS members are free if the membership dues 

have been paid without delay. If the authors of the accepted papers are not the 
ISMS members, they should become ISMS members and pay ¥6,000 (US$75, 
Euro55) as the membership dues for a year, or should just pay the same 
amount without becoming the members. 

 
 
 
 

Items required in Submission Form 
1. Editor’s name who the authors wish will take in charge of the paper 
2. Title of the paper 
3. Authors’ names 
3’.  3. in Japanese for Japanese authors 
4. Corresponding author’s name and postal address (affiliation) 
4’.  4. in Japanese for Japanese authors 
5. ISMS membership number 
6. E-mail address   
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Call for ISMS Members 
 

Call for Academic and Institutional Members 
 

Discounted subscription price: When organizations become the Academic and Institutional 
Members of the ISMS, they can subscribe our journal Scientiae Mathematicae Japonicae at the 
yearly price of US$225.  At this price, they can add the subscription of the online version upon 
their request.    

 
Invitation of two associate members: We would like to invite two persons from the 

organizations to the associate members with no membership fees. The two persons will enjoy 
almost the same privileges as the individual members.  Although the associate members 
cannot have their own ID Name and Password to read the online version of SCMJ, they can 
read the online version of SCMJ at their organization. 

 
To apply for the Academic and Institutional Member of the ISMS, please use the following 

application form. 
 
----------------------------------------------------------------------------------------------------------- 
 

Application for Academic and Institutional Member of ISMS 
Subscription of SCMJ 

Check one of the two. 

 

□Print               □Print ＋ Online 

(US$225)                 (US$225) 

University (Institution) 

 

 

Department 

 

 

Postal Address 

where SCMJ should be 

sent 

 

E-mail address 

 

 

Person in charge 

Name: 

Signature: 

 

Payment 

Check one of the two. 
□Bank transfer        □Credit Card (Visa, Master) 

Name of Associate Membership 

1.  

 

2.  
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Call for Individual Members 

 
We call for individual members.  The privileges to them and the membership dues are shown 

in “Join ISMS !” on the inside of the back cover. 
 

 
 Items required in Membership Application Form 
   

1. Name 
2. Birth date 
3. Academic background 
4. Affiliation 
5. 4’s address 
6. Doctorate 
7. Contact address 
8. E-mail address 
9. Special fields 
10. Membership category (See Table 1 in “Join ISMS !”) 
 

Individual Membership Application Form 
 
1. Name 
 

 

 
2. Birth date 
 

 

3. 
Academic background 
 

 

 
4. Affiliation 
 

 

 
5. 4’s address 
 
 

 

 
6. Doctorate 
 

 

 
7. Contact address 
 
 

 

  
8.  E-mail address 
 

 

 
9.  Special fields 
 

 

10.  
Membership 

    category 
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Contributions (Gift to the ISMS) 
We deeply appreciate your generous contributions to support the activities of our 

society. 
The donation are used (1) to make medals for the new prizes (Kitagawa Prize, 
Kunugi Prize, and ISMS Prize),  (2) to support the IVMS at Osaka University 
Nakanoshima Center, and (3) for a special fund designated by the contributors. 
 
Your remittance to the following accounts of ours will be very much appreciated. 

 
(1)  Through a post office, remit to our giro account ( in Yen only ): 

         No. 00930-1-11872, Japanese Association of Mathematical Sciences (JAMS ) 
   or send International Postal Money Order (in US Dollar or in Yen) to our 

address: 
       International Society for Mathematical Sciences 

         2-1-18 Minami Hanadaguchi, Sakai-ku, Sakai, Osaka 590-0075, Japan 
 
(2)   A/C 94103518, ISMS 

CITIBANK, Japan Ltd., Shinsaibashi Branch 
           Midosuji Diamond Building 
           2-1-2 Nishi Shinsaibashi, Chuo-ku, Osaka 542-0086, Japan 
 

 
 

******************************************************************************** 
Payment Instructions: 

Payment can be made through a post office or a bank, or by credit card. Members may 
choose the most convenient way of remittance. Please note that we do not accept payment by 
bank drafts (checks). For more information, please refer to an invoice. 
 

Methods of Overseas Payment: 
Payment can be made through (1) a post office, (2) a bank, (3) by credit card, or (4) 
UNESCO Coupons.  

Authors or members may choose the most convenient way of remittance as are shown below. 
Please note that we do not accept payment by bank drafts (checks). 
(1) Remittance through a post office to our giro account No. 00930-1-11872 or send 
International Postal Money Order to our postal address (2) Remittance through a 
bank to our account No. 94103518 at Shinsaibashi Branch of CITIBANK (3) Payment 
by credit cards (AMEX, VISA, MASTER or NICOS), or (4) Payment by UNESCO 
Coupons. 
 

Methods of Domestic Payment: 
Make remittance to: 

(1) Post Office Transfer Account - 00930-3-73982 or  
(2) Account No.7726251 at Sakai Branch, SUMITOMO MITSUI BANKING 
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