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Abstract. The aim of this paper is to study some topological properties, especially,
ω-closed sets (in Sundaram-Sheik John’s sense) of digital lines and digital n-spaces
(n ≥ 2).

1 Introduction In 2000, the concept of ω-closed sets (in Sundaram-Sheik John’s sense)
of topological spaces was introduced and investigated by P. Sundaram and M. Sheik John
[35] [36] [37] and some results on bitopological version were investigated by [12]. We note
that, in 1982, Hdeibe [14] had defined the same named concept: ω-closed sets (e.g., [14]);
but their definitions are different. Throughout the present paper, we call the ω-closed sets
[35] the ω-closed sets in Sundaram-Sheik John’s sense (cf. Definition 2.1). The concept of
Λs-sets was introduced and investigated by [4]. In the present paper, for the digital n-space
(Zn, κn)(n ≥ 1), we try to investigate properties on ω-closed sets in Sundaram-Sheik John’s
sense and Λs-sets. The concept of the digital line (Z, κ) is initiated by Khalimsky [15], [16]
and sometimes it is called the Khalimsky line (cf. [17] and references there, [33], [19, p.905],
[20, p.175]; e.g., [11], [18]). We reference the naming of the digital n-space (Zn, κn) in [20,
Definition 4]; (Zn, κn) is the topological product of n copies of the digital line (Z, κ) (cf.
Section 3).

The purpose of the present paper is to characterlize the ω-closedness in Sundaram-
Sheik John’s sense in (Zn, κn) (cf. Theorem 4.6). Namely, a subset A is an ω-closed set in
Sundaram-Sheik John’s sense of (Zn, κn) if and only if A is closed in (Zn, κn) (Theorem 4.6).
In order to prove the result, we investigate the concept of semi-kernels of subsets in (Zn, κn)
(cf. Theorem 4.5) after checking on some examples in (Zn, κn) (cf. Example 4.2). In Section 2
we recall some definitions and properties on topological spaces which are used in the present
paper; moreover in Section 3 we recall the definitions of the digital lines and digital n-spaces
(n ≥ 2) and we give a short survey of important properties which are used in the present
paper. In Section 4 we give some examples and we prove a characterization of ω-closed
sets in Sundaram-Sheik John’s sense for (Zn, κn) (cf. Theorem 4.6). In order to prove
Theorem 4.6, we need the construction of semi-open sets containing a point of (Zn, κn) (cf.
Theorem 4.4). In the end of Section 4, using Theorem 4.4 and Theorem 4.9, we give an
alternative and direct proof of [30, Theorem 4.2] which shows (Zn, κn) is semi-T2.

Throughout the present paper, (X, τ) represents a nonempty topological space on which
no separation axioms are assumed, unless otherwise mentioned.

2 Preliminaries We recall some concepts and properties on topological spaces.
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Definition 2.1 (i) ([22, Definition 2.1]) A subset A of a topological space (X, τ) is called
generalized closed (shortly, g-closed) in (X, τ) if Cl(A) ⊂ U whenever A ⊂ U and U is open
in (X, τ).

(ii) ([35], [36]) A subset A of a topological space (X, τ) is called ω-closed in Sundaram-
Sheik John’s sense in (X, τ) if Cl(A) ⊂ V whenever A ⊂ V and V is semi-open in (X, τ).
The complement of an ω-closed set is called an ω-open set.

A subset B of (X, τ) is said to be semi-open [21, Definition 1] in (X, τ), if there exists an
open set U such that U ⊂ B ⊂Cl(U). It is shown that [21, Theorem 1] a subset B is
semi-open if and only if B ⊂Cl(Int(B)) in (X, τ). A subset E of (X, τ) is said to be preopen
[25] in (X, τ), if E ⊂Int(Cl(E)) holds in (X, τ). Every open set is semi-open and preopen
in (X, τ). The complement of a semi-open set (resp. preopen set) is said to be semi-closed
(resp. preclosed). In the present paper, the famly of all semi-open sets (resp. preopen sets)
of (X, τ) is denoted by SO(X, τ) (resp. PO(X, τ)). Namely, for a topological space (X, τ),
as notation,
• SO(X, τ) := {B|B ⊂Cl(Int(B)), B ⊂ X}, PO(X, τ) := {E|E ⊂Int(Cl(E)), E ⊂ X}; and
τ ⊂ SO(X, τ) and τ ⊂ PO(X, τ) hold for any topological space (X, τ).

The following concept of semi-kernels is due to [4] and the concept of kernels is well
known (e.g., [28]).

Definition 2.2 Let E be a subset of a topological space (X, τ).
(i) ([4, Definition 1]) The following set τ -sKer(E) (or shortly sKer(E)) is called a semi-

kernel of E in (X, τ) (in [4], it is denoted by EΛs):
• τ -sKer(E) = EΛs :=

∩
{V |E ⊂ V and V is semi-open in (X, τ)}.

Note that, in the present paper, we use the symbol τ -sKer(E) or sKer(E).
(ii) (e.g., [28]) The following set τ -Ker(E) (or shortly Ker(E)) is called a kernel of E in

(X, τ):
• τ -Ker(E) :=

∩
{V |E ⊂ V and V is open in (X, τ)}.

Note that, in [28] (resp. [24]), the set τ -Ker(E) above is denoted by Kerτ (E) (resp. E∧).

Definition 2.3 ([4, Definition 2]) In a topological space (X, τ), a subset E is a Λs-set of
(X, τ) if E = EΛs (i.e., E =sKer(E)).

We recall the following property on semi-kernels.

Proposition 2.4 For a family {Ei|i ∈ Ω} of subsets of a topological space (X, τ), where Ω
is an index set,

(i) ([4, Proposition 3.1]) sKer(
∪
{Ei|i ∈ Ω}) =

∪
{sKer(Ei)|i ∈ Ω} holds; and

(ii) (e.g., [24, (2.5)]) Ker(
∪
{Ei|i ∈ Ω}) =

∪
{Ker(Ei)|i ∈ Ω} holds.

Theorem 2.5 t60 ([35], [36]) A subset A is ω-closed (in Sundaram-Sheik John’s sense) in
a topological space (X, τ) if and only if Cl(A) ⊂sKer(A).

Proposition 2.6 (i) ([4, Proposition 3.7]) A topological space (X, τ) is semi-T1 if and only
if every subset is a Λs-set.

(ii) ([4, Corollary 3.8]) Every semi-T1-space is a semi-R0-space.

We need the following notation.

Definition 2.7 (e.g., [10, p.166]; [39, Definition 2.1] [38, p.47] for the case where E := Zn)
For a subset E of (X, τ), we define the following subsets Eτ and EF :

Eτ := {x ∈ E | {x} is open in (X, τ), i.e., {x} ∈ τ };
EF := {x ∈ E | {x} is closed in (X, τ)}.
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3 Preliminaries-2 In the present section, we recall some foundamental definitions and
topological properties on digital lines and digital n-spaces (n ≥ 2); this includes a survey on
digital lines and digital n-spaces (n ≥ 2) on our topics. And the notation of Definition 3.11
and (∗ 20) in (II) below are used in the proofs of results in Section 4.

(I) (digital lines):
• Let us recall some definitions and topological properties on digital lines (cf. (∗1) - (∗11)
below).

Definition 3.1 (cf. [20, p.175], [19, p.905, p.908], [26, Section 2], [27, Example 4 in Section
2]; e.g., [11, Section 1], [33, Section 6 in p.9]) The digital line or so called the Khalimsky line
(Z, κ) is the set Z of all integers, equipped with the topology κ having {{2m− 1, 2m, 2m +
1}|m ∈ Z} as a subbase.

Remark 3.2 We put G := {{2m − 1, 2m, 2m + 1}|m ∈ Z} in Definition 3.1.
(i) By the definition of κ, a subset U of Z is open in (Z, κ) (i.e., U ∈ κ) if and only if

there exists a family of subsets of (Z, κ), say {B(U)
i | i ∈ I(U)}, where I(U) is an index set,

such that U =
∪
{B(U)

i | i ∈ I(U)} and B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}} for some positive

integer m and some subsets V
(i)
j ∈ G(1 ≤ j ≤ m), here we assume that V

(i)
j 6= V

(i)
j1

if j 6= j1,
where j, j1 ∈ {1, 2, ...,m}).

(ii) For the set B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}} above, we note that:

(∗)1 if m = 1 (resp. m = 2), then B
(U)
i = {2t − 1, 2t, 2t + 1} (resp. ={2u + 1} or ∅) for

some t ∈ Z (resp. for some u ∈ Z);
(∗)2 if m ≥ 3, then B

(U)
i =

∩
{V (i)

j |j ∈ {1, 2, ...,m}} = ∅.

• For examples, we first have some properties on singletons and two-pointed sets of (Z, κ)
(cf. (∗1) - (∗3) below): for an integer s,
· (∗1) a singleton {2s + 1} is open in (Z, κ); {2s + 1} is not closed in (Z, κ).
· (∗2) a singleton {2s} is not open in (Z, κ); but {2s} is closed in (Z, κ).
· (∗3) subsets {2s, 2s + 1} and {2s− 1, 2s} are not open in (Z, κ), where s ∈ Z (cf. (∗8)(iii)
below).

(Proof of (∗1)). (Proof of the opennness) It is shown that {2s + 1} = V1 ∩ V2, where
V1 := {2s− 1, 2s, 2s + 1} ∈ G and V2 := {2s + 1, 2s + 2, 2s + 3} ∈ G. Thus, {2s + 1} is open
in (Z, κ).
(Proof of the non-closedness) Suppose that {2s+1} is closed. Put U := Z\{2s+1}. Then,
U ∈ κ and so there exists a family of subsets: {B(U)

i | i ∈ I(U)}, where I(U) is an index set,
such that U =

∪
{B(U)

i | i ∈ I(U)} and B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}} for some positive

integer m and some subsets V
(i)
j ∈ G(1 ≤ j ≤ m) (cf. Definition 3.1,Remark 3.2(i)). Pick a

point 2s ∈ U , where s ∈ Z. Then, we have
(∗)a 2s ∈ B

(U)
i′ =

∩
{V (i′)

j |j ∈ {1, 2, ...,m′}} and B
(U)
i′ ⊂ U for some i′ ∈ I(U) and positive

integer m′.
By Remark 3.2(ii), it is shown that m′ = 1 and B

(U)
i′ =

∩
{V (i′)

j |j ∈ {1, 2, ...,m′}}
={2s−1, 2s, 2s+1}. Thus, using (∗)a, we have 2s+1 ∈ U ; but this contradicts the definition
of U in the first setting. Therefore, the singleton {2s + 1} is not closed in (Z, κ). (◦)

(Proof of (∗2)). (Proof of the non-openness). Suppose that {2s} ∈ κ. We put U := {2s}.
By the definition of κ (cf. Remark 3.2(i)), there exists subsets B

(U)
i (i ∈ I(U)), where I(U)

is an index set, such that 2s ∈ B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}} and B
(U)
i ⊂ U for some

positive integer m and V
(i)
j ∈ G(1 ≤ j ≤ m). By using Remark 3.2(ii), it is shown that

m = 1 and B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}} = {2s− 1, 2s, 2s + 1} ⊂ U ; and so 2s + 1 ∈ U .
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This contradicts the definition of U := {2s}. Therefore, any singleton {2s} is not open in
(Z, κ).
(Proof of the closedness). It is shown that {2s} = Z \ E, where E :=

∪
{{2s − 2j − 1, 2s −

2j, 2s − 2j + 1}|j ∈ Z and j 6= 0}. Since E ∈ κ, Z \ E is closed; and so {2s} is closed in
(Z, κ). (◦)

(Proof of (∗3)) Suppose that {2s− 1, 2s} ∈ κ. Then, we have a contradiction. Put U :=
{2s− 1, 2s}. By Definition 3.1 (cf. Remark 3.2 (i)), there exists an index set I(U) and some
subsets B

(U)
i such that U =

∪
{B(U)

i | i ∈ I(U)}, where B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}}
for some positive integer m and V

(i)
j ∈ G(1 ≤ j ≤ m) (cf. Remark 3.2). It is noted that

B
(U)
k ⊂ U for any k ∈ I(U). Then, we have:

(∗)a 2s ∈ B
(U)
a for some a ∈ I(U); (∗)b 2s − 1 ∈ B

(U)
b for some b ∈ I(U);

(∗)c B
(U)
a ∪ B

(U)
b ⊂ U , where U := {2s − 1, 2s}.

Using (∗)a, (∗)b and (∗)c, we have: (∗)d U = B
(U)
a ∪ B

(U)
b .

Using Remark 3.2(ii), (∗)a and (∗)b above, we have B
(U)
a = {2s− 1, 2s, 2s + 1} and B

(U)
b =

{2s − 1}, {2s − 1, 2s, 2s + 1} or {2s − 3, 2s − 2, 2s − 1}. Thus, using (∗)d above, we have
U = {2s − 1, 2s, 2s + 1} or U = {2s − 3, 2s − 2, 2s − 1, 2s, 2s + 1}. These properties above
contradict the defininion of U = {2s − 1, 2s}. Therefore, {2s − 1, 2s} is not open in (Z, κ).
Similarly, it is proved that {2s+1, 2s} is not open in (Z, κ). In (∗8)(iii) below, we note that
they are semi-open in (Z, κ). (◦)
• For the digital line (Z, κ), the concept of the smallest open set, say U(x), containing a
point x of (Z, κ) is very important; throughout the present paper, we put:
· U(2s) := {2s − 1, 2s, 2s + 1}; · U(2s + 1) := {2s + 1}, where s ∈ Z.
We first recall the definition of the smallest open set containing a point x for a topological
space (X, τ).

Definition 3.3 (e.g., [29, Definition 2.4]) Let (X, τ) be a topological space and a point
x ∈ X. A subset E is called the smallest open set containing x if x ∈ E,E ∈ τ and A = E
holds for any open set A such that x ∈ A and A ⊂ E.

For an open set E and x ∈ E,E is the smallest open set containing x if and only if E ⊂ G
holds for every open set G containing the point x (e.g., [29, Remark 2.5 (ii)]).
• For the digital line (Z, κ), we recall the concept of the smallest open set, say U(x),
containing a point x of (Z, κ). Obviously, every subset belonging to G =: {{2m−1, 2m, 2m+
1}|m ∈ Z} is open in (Z, κ). Then, we have the following important property on U(x), where
x ∈ Z:
·(∗4) (i) U(2s) := {2s − 1, 2s, 2s + 1} is the smallest open set containing 2s. Namely,
U(2s) is an open set containing the point 2s and if A is an any open set such that 2s ∈ A
and A ⊂ U(2s), then A = U(2s). And, if G is any open set containing 2s in (Z, κ), then
U(2s) ⊂ G.

(ii) U(2s + 1) := {2s + 1} is the smallest open set containing 2s + 1.
(iii) For each point x of (Z, κ), there exists the smallest open set U(x) containing the

point x (cf. [20, p.175]). Namely, for the point x ∈ Z, U(x) is an open set containing the
point x and if A is an any open set such that x ∈ A and A ⊂ U(x), then A = U(x). And,
if G is any open set containing x in (Z, κ), then U(x) ⊂ G.

(Proof of (∗4)). (i) By (∗2) and (∗3) above, it is shown that:
(∗e) U(2s) is open in (Z, κ) and 2s ∈ U(2s) (because of U(2s) ∈ G); and
if A is any open subset of U(2s) such that 2s ∈ A, then A = U(2s).
Indeed, if A1 ⊂ U(2s) such that 2s ∈ A1 and A1 6= U(2s), then A1 = {2s}, {2s − 1, 2s} or
{2s, 2s + 1} and the subset A1 is not open in (Z, κ) (cf. (∗ 2), (∗ 3) above). Thus, we have
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A = U(2s) for any open subset A such that 2s ∈ A and A ⊂ U(2s). Moreover, we show:
(∗f ) U(2s) ⊂ G holds for any open set G containing the point 2s and 2s ∈ U(2s). (Indeed,
let G be any open set containing the point 2s. Then, we have 2s ∈ U(2s)∩G and U(2s)∩G
is an open set such that U(2s) ∩ G ⊂ U(2s); thus we have U(2s) ∩ G = U(2s) (cf. (∗e)
above). Namely, we have U(2s) ⊂ G.)

Therefore, by (∗e) or (∗f ), it is shown that U(2s) is the smallest open set containing 2s
(cf. Definition 3.3).

(ii) For an odd integer 2s + 1, where s ∈ Z, U(2s + 1) = {2s + 1} is the smallest open
set containing the point 2s + 1 (cf. (∗1)). (iii) Using (i) and (ii) above, the set U(x) is
the smallest open set containing the point x. (◦)

• We have the form of the κ-closure of {x}, the κ-interior of {x} and the κ-kernel of {x},
respectively, (cf. (∗5), (∗6) below): for an integer s,
· (∗5) (i) κ-Cl({2s + 1}) = {2s, 2s + 1, 2s + 2}, κ-Cl({2s}) = {2s};

(ii) κ-Int({2s + 1}) = {2s + 1};κ-Int({2s}) = ∅;
(iii) κ-Ker({2s + 1}) = {2s + 1}; κ-Ker({2s}) = {2s − 1, 2s, 2s + 1} = U(2s).
(Proof of (∗5)). (i) They are shown by (∗4)(i), (∗1) and (∗2) above, respectively. (ii)

They are shown by (∗1) and (∗2) above, respectively. (iii) They are shown by (∗1) and
(∗4)(i) above. (◦)
· (∗6)(i) In the digital line (Z, κ), a singleton {x} is open if and only if the integer x is odd
in Z.

(ii) A singleton {x} is closed in (Z, κ) if and only if the integer x is even in Z.
(Proof of (∗6)) (i). It is shown by (∗5)(ii) above. (ii) By the closure form in (∗5)(i)

above, (ii) is shown. (◦)
By (∗6) above, it is shown that:
· (∗7) (i) Every singleton of (Z, κ) is open or closed (cf. (∗6); or (∗1) and (∗2) above). This
shows that (Z, κ) is T1/2 (e.g., [8, Example 4.6]; cf. [22, Definition 5.1], [9, Theorem 2.5]).
We recall some topological properties; in general, the class of T1/2-spaces is properly placed
between the classes of T0-spaces and T1-spaces ([22, Corollary 5.6]). Furthermore, Dontchev
and Ganster [8, Example 4.6] proved that (Z, κ) is T3/4; in general, the class of T3/4-spaces
is properly placed between the classes of T1-spaces and T1/2-spaces ([8, Corollary 4.4 and
Corollary 4.7]). For the digital plane (Z2, κ2) (cf. Definition 3.4 below), it is well known
that (Z2, κ2) is not T1/2 ([26, Section 3]).

• We recall the semi-openness (resp. semi-closedness) (cf. Section 2) of singletons in (Z, κ)
and the semi-closure of {x}, the semi-interor of {x} and the semi-kernel (cf. Definition 2.2(i))
of {x} (cf. (∗8) and (∗9) below): for an integer s,
·(∗8)(i) every open singleton {2s + 1} is semi-open and semi-closed in (Z, κ);

(ii) every closed singleton {2s} is semi-closed in (Z, κ); but {2s} is not semi-open in
(Z, κ);

(iii) the subsets {2s, 2s + 1} and {2s − 1, 2s} are semi-open on (Z, κ).
(Proof of (∗8)). (i) Every open set is semi-open and so {2s + 1} is semi-open in (Z, κ)

(cf. (∗6)(i) above). And, since κ-Int(κ-Cl({2s + 1}))= κ-int({2s, 2s + 1, 2s + 2}) = {2s + 1}
hold, {2s + 1} is semi-closed (cf. (∗5)(i)(ii) above). (ii) Since κ-Int(κ-Cl({2s})) = κ-
Int({2s}) = ∅ ⊂ {2s}, {2s} is semi-closed in (Z, κ). And, we have Cl(Int({2s})) =Cl(∅) =
∅ 6⊃ {2s} and so {2s} is not semi-open in (Z, κ). (iii) It is easily shown that κ-Cl(κ-
Int({2s, 2s + 1})) = κ-Cl({2s + 1}) = {2s, 2s + 1, 2s + 2} ⊃ {2s, 2s + 1}; and so {2s, 2s + 1}
is semi-open in (Z, κ). Similarly, the subset {2s − 1, 2s} is semi-open in (Z, κ). (◦)
·(∗9) For an integer s, we have the following properties:

(i) κ-sCl({2s + 1}) = {2s + 1}; κ-sCl({2s}) = {2s};
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(ii) κ-sInt({2s + 1}) = {2s + 1}; κ-sInt({2s}) = ∅;
(iii) κ-sKer({2s + 1}) = {2s + 1}; κ-sKer({2s}) = {2s}.
(Proof of (∗9)). (i) (resp. (ii)) They are proved by (∗8)(i) (resp. (∗8)(ii)) above. (iii)

By (∗8)(iii) (resp. (∗8)(i)), it is obtained that κ-sKer({2s}) = {2s, 2s + 1} ∩ {2s − 1, 2s} =
{2s} (resp. κ-sKer({2s + 1}) = {2s + 1}). (◦)

• We recall more topological properties on (Z, κ):
· (∗10) (i) For (Z, κ), κ = PO(Z, κ), PO(Z, κ) ⊂ SO(Z, κ) and κα = κ hold ([10, Theorem
2.1 (i)(a)(b)]), where κα := {V | V is α-open in (Z, κ)}. For topological spaces, the concept
of the α-open set was introduced by Nj̊astad [31] who called it the α-set. A subset A of a
topological space (X, τ) is said to be α-open in (X, τ) if A ⊂Int(Cl(Int(A))) holds.

(ii) The digital line (Z, κ) is submaximal. This fact may be known in folklore; however,
we are able to read one of the proof ([10, Theorem 1.1(i)]). Furthermore, it is noted that,
by [10, Theorem 1.1(ii)(iii)], the digital plane (Z2, κ2) (cf. (II) below) is not submaximal
but it is quasi-submaximal. Al-Nashef [1, Definition 3.2] introduced the concept of quasi-
submaximal topological spaces which is weaker than one of submaximal spaces (e.g., [3,
Definition 1.1], [13, p.137]).

(iii) The digital line (Z, κ) is s-normal ([11, Section 3, Theorem B]). In 1978, Maheshwari
and Prasad [23] introduced the concept of s-normal topological spaces using semi-open sets.
The digital plane is also a geometric example of s-normal spaces ([11, Section 5, Theorem
D]).

• Using Definition 2.7 for (X, τ) = (Z, κ), we can define the following subsets Zκ := {x ∈
Z | {x} ∈ κ}, ZF := {x ∈ Z | {x} is closed in (Z, κ)}; for a nonempty subset E of (Z, κ),
Eκ := {x ∈ E| {x} ∈ κ} and EF := {x ∈ E| {x} is closed in (Z, κ)}.
· (∗11) (i) Let A ⊂ Z. Then we have that Zκ = {2m + 1 ∈ Z | m ∈ Z}; Aκ = {2m + 1 ∈
A | m ∈ Z} (cf. (∗6)(i) above);
ZF = {2m ∈ Z| m ∈ Z}; AF = {2m ∈ A | m ∈ Z} (cf. (∗6)(ii) above).

(ii) Aκ is open in (Z, κ) for any subset A of (Z, κ); and Aκ = Zκ ∩ A.
(iii) Z = Zκ ∪ ZF (Zκ ∩ ZF = ∅) and A = Aκ ∪ AF (Aκ ∩ AF = ∅) for any subset A of

(Z, κ) (cf. (∗6) above).
(iv) For any subset A of (Z, κ), AF = A \ Aκ holds and AF is closed in (Z, κ); and

AF = ZF ∩ A.
(v) If E ⊂ F ⊂ Z, then Eκ ⊂ Fκ and EF ⊂ FF hold in (Z, κ).
(Proof of (∗11)) (iv). (Proof of the closedness of AF ). Let x ∈ Z \ AF .
Case 1. x = 2s + 1, where s ∈ Z: for this case, we have x ∈ Zκ (cf. (∗6)(i) above); and

so {x} ∩ AF = ∅ (cf. (iii) above). Thus, there exists an open set {x}, say Ux, containing x
such that Ux ⊂ Z \ AF .

Case 2. x = 2t, where t ∈ Z: for this case, we have x ∈ ZF and x 6∈ AF (cf. (iii) above and
(∗6)(ii) above). Hence, for the point x ∈ ZF \AF , there exists an open set {x− 1, x, x+1},
say Ux, containing x and {x− 1, x + 1} ⊂ Zκ; and so Ux ∩AF = {x− 1, x, x + 1}∩AF = ∅,
i.e., Ux ⊂ Z \ AF .
Thus, for each point x ∈ Z \AF , the subset Ux above is an open set containing x such that
Ux ⊂ Z \ AF . We have Z \ AF =

∪
{Ux|x ∈ Z \ AF} and so Z \ AF ∈ κ. Namely, AF is

closed in (Z, κ). (◦)

(II) (digital n-spaces (n ≥ 2)):
• In the final stage of the present section, we recall some structures of the digital n-space
(n ≥ 2) ([20, Definition 4]; e.g., [26, Section 3], [39], [38], [11]; for n = 2, [10], [5, Section 6],
[34, Section 5], [7, Section 7], [6], [32, Section 6]).
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Definition 3.4 ([20, Definition 4]) Let n be an integer with n ≥ 2. The digital n-space
or Khalimsky n-space is the Cartesian product of n-copies of the digital line (Z, κ). This
topological space is denoted by (Zn, κn), where Zn :=

∏n
i=1 Xi, where Xi = Z for all integers

i with 1 ≤ i ≤ n, and κn :=
∏n

i=1 τi, where τi := κ for all integers i with 1 ≤ i ≤ n. For
n = 2, (Z2, κ2) is called the digital plane or Khalimsky plane.

Since κn is the product topology of n-copies of κ, it is shown that: for a point x :=
(x1, x2, ..., xn) of (Zn, κn),
· (∗12) (a) κn-Cl({x}) =

∏n
i=1 κ-Cl({xi}); (b) κn-Int({x}) =

∏n
i=1 κ-Int({xi});

(c) κn-Ker({x}) =
∏n

i=1 κ-Ker({xi}).
(Note on (c)). Let (X, τ) :=

∏n
i=1(Xi, τi) be a product topological space of topological

spaces (Xi, τi)(1 ≤ i ≤ n). In general, for a point x := (x1, x2, ..., xn) of (X, τ), it is shown
that τ -Ker({x}) =

∏n
i=1(τi-Ker({xi})), where τ =

∏n
i=1 τi. ◦

We use the following well known property; we recall shortly the proof.

Proposition 3.5 Let x := (x1, x2, ..., xn) be a point of (Zn, κn).
(i) If all the coordinates of the point x is odd, say xi = 2si + 1 ∈ Z (si ∈ Z) for each

integer i with 1 ≤ i ≤ n, then for the point x = (2s1 + 1, 2s2 + 1, ..., 2sn + 1)
(a) κn-Cl({x})=

∏n
i=1{2si, 2si + 1, 2si + 2}.

(b) κn-Int({x})=
∏n

i=1{2si + 1} = {x}; and so the singleton {x} is open in (Zn, κn).
(c) κn-Ker({x})=

∏n
i=1{2si + 1} = {x}.

(ii) If all the coordinates of the point x is even, say xi = 2si ∈ Z (si ∈ Z) for each
integer i with 1 ≤ i ≤ n, then for the point x = (2s1, 2s2, ..., 2sn)

(a) κn-Cl({x})=
∏n

i=1{2si} = {x}; and so the singleton {x} is closed in (Zn, κn).
(b) κn-Int({x})=

∏n
i=1 ∅ = ∅.

(c) κn-Ker({x})=
∏n

i=1{2si − 1, 2si, 2si + 1} =
∏n

i=1 U(2si).
(iii) (a) A singleton {x} is closed in (Zn, κn) if and only if all the coordinates of x, say

xi(1 ≤ i ≤ n), are even.
(b) A singleton {x} is open in (Zn, κn) if and only if all the coordinates of x, say xi(1 ≤
i ≤ n), are odd.

Proof. (i) (ii) The properties are shown by (∗5) in (I), (∗12) in (II) and definitions.
(iii) (a) (Necessity) It follows from assumption that κn-Cl({x}) = {x}. Using (∗12)(a)

in (II), it is shown that κ-Cl({xi}) = {xi} for each integer i with 1 ≤ i ≤ n. Then, using
(∗6)(ii) in (I), we have that xi is even for each i with 1 ≤ i ≤ n. (Sufficiency) It is
obtained by (ii)(a) above. (iii) (b) (Necessity) By using (∗12)(b) in (II) and (∗6)(i)
in (I) above, (iii)(b) is proved. (Sufficiency) It is obtained by (i)(b) above. ¤

Example 3.6 (i) Especially, for the case where n = 2, we have the following forms of
κ2-closures of singletons: for integers s, t ∈ Z,

κ2-Cl({(2s + 1, 2t + 1)}) = {2s, 2s + 1, 2s + 2} × {2t, 2t + 1, 2t + 2};
κ2-Cl({(2s, 2t)}) = {(2s, 2t)};
κ2-Cl({(2s, 2t + 1)}) = {2s} × {2t, 2t + 1, 2t + 2};
κ2-Cl({(2s + 1, 2t)}) = {2s, 2s + 1, 2s + 2} × {2t}.
(ii) By the following figure, the closure κ2-Cl({(2s+1, 2t+1)}) is illustrated; the singleton

{(2s+1, 2t+1)} is denoted by a symbol ◦ and the closure κ2-Cl({(2s+1, 2t+1)}) contains
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the 9-points only denoted by the symbols ◦, ?, •:
• ? • 2t+2

κ2-Cl({(2s + 1, 2t + 1)})= Cl(◦)= ? ◦ ? 2t+1
• ? • 2t
2s 2s+1 2s+2

(iii) By the following figure, the closures κ2-Cl({(2s, 2t + 1)}) is illustrated:
• 2t+2

κ2-Cl({(2s, 2t + 1)})= Cl(?)= ? 2t+1
• 2t
2s

(iv) By the following figure, the closure κ2-Cl({(2s + 1, 2t)}) is illustrated:
κ2-Cl({(2s + 1, 2t)})= Cl(?)= • ? • 2t

2s 2s+1 2s+2

We give the concept of the smallest open set containing a point of (Zn, κn).

Definition 3.7 (e.g., [39, p.602], [38, p.47], [11, p.47]) For a point x := (x1, x2,
..., xn) of (Zn, κn), the following subset Un(x) is called the smallest open set containing the
point x (cf. Theorem 3.9, Definition 3.3):

Un(x) :=
∏n

i=1 U(xi), where U(xi) is the smallest open set (cf. (∗4) in (I)) in (Z, κ)
containing the i-th coordinate xi of x(1 ≤ i ≤ n).

Example 3.8 (i) For examples, in the case where n = 2 of Definition 3.7, we have the
following forms U2(x) for the following points x ∈ Z2:
U2((2s + 1, 2t + 1)) = {(2s + 1, 2t + 1)};
U2((2s, 2t)) = {2s − 1, 2s, 2s + 1} × {2t − 1, 2t, 2t + 1};
U2((2s, 2t + 1)) = {2s − 1, 2s, 2s + 1} × {2t + 1} and
U2((2s + 1, 2t)) = {2s + 1} × {2t − 1, 2t, 2t + 1}.

(ii) In the figure below, a subset U2((2s, 2t)) is illustrated; the singleton {(2s, 2t)} is
denoted by a symbol • and U2((2s, 2t)) is the set of the 9-points only denoted by the
symbols •, ◦, ?:

· · · · ·
· ◦ ? ◦ · 2t+1

U2((2s, 2t))= U2(•) = · ? • ? · 2t
· ◦ ? ◦ · 2t-1
· · · · ·

2s − 1 2s 2s + 1
(iii) In the figure below, a subset U2((2s, 2t+1)) is illustrated; the singleton {(2s, 2t+1)}

is denoted by a symbol ? and U2((2s, 2t + 1)) is the set of the 3-points only denoted by the
symbols ◦ and ?:

· · · · ·
· ◦ ? ◦ · 2t+1

U2((2s, 2t + 1))= U2(?) = · · · · · 2t
· · · · · 2t-1
· · · · ·

2s − 1 2s 2s + 1
(iv) In the figure below, a subset U2((2s+1, 2t)) is illustrated; the singleton {(2s+1, 2t)}

is denoted by a symbol ? and U2((2s + 1, 2t)) is the set of the 3-points only denoted by the
symbols ◦ and ?:
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· · · · ·
· · · ◦ · 2t+1

U2((2s + 1, 2t))= U2(?) = · · · ? · 2t
· · · ◦ · 2t-1
· · · · ·

2s − 1 2s 2s + 1

The following property is folklore, but we give its proof. The following theorem shows
the well definedness of Un(x) of Definition 3.7.

Theorem 3.9 Let x be a point of (Zn, κn) and Un(x) the subset defined by Definition 3.7.
Then, we have the following properties.

(i) x ∈ Un(x) and Un(x) ∈ κn.
(ii) If A is an open set containing the point x in (Zn, κn) such that A ⊂ Un(x), then

A = Un(x).
(iii) If G is any open set containing the point x in (Zn, κn), then Un(x) ⊂ G.

Proof. We put x := (x1, x2, ..., xn). (i) By Definition 3.7, (i) is shown.
(ii) Since x ∈ A and A ∈ κn, there exist open sets Ai ∈ κ(1 ≤ i ≤ n) such that

∏n
i=1 Ai ⊂ A

and xi ∈ Ai for each integer i with 1 ≤ i ≤ n. Since Ai is open in (Z, κ) such that xi ∈ Ai,
we have xi ∈ U(xi) ⊂ Ai for each integer i with 1 ≤ i ≤ n (cf. (∗4)(iii) in (I)); and
so Un(x) :=

∏n
i=1 U(xi) ⊂

∏n
i=1 Ai ⊂ A. Therefore, we have Un(x) ⊂ A. By using

assumption that A ⊂ Un(x), it is shown that A = Un(x) holds. (iii) Since G ∈ κn and
Un(x) ∈ κn, we see G ∩ Un(x) ∈ κn. Put A := G ∩ Un(x). Then, we have x ∈ A,A ∈ κn

and A ⊂ Un(x). By (ii) above, it is shown that A = G ∩ Un(x) = Un(x) holds. Namely,
we have Un(x) ⊂ G. ¤

Remark 3.10 Using Theorem 3.9, we can investigate topological properties of κn-Cl(A), κn-
Int(A) and κn-Ker(A), where A is a subset of (Zn, κn).

• (Some notation) In the present paper, we use the following notation (cf. Definition 3.11,
(∗20) below) for (Zn, κn)(n ≥ 2) (they are used in [39], [38], [11] for an integer n ≥ 1); cf.
(∗11) in (I) for n = 1.

Definition 3.11 ([39, Definition 2.1], [38, Section 2], [11, Section 6])
(i) The following subsets (Zn)κn , (Zn)Fn and (Zn)mix(r) of (Zn, κn) are well defined,

where r ∈ Z with 1 ≤ r ≤ n:
(i-1) (Zn)κn := {(x1, x2, ..., xn) ∈ Zn| xi is odd for each integer i with 1 ≤ i ≤ n}; by
Proposition 3.5(i)(b) in (II), it is shown that: (Zn)κn = {x ∈ Zn| {x} is open in (Zn, κn)}.
(i-2) (Zn)Fn := {(x1, x2, ..., xn) ∈ Zn| xi is even for each integer i with 1 ≤ i ≤ n}; by
Proposition 3.5(ii)(a), it is shown that: (Zn)Fn = {x ∈ Zn| {x} is closed in (Zn, κn)}.
(i-3) (Zn)mix(r) := {(x1, x2, ..., xn) ∈ Zn| #{i ∈ {1, 2, ..., n}| xi is even}= r }, where
1 ≤ r ≤ n and #A denotes the cardinality of a set A. Especially, for the case where r = n,
we note (Zn)Fn = (Zn)mix(n) holds.

(ii) For a nonempty subset E of (Zn, κn), the following subsets Eκn , EFn and Emix(r)

of (Zn, κn) are well defined, where 1 ≤ r ≤ n:
(ii-1) Eκn := E ∩ ((Zn)κn) (cf. (i-1) above);
(ii-2) EFn := E ∩ ((Zn)Fn) (cf. (i-2) above);
(ii-3) Emix(r) := E ∩ ((Zn)mix(r)) (cf. (i-3) above); we note Emix(n) = EFn .

It is well known that: for any nonempty subset E of (Zn, κn),
· (∗20) (i) Eκn = {x ∈ E | {x} is open in (Zn, κn)} ={(x1, x2, ..., xn) ∈ E | xi is odd for
each i ∈ Z with 1 ≤ i ≤ n}.
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(ii) EFn = {x ∈ E | {x} is closed in (Zn, κn)} ={(x1, x2, ..., xn) ∈ E | xi is even for
each i ∈ Z with 1 ≤ i ≤ n}.

(iii) The subset (Zn)κn and Eκn are open in (Zn, κn).
(iv) We have the following decomposition of Zn and one of a nonempty set E, respec-

tively, as follows (Note: n ≥ 2),
· Zn = (Zn)κn ∪ (Zn)Fn ∪ (

∪
{(Zn)mix(r)| 1 ≤ r ≤ n − 1}) (disjoint union);

· E = Eκn ∪ EFn ∪ (
∪
{Emix(r)| 1 ≤ r ≤ n − 1}) (disjoint union).

(Note: in the above decomposition of Zn (resp. E), we should take (Zn)mix(r) (resp. Emix(r))
with 1 ≤ r ≤ n − 1.)

(v) Especially, for n = 2 and r = 1, Emix(1) = {(x1, x2) ∈ E | x1 is even and x2 is odd}
∪{(x1, x2) ∈ E | x1 is odd and x2 is even}; we have the following decompositions:
· Z2 = (Z2)κ2 ∪ (Z2)F2 ∪ (Z2)mix(1) (disjoint union) and E = Eκ2 ∪EF2 ∪Emix(1) (disjoint
union).

(vi) If E ⊂ F ⊂ Zn, then Eκn ⊂ Fκn , EFn ⊂ FFn and Emix(r) ⊂ Fmix(r)(1 ≤ r ≤ n−1)
hold in (Zn, κn).

In Section 4, we need the following property Theorem 3.12 (cf. Theorem 4.9, Corollary 4.10
below).

Theorem 3.12 ([39, Lemma 2.3]) Let x = (x1, x2, ..., xn) ∈ (Zn)mix(a′) and y = (y1, y2, ...,
yn) ∈ (Zn)mix(a), where a′ and a are integers such that a′ ≤ a, 1 ≤ a′ ≤ n and 1 ≤ a ≤ n.

Suppose that Un(x)∩Un(y) contains exactly the 2a′
open singletons, say {q(1), q(2), ..., q(2a′

)}.
Then, the following properties holds.

(i) {q(1), q(2), ..., q(2a′
)} = (Un(x))κn = (Un(x) ∩ Un(y))κn ⊆ (Un(y))κn .

(ii) {i| xi is even (1 ≤ i ≤ n)} ⊆ {i| yi is even (1 ≤ i ≤ n)}.
(ii)’ If a′ = a especially, then {i| xi is even (1 ≤ i ≤ n)} = {i| yi is even (1 ≤ i ≤ n)}.
(iii) x ∈ Un(y) holds.
(iii)’ If a′ = a especially, then x = y.

4 ω-closed sets in Sundaram-Sheik John’s sense and Λs-sets in (Zn, κn) In
the present section, we investigate the concept of ω-closed sets (in Sundaram-Sheik John’s
sense) in (Zn, κn) and we give a characterization of the ω-closedness in the digital n-spaces
(cf. Theorem 4.6). In (Zn, κn), we first give an example of a Λs-set, say B(n), where
n ≥ 2, (cf. Definition 2.3, Example 4.2) which is not ω-closed (in Sundaram-Sheik John’s
sense) (cf. Example 4.2(ii-1)); this example informs us general properties on (Zn, κn) (cf.
Theorem 4.5). In order to explain the example, we prove the following proposition. We use
the notations of Definition 3.11 and (II)(∗20) etc in Section 3, i.e., some notation and well
known properties in (Zn, κn).

Proposition 4.1 Let V be an open set of (Zn, κn).
(i) If n ≥ 2, then VFn ∪ (

∪
{Vmix(r)| 1 ≤ r ≤ n − 1}) ⊂ Cl(Vκn).

(ii) If n = 1, then VFn ⊂ Cl(Vκn).

Proof. (i) Let y ∈ VFn∪(
∪
{Vmix(r)| 1 ≤ r ≤ n− 1}) (cf. Definition 3.11(ii), (II)(∗20) etc in

Section 3 above). Since y ∈ V and V is open in (Zn, κn), there exists the smallest open set
Un(y) (cf. Definition 3.7) containing y such that
(∗1) Un(y) ⊂ V (cf. Theorem 3.9(iii)) and so (Un(y))κn ⊂ Vκn (cf. Definition 3.11(ii)(ii-1),
(II)(∗20)(vi) above).
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Case 1. y ∈ VFn , i.e., y = (2s1, 2s2, ..., 2sn) and y ∈ V , where si ∈ Z (1 ≤ i ≤ n)
(cf. Definition 3.11(ii)(ii-2)): since Un(y) =

∏n
i=1{2si − 1, 2si, 2si + 1} for this point y ,

we have
∏n

i=1{2si − 1, 2si, 2si + 1} ⊂ V (cf. Definition 3.7, Theorem 3.9(iii) and (I)(∗4)
in Section 3). We pick a point p(y) := (2s1 + 1, 2s2 + 1, ..., 2sn + 1) ∈ (Un(y))κn and so
p(y) ∈ Vκn (cf. Proposition 3.5(iii)(b)). Then, since Cl({p(y)}) =

∏n
i=1{2si, 2si +1, 2si +2}

(cf. Proposition 3.5(i)(a)), we have y = (2s1, 2s2, ..., 2sn) ∈ Cl({p(y)}) ⊂ Cl(Vκn). It is
proved that VFn ⊂ Cl(Vκn). We note that the above proof is done for the case where n ≥ 1
(cf. (I)(∗1), (∗4), (∗11)(v) in Section3).

Case 2. y ∈ Vmix(r), where 1 ≤ r ≤ n − 1 (n ≥ 2) (cf. Definition 3.11(ii)(ii-3)): for
this point y, we set y = (y1, y2, ..., yn); then by definition, r = #{i | yi is an even integer
(1 ≤ i ≤ n)}. We put Ir := {i | yi is even } = {e(1), e(2), ..., e(r)}
(e(1) < e(2) < ... < e(r)) and Jn−r := {j | yj is odd } = {o(1), o(2), ..., o(n − r)} (o(1) <
o(2) < ... < o(n − r)); then {1, 2, ..., n} = Ir ∪ Jn−r (disjoint union). For the present case,
we claim that y ∈ Cl(Vκn). Indeed, we recall that:
(∗2) Un(y) =

∏n
i=1 U(yi), where U(ye) := {ye − 1, ye, ye + 1} if e ∈ Ir; and U(yo) := {yo}

if o ∈ Jn−r (cf. (I)(∗4) in Section 3, Definition 3.7).
For this point y ∈ Vmix(r) (1 ≤ r ≤ n − 1 and n ≥ 2), we pick a point p(y) ∈ Un(y) such
that p(y) ∈ (Un(y))κn as follows:
(∗3) let p(y) := (p1, p2, ..., pn), where pe := ye − 1 if e ∈ Ir; po := yo if o ∈ Jn−r.
Then by (∗2) and (∗3) above, it is shown that the components of the point p(y) are odd
and so (∗4) p(y) ∈ (Un(y))κn , because the components have the forms of ye − 1 ∈ U(ye)
or yo ∈ U(yo).
Thus, using (∗1), (∗4) above and (II)(∗20)(vi) above, we see that p(y) ∈ Vκn ; and so
(∗5) Cl({p(y)}) ⊂Cl(Vκn).
We note that : Cl({p(y)}) =Cl({(p1, p2, ..., pn)}) =

∏n
i=1Cl({pi}) in (Zn, κn), where Cl({pe})

= {pe−1, pe, pe+1} = {ye−2, ye−1, ye} if e ∈ Ir; and Cl({po}) = {po−1, po, po+1} = {yo−
1, yo, yo+1} if o ∈ Jn−r (cf. Proposition 3.5). Thus, we have y = (y1, y2, ..., yn) ∈Cl({p(y)}).
Moreover, using (∗5) above, we conclude that y ∈Cl(Vκn) for a point y ∈ Vmix(r). Namely,
it is proved that Vmix(r) ⊂Cl(Vκn) for each r with 1 ≤ r ≤ n − 1 (n ≥ 2).

Therefore we have the required inclusion: VFn ∪ (
∪
{Vmix(r)| 1 ≤ r ≤ n − 1}) ⊂Cl(Vκn)

.
(ii) For the case where n = 1, we may consider the case 1 only of the proof of (i) above;

the proof is omitted (cf. (I)(∗1), (∗4), (∗11)(v) in Section3). ¤

Example 4.2 Throughout the present example, let B(n) := (Zn)Fn ∪ {x(1), x(2), ... ,
x(s)} be an infinite subset of (Zn, κn), where n ≥ 1 and s is a positive integer, {x(j)} is
an open singleton of (Zn, κn) for each integer j with 1 ≤ j ≤ s. We have the following
properties on the subset B(n): namely,

(i) B(n) is a Λs-set of (Zn, κn) for each n ≥ 1 (cf. Proof of (i) below and Definition 2.3).
(ii) (ii-1) If n ≥ 2, then B(n) is not an ω-closed set (in Sundaram-Sheik John’s sense)

of (Zn, κn) (cf. Proof of (ii-1) below and Definition 2.1);
(ii-2) For n = 1, B(n) is a closed set of (Z, κ) and so it is an ω-closed set (in Sundaram-

Sheik John’s sense) in (Z, κ) (cf. Proof of (ii-2) below and Definition 2.1).
(iii) Let A be a subset of (Zn, κn) such that B(n) ⊂ A ⊂ Cl(B(n)). Then, A is not

semi-open in (Zn, κn).
For the case where n = 2, the following figure illustrates the subset B = (Z2)F2 ∪

{x(1), x(2)} in (Z2, κ2); each symbol • means a point in (Z2)F2 and two symbols ◦ mean
x(1) = (1, 1) and x(2) = (3, 1) respectively.
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Z
↑

· · · · · · · · ·
· · · • · • · • · • · • · • · • · • · · · ·
· · · · · · · · · · · · ◦ · ◦ · · · · · · ·
· · · • · • · • · • · • · • · • · • · → Z
· · · · · · · · · · · · · · · · · · · · · ·
· · · • · • · • · • · • · • · • · • · · · ·
· · · · · · · · ·

In order to prove (i) above, we need the following property (∗∗):
(∗∗) Suppose n ≥ 1. Let F1(n) := B(n) ∪ E1(n) and F2(n) := B(n) ∪ E2(n), where

E1(n) = {(s1, s2, ..., sn) ∈ Zn | si ≡ 1 mod 4 (1 ≤ i ≤ n)} and E2(n) := {(s1, s2, ..., sn) ∈
Zn| sj ≡ 3 mod 4 (1 ≤ j ≤ n)}. Then, E1(n) ∩ E2(n) = ∅ holds and F1(n) and F2(n) are
semi-open sets including B(n) such that F1(n) ∩ F2(n) = B(n).

Proof of (∗∗). We first recall the following expressions of (Zn)Fn := {(x1, x2, ..., xn)| xi

is even (1 ≤ i ≤ n)} as follows:
(∗1) (Zn)Fn=

∪
{
∏n

i=1{xi}| xi is even (1 ≤ i ≤ n)}=
∪
{
∏n

i=1{si−1, si +1}|(s1, s2, ..., sn) ∈
Zn, si ≡ 1 mod 4 (1 ≤ i ≤ n)}; and
(∗1)′ (Zn)Fn=

∪
{
∏n

i=1{si − 1, si + 1}|(s1, s2, ..., sn) ∈ Zn, si ≡ 3 mod 4 (1 ≤ i ≤ n)}.
We secondly claim that

(∗2) Cl(Ei(n)) ⊃ (Zn)Fn ∪ Ei(n) for each i ∈ {1, 2}.
Indeed, we have Cl(E1(n)) =Cl(

∪
{
∏n

i=1{si}| (s1, s2, ..., sn) ∈ Zn, si ≡ 1 mod 4 (1 ≤ i ≤
n)}) ⊃

∪
{Cl(

∏n
i=1{si})| (s1, s2, ..., sn) ∈ Zn, si ≡ 1 mod 4 (1 ≤ i ≤ n)} =

∪
{
∏n

i=1Cl({si})|
(s1, s2, ..., sn) ∈ Zn, si ≡ 1 mod 4 (1 ≤ i ≤ n)}=

∪
{
∏n

i=1{si−1, si, si +1}| (s1, s2, ..., sn) ∈
Zn, si ≡ 1 mod 4 (1 ≤ i ≤ n)} ⊃

∪
{
∏n

i=1{si − 1, si + 1}| (s1, s2, ..., sn) ∈ Zn, si ≡ 1 mod
4 (1 ≤ i ≤ n)}=(Zn)Fn (cf. (∗1) above, (I)(∗5)(i) in Section 3) and Cl(E1(n)) ⊃ E1(n).
Hence, we have Cl(E1(n)) ⊃ (Zn)Fn ∪E1(n). In the same way, using (∗1)′ in place of (∗1),
we have Cl(E2(n)) ⊃ (Zn)Fn ∪ E2(n). Moreover, we claim that
(∗3) Fi(n) is semi-open in (Zn, κn) for each i ∈ {1, 2}.
Indeed, by using (∗2) and definitions, it is shown that, for each i ∈ {1, 2}, Cl (Int(Fi(n))) ⊃Cl
(Int((B(n))κn∪Ei(n)))= Cl((B(n))κn∪Ei(n)) ⊃ (B(n))κn∪Cl(Ei(n)) ⊃ {x(1), x(2), ..., x(s)
} ∪ ((Zn)Fn ∪ Ei(n)) = B(n) ∪ Ei(n) = Fi(n). Namely, Fi(n) is semi-open in (Zn, κn) for
each i ∈ {1, 2}.

Finally, (∗4) F1(n) ∩ F2(n) = B(n) ∪ (E1(n) ∩ E2(n)) = B(n) hold, because E1(n) ∩
E2(n) = ∅. (◦)

Proof of (i). We first claim that sKer(B(n)) ⊂ B(n). Indeed, we recall (∗∗) above
and so F1(n) and F2(n) are semi-open sets in (Zn, κn)(n ≥ 1) such that B(n) ⊂ Fi(n)
for each i ∈ {1, 2}. Thus, by definitions, it is shown that sKer(B(n)) ⊂ F1(n) ∩ F2(n) (cf.
Definition 2.2(i)); and so sKer(B(n)) ⊂ B(n), because F1(n)∩F2(n) = B(n) (cf. (∗∗) above).
This concludes that sKer(B(n)) = B(n), because B(n) ⊂ sKer(B(n)) holds. Namely, B(n)
is a Λs-set of (Zn, κn), where n ≥ 1.

Proof of (ii)(ii-1). Suppose n ≥ 2. We first show that:
(∗5) (Cl(B(n)))mix(r) 6= ∅, for each integer r with 1 ≤ r ≤ n − 1. Indeed, since
Cl(B(n)) = Cl((Zn)Fn) ∪ (

∪
{(Cl({x(i)}))|1 ≤ i ≤ s}), it is shown that (Cl(B(n)))mix(r) ⊃

(Cl({x(1)}))mix(r) (cf. (II)(∗20) in Section 3). We can put x(1) := (t1, t2, ..., tn), where tj
is odd for each j with 1 ≤ j ≤ n, because x(1) ∈ (Zn)κn (cf. Definition 3.11(i)(i-1)). Then,
we show Cl({x(1)}) =

∏n
j=1 Cl({tj}) =

∏n
j=1{tj − 1, tj , tj + 1} (cf. Proposition 3.5(i)(a))

and so
(Cl({x(1)}))mix(r) 6= ∅ for each integer r with 1 ≤ r ≤ n − 1, because we can take a point
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p := (p1, p2, ..., pn), where pj := tj − 1 is even for each j with 1 ≤ j ≤ r and pj := tj is odd
for each j with r + 1 ≤ j ≤ n; and hence p ∈ (Cl({x(1)}))mix(r) (cf. Definition 3.11(i)(i-3))
and so p ∈ (Cl(B(n)))mix(r) (cf. (II)(∗20) in Section 3). Thus, we prove the property (∗5).

We secondly have the following property: (∗6) Cl(B(n)) 6⊂ F1(n) holds.
Indeed, for a contradiction, we suppose Cl(B(n)) ⊂ F1(n); then (Cl(B(n)))mix(r)

⊂ (F1(n))mix(r) and so (Cl(B(n)))mix(r) = ∅ because of (F1(n))mix(r) = ∅ for each integer
r with 1 ≤ r ≤ n − 1. This contradicts (∗5) above.

For a contradiction, we finally suppose that B(n) is ω-closed in Sundaram-Sheik John’s
sense, i.e., Cl(B(n)) ⊂sKer(B(n)) (cf. Theorem 2.5). Then, using (∗∗) above, we have
sKer(B(n)) ⊂ F1(n) and so Cl(B(n)) ⊂ F1(n); this contradicts (∗6) above. Therefore,
B(n) is not ω-closed (in Sundaram-Sheik John’s sense) in (Zn, κn), where n ≥ 2.

Proof of (ii)(ii-2) Suppose n = 1. First, it is shown that B(n) = B(1) is closed in
Zn, where n = 1. Indeed, we have Z \ B(1) = Zκ \ {x(j)|1 ≤ j ≤ s} and so Z \ B(1) =∪
{{z}|z ∈ Zκ and z 6∈ {x(j)|1 ≤ j ≤ s}}, i.e., Z\B(1) is the union of some open singletons

{z}, and hence Z \ B(1) ∈ κ (cf. Definition 3.1). Thus, the set B(1) is closed and so it is
ω-closed in Sundaram-Sheik John’s sense.

Proof of (iii). For a contradiction, we suppose that A is semi-open in (Zn, κn). Then,
there exists an open set V such that V ⊂ A ⊂ Cl(V ) and so V ⊂ Cl(B(n)). First we claim
that: (∗7) Cl(V ) ⊂Cl(Vκn) holds for each n ≥ 1.
Proof of (∗7). Case (I). n ≥ 2: for this case, we have V = Vκn ∪VFn ∪ (

∪
{Vmix(r)| 1 ≤ r ≤

n−1}) (cf. (II)(∗20)(iv) in Section 3). Since V is open, by Proposition 4.1(i), it is shown that
Cl(V ) = Cl(Vκn)∪Cl(VFn∪(

∪
{Vmix(r)| 1 ≤ r ≤ n−1})) ⊂ Cl(Vκn)∪Cl(Cl(Vκn)) = Cl(Vκn);

and so Cl(V ) ⊂Cl(Vκn).
Case (II). n = 1: for this case, we have V = Vκ ∪ VF (cf. (I)(∗11)(iii) in Section 3). Since
V is open, by Proposition 4.1(ii), it is shown that
Cl(V ) = Cl(Vκ) ∪ Cl(VF ) ⊂ Cl(Vκ) ∪ Cl(Cl(Vκ)) = Cl(Vκ); and so Cl(V ) ⊂Cl(Vκ). (◦)

We proceed the proof of (iii). We put Vκn := {p(k) ∈ V | {p(k)} ∈ κn, k ∈ ν}, where
ν ⊂ Z is an index set (cf. Definition 3.11(i)(i-1)). Since p(k) ∈ Vκn ⊂ V ⊂ Cl(B(n)) and
so p(k) ∈Cl(B(n)), it is shown that {p(k)} ∩ B(n) 6= ∅ and so p(k) ∈ B(n) for each k ∈ ν.
Namely, we have:
(∗8) Vκn ⊂ (B(n))κn (cf. Definition 3.11(i)(i-1),(ii)(ii-1) and (I)(∗11)(v), (II)
(∗20)(vi)). Then, using (∗7) and (∗8) above, we conclude that Cl(V ) ⊂ Cl(Vκn) ⊂ Cl((B(n)
)κn)=Cl({x(1), x(2), ..., x(s)}) =

∪
{Cl({x(j)})|1 ≤ j ≤ s}; and hence Cl(V ) is a finite subset

of (Zn, κn), because Cl({y}) is a finite subset of Z for every point y ∈ Z (cf. (I)(∗5)(i) in
Section 3) and so Cl({x(j)}) is a finite subset of Zn for each j with 1 ≤ j ≤ s (cf. (II)(∗12)(a)
in Section 3). Therefore, we have A is a finite subset of (Zn, κn), because of V ⊂ A ⊂Cl(V );
and so B(n) is also finite, because of B(n) ⊂ A; this contradicts the definition of the set
B(n) (i.e., B(n) is not finite). Therefore, A is not semi-open in (Z, κ).

In order to state Theorem 4.4, we need the following definition on Ir(x) and Jn−r(x), where
x ∈ Zn.

Definition 4.3 (cf. Definition 3.11(i)(i-3),(II)(∗20)(iv) in Section 3; [39, Definiton 2.1(ii)])
Let x := (x1, x2, ..., xn) ∈ (Zn)mix(r), where n ≥ 2 and r is the cardinality of a set {k| xk is
even} with 1 ≤ r ≤ n − 1 (cf. Definition 3.11(i-3),(II)(∗20)(iv) in Section 3; in the present
definition, we note the assumption that 1 ≤ r ≤ n−1 and n ≥ 2; and so (Zn)mix(r) 6= ∅). Let
xe(1), xe(2), ..., xe(r) be all the components of x which are even; and xo(1), xo(2), ..., xo(n−r)

be all the components of x which are odd, where e(k)(1 ≤ k ≤ r) and o(j)(1 ≤ j ≤ n − r)
are positive integers with 1 ≤ e(1) < e(2) < ... < e(r) ≤ n and 1 ≤ o(1) < o(2) < ... <
o(n− r) ≤ n. Then, for this point x = (x1, x2, ..., xn), we define the following subsets Ir(x)
and Jn−r(x) of {1, 2, ..., n} as follows:
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• Ir(x) := {k| xk is even}; and so Ir(x) = {e(1), e(2), ..., e(r)} holds;
• Jn−r(x) := {j| xj is odd}; and so
Jn−r(x) = {o(1), o(2), ..., o(n − r)}, {1, 2, ..., n} = Ir(x) ∪ Jn−r(x) (Ir(x) ∩ Jn−r(x) =
∅), Ir(x) 6= ∅ and Jn−r(x) 6= ∅ hold, where n ≥ 2 and 1 ≤ r ≤ n − 1.

We construct some semi-open sets containing a point of (Zn, κn) where n ≥ 1.

Theorem 4.4 Let x := (x1, x2, ..., xn) ∈ Zn.
(i) Suppose n ≥ 1. If x ∈ (Zn)κn ,i.e., all the components x1, x2, ..., xn of the point x are

odd (cf. Definition 3.11(i)(i-1)), then {x} is a semi-open set containing x in (Zn, κn).
(ii) Suppose n ≥ 1 and x := (x1, x2, ..., xn) ∈ (Zn)Fn , i.e., all the components x1, x2, ..., xn

of the point x are even (cf. Definition 3.11(i)(i-2)). Then, we have the following properties.
(ii-1) We set A(x) := {(x1 + i1, x2 + i2, ..., xn + in) ∈ Zn|ik ∈ {+1,−1}(1 ≤ k ≤ n)} for

the point x = (x1, x2, ..., xn) ∈ (Zn)Fn . Then, #A(x) = 2n holds. And, for each point of
A(x), say p(x, u)(1 ≤ u ≤ 2n), the singleton {p(x, u)} is open in (Zn, κn).

(ii-2) In (Zn, κn), {p(x, u)|1 ≤ u ≤ 2n} = (Un(x))κn holds, where Un(x) is the smallest
open set (cf. Definition 3.7,Theorem 3.9) containing the point x ∈ (Zn)Fn .

(ii-3) The subset {x} ∪ {p(x, u)} is a semi-open set containing the point x ∈ (Zn)Fn for
each u with 1 ≤ u ≤ 2n.

(iii) Suppose n ≥ 2 and x := (x1, x2, ..., xn) ∈ (Zn)mix(r) where 1 ≤ r ≤ n − 1 (cf.
Definition 3.11(i)(i-3),(II)(∗20)(iv) in Section 3). Let Ir(x) = {e(1), e(2),
..., e(r)} and Jn−r(x) = {o(1), o(2), ..., o(n − r)} (cf. Definition 4.3). Then, we have the
following properties.

(iii-1) We set B(x) := {(z1, z2, ..., zn) ∈ Zn| ze(k) ∈ {xe(k) − 1, xe(k) + 1} (1 ≤ k ≤
r), zo(j) = xo(j) (1 ≤ j ≤ n − r)} for the point x = (x1, x2, ..., xn) ∈ (Zn)mix(r). Then,
#B(x) = 2r. And, for each point of B(x), say p(x, u)(1 ≤ u ≤ 2r), the singleton {p(x, u)}
is open in (Zn, κn).

(iii-2) In (Zn, κn), {p(x, u)|1 ≤ u ≤ 2r} = (Un(x))κn holds, where Un(x) is the smallest
open set containing the point x ∈ (Zn)mix(r).

(iii-3) The subset {x} ∪ {p(x, u)} is a semi-open set containing the point x ∈ (Zn)mix(r)

for each u with 1 ≤ u ≤ 2r.

Proof. (i) For the point x ∈ (Zn)κn , the singleton {x} is open in (Zn, κn) (cf. Proposi-
tion 3.5(iii)(b)) ; and so it is semi-open.

(ii) (ii-1) Obviously, the cardinality of A(x) is 2n. The point p(x, u), where 1 ≤ u ≤ 2n,
is expressible as p(x, u) = (x1 + i1, x2 + i2, ..., xn + in) for some integers ik ∈ {+1,−1}(1 ≤
k ≤ n) and so all the components of p(x, u) are odd, because all the components x1, x2, ..., xn

are even. Thus, {p(x, u)} is open in (Zn, κn) (cf. Proposition 3.5(iii)(b)).
(ii-2) For the point x ∈ (Zn)Fn , we set x = (2s1, 2s2, ..., 2sn) for some integers si(1 ≤

i ≤ n). Then, Un(x) =
∏n

i=1 U(2si) =
∏n

i=1{2si − 1, 2si, 2si + 1} is the smallest open
set containing x (cf. Definition 3.7 and (I)(∗4)(i) in Section 3). Since (Un(x))κn = {z ∈
Un(x)|{z} is open in (Zn, κn)} = {(z1, z2, ..., zn) ∈

∏n
i=1{2si − 1, 2si, 2si + 1}|z1, z2, ..., zn

are odd }, we have (Un(x))κn = {(2s1 + i1, 2s2 + i2, ..., 2sn + in) ∈ Zn|ik ∈ {+1,−1}(1 ≤
k ≤ n)} = A(x); and so we have (Un(x))κn = {p(x, u)|1 ≤ u ≤ 2n} (cf. Definition 3.11(i)(i-
1),(ii)(ii-1) and (ii-1) above).

(ii-3) We first claim that x ∈Cl({p(x, u)}) for each u with 1 ≤ u ≤ 2n. Indeed, we have
Cl({p(x, u)}) =

∏n
k=1 Cl({xk +ik}) =

∏n
k=1{xk +ik−1, xk +ik, xk +ik +1} (cf. (II)(∗12)(a)

in Section 3, Proposition 3.5(i)(a)); and so x = (x1, x2, ..., xn) ∈
∏n

k=1 Cl({xk + ik}) =
Cl({p(x, u)}). Thus, we show that {x}∪{p(x, u)} ⊂Cl({p(x, u)}) =Cl(Int({p(x, u)})) ⊂Cl(Int
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({x}∪{p(x, u)})) (cf. (ii-1) above), i.e., {x}∪{p(x, u)} ⊂ Cl(Int({x}∪{p(x, u)})). Namely,
{x} ∪ {p(x, u)} is semi-open in (Zn, κn) for each u with 1 ≤ u ≤ 2n.

(iii) (iii-1) By the definition of B(x), it is obviously shown that #B(x) = 2r. A point
p(x, u) of B(x) is expressible as p(x, u) = (z(u)1, z(u)2, ..., z(u)n), where z(u)e(k) ∈ {xe(k) −
1, xe(k) + 1} (1 ≤ k ≤ r) and z(u)o(j) = xo(j) (1 ≤ j ≤ n − r). We recall that the r compo-
nents xe(1), xe(2), ..., xe(r) are all even and the n−r components xo(1), xo(2), ..., xo(n−r) are all
odd, because we assume that x = (x1, x2, ..., xn) ∈ (Zn)mix(r) where 1 ≤ r ≤ n − 1(n ≥ 2)
and Ir(x) := {k| xk is even}={e(1), e(2), ..., e(r)} (e(1) < e(2) < ... < e(r)); and
Jn−r(x) := {j|xj is odd }= {o(1), o(2), ..., o(n−r)} (o(1) < o(2) < ... < o(n−r)) (cf. Defini-
tion 3.11(i)(i-3),(II)(∗20)(iv) in Section 3 and Definition 4.3 above). Then, since the integers
xe(k) − 1, xe(k) + 1 and xo(j) are odd, all the components z(u)1, z(u)2, ..., z(u)n are odd for
each u with 1 ≤ u ≤ 2r. We have that the singleton {p(x, u)} = {(z(u)1, z(u)2, ..., z(u)n)}
is open in (Zn, κn) (cf. Proposition 3.5(iii)(b)).

(iii-2) We recall that, for this point x ∈ (Zn)mix(r), Un(x) =
∏n

i=1 U(xi), where
U(xe(k)) = {xe(k) −1, xe(k), xe(k) +1}(1 ≤ k ≤ r) and U(xo(j)) = {xo(j)}(1 ≤ j ≤ n− r) (cf.
Definition 4.3,Definition 3.7,(I)(∗4)(i)(ii) in Section 3). Thus, we have that (z1, z2, ..., zn) ∈
(Un(x))κn if and only if ze(k) ∈ {xe(k) − 1, xe(k) + 1} and zo(j) = xo(j) for integers k, j with
1 ≤ k ≤ r and 1 ≤ j ≤ n − r (cf. Proposition 3.5(iii)(b), Definition 4.3). Namely, we have
(Un(x))κn = B(x) for the point x ∈ (Zn)mix(r) and so (Un(x))κn = {p(x, u)|1 ≤ u ≤ 2r}
(cf. (iii-1) above).

(iii-3) We first claim that (∗) {x} ∪ {p(x, u)} ⊂Cl({p(x, u)}) holds in (Zn, κn) for each
u with 1 ≤ u ≤ 2r. Indeed, for the point p(x, u), we set p(x, u) := (z(u)1, z(u)2, ..., z(u)n)
(cf. (iii-1) above). Then, for each positive integers k, j with 1 ≤ k ≤ r and 1 ≤ j ≤ n − r,
it is shown that: in (Z, κ),
if z(u)e(k) = xe(k) − 1, then Cl({z(u)e(k)}) = {xe(k) − 2, xe(k) − 1, xe(k)} holds;
if z(u)e(k) = xe(k) + 1, then Cl({z(u)e(k)}) = {xe(k), xe(k) + 1, xe(k) + 2} holds;
if z(u)o(j) = xo(j), then Cl({z(u)o(j)}) = {xo(j) − 1, xo(j), xo(j) + 1} holds, (cf. (I)(∗5)(i) in
Section 3). Thus, we show that xe(k) ∈Cl({z(u)e(k)}) and xo(j) ∈Cl({z(u)o(j)}) (1 ≤ k ≤ r
and 1 ≤ j ≤ n− r); and so {x} ⊂

∏n
i=1Cl({z(u)i}) holds in (Zn, κn). Since Cl({p(x, u)}) =∏n

i=1 Cl({z(u)i}) in (Zn, κn) (cf. (II)(∗12) in Section 3), we show that {x} ⊂Cl({p(x, u)})
and {x} ∪ {p(x, u)} ⊂
Cl({p(x, u)}) hold in (Zn, κn).

We finally finish the proof of (iii-3): there exists an open set {p(x, u)} such that
{p(x, u)} ⊂ {x} ∪ {p(x, u)} ⊂Cl({p(x, u)}), i.e., {x} ∪ {p(x, u)} is a semi-open in (Zn, κn)
for each u with 1 ≤ u ≤ 2r. ¤

Theorem 4.5 For the digital n-space (Zn, κn) where n ≥ 1, we have the following proper-
ties.

(i) For any point x of (Zn, κn), sKer({x}) = {x}.
(ii) For any subset E of (Zn, κn), sKer(E) = E.

Proof. (i) We first note that: for the case where n = 1,
· Zn = (Zn)κn ∪ (Zn)Fn (disjoint union) holds, where n = 1 (cf. (I)(∗11)(iii) in Section 3);
for the case where n ≥ 2,
· Zn = (Zn)κn ∪ (Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n− 1}) (disjoint union) and (Zn)mix(r) 6=

∅(1 ≤ r ≤ n − 1) hold, where n ≥ 2 (cf. Definition 3.11, (II)(∗20)(iv) in Section 3).
Let x ∈ Zn. It is enough to consider the following three cases for the point x ∈ Zn.

Case 1. x ∈ (Zn)κn (cf. Definition 3.11(i)(i-1)): since {x} is open in (Zn, κn), it is semi-
open. Then, it is obvious that sKer({x}) = {x} in (Zn, κn) (cf. Definition 2.2(i)). We note
this result is true for the case where n ≥ 1.
Case 2. x ∈ (Zn)Fn (cf. Definition 3.11(i)(i-2)): we put x = (2s1, 2s2, ..., 2sn) where
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si ∈ Z (1 ≤ i ≤ n). Note that, for the point x ∈ (Zn)Fn , Un(x) :=
∏n

i=1{2si−1, 2si, 2si+1}
is the smallest open set containing x (cf. Definition 3.7,(I)(∗4)(i) in Section 3,Theorem 3.9).
Then, by Theorem 4.4(ii), there exist 2n semi-open sets {x} ∪ {p(x, u)}(1 ≤ u ≤ 2n)
containing the point x ∈ (Zn)Fn such that {p(x, u)|1 ≤ u ≤ 2n} = (Un(x))κn ={(2s1 +
i1, 2s2 + i2, ..., 2sn + in)|ik ∈ {+1,−1}(1 ≤ k ≤ n)} and #((Un(x))κn) = 2n. Thus, we have
sKer({x}) ⊂

∩
{{x} ∪ {p(x, u)}| 1 ≤ u ≤ 2n}; moreover,

∩
{{x} ∪ {p(x, u)}| 1 ≤ u ≤ 2n} =

{x}, because
∩
{{p(x, u)}| 1 ≤ u ≤ 2n} = ∅. We conclude that sKer({x}) = {x} holds for

this case. We note the result above is true for the case where n ≥ 1.
Case 3. x ∈ (Zn)mix(r) where 1 ≤ r ≤ n − 1(n ≥ 2) (cf. Definition 3.11(i)(i-3)): for
this point x, we set x = (x1, x2, ..., xn); then by definition, r = #{i| xi is an even integer
(1 ≤ i ≤ n)}. We recall the following subsets Ir(x) and Jn−r(x) as follows (cf. Definition 4.3
above):
Ir(x) := {k| xk is even}={e(1), e(2), ..., e(r)} (e(1) < e(2) < ... < e(r)); and
Jn−r(x) := {j|xj is odd }= {o(1), o(2), ..., o(n − r)} (o(1) < o(2) < ... < o(n − r)); and
{1, 2, ..., n} = Ir(x) ∪ Jn−r(x) (disjoint union), Ir(x) 6= ∅, Jn−r(x) 6= ∅.
For the point x ∈ (Zn)mix(r), U

n(x) =
∏n

i=1 U(xi) is the smallest open set containing x,
where U(xe(k)) = {xe(k)−1, xe(k), xe(k) +1}(1 ≤ k ≤ r) and U(xo(j)) = {xo(j)}(1 ≤ j ≤ n−
r) (cf. Definition 3.7,(I)(∗4) in Section 3,Theorem 3.9). Then, using Theorem 4.4(iii), there
exist the 2r semi-open sets {x} ∪ {p(x, u)}(1 ≤ u ≤ 2r) containing the point x ∈ (Zn)mix(r)

such that {p(x, u)|1 ≤ u ≤ 2r} = (Un(x))κn ={(z1, z2, ..., zn)|ze(k) ∈ {xe(k) + 1, xe(k) −
1}(1 ≤ k ≤ r), zo(j) = xo(j)(1 ≤ j ≤ n− r)} and #((Un(x))κn) = 2r. Thus, it is shown that
sKer({x}) ⊂

∩
{{x} ∪ {p(x, u)}| 1 ≤ u ≤ 2r} = {x} ∪ (

∩
{{p(x, u)}| 1 ≤ u ≤ 2r}) = {x},

because
∩
{{p(x, u)}| 1 ≤ u ≤ 2r} = ∅. Then, we show that sKer({x}) = {x} holds for this

case.
Therefore, for all cases above, we have proved that sKer({x}) = {x} holds in (Zn, κn),

n ≥ 1.
(ii) Since E =

∪
{{x}|x ∈ E}, by Proposition 2.4(i.e., [4, Proposition 3.1]) and (i), it is

shown that sKer(E) =
∪
{sKer({x})|x ∈ E} =

∪
{{x}|x ∈ E} = E. ¤

The following result is a characterization of the ω-closed sets in Sundaram-Sheik John’s
sense of (Zn, κn).

Theorem 4.6 For a subset A of (Zn, κn), where n ≥ 1, A is closed in (Zn, κn) if and only
if A is an ω-closed set in Sundaram-Sheik John’s sense of (Zn, κn).

Proof. By Theorem 2.5, it is obtained that a subset A is an ω-closed in Sundaram-Sheik
John’s sense of (Zn, κn) if and only if Cl(A) ⊂sKer(A). Then, by Theorem 4.5 (ii), it is well
known that A=sKer(A) holds. Thus, A is ω-closed in Sundaram-Sheik John’s sense if and
only if Cl(A) ⊂ A (i.e., A is closed in (Zn, κn)). ¤

Remark 4.7 (i) Every subset of (Zn, κn) is a Λs-set in (Zn, κn). Indeed, let E be a subset
of (Zn, κn). By Theorem 4.5 (ii) and Definition 2.3, it is shown that E=sKer(E) holds, i.e.,
E is a Λs-set of (Zn, κn).

(ii) By (i) and Proposition 2.6, it is obtained that (Zn, κn) is a semi-T1 topological
space. However, we note that, in 2004, S.I. Nada [30, Theorem 4.2, Theorem 4.1] proved
that (Zn, κn) is semi-T2; the proof is very elegantly done, using the semi-T2 separation
property of (Z, κ) and the product topology of κ; and hence their product space (Zn, κn)
is semi-T2; in 2006, present authors [11, Theorem 2.3, Theorem 4.8 (i)] proved that (Z, κ)
and (Z2, κ2) are semi-T2. But, in the end of the present paper (Corollary 4.10 below), we
shall mention an alternative proof of the result ([30, Theorem 4.2]) using Theorem 4.4 and
ideas in [39].
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Example 4.8 In general, ω-closed sets in Sundaram-Sheik John’s sense of a topological
space are placed between closed sets and g-closed sets (cf. Definition 2.1(ii) (i.e.,[35])).
The following example shows that there is a g-closed sets which is not an ω-closed set
in Sundaram-Sheik John’s sense of (Zn, κn) (i.e., closed set in (Zn, κn), cf. Theorem 4.6).
Suppose n ≥ 2. Let A := Zn \ (

∪
{(Zn)mix(r)| 1 ≤ r ≤ n − 1}), i.e., A = (Zn)Fn ∪ (Zn)κn

and A 6= ∅. We consider the following figure which is shown by the symbols • ∈ (Zn)Fn

and ◦ ∈ (Zn)κn in Z2. The figure shows the subset A above for n = 2.
Z
↑

· · · · · · · · ·
· · · • · • · • · • · • · • · • · • · · · ·
· · · · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · · ·
· · · • · • · • · • · • · • · • · • · → Z
· · · · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · · ·
· · · • · • · • · • · • · • · • · • · · · ·
· · · · · · · · ·

Let V be an open set containing A. Then, in below, it is proved that V = Zn; and hence
the set A is g-closed in (Zn, κn) (cf. Definition 2.1(i), i.e., [22, Definition 2.1]).
(Proof of the property: V ⊃ Zn). Let x := (x1, x2, ..., xn) ∈ Zn such that x 6∈ A. For this
point x, we have x ∈ (Zn)mix(r) for some integer r with 1 ≤ r ≤ n − 1. The component
xe(k) is even, where e(k) ∈ Ir(x) (1 ≤ k ≤ r) and xo(j) is odd, where o(j) ∈ Jn−r(x)
(1 ≤ j ≤ n − r) (cf. the notation in Definition 4.3, the proof (Case 3) of Theorem 4.5(i) or
in the proof (Case 2) of Proposition 4.1(i)). We pick a point y := (y1, y2, ..., yn) as follow:
ye(k) := xe(k)(1 ≤ k ≤ r) and yo(j) := xo(j) + 1(1 ≤ j ≤ n − r). Then, y ∈ (Zn)Fn ⊂ A
and x ∈ Un(y). Since y ∈ A ⊂ V and V is open, we have Un(y) ⊂ V (cf. Definition 3.7,
(I)(∗4)(i)(ii) in Section 3,Theorem 3.9(iii)); and so x ∈ V . (◦)
Thus, we have Cl(A) ⊂ Zn = V for an open set V such that A ⊂ V ,i.e., A is g-closed.
On the other hand, it is shown that Cl(A) = Zn and so A is not closed in (Zn, κn) (cf.
Theorem 4.6).

We mention an alternative proof of the result [30, Theorem 4.2] (cf. Remark 4.7(ii)
above). For (Zn, κn) (n ≥ 2), we can construct directly two disjoint semi-open sets sep-
arating two given distinct points (cf. Corollary 4.10). We need the following property
Theorem 4.9 on the smallest open sets and Theorem 4.4.

Theorem 4.9 Let x, x′ ∈ Zn, where 1 ≤ n. If x 6= x′ in (Zn, κn), then (Un(x))κn 6=
(Un(x′))κn holds.

Proof. We first recall that Zn = (Zn)κn ∪ (Zn)Fn ∪ (
∪
{(Zn)mix(r)|1 ≤ r ≤ n− 1}) (disjoint

union) holds and (Zn)mix(r) 6= ∅(1 ≤ r ≤ n − 1) if n ≥ 2 (cf. (II)(∗20)(iv) in Section 3).
Since {x, x′} ⊂ Zn, we should check the cases below, Case i (1 ≤ i≤ 3), in order to prove
(Un(x))κn 6= (Un(x′))κn . We secondly suppose, for a contradiction, that
(∗1) (Un(x))κn = (Un(x′))κn holds.

Case 1. x ∈ (Zn)κn and x′ ∈ (Zn)κn (cf. Definition 3.11(i)(i-1)): for these points x and
x′, we have that {x} and {x′} are open singletons and Un(x) = {x} and Un(x′) = {x′}
(cf. Definition 3.7, (I)(∗4)(ii) in Section 3); and so, by (∗1) above, {x} = (Un(x))κn =
(Un(x′))κn = {x′}. This contradicts the first setting of the given points x and x′ (i.e.,
x′ 6= x).

Case 2. x ∈ (Zn)κn and x′ ∈ (Zn)Fn ∪ (
∪
{(Zn)mix(r′)|1 ≤ r′ ≤ n − 1}) (cf. Defini-

tion 3.11(i)): for this case, {x} = Un(x) holds (cf. Definition 3.7(I)(∗4)(ii) in Section 3); and
by Theorem 4.4(ii)(iii), it is obtained that #(Un(x′))κn = 2R′

, where R′ := n if x′ ∈ (Zn)Fn
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and R′ := r′ if x′ ∈ (Zn)mix(r′)(1 ≤ r′ ≤ n − 1). And so, by (∗1), we have that 2R′
= 1

holds, i.e., 2n = 1 or 2r′
= 1. These contradict the first setting of the given integers n with

n ≥ 1 and r′ with 1 ≤ r′ ≤ n − 1.
Case 3. {x, x′} ⊂ (Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n− 1}) (cf. Definition 3.11(i)(i-2)(i-

3)):
By Theorem 4.4(ii) and (iii) for the point x, there exist the open singletons {p(x, u)}(1 ≤

u ≤ R) such that (Un(x))κn = {p(x, u)|1 ≤ u ≤ R} holds, where R := n if x ∈ (Zn)Fn

and R := r if x ∈ (Zn)mix(r)(1 ≤ r ≤ n − 1, n ≥ 2). Moreover, for the point x′, there exist
the open singletons {p(x′, u′)}(1 ≤ u′ ≤ R′) such that (Un(x′))κn = {p(x′, u′)|1 ≤ u′ ≤ R′}
holds, where R′ := n if x′ ∈ (Zn)Fn and R′ := r′ if x′ ∈ (Zn)mix(r′)(1 ≤ r′ ≤ n − 1 and
n ≥ 2). We may assume that R′ ≤ R. Then, {p(x′, u′)|1 ≤ u′ ≤ 2R′} = (Un(x′))κn=
(Un(x))κn ∩ (Un(x′))κn = (Un(x) ∩ Un(x′))κn ⊂ Un(x) ∩ Un(x′). Namely, Un(x) ∩ Un(x′)
contains exactly the 2R′

open singletons {p(x′, u′)} (1 ≤ u′ ≤ 2R′
). This shows that

the assumptions of Theorem 3.12 (i.e., [39, Lemma 2.3]) are satisfied. And, using (∗1)
above, we have 2R′

= #((Un(x′))κn) = #((Un(x))κn) = 2R and so R′ = R. Then,
under the assumption (∗1) above, we do not have the case where that (R′, R) = (r′, n)
or (n, r), because r, r′ ∈ {1, 2, ..., n − 1} hold. Namely, under (∗1), the following case
does not occurs : x ∈ (Zn)Fn and x′ ∈ (Zn)mix(r′)(1 ≤ r′ ≤ n − 1) (or x′ ∈ (Zn)Fn

and x ∈ (Zn)mix(r)(1 ≤ r ≤ n − 1)). For other all cases where (R′, R) = (n, n) (i.e.,
{x, x′} ⊂ (Zn)Fn) or (R′, R) = (r′, r) (i.e., x ∈ (Zn)mix(r) and x′ ∈ (Zn)mix(r′)) with
r, r′ ∈ {1, 2, ..., n− 1}, using Theorem 3.12(iii)’ (i.e.,[39, Lemma 2.3 (iii)’]), we have x′ = x;
this contradicts the first setting of the given points x and x′ (i.e., x′ 6= x).

Therefore, we show the required property that (∗2) (Un(x))κn 6= (Un(x′))κn holds if
x 6= x′ in (Zn, κn). ¤

Corollary 4.10 (Namda [30, Theorem 4.2] for any n ≥ 1; [11] for n = 1, 2) The digital
n-space (Zn, κn) is a semi-T2-space.

Proof. Suppose n ≥ 2 in the present proof; and so we have (Zn)mix(r) 6= ∅ for each integer r
with 1 ≤ r ≤ n− 1 (cf. Definition 3.11(i)(i-3)). We use Theorem 4.4 on the construction of
semi-open sets in (Zn, κn) and Theorem 4.9; and we prove that (Zn, κn) is semi-T2, where
n ≥ 2, as follows.

Let x and x′ be any distinct points of (Zn, κn). We set x = (x1, x2, ..., xn) and x′ =
(x′

1, x
′
2, ..., x

′
n), where xi ∈ Z and x′

i ∈ Z(1 ≤ i ≤ n). Since {x, x′} ⊂ Zn = (Zn)κn ∪
(Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n− 1}) (disjoint union) (cf. (II)(∗20)(iv) in Section 3), we

consider the required proof for the following cases.
For the points x and x′, we first use Theorem 4.9; we have that:

(∗2) (Un(x))κn 6= (Un(x′))κn holds, where Un(y) is the smallest open set containing each
point y ∈ {x, x′}. Namely, we have that:
• (∗a) there exists a point z ∈ (Un(x))κn and z 6∈ (Un(x′))κn ; or,
• (∗b) there exists a point z′ ∈ (Un(x′))κn and z′ 6∈ (Un(x))κn .

Case 1. x ∈ (Zn)κn and x′ ∈ (Zn)κn : it is obviouse that {x} and {x′} are the required
disjoint semi-open sets, because every open set is semi-open.

Case 2. {x, x′} ⊂ (Zn)Fn ∪ (
∪
{(Zn)mix(r)|1 ≤ r ≤ n − 1}):

• For Case (∗a) above, by Theorem 4.4(ii) and (iii) for the point x, it is shown that
z = p(x, u0) holds for some point p(x, u0) ∈ (Un(x))κn(1 ≤ u0 ≤ 2R), where R := n if
x ∈ (Zn)Fn and R := r if x ∈ (Zn)mix(r), because (Un(x))κn = {p(x, u)|1 ≤ u ≤ 2R} holds.
Moreover, we have that {x}∪{z} is a semi-open set containing the point x (cf. Theorem 4.4
(ii-3) and (iii-3)). Using Theorem 4.4 (ii) and (iii) for the point x′, we can take any semi-
open sets {x′} ∪ {p(x′, u′)} containing x′, where {p(x′, u′)|1 ≤ u′ ≤ 2R′} = (Un(x′))κn and
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the integer R′ is defined by R′ := n if x′ ∈ (Un(x′))Fn and R′ := r′ if x′ ∈ (Un(x′))mix(r′)

with 1 ≤ r′ ≤ n − 1. Then, we have that ({x} ∪ {z}) ∩ ({x′} ∪ {p(x′, u′)}) =({x} ∩ {x′}) ∪
({x} ∩ {p(x′, u′)}) ∪ ({z} ∩ {x′}) ∪ ({z} ∩ {p(x′, u′)}) ⊂ (V ∩ (Zn)κn) ∪ ((Un(x))κn ∩ V ) ∪
({z} ∩ (Un(x′))κn) = ∅, where V := (Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n − 1}), because of

the decomposition of Zn and the property in (∗a) (i.e., z 6∈ (Un(x′))κn). Thus, for Case
(∗a), {x}∪{z} and {x′}∪{p(x′, u′)} are the required disjoint semi-open sets containing the
points x and x′, respectively.

• For Case (∗b) above, by Theorem 4.4(ii) and (iii) for the point x′, it is shown that
z′ = p(x′, u′

0) for some point p(x′, u′
0) ∈ (Un(x′))κn , because (Un(x′))κn = {p(x′, u′)|1 ≤

u′ ≤ R′} holds, where R′ := n if x′ ∈ (Zn)Fn and R′ := r′ if x′ ∈ (Zn)mix(r′) with
1 ≤ r′ ≤ n − 1. Here we note that z′ 6∈ (Un(x))κn . It is shown that {x′} ∪ {z′} (i.e.,
{x′} ∪ {p(x′, u′

0)}) is the required semi-open set containing x′ (cf. Theorem 4.4(ii-3) and
(iii-3) for the point x′). Using Theorem 4.4 (ii) and (iii) for the point x, we can take any
semi-open sets {x} ∪ {p(x, u)} containing x, where {p(x, u)|1 ≤ u ≤ 2R} = (Un(x))κn

for the integer R with R := n if x ∈ (Un(x))Fn and R := r if x ∈ (Un(x))mix(r) with
1 ≤ r ≤ n − 1. Thus, the above semi-open sets {x} ∪ {p(x, u)} and {x′} ∪ {z′} are the
required disjoint semi-open sets containing the point x and x′, respectively. Indeed, we have
that ({x} ∪ {p(x, u)}) ∩ ({x′} ∪ {z′})= ({x} ∩ {x′}) ∪ ({x} ∩ {z′}) ∪ ({p(x, u)} ∩ {x′}) ∪
({p(x, u)} ∩ {z′}) ⊂ (V ∩ (Zn)κn) ∪ ((Un(x))κn ∩ V ) ∪ ((Un(x))κn ∩ {z′}) = ∅, where
V := (Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n − 1}), because of the setting that x 6= x′, the

decomposition of Zn and z′ 6∈ (Un(x))κn for the Case (∗b).
Case 3. x ∈ (Zn)κn and x′ ∈ (Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n− 1}): for this case, we

have that {x} = Un(x) and {x} ∩ (Un(x′))κn = ∅ and so {x} is the required semi-open set
containing the point x. We can construct the required semi-open set containing x′ using
Theorem 4.4; the construction is done by an argument similar to that in Case 2.

Therefore, by Case 1, Case 2, Case 3 above for distinct points x and x′, there exist
disjoint semi-open sets containing the point x and x′, respectively; and so (Zn, κn) is semi-
T2. ¤

Remark 4.11 (cf. Remark 4.7(ii)) The digital n-space (Zn, κn) is semi-T2, where n ≥ 1
[30]; (Z, κ) and (Z2, κ2) are semi-T2 [11]. The results are confirmed directly by Corol-
lary 4.10 above. Moreover, since the semi-T2 separation axiom implies the semi-T1 sep-
aration axiom, using Proposition 2.6(i), we have an alternative proof of Theorem 4.5(ii)
(cf. Definition 2.3). The above proof of Corollary 4.10 is done constructively; the present
authors believe that we applies the same method to other topological properties on (Zn, κn)
which are not proved by arguments preserving of topological products of (Z, κ) and we have
further applications.
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[34] K. Nôno, R. Devi, M. Devipriya, K. Muthukumaraswamy and H. Maki, On g#α-closed sets
and the digital plane, Bull. Fukuoka Univ. Ed. Part III, 53(2004), 15-24.

[35] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological
spaces, Ph. D. Thesis, Bharathiar University, Coimbatore, India, 2000.

[36] P. Sundaram and M. Sheik John, Weakly closed sets and weakly continuous maps in topological
spaces, Proc. 82nd Indian Science Congress Calcutta, 49(1995).

[37] P. Sundaram and M. Sheik John, On ω-closed sets in topology, Acta Cienc. Indica Math.,
26M(4)(2000),389-392.

[38] S. Takigawa, M. Ganster, H. Maki, T. Noiri and M. Fujimoto, The digital n-space is quasi-
submaximal, Questions Answers Gen. Topology, 26(1) (2008), 45-52.

[39] S.Takigawa and H.Maki, Every nonempty open set of the digital n-space is expressible as
the union of finitely many nonempty regular open sets, Sci. Math. Japon., 67(3)(2008), 365-
376;Online e-2007, 601-612.

Communicated by Yasunao Hattori

H. Maki
Wakagi-dai 2-10-13, Fukutsu-shi
Fukuoka-ken 811-3221, Japan

e-mail: makih@pop12.odn.ne.jp

S. Takigawa
Department of Mathematics

Faculty of Culture and Education, Saga University
Saga 840-8502, Japan

M. Fujimoto
Department of Mathematics

Fukuoka University of Education
1-1 Akamabunkyo-machi, Munakata, Fukuoka 811-4192, Japan

P. Sundaram
12 Alagappa Lay Out, Mahalingapuram

Pollachi 642002, India

M. Sheik John
Department of Mathematics

Nallamuthu Gounder Mahalingam College
Pollachi 642001, India



Scientiae Mathematicae Japonicae , 77,No.3 (2014), 339–355 339

GLOBAL EXISTENCE AND EXPONENTIAL ATTRACTOR OF
SOLUTIONS OF FIX-CAGINALP EQUATION
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Abstract. We consider the Fix-Caginalp equation with the Neumann boundary
condition in Rn with n = 1, 2, 3. We obtain a global solution by the existence of
the Lyapunov function. After, we construct a dynamical system corresponding to the
equation. By the existence of the Lyapunov function, the ω-limit set is included in
the set of its stationary solution. We treat its dynamical properties such as a global
attractor, absorbing set, exponential attractor and so on. It is important to obtain
the estimate independent of the initial value. Finally, we construct an exponential
attractor.

1 Introduction In this paper, we consider the following Fix-Caginalp equation:
τφt = ε2∆φ + φ − φ3 + 2u x ∈ Ω, t > 0,
ut + l

2φt = κ∆u x ∈ Ω, t > 0,
∂φ
∂ν = ∂u

∂ν = 0 x ∈ ∂Ω, t > 0,
φ(x, 0) = φ0(x) x ∈ Ω,
u(x, 0) = u0(x) x ∈ Ω,

(1)

where τ , l, κ and ε are positive constants, ν is the outer unit normal vector and Ω is
a bounded domain in Rn with smooth boundary ∂Ω for n = 1, 2, 3. An equation (1) was
proposed by Caginalp in [4] to describe the phase transitions with finite thickness interfaces.
The unknown functions φ and u represent the phase function and the reduced temperature,
respectively. The positive constants τ , l, κ and ε represent the relaxation time, the latent
heat, the thermal diffusivity and a length scale which is a measure of the strength of the
bonding at the microscopic level, respectively. In [12], they consider the historic background
of the model and the derivation of a more general thermodynamically consistent model. At
first in [4], he proved a global existence of a solution under the restriction ε2

τ < κ. After in
[7], [2], [3] and [16], they dropped the restriction and proved the global existence under the
other boundary conditions

φ(x, t) = φ∂Ω(x), u(x, t) = u∂Ω(x),

∂φ

∂ν
(x, t) = 0, u(x, t) = u∂Ω(x)

and
φ(x, t) = φ∂Ω(x),

∂u

∂ν
(x, t) = 0

for x ∈ ∂Ω, t > 0, where φ∂Ω(x) and u∂Ω(x) are given functions on ∂Ω. In [7], they consider
the stationary problem with the Neumann boundary condition, derive the existence and
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sorbing set, exponential attractor.
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non-existence of nontrivial solutions and the multi-existence of trivial solutions according
to the values of constants l, ε and

∫
Ω

udx + l
2

∫
Ω

φdx and deal with their stabilities. If
n = 1, the stationary problem with the Dirichlet boundary condition is considered in [5]
and [9]. They show that there exist exactly 2m + 1 solutions with m being an integer
determined by ε2 and Ω. In [7], they consider the asymptotic behaviour of solution of (1).
For results with initial data in different settings of spaces, see [7], [1] and [3]. Lately in
[13], they consider non-local stationary problem and get some results on multiple existence,
stability and bifurcation of the solution. For a system of reaction-diffusion equations in
a bounded domain Ω ⊂ R2, the existence of a global attractor and exponential attractor
is proved in [11]. Their key fact is that its dynamical system has the squeezing property.
Although the global existence for (φ0, u0) ∈ H1(Ω) × L2(Ω) is known by [7] and [16], we
treat more general space Hγ(Ω) × Hγ(Ω). For the definition of function space and notion
of dynamical system, see Section 2 in this paper or [15], [6], [8], [14], [9]. In [16], he proves
the dynamical properties with the Dirichlet boundary condition instead of the Neumann
boundary condition. Since we can use the Poincaré inequality, the estimates of the Dirichlet
boundary condition case are easier. In particular, since the solution (φ, u) with the Dirichlet
boundary condition has the global dissipative property, we don’t have to consider a space Hk

mentioned in Theorem 4 in this paper in order to construct a global attractor. The purpose
of this paper is to establish the existence of a global solution, the properties of ω-limit
set and the exponential attractor in the dynamical system introduced by the Fix-Caginalp
equation. The first theorem is concerned with the global existence.

Theorem 1 Let Ω ⊂ Rn(n = 1, 2, 3) be a bounded domain with smooth boundary ∂Ω. We
suppose that φ0, u0 ∈ Hγ(Ω) for γ < γ < γ, where

(
n, γ, γ

)
=

(
1, 0, 1

4

)
,
(
2, 0, 1

2

)
,
(
3, 1

2 , 2
3

)
.

Then, the problem (1) admits a unique global solution (φ, u) such that

φ, u ∈ C
(
(0,∞);H1(Ω)

)
∩ C ([0,∞);Hγ(Ω)) ∩ C1

(
(0,∞);H−1(Ω)

)
.

The associated nonlinear semigroup T (t)

T (t) (φ0(·), u0(·)) = (φ(·, t), u(·, t))

defines a dynamical system in Hγ(Ω) × Hγ(Ω).

To obtain the a priori estimate for H1 norm, we use the Lyapunov function

L (φ, u) (t) =
1
2

∫
Ω

u2dx +
lε2

8

∫
Ω

|∇φ|2 dx +
l

4

∫
Ω

W (φ)dx +
κδ

2

∫
Ω

|∇u|2 dx

for δ < 4τ
l , where

W (φ) =
1
4

(
φ2 − 1

)2
.

In the second theorem, we obtain the regularity of solution.

Theorem 2 Under the same assumption as Theorem 1,

φ, u ∈ C∞ (
(0, +∞);C∞(Ω)

)
.

For any η > 0, the orbit t ∈ [η, +∞) 7→ (φ(·, t), u(·, t)) is compact in Hγ(Ω) × Hγ(Ω).

Combining the estimates obtained in Theorems 1 and 2 with the existence of the Lya-
punov function, we consider the structure of ω-limit set in the third theorem. At first, by
E we denote the set of stationary solution corresponding to (1). Since φ(t), u(t) ∈ H1(Ω)
for t > 0, we assume that φ0, u0 ∈ H1(Ω). As proved in Theorem 1, it is also easy to show
that the dynamical system is defined on H1(Ω) × H1(Ω).
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Theorem 3 We suppose that φ0, u0 ∈ H1(Ω). Then, ω(φ0, u0) is nonempty, compact,
invariant and connected in H1(Ω) × H1(Ω). And ω(φ0, u0) is a single point and it holds
that ω(φ0, u0) ⊂ E.

We construct an exponential attractor in H1(Ω)×H1(Ω) in the last theorem. However,
the solution (φ, u) of (1) does not have the global dissipative property. Thus, we restrict
the initial function to

Hk =
{
(φ0, u0) ∈ H1(Ω) × H1(Ω) | L(φ0, u0) ≤ k

}
for fixed k > 0 and reduce a dynamical system to its subdynamical system {T (t) : Hk →
Hk}.

Theorem 4 Under the same assumption as Theorem 3, T (t) is dissipative in Hk. The dy-
namical system T (t) has a global attractor A ⊂ Hk. Then, there exists a compact absorbing
and positively invariant set X ⊂ Hk such that its subdynamical system {T (t) : X → X}
admits an exponential attractor E in H1(Ω) × H1(Ω).

This paper is composed of 6 sections. In Section 2, we introduce the notions and theories
of an abstract evolution equation and dynamical system. We also refer to the function
space involved in this paper. In Section 3, we apply the existence theorem in Section 2 and
establish the local solution of (1). In Section 4, we derive the a priori estimates and extend
the local solution globally in time. In Section 5, we consider a nonlinear mapping from
the initial function to the solution of (1) and define the dynamical system. The obtained
estimates in Section 4 lead us to the proof of Theorems 1, 2 and 3. In section 6, we construct
an exponential attractor and prove Theorem 4. Now that we restrict to Hk and have the
Lyapunov function, our result follows at once.

2 Preliminaries We introduce the results and related facts in an abstract evolution
equation. These results are mentioned in mainly [15] and [9], [8], [6]. Let X be a Banach
space with the norm ‖ · ‖. Let A be a densely defined, closed linear operator in X. We
assume that the spectrum of A is contained in an open sectorial domain such that

σ(A) ⊂ Σω ≡ {λ ∈ C | |arg λ| < ω} , ωA < ω <
π

2
(2)

and ∥∥∥(λ − A)−1
∥∥∥ ≤ Mω

|λ|
, λ 6∈ Σω, ωA < ω <

π

2
(3)

for ωA ∈ [0, π
2 ), where Mω > 0 is a constant depending on A and ω. We call A a sectorial

operator of X with angle 0 ≤ ωA < π
2 . We consider the Cauchy problem for a semilinear

abstract evolution equation {
Ut + AU = F (U) t > 0,
U(0) = U0

(4)

in X. Here, F is a nonlinear operator from D(Aη) into X, where 0 < η < 1 and satisfies a
Lipschitz condition of the form

‖F (U) − F (V )‖ ≤ Φ
(∥∥AβU

∥∥ +
∥∥AβV

∥∥)
×{

‖Aη (U − V )‖ + (‖AηU‖ + ‖AηV ‖)
∥∥Aβ (U − V )

∥∥}
(5)

for U, V ∈ D(Aη) with 0 < β ≤ η < 1, where Φ(·) is some increasing continuous function.
We have the following global existence theorem.
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Theorem 5 (Theorem 4.1 in [15]) Let (2), (3) and (5) with 0 < β ≤ η < 1 be satisfied.
Then, for any U0 ∈ D(Aβ), (4) admits a unique local solution U in

U ∈ C ((0, TU0 ];D(A)) ∩ C
(
[0, TU0 ];D(Aβ)

)
∩ C1 ((0, TU0 ];X) ,

where TU0 denotes the maximal existence time depending only on the norm
∥∥AβU0

∥∥. More-
over, it holds that ∥∥AβU

∥∥ + t1−β ‖Ut‖ + t1−β ‖AU‖ ≤ CU0 ,

where CU0 is a positive constant depending only on
∥∥AβU0

∥∥.

Here, we note that D(Aβ) = X for β = 0. We can take β = 0 in the condition (5)
throughout theorems in this section.

Theorem 6 (Corollary 4.1 in [15]) Under the assumption of Theorem 5, we suppose
that any local solution U satisfies the estimate∥∥AβU(t)

∥∥ ≤ CU0 ,

for 0 ≤ t ≤ TU0 with some positive constant CU0 depending only on
∥∥AβU0

∥∥ and independent
of TU0 . Then, (4) admits a unique global solution U for all t > 0.

Let K(R) be a bounded ball in the space D(Aβ)

K(R) =
{
U ∈ D(Aβ) |

∥∥AβU
∥∥ ≤ R

}
for 0 < R < ∞. Then, for all U0 ∈ K(R), there exists a local solution of (4) on some interval
[0, TU0 ]. There exists the time TR > 0 such that [0, TR] ⊂ [0, TU0 ] for all U0 ∈ K(R). We
have the theorem of the continuous dependence.

Theorem 7 (Theorem 4.3 and Corollary 4.2 in [15]) Under the assumption of The-
orem 5, let U and V be the solutions of (4) for the initial functions U0 and V0 in K(R),
respectively. Then, we have

tη ‖Aη (U(t) − V (t))‖ + tβ
∥∥Aβ (U(t) − V (t))

∥∥ + ‖U(t) − V (t)‖ ≤ LR ‖U0 − V0‖

and
tη−β ‖Aη (U(t) − V (t))‖ +

∥∥Aβ (U(t) − V (t))
∥∥ ≤ LR

∥∥Aβ (U0 − V0)
∥∥

for 0 < t ≤ TR, where LR is a positive constant depending only on R.

We assume that there exists an increasing continuous function p(·) > 0 such that any
local solution satisfies ∥∥AβU(t)

∥∥ ≤ p(
∥∥AβU0

∥∥)

for t ∈ [0, TU0 ] and U0 ∈ D(Aβ). Theorem 6 implies that there exists a global solution on
[0,+∞) with the estimate ∥∥AβU(t)

∥∥ ≤ p(
∥∥AβU0

∥∥)(6)

for t ∈ [0,+∞) and U0 ∈ D(Aβ). We define a nonlinear operator T (t) : D(Aβ) → D(Aβ)
by T (t)U0(·) = U(·, t). Let M be a subset of D(Aβ), M being a metric space with the
distance d(U, V ) =

∥∥Aβ (U − V )
∥∥ for U, V ∈ M. A family of nonlinear operators T (t) for

t ≥ 0 from M to itself is said to be a continuous semigroup on M provided that
(SG.1) T (0) is an identity mapping on M,
(SG.2) T (t)T (s) = T (t + s) for t, s ≥ 0,
(SG.3) T (t) is continuous from [0, +∞) ×M to M.
To show the property (SG.3), we combine Theorem 7 with the estimate (6). We apply the
estimate on the larger ball Kp(R) ⊃ KR because ∪0≤t<∞T (t)KR ⊂ Kp(R).
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Theorem 8 (Proposition 6.2 in [15]) For any 0 < R < ∞, it holds that∥∥Aβ (T (t)U0 − T (t)V0)
∥∥ ≤ Ln+1

p(R)

∥∥Aβ (U0 − V0)
∥∥

for t ∈ [nTp(R), (n + 1)Tp(R)] with n ∈ N ∪ {0} and U0, V0 ∈ KR, where Ln+1
p(R) > 0 is a

constant depending only on n and p(R).

Henceforth, we write X = D(Aβ). We denote the totality of trajectories starting from
the points in M by the triplet (T (t),M, X) and call it a dynamical system. A set Σ ⊂ M
is said to be positively invariant under T (t) if T (t)Σ ⊂ Σ for all t ≥ 0. A set Σ ⊂ M is said
to be negatively invariant under T (t) if Σ ⊂ T (t)Σ for all t ≥ 0. A set Σ is invariant under
T (t) if it satisfies both conditions. A set A ⊂ M is said to attract a set B ⊂ M under T (t)
if

sup
v∈T (t)B

inf
u∈A

‖v − u‖ → 0

as t → +∞. T (t) is said to be dissipative if there exists a bounded set C ⊂ M such that
attracts every point of M under T (t). A set A ⊂ M of (T (t),M, X) is said to be a global
attractor if A is a maximal compact invariant set and attracts every bounded set B ⊂ M.
A set D ⊂ M is said to be an absorbing set if for every bounded set B ⊂ M, there exists
t0 such that ∪t≥t0T (t)B ⊂ D holds. We take t1 ≥ t0 so that ∪t≥t1T (t)D ⊂ D holds. Let
X = ∪t≥t1T (t)D ⊂ D. E is said to be an exponential attractor of (T (t),X , X), provided
that
(EA.1) A ⊂ E ⊂ X holds, where A is a global attractor,
(EA.2) E is compact in X,
(EA.3) E is positively invariant under T (t),
(EA.4) E has a finite fractal dimension dF (E),
(EA.5) supu∈T (t)X infv∈E ‖u − v‖ ≤ c0e

−c1t, where c0 and c1 are positive constants. Here,
if we denote by Nr(E) the smallest number of r−balls necessary to cover E , we define a
fractal dimension by

dF (E) = lim sup
r→0

log Nr(E)
log 1

r

.

Then, we have

Theorem 9 (Theorem 3.1 in [6]) Let F (U) satisfy the Lipschitz condition

‖F (U) − F (V )‖ ≤ CX

∥∥∥A
1
2 (U − V )

∥∥∥
for U, V ∈ X , where CX > 0 depends only on X . Moreover, we assume that the mapping
S(t, U0) = T (t)U0 satisfies the Lipschitz condition

‖S(s, U0) − S(t, V0)‖ ≤ CX ,T (‖U0 − V0‖ + |t − s|)

for U0, V0 ∈ X and s, t ∈ [0, T ] with any T > 0, where CX ,T depends only on X and T .
Then, the flow {T (t)} admits an exponential attractor E.

Finally, we introduce the function space treated in this paper. For p ∈ N, Hp(Ω) denotes
the usual Sobolev space with the norm

‖w‖Hp =

 ∑
|α|≤p

‖Dαw‖2
2

 1
2
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for w ∈ Hp(Ω), where ‖ · ‖p denotes the standard Lp norm in Ω, α is a multi index
α = (α1, α2, · · · , αn), |α| = α1 + α2 + · · · + αn and

Dα =
∂|α|

∂α1x1∂α2x2 · · · ∂αnxn
.

For 0 ≤ s0 < s < s1 < +∞, Hs(Ω) is the interpolation space between Hs0(Ω) and Hs1(Ω),
denoted [Hs0(Ω),Hs1(Ω)]θ, s = (1 − θ) s0 + θs1 with θ ∈ [0, 1]. Then, the interpolation
inequality

‖ · ‖Hs ≤ C ‖ · ‖1−θ
Hs0 ‖· ‖

θ
Hs1

holds according to Theorem 1.15 in [15]. Moreover, we denote

Hm
N (Ω) =

{
u ∈ Hm(Ω) | ∂u

∂ν
= 0 x ∈ ∂Ω

}
for m > 3

2 . By D(Ω), we denote the space of all infinitely differentiable functions on Ω with
compact supports. Hs

0(Ω) is defined as the closure of the set D(Ω) in the space Hs(Ω).
H−s(Ω) is defined as the dual space of Hs

0(Ω).

3 Local solution We prove the local existence and uniqueness of the solution by the
theories of an abstract evolution equation. We show that the nonlinear term in (1) satisfies
the condition (5).

Proposition 1 (Local existence in Hγ) Suppose that φ0, u0 ∈ Hγ(Ω) for γ < γ < γ.
Then, (1) admits a unique local solution (φ, u) such that

φ, u ∈ C
(
(0, T γ

φ0,u0
]; H1(Ω)

)
∩ C

(
[0, T γ

φ0,u0
]; Hγ(Ω)

)
∩ C1

(
(0, T γ

φ0,u0
]; H−1(Ω)

)
,

where γ and γ are defined in Theorem 1. In this paper, T s
φ0,u0

denotes the maximal existence
time depending only on the norms ‖u0‖Hs and ‖φ0‖Hs of initial functions.

Proof of Proposition 1: (1) can be written into Ut + AU = F (U), 0 < t < ∞,

U(0) = U0 ≡
(

φ0

u0

)
,

where

U =
(

φ
u

)
, A =

(
A1 0
B A2

)
, F =

(
1
τ

{(
ε2 + 1

)
φ − φ3 + 2u

}(
κ − l

τ

)
u + l

2τ

(
φ3 − φ

) )
,

A1 = −ε2

τ
(∆ − 1) , A2 = −κ (∆ − 1) and B =

lε2

2τ
∆.

The two operators A1 and A2 are positive definite self-adjoint operators of H−1(Ω) with
domains D(A1) = D(A2) = H1(Ω). We regard B as a linear and bounded operator from
H1(Ω) to H−1(Ω). If necessary, we put w(x, t) = pu(x, t) for small p > 0. Then, the second
equation in (1) is converted into

wt +
lp

2
φt = κ∆w.
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For sufficiently small p > 0, we can suppose that

Ã =
(

A1 0
pB A2

)
and hence A are strictly positive operators of X ≡ H−1(Ω) × H−1(Ω). Theorems 2.1 and
2.16 in [15] imply that A is a sectorial operator with angle 0 ≤ ωA < π

2 in X. Then, it
holds that

D(Aβ) = Hγ(Ω) × Hγ(Ω)

for 1
2 < β < 1, where γ = 2β − 1 (for details, see Theorems 12.1 and 16.7 in [15]). Under

our setting, we can apply Theorem 5 in Section 2 to (1). In fact, by the next lemma, we
show that the nonlinear term in (1) satisfies the condition (5). We set

(
n, β, β, α

)
=

(
n,

γ + 1
2

,
γ + 1

2
, α

)
=


(
1, 1

2 , 5
8 , 3

4

)
for n = 1,(

2, 1
2 , 3

4 , 1
)

for n = 2,(
3, 3

4 , 5
6 , 1

)
for n = 3.

Lemma 1 Let n = 1, 2, 3. Then, there exist α and β satisfying 0 < β < β < β < α < α ≤ 1
such that ∥∥∥(φ − ψ)3

∥∥∥
H−1

≤ C
∥∥∥Aβ

1 (φ − ψ)
∥∥∥2

H−1
‖Aα

1 (φ − ψ)‖H−1

for φ, ψ ∈ Hα(Ω), where C is a positive constant depending only on α, β and Ω.

Proof of Lemma 1: In the case of n = 1, 2, we note that

‖w‖q ≤ C ‖w‖H1

for w ∈ H1(Ω), where q > 1 and C is a positive constant depending only on q and Ω.
Henceforth, we denote a positive embedding constant depending only on q and Ω by C. We
take 0 < p < 2 and 4 < q with 2

2+p + 2
q = 1. For n = 1, we have

∥∥∥(φ − ψ)3
∥∥∥

H−1
= sup

w∈H1
0 (Ω),‖w‖H1≤1

∣∣∣∣∫
Ω

(φ − ψ)3 wdx

∣∣∣∣
≤ sup

w∈H1
0 (Ω),‖w‖H1≤1

‖w‖q ‖φ − ψ‖2
2+p ‖φ − ψ‖q

≤ C ‖φ − ψ‖2

H
p

4+2p
‖φ − ψ‖

H
1

2+p

≤ C

∥∥∥∥A
4+3p

4(2+p)
1 (φ − ψ)

∥∥∥∥2

H−1

∥∥∥∥A
3+p

2(2+p)
1 (φ − ψ)

∥∥∥∥
H−1

.

Here, 1
2 < 4+3p

4(2+p) < 5
8 < 3+p

2(2+p) < 3
4 . For n = 2, we have∥∥∥(φ − ψ)3

∥∥∥
H−1

≤ C ‖φ − ψ‖2

H
p

2+p
‖φ − ψ‖

H
2

2+p

≤ C

∥∥∥∥A
1+p
2+p

1 (φ − ψ)
∥∥∥∥2

H−1

∥∥∥∥A
4+p

2(2+p)
1 (φ − ψ)

∥∥∥∥
H−1

.

Here, 1
2 < 1+p

2+p < 3
4 < 4+p

2(2+p) < 1. In the case of n = 3, we note that

‖w‖6 ≤ C ‖w‖H1



346 T. MIYASITA

for w ∈ H1(Ω). We take 3
2 < p < 3 and 18

5 < q < 6 with 5
6+p + 1

q = 5
6 . We have∥∥∥(φ − ψ)3

∥∥∥
H−1

≤ sup
w∈H1

0 (Ω),‖w‖H1≤1

‖w‖6 ‖φ − ψ‖2
2
5 (6+p) ‖φ − ψ‖q

≤ C ‖φ − ψ‖2

H
3(1+p)
2(6+p)

‖φ − ψ‖
H

9−p
6+p

≤ C

∥∥∥∥A
5(3+p)
4(6+p)
1 (φ − ψ)

∥∥∥∥2

H−1

∥∥∥∥A
15

2(6+p)
1 (φ − ψ)

∥∥∥∥
H−1

.

Here, 3
4 < 5(3+p)

4(6+p) < 5
6 < 15

2(6+p) < 1. 2

For U =
(

φ
u

)
, V =

(
ψ
v

)
∈ D(Aα) with β < α < α, we have

F (U) − F (V ) =

 1
τ

{(
ε2 + 1 − 3φψ

)
(φ − ψ) − (φ − ψ)3 + 2 (u − v)

}
(
κ − l

τ

)
(u − v) + l

2τ

{
(φ − ψ)3 + (3φψ − 1) (φ − ψ)

} 
and concentrate on the estimetes

‖φ − ψ‖H−1 ,
∥∥∥(φ − ψ)3

∥∥∥
H−1

, ‖φψ (φ − ψ)‖H−1 , ‖u − v‖H−1 .

Now by the estimates as obtained in Lemma 1, we can apply Theorem 5 to our setting. 2

Remark 1 (Local existence in L2) In the case of n = 1, We can take γ = 0 in Propo-
sition 1. Now that it holds that H

1
2+r(Ω) ⊂ C(Ω) for r > 0, we have∥∥∥(φ − ψ)3

∥∥∥
H−1

≤ sup
w∈H1

0 (Ω),‖w‖H1≤1

‖w‖C ‖φ − ψ‖2
2 ‖φ − ψ‖C ≤ C ‖φ − ψ‖2

2 ‖φ − ψ‖
H

1
2 +r ,

where r ∈ (0, 1
2 ) and ‖ · ‖C denotes the norm of the space of continuous functions in Ω.

Hence, for φ0, u0 ∈ L2(Ω), (1) admits a unique local solution (φ, u) such that

φ, u ∈ C
(
(0, T 0

φ0,u0
];H1(Ω)

)
∩ C

(
[0, T 0

φ0,u0
]; L2(Ω)

)
∩ C1

(
(0, T 0

φ0,u0
]; H−1(Ω)

)
.

Proposition 2 (Local existence in H1) Suppose that φ0, u0 ∈ H1(Ω). Then, (1) admits
a unique local solution (φ, u) such that

φ, u ∈ C
(
(0, T 1

φ0,u0
];H2

N (Ω)
)
∩ C

(
[0, T 1

φ0,u0
]; H1(Ω)

)
∩ C1

(
(0, T 1

φ0,u0
]; L2(Ω)

)
.

Proof of Proposition 2: In Theorem 5, we take

X = L2(Ω) × L2(Ω) D(A
1
2 ) = H1(Ω) × H1(Ω) D(A) = H2

N (Ω) × H2
N (Ω) β = η =

1
2
.

We have ∥∥∥(φ − ψ)3
∥∥∥

2
= ‖φ − ψ‖3

6 ≤ C3 ‖φ − ψ‖3
H1

for φ, ψ ∈ H1(Ω). Hence, we can apply Theorem 5 to our setting. 2
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Proposition 3 (Local existence in H2) Suppose that φ0, u0 ∈ H2
N (Ω). Then, (1) ad-

mits a unique local solution (φ, u) such that

φ, u ∈ C
(
(0, T 2

φ0,u0
];H3

N (Ω)
)
∩ C

(
[0, T 2

φ0,u0
];H2

N (Ω)
)
∩ C1

(
(0, T 2

φ0,u0
];H1(Ω)

)
.

Proof of Proposition 3: In Theorem 5, we take

X = H1(Ω)×H1(Ω) D(A
1
2 ) = H2

N (Ω)×H2
N (Ω) D(A) = H3

N (Ω)×H3
N (Ω) β = η =

1
2
.

Since it holds that
‖w‖C ≤ C ‖w‖H2

for w ∈ H2
N (Ω), we have∥∥∥∇ (φ − ψ)3

∥∥∥
2

= 3
∥∥∥(φ − ψ)2 ∇ (φ − ψ)

∥∥∥
2
≤ 3C2 ‖φ − ψ‖2

H2 ‖φ − ψ‖H1 ≤ 3C2 ‖φ − ψ‖3
H2

for φ, ψ ∈ H2
N (Ω), which proves the proposition. 2

Proposition 4 (Local existence in H3) Suppose that φ0, u0 ∈ H3
N (Ω). Then, (1) ad-

mits a unique local solution (φ, u) such that

φ, u ∈ C
(
(0, T 3

φ0,u0
];H4

N (Ω)
)
∩ C

(
[0, T 3

φ0,u0
]; H3

N (Ω)
)
∩ C1

(
(0, T 3

φ0,u0
]; H2

N (Ω)
)
.

Proof of Proposition 4: In Theorem 5, we take

X = H2
N (Ω)×H2

N (Ω) D(A
1
2 ) = H3

N (Ω)×H3
N (Ω) D(A) = H4

N (Ω)×H4
N (Ω) β = η =

1
2
.

The following estimate shows the proposition.∥∥∥∆ (φ − ψ)3
∥∥∥

2
≤ 6

∥∥∥(φ − ψ) |∇ (φ − ψ)|2
∥∥∥

2
+ 3

∥∥∥(φ − ψ)2 ∆ (φ − ψ)
∥∥∥

2

≤ 6C2 ‖φ − ψ‖H3 ‖φ − ψ‖H2 ‖φ − ψ‖H1 + 3C2 ‖φ − ψ‖3
H2

≤ 9C2 ‖φ − ψ‖3
H3

for φ, ψ ∈ H3
N (Ω). 2

4 Global solution We derive the a priori estimates to obtain the global solution. The
tools are the Lyapunov function and energy method.

Lemma 2 For φ0, u0 ∈ H1(Ω) and t ∈ [0, T 1
φ0,u0

],

L (φ, u) (t) =
1
2

∫
Ω

u2dx +
lε2

8

∫
Ω

|∇φ|2 dx +
l

4

∫
Ω

W (φ)dx +
κδ

2

∫
Ω

|∇u|2 dx

is the Lyapunov function for (1), where δ < 4τ
l and W (φ) = 1

4

(
φ2 − 1

)2.
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Proof of Lemma 2: We have only to prove that L (φ, u) (t) is monotone decreasing
with respect to t. Now that we have (φ(t), u(t)) ∈ H1(Ω) × H1(Ω) for t ∈ [0, T 1

φ0,u0
] from

Proposition 2, L (φ, u) (t) < ∞ because of the inclusion H1(Ω) ⊂ L4(Ω). Note that

lτa2 + 2lδab + 4δb2 = l

(√
τa +

δ√
τ

b

)2

+ δ
4τ − lδ

τ
b2 ≥ 0

for a, b ∈ R and δ < 4τ
l . We have

L (φ, u) (t) − L (φ, u) (t′) =
∫ t

t′

d

dt
L (φ, u) (s)ds

=
∫ t

t′

∫
Ω

uutdxds +
lε2

4

∫ t

t′

∫
Ω

∇φ · ∇φtdxds +
l

4

∫ t

t′

∫
Ω

(
φ2 − 1

)
φφtdxds

+κδ

∫ t

t′

∫
Ω

∇u · ∇utdxds

=
∫ t

t′

∫
Ω

u

(
κ∆u − l

2
φt

)
dxds − lε2

4

∫ t

t′

∫
Ω

∆φφtdxds

+
l

4

∫ t

t′

∫
Ω

(
φ2 − 1

)
φφtdxds − δ

∫ t

t′

∫
Ω

ut

(
ut +

l

2
φt

)
dxds

= −κ

∫ t

t′

∫
Ω

|∇u|2 dxds − 1
4

∫ t

t′

∫
Ω

(
lτφ2

t + 2lδφtut + 4δu2
t

)
dxds ≤ 0

for 0 ≤ t′ < t ≤ T 1
φ0,u0

. In particular, we have

κ

∫ t

0

‖∇u‖2
2 ds +

δ (4τ − lδ)
4τ

∫ t

0

‖ut‖2
2 ds ≤ L (φ0, u0) − L (φ, u) (t) ≤ L (φ0, u0) .(7)

On the other hand, since

lτa2 + 2lδab + 4δb2 = δ

(
2b +

l

2
a

)2

+ l
4τ − lδ

4
a2 ≥ 0

for a, b ∈ R and δ < 4τ
l , it also holds that

κ

∫ t

0

‖∇u‖2
2 ds +

l (4τ − lδ)
16

∫ t

0

‖φt‖2
2 ds ≤ L (φ0, u0) − L (φ, u) (t) ≤ L (φ0, u0) .(8)

2

Proposition 5 (Global existence in H1) Suppose that φ0, u0 ∈ H1(Ω). Then, (1) ad-
mits a unique global solution (φ, u) such that

φ, u ∈ C
(
(0,+∞);H2

N (Ω)
)
∩ C

(
[0, +∞);H1(Ω)

)
∩ C1

(
(0, +∞);L2(Ω)

)
.

Proof of Proposition 5: By Proposition 2, there exists a unique local solution (φ, u) in
the same function space. We have only to derive the a priori estimate thanks to Theorem
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6. From Lemma 2, it holds that

1
2
‖u‖2

2 +
lε2

8
‖∇φ‖2

2 +
l

16
‖φ‖2

2 +
l

16

∫
Ω

(
φ2 − 3

2

)2

dx +
κδ

2
‖∇u‖2 − 5l

64
|Ω|

= L (φ, u) (t)
≤ L (φ0, u0)

≤ 1
2
‖u0‖2

2 +
lε2

8
‖φ0‖2

H1 +
l

16
‖φ0‖4

4 +
l

16
|Ω| + κδ

2
‖∇u0‖2

.

The Sobolev embedding theorem implies that the right-hand side is finite, which completes
the proof of Proposition 5. 2

Proposition 6 (Global existence in H2) Suppose that φ0, u0 ∈ H2
N (Ω). Then, (1) ad-

mits a unique global solution (φ, u) such that

φ, u ∈ C
(
(0, +∞);H3

N (Ω)
)
∩ C

(
[0, +∞);H2

N (Ω)
)
∩ C1

(
(0, +∞); H1(Ω)

)
.

Proof of Proposition 6: As mentioned in Proposition 5, we derive the a priori estimates
for H2 norm. In this paper, we denote by CHs > 0 the constant depending only on the
norms ‖u0‖Hs and ‖φ0‖Hs of initial functions, the measure |Ω| and physical constants
τ, l, κ, ε. We have the following two inequalities from (1):

τ

2
d

dt
‖φt‖2

2 + ε2 ‖∇φt‖2
2 + 3

∫
Ω

φ2φ2
t dx =

∫
Ω

φt

(
τφt − ε2∆φ + φ3

)
t
dx

= ‖φt‖2
2 + 2

∫
Ω

utφtdx(9)

and

1
2

d

dt
‖ut‖2

2 + κ ‖∇ut‖2
2 +

l

τ
‖ut‖2

2 −
ε2l

2τ

∫
Ω

∇ut · ∇φtdx

+
l

2τ

∫
Ω

ut

(
φt − 3φ2φt

)
dx

=
∫

Ω

ut

{
utt − κ∆ut +

l

τ
ut +

ε2l

2τ
∆φt +

l

2τ

(
φt − 3φ2φt

)}
dx

=
l

2τ

∫
Ω

ut

(
−τφt + ε2∆φ + φ − φ3 + 2u

)
t
dx = 0.(10)

By integrating (9) over (0, t) with respect to t, we have

τ

2
‖φt‖2

2 + ε2
∫ t

0

‖∇φt‖2
2 ds ≤ τ

2
‖(φ0)t‖2

2 + 2
∫ t

0

‖φt‖2
2 ds +

∫ t

0

‖ut‖2
2 ds,(11)

which implies that φt ∈ L2(Ω) by (7) and (8). Hence by (1), we have

‖∆φ‖2 ≤ CH2 and ‖φt‖2 ≤ CH2 .(12)



350 T. MIYASITA

Next by integrating (10) over (0, t) with respect to t, we have

1
2
‖ut‖2

2 −
1
2
‖(u0)t‖2

2 + κ

∫ t

0

‖∇ut‖2
2 ds +

l

τ

∫ t

0

‖ut‖2
2 ds

−ε2l

2τ

∫ t

0

∫
Ω

∇ut · ∇φtdxds +
l

2τ

∫ t

0

∫
Ω

ut

(
φt − 3φ2φt

)
dxds = 0.(13)

Here, it holds that ∫ t

0

∫
Ω

∇ut · ∇φtdxds =
2
l

∫ t

0

∫
Ω

∇ut · ∇ (κ∆u − ut) dxds

= −κ

l

(
‖∆u‖2

2 − ‖∆u0‖2
2

)
− 2

l

∫ t

0

‖∇ut‖2
2 ds.

From (12), ‖φ‖H2 is bounded, which implies φ ∈ C(Ω) from the Sobolev embedding theorem.
Then, it holds that∣∣∣∣∫ t

0

∫
Ω

ut

(
φt − 3φ2φt

)
dxds

∣∣∣∣ ≤ CH2

∫ t

0

(
‖ut‖2

2 + ‖φt‖2
2

)
ds.

Thus (13) becomes

1
2
‖ut‖2

2 +
ε2κ

2τ
‖∆u‖2

2 +
(

κ +
ε2

τ

)∫ t

0

‖∇ut‖2
2 ds

≤ 1
2
‖(u0)t‖2

2 +
ε2κ

2τ
‖∆u0‖2

2 +
lCH2

2τ

∫ t

0

(
‖ut‖2

2 + ‖φt‖2
2

)
ds.(14)

Finally, we obtain
‖∆u‖2 ≤ CH2 and ‖ut‖2 ≤ CH2(15)

by (7) and (8). After all, (12) and (15) imply the conclusion of proposition. 2

Proposition 7 (Global existence in H3) Suppose that φ0, u0 ∈ H3
N (Ω). Then, (1) ad-

mits a unique global solution (φ, u) such that

φ, u ∈ C
(
(0, +∞);H4

N (Ω)
)
∩ C

(
[0, +∞);H3

N (Ω)
)
∩ C1

(
(0, +∞); H2

N (Ω)
)
.

Proof of Proposition 7: We derive the a priori estimates for H3 norm. We have

τ

2
d

dt

∫
Ω

|∇φt|2 dx =
∫

Ω

∇φt · ∇
(
ε2∆φ + φ − φ3 + 2u

)
t
dx

≤
∫

Ω

(
2 |∇φt|2 + |∇ut|2

)
dx + 3

∫
Ω

∆φtφ
2φtdx

=
∫

Ω

(
2 |∇φt|2 + |∇ut|2

)
dx +

3
ε2

∫
Ω

φ2φt

(
τφt − φ + φ3 − 2u

)
t
dx

≤ 2 ‖∇φt‖2
2 + ‖∇ut‖2

2 + CH2 ‖φtt‖2
2 + CH2 ‖φt‖2

2 + CH2 ‖ut‖2
2
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and

1
2

d

dt

∫
Ω

|∇ut|2 dx =
∫

Ω

∇ut · ∇
(

κ∆u − l

2
φt

)
t

dx

≤ l

2

∫
Ω

∆utφttdx

=
l

2κ

∫
Ω

(
ut +

l

2
φt

)
t

φttdx

≤ l

4κ
‖utt‖2

2 +
l(l + 1)

4κ
‖φtt‖2

2 .

We integrate these inequalities with respect to t and obtain

τ

2

∫
Ω

|∇φt|2 dx ≤ τ

2
‖∇(φ0)t‖2

2 + CH2

∫ t

0

‖φtt‖2
2 ds

+
∫ t

0

(
2 ‖∇φt‖2

2 + ‖∇ut‖2
2 + CH2 ‖φt‖2

2 + CH2 ‖ut‖2
2

)
ds

and
1
2

∫
Ω

|∇ut|2 dx ≤ 1
2
‖∇(u0)t‖2

2 +
l

4κ

∫ t

0

‖utt‖2
2 ds +

l(l + 1)
4κ

∫ t

0

‖φtt‖2
2 ds.

Now we have only to estimate
∫ t

0
‖utt‖2

2 ds and
∫ t

0
‖φtt‖2

2 ds for t > 0 owing to (7), (8), (11)
and (14). It holds that

τ

∫ t

0

∫
Ω

φ2
ttdxds =

∫ t

0

∫
Ω

φtt

(
ε2∆φ + φ − φ3 + 2u

)
t
dxds

≤ ε2

2
‖∇(φ0)t‖2

2 +
1
2
‖φt‖2

2 +
∫ t

0

∫
Ω

√
1
τ

(
3φ2 |φt| + 2 |ut|

)
·
√

τ |φtt| dxds

≤ ε2

2
‖∇(φ0)t‖2

2 +
1
2
‖φt‖2

2 +
9
τ
‖φ‖4

∞

∫ t

0

‖φt‖2
2 ds +

4
τ

∫ t

0

‖ut‖2
2 ds

+
τ

2

∫ t

0

∫
Ω

φ2
ttdxds.

Hence, we have ∫ t

0

‖φtt‖2
2 ds ≤ ε2

τ
‖∇(φ0)t‖2

2 + CH2

from (7), (8) and (12). Next, we have∫ t

0

∫
Ω

u2
ttdxds =

∫ t

0

∫
Ω

utt

(
κ∆u − l

2
φt

)
t

dxds

≤ −κ

2

∫ t

0

d

ds
‖∇ut‖2

2 ds +
∫ t

0

∫
Ω

|utt| ·
l

2
|φtt| dxds

≤ κ

2
‖∇(u0)t‖2

2 +
1
2

∫ t

0

∫
Ω

u2
ttdxds +

l2

8

∫ t

0

∫
Ω

φ2
ttdxds

and ∫ t

0

‖utt‖2
2 ds ≤ κ ‖∇(u0)t‖2

2 +
l2ε2

4τ
‖∇(φ0)t‖2

2 + CH2 ,

which yields the desired estimates. 2
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5 Dynamical system For (φ0, u0) ∈ Hγ(Ω) × Hγ(Ω), we show that (1) has a global
solution

φ, u ∈ C
(
(0,+∞);H1(Ω)

)
∩ C ([0, +∞); Hγ(Ω)) ∩ C1

(
(0, +∞);H−1(Ω)

)
.

By T (t), we denote a nonlinear semigroup (φ0, u0) 7→ (φ(t), u(t)) acting on Hγ(Ω)×Hγ(Ω).

Proof of Theorem 1 By Proposition 1, we have a local solution φ, u in [0, T γ
φ0,u0

] with
the estimate

‖φ(t)‖Hγ + ‖u(t)‖Hγ ≤ CHγ

for t ∈ [0, T γ
φ0,u0

] by Theorem 5. Let any small t1 ∈ (0, T γ
φ0,u0

) be fixed. Then, it holds that
φ(t1), u(t1) ∈ H1(Ω). By Proposition 5, there exists a global solution

φ, u ∈ C
(
(t1,+∞);H2

N (Ω)
)
∩ C

(
[t1, +∞);H1(Ω)

)
∩ C1

(
(t1, +∞);L2(Ω)

)
with the estimate

‖φ(t)‖H1 + ‖u(t)‖H1 ≤ CH1(16)

for t ≥ t1 with initial functions φ0 = φ(t1), u0 = u(t1). Then, we have

‖φ(t)‖Hγ + ‖u(t)‖Hγ ≤ CH1

for t ≥ t1. Again, according to Theorem 5,

t1−β
1 (‖φ(t1)‖H1 + ‖u(t1)‖H1) ≤ CHγ .

Finally, we have
‖φ(t)‖Hγ + ‖u(t)‖Hγ ≤ CHγ

for t ≥ 0. By Theorems 6 and 8, we can extend a time local solution globally in the space

φ, u ∈ C
(
(0, +∞);H1(Ω)

)
∩ C ([0, +∞);Hγ(Ω)) ∩ C1

(
(0,+∞); H−1(Ω)

)
and have a continuous mapping T (t) from [0, +∞) × Hγ(Ω) to Hγ(Ω), which shows that
T (t) defines a dynamical system in Hγ(Ω) × Hγ(Ω). 2

Proof of Theorem 2 For any η > 0, we have φ(η), u(η) ∈ H1(Ω). By the same argument
as proof of Theorem 1, we have a global solution

φ, u ∈ C
(
(η, +∞);H2

N (Ω)
)
∩ C

(
[η, +∞);H1(Ω)

)
∩ C1

(
(η, +∞);L2(Ω)

)
with the estimate (16) for t ≥ η with initial functions φ0 = φ(η), u0 = u(η). Hence, the
compactness of the orbit in Hγ(Ω) × Hγ(Ω) follows. Differentiating (1) with respect to t
successively and making similar energy estimates to the proof of Proposition 7, we have the
uniform boundedness of the orbit ∪t≥ηT (t)(φ0, u0) in Hm

N (Ω)×Hm
N (Ω) for any small η > 0

and m = 4, 5, · · ·. We use the standard bootstrap argument to prove that

(φ, u) ∈ C∞ (
(0,+∞);C∞(Ω)

)
× C∞ (

(0, +∞); C∞(Ω)
)
.

2

Proof of Theorem 3 We have a unique global solution φ, u ∈ H1(Ω) and Lyapunov
function L (φ, u) (t). Therefore, the ω-limit set ω(φ0, u0) of φ0 and u0 is nonempty, compact,
invariant and connected in H1(Ω)×H1(Ω) according to Theorem 4.3.3 in [9]. And it holds
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that ω(φ0, u0) ⊂ E by Theorem 4.3.4 in [9]. For any η > 0, we have φ(η), u(η) ∈ H2
N (Ω)

by Proposition 2. By the estimates in Proposition 7, ∪t≥ηT (t) (φ0, u0) is precompact in
H2

N (Ω) × H2
N (Ω). As mentioned in Proposition 1, A is supposed to be a positive operator

in L2(Ω) × L2(Ω) with domain H2
N (Ω) × H2

N (Ω). The similar computation to Lemma 2
shows that

− d

dt
L (φ, u) (t) ≥ l(4τ − lδ)

32

∫
Ω

φ2
t dx +

δ(4τ − lδ)
8τ

∫
Ω

u2
t dx.

Hence, we can apply Theorem 1.1 in [10] to deduce that ω(φ0, u0) is a single point in E.
By the second equation in (1), (φ, u) satisfies

d

dt

∫
Ω

(
u +

l

2
φ

)
dx = κ

∫
Ω

∆udx = 0.

Hence, we have ∫
Ω

(
u +

l

2
φ

)
dx =

∫
Ω

(
u0 +

l

2
φ0

)
dx = m

for some m ∈ R. The stationary solution Φ = Φ(x) is satisfies{
ε2∆Φ + Φ − Φ3 + 2

|Ω|
(
m − l

2

∫
Ω

Φdx
)

= 0 x ∈ Ω,
∂Φ
∂ν = 0 x ∈ ∂Ω

because the stationary solution satisfies ∆U = 0 in Ω and U = U(x) is constant in Ω. 2

6 Exponential attractor First, we derive the estimate for H3 norm to obtain an ab-
sorbing set in H3. Next, we construct an exponential attractor in H1 × H1.

Proof of Theorem 4: If (φ0, u0) ∈ Hk, then we have

‖φ‖H1 + ‖u‖H1 ≤

√(
k +

5l

64
|Ω|

){
min

(
lε2

8
,

l

16

)− 1
2

+ min
(

1
2
,
κδ

2

)− 1
2
}

(17)

for all t ≥ 0 by Proposition 5. By Theorem 5, Propositions 2 and 3, we have φ( t1
2 ), u( t1

2 ) ∈
H2

N (Ω) and φ(t1), u(t1) ∈ H3
N (Ω) for small t1 > 0 with the estimate(

t1
2

) 1
2

(∥∥∥∥φ

(
t1
2

)∥∥∥∥
H2

+
∥∥∥∥u

(
t1
2

)∥∥∥∥
H2

)
≤ CH1 ≤ Ck

with initial functions φ0 = φ(0), u0 = u(0) by (17) and(
t1
2

) 1
2

(‖φ(t1)‖H3 + ‖u(t1)‖H3) ≤ CH2

with initial functions φ0 = φ
(

t1
2

)
, u0 = u

(
t1
2

)
, where Ck > 0 is a constant depending only

on the fixed k, the measure |Ω| and physical constants τ, l, κ, ε. Hence, we have

‖φ(t)‖H3 + ‖u(t)‖H3 ≤ Ck

for all t > t1 by Proposition 7. For any bounded set B ⊂ Hk, we have

∪t≥t1T (t)B ⊂ B ≡ {(φ, u) ∈ Hk | ‖φ‖H3 + ‖u‖H3 ≤ Ck}
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for some Ck > 0. In particular, T (t)B ⊂ B for all t ≥ t1. This set B shows us the existence
of an absorbing set in Hk, which implies that the dynamical system T (t) is dissipative in Hk.
We apply Theorem 1.1 in [14] to guarantee the existence of global attractor A ⊂ Hk. Let
X = ∪t≥t1T (t)B. Then, X is a compact, invariant and absorbing set in H1(Ω) × H1(Ω).
From now on, we consider the subdynamical system T (t) : X → X . To construct an

exponential attractor, we apply Theorem 9. Let U = T (t)U0 =
(

φ
u

)
∈ X , V = T (t)V0 =(

ψ
v

)
∈ X and s, t ∈ [0, T ] for any T > 0. The first inequality follows at once from

Propositions 2 and 3. Next, we prove the second inequality. We have

‖U(t) − V (s)‖H1 ≤ ‖U(t) − V (t)‖H1 + ‖V (t) − V (s)‖H1

≤ ‖U(t) − V (t)‖H1 +
∫ t

s

∥∥∥∥dV

dt
(p)

∥∥∥∥
H1

dp

≤ ‖U(t) − V (t)‖H1 +
∫ t

s

(‖AV ‖H1 + ‖F (V )‖H1) dp

for s ≤ t. Since it holds the estimate in Theorem 8 and AV,F (V ) ∈ H1(Ω) × H1(Ω) for
V (t) ∈ X ,

‖U(s) − V (t)‖H1 ≤ Ck ‖U0 − V0‖H1 + Ck |t − s| ,

which completes the proof of Theorem 4. 2
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Abstract. We find a representation of the integral of a Gauss-Markov process in the interval
[0, t], in terms of Brownian motion. In particular, such representation is used to analyze the
temporal mean in a finite interval of a Gauss-Markov process. Finally, some example are
explicitly reported.

1 Introduction In this short note, we consider a real continuous Gauss-Markov process X(t)
of the form:

(1.1) X(t) = m(t) + h2(t)B(ρ(t)), t ≥ 0

where:
• B(t) is a standard Brownian motion (BM);
• m(t) = E(X(t)) is continuous for every t ≥ 0;
• the covariance c(s, t) := E[(X(s)−m(s))(X(t)−m(t))] is continuous for every 0 ≤ s < t, with
c(s, t) = h1(s)h2(t);
• ρ(t) = h1(t)/h2(t) is a monotonically increasing function and h1(t)h2(t) > 0; moreover ρ(0) = 0.
Notice that a special case of Gauss-Markov process is the Ornstein-Uhlenbeck (OU) process, and
in fact any Gauss-Markov process can be represented in terms of a OU process (see e.g. [13]).
Our aim is to find a representation of

(1.2) Y (t) :=
∫ t

0

X(s)ds, t > 0,

in terms of Brownian motion. Notice that the integrated process Y (t) is equal to Xt · t, where Xt

is the time average of X(s) in the interval [0, t].
The study of Y (t) has interesting applications in Biology, for instance in the framework of diffusion
models for neural activity; if one identifies X(t) with the neuron voltage at time t, then, Y (t)/t
represents the time average of the neural voltage in the interval [0, t]. Another application can be
found in Queueing Theory, if X(t) represents the length of a queue at time t; then, Y (t) represents
the cumulative waiting time experienced by all the “users” till the time t. As for an example
from Economics, let us suppose that the variable t represents the quantity of a commodity that
producers have available for sale, then Y (t) provides a measure of the total value that consumers
receive from consuming the amount t of the product.
Among the papers concerning integrated Gauss-Markov processes, we cite, for instance [10], in
which the author considered the integrated Brownian motion, which arises naturally in stochastic
models for particle sedimentation in fluids. In [5] observations of integrated diffusion processes
were used to estimate unknown parameters, by considering integrated data from the Ornstein-
Uhlenbeck process and the CIR-model; in papers [7], [8], [9], the authors studied some properties
for the statistical model obtained by the observation of local means of a diffusion process.

The first-passage time (FPT) for Y (t) is an old and interesting problems in Probability; when
X(t) is Brownian motion, the two-dimensional process (X(t), Y (t)) was first studied by Kol-
mogorov ([12]). Useful references for FPT problems of integrated Markov processes are given by
the paper [10] and the references therein; in particular, in [10] the conditional moments of the
FPT of an integrated Brownian motion through a constant barrier were studied. Although the
study of FPT problems for Y (t) is not the purpose of the present article, since we aim mainly
to give an explicit representation of Y (t), we will outline as this representation can be useful to
study the FPT of Y (t) through a continuous boundary (see Example 5 in Section 3).
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2 Main Result We begin with stating and proving the following:

Lemma 2.1 Let f(t) a continuous bounded deterministic function, then

(2.1) I(t) :=
∫ t

0

f(s)B(s)ds

is normally distributed with zero mean and variance γ(t), where γ(t) =
∫ t

0
(R(t) − R(s))2ds and

R(t) =
∫ t

0
f(s)ds. Moreover, if γ(+∞) = +∞, then there exists a BM B̂(t) such that I(t) =

B̂(γ(t)).

Proof. We observe that I(t) is a Gaussian process with zero mean and variance

V (t) := V ar(I(t)) = Cov

(∫ t

0

f(s)B(s)ds,

∫ t

0

f(u)B(u)du

)
= E

(∫ t

0

f(s)B(s)ds ·
∫ t

0

f(u)B(u)du

)
=

∫ t

0

ds

∫ t

0

duE(f(s)B(s)f(u)B(u)).

Since E(f(s)B(s)f(u)B(u)) = f(s)f(u)min(s, u), we get:

V (t) =
∫ ∫

∆1

f(s)f(u) · u dsdu +
∫ ∫

∆2

f(s)f(u) · s dsdu,

where ∆1 = {(s, u) ∈ [0,+∞) × [0, +∞) : 0 ≤ s ≤ t, 0 ≤ u ≤ s} and ∆2 = {(s, u) ∈ [0, +∞) ×
[0,+∞) : 0 ≤ s ≤ t, s ≤ u ≤ t}. Thus, by calculation, we obtain:

V (t) = 2
∫ t

0

f(s)ds

∫ s

0

f(u) · u du.

As easily seen, V (t) and γ(t) have the same derivative, so the equality V (t) = γ(t) follows for any
t ≥ 0, since V (0) = γ(0) = 0.
Moreover, by using Itô’s formula we get:

I(t) =
∫ t

0

f(s)B(s)ds = R(t)B(t) −
∫ t

0

R(s)dB(s) =
∫ t

0

(R(t) − R(s))dB(s).

Notice that I(t) is a continuous martingale and γ(t) is its quadratic variation; therefore, if
γ(+∞) = +∞, by the Dambis, Dubins-Schwarz Theorem (see e.g. [14]) we obtain that I(t)
can be written as B̂(γ(t)), where B̂(t) is BM.

¤

As a corollary of the previous lemma, we obtain our main result:

Proposition 2.2 Let X(t) be a Gauss-Markov process given by (1.1), and suppose that h1, h2

are continuous function and ρ : [0, +∞) −→ [0, +∞) is a C1 function with ρ′(t) > 0 ∀t ≥
0; then Y (t) =

∫ t

0
X(s)ds is normally distributed with mean M(t) =

∫ t

0
m(s)ds and variance

γ1(ρ(t)), where γ1(t) =
∫ t

0
(R1(t) − R1(s))2ds and R1(t) =

∫ t

0
h2(ρ−1(s))/ρ′(ρ−1(s))ds. Moreover,

if γ1(+∞) = +∞, then Y (t) is Gauss-Markov and there exists a BM B̂(t) such that Y (t) =
M(t) + B̂(γ1(ρ(t))).

Proof. We have:

Y (t) =
∫ t

0

X(s)ds

=
∫ t

0

m(s)ds +
∫ t

0

h2(s)B(ρ(s))ds = M(t) +
∫ ρ(t)

0

h2(ρ−1(s))/ρ′(ρ−1(s))B(s)ds,

where we have used a variable change in the integral. Then, the proof follows by using Lemma
2.1 with f(t) = h2(ρ−1(t))/ρ′(ρ−1(t)). ¤

Example 1 (Brownian motion with drift)
Let be X(t) = µt + B(t), then m(t) = µt, h1(t) = t, h2(t) = 1 and ρ(t) = t. Moreover, R1(t) =∫ t

0
ds = t and γ1(t) =

∫ t

0
(t − s)2ds = t3/3. Thus, Y (t) = µt2/2 + B̂(t3/3) (cf. [2]).
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Remark 2.3 If we consider the time average of X(t) in the interval [0, t], i.e. Xt = 1
t

∫ t

0
X(s)ds,

we get by Proposition 2.2 Xt = 1
t Y (t) = 1

t

[
M(t) + B̂(γ1(ρ(t)))

]
, namely Xt is normally dis-

tributed with mean M(t)/t and variance γ1(ρ(t))/t2. In particular, if X(t) is BM, one has γ1(t) =
t3/3, and so Xt ∼ N(0, t/3) (cf. [2]).

3 A Few Examples

Example 2 (Ornstein-Uhlenbeck process)
Let X(t) be the solution of the SDE:

dX(t) = −µ(X(t) − β)dt + σdB(t), X(0) = x,

where µ, σ > 0 and β ∈ (−∞, +∞). The explicit solution is (see e.g. [1]):

X(t) = β + e−µt[x − β + B̃(ρ(t)],

where B̃ is Brownian motion and ρ(t) = σ2

2µ

(
e2µt − 1

)
. So, X(t) is a Gauss-Markov process with

m(t) = β + e−µt(x − β), h1(t) = σ2

2µ (eµt − e−µt) , h2(t) = e−µt and c(s, t) = h1(s)h2(t). By
calculation, we obtain:

M(t) =
∫ t

0

(
β + e−µs(x − β)

)
ds = βt +

(x − β)
µ

(
1 − e−µt

)
,

R1(t) =
∫ t

0

e−µρ−1(s)(ρ−1)′(s)ds =
1 − e−µρ−1(t)

µ
,

ρ−1(s) =
1
2µ

ln
(

1 +
2µ

σ2
s

)
,

γ1(t) =
1
µ2

∫ t

0

(
e−µρ−1(t) − e−µρ−1(s)

)2

ds =
1
µ2

∫ t

0

(
1√

1 + 2µt/σ2
− 1√

1 + 2µs/σ2

)2

ds

=
σ2t

µ2(σ2 + 2µt)
− 2σ2

µ3
√

1 + 2µt/σ2

(√
1 + 2µt/σ2 − 1

)
+

σ2

2µ3
ln

(
1 + 2µt/σ2

)
.

Then, by Proposition 2.2, we get that Y (t) =
∫ t

0
X(s)ds is normally distributed with mean M(t)

and variance γ1(ρ(t)). Moreover, since limt→+∞ γ1(t) = +∞, there exists a BM B̂(t) such that
Y (t) = M(t) + B̂ (γ1(ρ(t))) .

Example 3 (Brownian bridge)
For T > 0 and given a, b, let X(t) be the solution of the SDE:

dX(t) =
b − X(t)

T − t
dt + dB(t), 0 ≤ t ≤ T, X(0) = a.

This is a transformed BM with fixed values at each end of the interval [0, T ], X(0) = a and
X(T ) = b. The explicit solution is (see e.g. [14]):

X(t) = a (1 − t/T ) + bt/T + (T − t)
∫ t

0

1
T − s

dB(s)

= a (1 − t/T ) + bt/T + (T − t)B̃
(

t

T (T − t)

)
, 0 ≤ t ≤ T,

where B̃ is BM. So, X(t) is a Gauss-Markov process with:

m(t) = a (1 − t/T ) + bt/T, c(s, t) = h1(s)h2(t), h1(t) = t/T, h2(t) = T − t, ρ(t) =
t

T (T − t)
.
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By calculation, we obtain:

M(t) = at +
b − a

2T
t2,

R1(t) =
T 3t(2 + Tt)
2(1 + Tt)2

,

ρ−1(s) =
T 2s

1 + Ts
,

γ1(t) =
∫ t

0

(
T 3t(2 + Tt)
2(1 + Tt)2

− T 3s(2 + Ts)
2(1 + Ts)2

)2

ds.

Then, by Proposition 2.2, we get that Y (t) =
∫ t

0
X(s)ds is normally distributed with mean M(t)

and variance γ1(ρ(t)). Although it is straightforward to obtain the explicit form of γ1(t), we omit
to write it (a numerical evaluation can be obtained by a computer). We limit ourselves to mention
that limt→+∞ γ1(t) = +∞, as it can be verified by a boring calculation; so there exists a BM B̂(t)
such that Y (t) = M(t) + B̂ (γ1(ρ(t))) .

Example 4 (Generalized Gauss-Markov process)
Let us consider the diffusion X(t) which is the solution of the SDE:

dX(t) = m′(t)dt + σ(X(t))dB(t), X(0) = m(0)

where m(t) and σ(x) > 0 are regular enough deterministic functions. We suppose that ρ(t) =
〈X〉t =

∫ t

0
σ2(X(s))ds, i.e. the quadratic variation of X(t), is increasing to ρ(+∞) = +∞. By

using the Dambis, Dubins-Schwarz Theorem, it follows that X(t) = m(t) + B(ρ(t)), t ≥ 0, where
ρ(t) is not necessarily deterministic, but it can be a random function. For this reason, we call X(t)
a generalized Gauss-Markov process. Denote by A the “inverse” of the random function ρ, that
is, A(s) = inf{t > 0 : ρ(t) > s}; since ρ(t) admits derivative and ρ′(t) = σ2(X(t)) > 0, also A′(s)
exists and A′(s) = 1/σ2(X(A(s))); we focus on the case when there exist deterministic continuous
functions α(t), β(t) (with α(0) = β(0)) and α1(t), β1(t), such that, for every t ≥ 0 :

α(t), β(t) are increasing, α(t) ≤ ρ(t) ≤ β(t), and α1(t) < A′(t) < β1(t).

Since ρ(t) is not deterministic, we cannot obtain exactly the distribution of
∫ t

0
X(s)ds, however

we are able to find bounds to it. In fact, we have:∫ t

0

X(s)ds =
∫ t

0

m(s)ds +
∫ t

0

B(ρ(s))ds =
∫ t

0

m(s)ds +
∫ ρ(t)

0

B(v)A′(v)dv .

We can use the arguments of Lemma 2.1 with f(v) = A′(v), R1(t) =
∫ t

0
A′(s)ds, and γ1(t) =∫ t

0
(R1(t)−R1(s))2ds; by assumptions we get

∫ t

0
α1(s)ds ≤ R1(t) ≤

∫ t

0
β1(s)ds. Thus, we conclude

that
∫ t

0
X(s)ds is normally distributed with mean M(t) =

∫ t

0
m(s)ds and variance γ1(ρ(t)), which

is bounded between γ1(α(t)) and γ1(β(t)). The closer α(t) to β(t), the better the approximation
above; for instance, if σ(x) = 1 + ε cos2(x), ε > 0, we have ρ(t) =

∫ t

0
(1 + ε cos2(X(s)))2ds and so

α(t) = t, β(t) = (1 + ε)2t, α1(t) = 1/(1 + ε)2, β1(t) = 1. The smaller is ε, the closer γ1(α(t)) to
γ1(β(t)).

Example 5 (The FPT of Y (t) over a continuous boundary)
Let S(t) > 0 a continuous boundary with S(0) > 0, and let us consider the FPT of Y (t) over S

i.e. τS = inf{t > 0 : Y (t) ≥ S(t)}. If γ1(+∞) = +∞, then τS is nothing but the FPT of B̂(γ1(t))
over S(t) = S(t) − M(t), where γ1(t) = γ1(ρ(t)), or equivalently γ1(τS) = inf{u > 0 : B̂(u) >
S(γ−1

1 (u))}. Then, the distribution of τS can be easily obtained for a class of boundaries S(t) for
which the FPT of BM through the transformed boundaries is explicitly known (see e.g. [3], [6]).
For instance, if S(t) = M(t) + a + bγ1(t) for some constants a and b, we get S(γ−1

1 (u)) = a + bu;
thus, the probability density of τS can be found in terms of the inverse Gaussian density, namely
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the density of the first-crossing time of BM B̂(u) through the linear boundary g(u) = a + bu,
which is explicitly given by

(3.1) ψ(u) =
|a|

u3/2
φ

(
a + bu√

u

)
, u > 0

where φ(y) = e−y2/2/
√

2π (see e.g. [11]).
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Abstract. Operator monotonicity of functions
“

1+xp

2

”
1
p

(−1 ≤ p ≤ 1) and
“

p(x−1)
xp−1

”
1

1−p

(−2 ≤ p ≤ 2) on (0,∞) are known. The former is the representing function of the
power arithmetic mean and the latter is that of Stolarsky mean. We give somewhat
elementary proofs of operator monotonicity of them and some other related functions.

1 Introduction. A (bounded linear) operator A acting on a Hilbert space H is said to be
positive, denoted by A ≥ 0, if (Av, v) ≥ 0 for all v ∈ H. The definition of positivity induces
the order A ≥ B for self-adjoint operators A and B on H. A real-valued function f on
(0,∞) is operator monotone, if f(A) ≤ f(B) for operators A and B such that 0 ≤ A ≤ B.
As a typical example, x 7→ xp (0 ≤ p ≤ 1) is an operator monotone function, which is
well-known as Löwner-Heinz (LH) theorem.

Recently, Besenyei and Petz [1] showed the following two theorems by Löwner’s theory:

Theorem 1.1 ([1, Theorem 3]). The function

fp(x) =
(

p(x − 1)
xp − 1

) 1
1−p

, p 6= 0, 1
(

f0(x)
(

= lim
p→0

fp(x)
)

=
x − 1
log x

, f1(x) =
1
e
x

x
x−1

)
is operator monotone if −2 ≤ p ≤ 2.

Theorem 1.2 ([1, Theorem 4]). The function

wp(x) =
(

1 + xp

2

) 1
p

, p 6= 0
(
w0(x) = x

1
2

)
is operator monotone if (and only if) −1 ≤ p ≤ 1.

Theorem 1.2 is already known well ([3], [4], [5], [6], [9]). We shall give a simple proof of
this fact by using the binomial expansion and (LH) theorem.

Now define

gp(x) =
p − 1

p
· xp − 1
xp−1 − 1

, p 6= 0, 1
(

g0(x) =
x log x

x − 1
, g1(x) =

x − 1
log x

)
,

a function related to wp(x) or its extension (as stated afterward in the proof of Theorem
3.2). Using an integral representation of gp(x), Hiai and Kosaki [10] showed:
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Theorem 1.3 ([6, Proposition 4.2]). gp(x) is operator monotone if −1 ≤ p ≤ 2.

In [6] by Fujii and Seo, this fact had been shown essentially in virtue of Bendat-Sherman
theorem. This fact was also shown, in [7] by Furuta, with a very elementary method, (LH)
only used repeatedly, and in [3] by Fujii ([4] by Fujii-Fujii), with the notion of the integral
mean of operator monotone functions.

In this paper, starting from the proof of Theorem 1.2, we give somewhat elementary
proofs of Theorems 1.1, 1.3 and some other related results. As an application of Theorem
1.1, we give a proof of Petz-Hasegawa theorem [14], an elementary proof of which was
recently presented by Furuta [8].

2 Preliminaries By Kubo-Ando theory [12], an operator mean σ is defined as a binary
relation of positive operators, satisfying the following properties in common:

(monotonicity) A ≤ C,B ≤ D =⇒ AσB ≤ CσD,
(transformer inequality) C(AσB)C ≤ (CAC)σ(CBC),
(normality) AσA = A,
(strong operator semi-continuity) An ↓ A,Bn ↓ B =⇒ AnσBn ↓ AσB.

As the basic operator means, we define: For A,B ≥ 0

arithmetic mean : A ∇ B = (A + B)/2,

harmonic mean : A ! B =
{(

A−1 + B−1
)
/2

}−1 and

geometric mean : A#B = A
1
2

(
A− 1

2 BA− 1
2

) 1
2

A
1
2 .

Sometimes for the definition of an operator mean we must assume operators to be
invertible, say, for harmonic or geometric mean. Without any assumption for invertibility
every mean is well-defined as the (strong operator) limits of (A + εI)σ(B + εI) as ε ↓ 0
instead of AσB. (I is the identity operator.) For simplicity of discussions, from now on we
assume that all positive operators are invertible.

To every operator mean σ corresponds a unique operator monotone function, that is, its
representing function fσ which is defined by fσ(x) = 1σx. Conversely, if f is an operator
monotone function with f(1) = 1, then the definition of the operator mean corresponding
to f is given by

AσB = A
1
2 f

(
A− 1

2 BA− 1
2

)
A

1
2

for positive operators A and B.
For an operator mean σ and for two operator monotone functions g and h, we define

gσh by

(gσh)(A) = g(A)σh(A)
(
= g(A)

1
2 fσ

(
g(A)−

1
2 h(A)g(A)−

1
2

)
g(A)

1
2

)
.

Then it is easy to see that gσh is operator monotone. In particular, if f#α(x) = xα for
0 ≤ α ≤ 1, then g#αh

(
= g1−αhα

)
is also operator monotone.

Now to state another useful fact on an operator monotone function, let f be a strictly
positive function on (0,∞). Define f◦(x) := xf(1/x) (transpose), f∗(x) := 1/f(1/x)
(adjoint) and f⊥(x) := x/f(x) (dual). Then the following (i)-(iv) are equivalent [12]([11]):

(i) f is operator monotone,
(ii) f◦ is operator monotone,
(iii) f∗ is operator monotone,
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(iv) f⊥ is operator monotone.
For a (continuous) path σt (t ∈ [0, 1]) of operator means, its integral mean σ̃ is defined

[3] ([4]) for positive operators A and B by

Aσ̃B =
∫ 1

0

AσtBdt.

Correspondingly, for a path ft of operator monotone functions, its integral mean f̃ can be
defined by

f̃(x) =
∫ 1

0

ft(x)dt,

which is an operator monotone function.

3 Main results To prove Theorem 1.2, we use the following fact: For integers m,n, q, r
with 1 ≤ m ≤ n, n = mq + r, 0 ≤ r ≤ m − 1, and any k = 1, 2, . . . , q,

(3.1) (x
m
n )k(1 + x

m
n )

r
m = (1 + x

m
n )

r
m # k

q
x

qm
n (1 + x

m
n )

r
m

holds. Now we show a proof of Theorem 1.2, borrowing Furuta’s method, or applying the
theorem (LH) repeatedly (say, in [7], [8]):

Proof of Theorem 1.2. It suffices to show the proof when p is rational, p 6= 0, 1,−1. First
we assume that 0 < p < 1, so put p = m

n , m, n are integers with (m,n) = 1, 1 ≤ m < n.
Then n = qm + r for some 1 ≤ r ≤ m − 1, and

wp(x) =
(

1 + x
m
n

2

) n
m

=
(

1
2

) n
m (

1 + x
m
n

)q (
1 + x

m
n

) r
m =

(
1
2

) n
m

q∑
k=0

qCkφk(x).

Here φk(x) = x
km
n (1 + x

m
n )

r
m . The notations qCk for k = 0, 1, . . . , q denote the binomial

coefficients, i.e., qCk = q!
k!(q−k)! .

First note that φ0(x) = (1 + x
m
n )

r
m , clearly, is operator monotone (by (LH)). Next for

the last term
φq(x) = x

qm
n (1 + x

m
n )

r
m =

x(
x

m
n

1+x
m
n

) r
m

,

so that the dual φ⊥
q (x) = x

φq(x) of φq(x) is

φ⊥
q (x) =

(
x

m
n

1 + x
m
n

) r
m

=
(

x

x
n−m

n + x

) r
m

=
(
(x

n−m
n + x)⊥

) r
m

.

Hence φ⊥
q (x), and φq(x) are both operator monotone by (iv) and (LH). Now recall (3.1)

stated before. For the general k-th term of the sum, we see:

φk(x) = φ0(x)# k
q
φq(x).

Hence all of φk(x) are operator monotone, so that the proof for 0 < p < 1 is completed.
For −1 < p < 0, notice that

w∗
p(x) =

(
1 + x−p

2

)− 1
p

= w−p(x).
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Hence we see that w∗
p, or, equivalently, wp is operator monotone.

A property of an operator monotone function on (0,∞) is concavity [11] ([12]). If p > 1
then we can see w′′

p (x) > 0, so that wp(x) is not concave, which implies that the function
is not operator monotone. If p < −1 then since w∗

p(x) = w−p(x) is not operator monotone,
so that wp(x) is not operator monotone.

As a slight extension of Theorem 1.2, we can easily see the following:

Lemma 3.1. For ai, bi ≥ 0 (i = 1, 2, . . . , n), −1 ≤ p ≤ 1, p 6= 0,

(3.2)

(
n∑

i=1

(ai + bix)p

) 1
p

is operator monotone.

More generally, if fi (i = 1, 2, . . . , n), are positive operator monotone functions on
(0,∞), −1 ≤ p ≤ 1, p 6= 0, then

(3.3) Sn :=

(
n∑

i=1

fp
i

) 1
p

is operator monotone.

Proof. We may show the general case. Denote by σp the operator mean corresponding to

the power arithmetic mean wp =
(

1+xp

2

) 1
p .

Now we prove (3.3) by the mathematical induction. Let n = 2, then

S2 = (fp
1 + fp

2 )
1
p = 2

1
p (f1σpf2).

Hence S2 is operator monotone. Assume that Sn for n ≥ 2 is operator monotone. We have
to show Sn+1 is also operator monotone. But this is clear since the both Sn and fn+1 are
operator monotone, and

Sn+1 =

(
n+1∑
i=1

fp
i

) 1
p

=
(
Sp

n + fp
n+1

) 1
p = 2

1
p (Snσpfn+1).

Theorem 3.2 (cf. Fujii-Fujii [4], Fujii [3]). For −1 ≤ p ≤ 1, 0 ≤ s ≤ 1, the function

(3.4) up,s(x) =
p

p + s
· xp+s − 1

xp − 1
, p 6= 0,−s

(
u0,s(x) =

xs − 1
log xs

, u−s,s(x) =
log x−s

x−s − 1

)
is operator monotone.

Proof. We can see that for p 6= 0,

up,s(x) =
∫ 1

0

(1 − t + txp)
s
p dt.

By Lemma 3.1, (1 − t + txp)
1
p for t ∈ [0, 1] is operator monotone, so that (1 − t + txp)

s
p is

also operator monotone. Hence as its integral mean, up,s(x) is operator monotone. We can
see operator monotonicity of u0,s, by taking the limits of up,s as p → 0.
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Corollary 3.3 (cf. Furuta [7]). For −1 ≤ p ≤ 1, the function

(3.5) up(x) =
p(x − 1)
xp − 1

, p 6= 0
(

u0(x) =
x − 1
log x

)
is operator monotone.

Proof. If 0 < p ≤ 1, then put s = 1− p in (3.4), and we have (3.5). If −1 ≤ p < 0, then put
p = −q, 0 < q ≤ 1, and take the transpose of up(x):

u◦
p(x) =

(
−q(x − 1)
x−q − 1

)◦

=
q(x − 1)
xq − 1

.

We see that u◦
p(x) is operator monotone from the previous discussion for 0 < p ≤ 1, so that

up(x) is also operator monotone.

Applying Theorem 3.2, we show:

Proof of Theorem 1.3. For 0 ≤ p ≤ 2, replace p by p−1 in (3.4) of Theorem 3.2 and further
put s = 1. Then we obtain gp(x), so that gp(x) is operator monotone. For −1 ≤ p < 0, put
p = −q, then 0 < q ≤ 1, and

gp(x) =
−q − 1
−q

· x−q − 1
x−q−1 − 1

=
q + 1

q
· x(xq − 1)

xq+1 − 1
.

Hence

g⊥p (x) =
x

gp(x)
=

q

q + 1
· xq+1 − 1

xq − 1
.

By the previous paragraph (the proof for 0 ≤ p ≤ 2), we then see that g⊥p (x), and hence
gp(x) are operator monotone.

Using the above lemma, we also show:

Proof of Theorem 1.1. We may consider the case for p 6= 1. We can represent fp(x) as
follows by using the integral:

fp(x) =
[∫ 1

0

(1 − t + tx)p−1dt

] 1
p−1

.

First, we consider the case for 0 ≤ p ≤ 2, or −1 ≤ q := p − 1 ≤ 1, (q 6= 0). Let

I(x) =
∫ 1

0

(1 − t + tx)p−1dt =
∫ 1

0

(1 − t + tx)qdt.

Then as its approximate sum, we have

Σn(x) :=
n∑

i=1

(1 − ti + tix)q∆ti

(
0 = t0 < t1 < . . . < tn−1 < tn = 1, ∆ti = ti − ti−1 <

2
n

)
.
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From (3.2) in Lemma 3.1, {Σn(x)}
1
q is operator monotone. Therefore fp(x) = I(x)

1
q , as

the limit of {Σn(x)}
1
q , is operator monotone.

Second, for −2 ≤ p ≤ 0, we put q = −p, so that 0 ≤ q ≤ 2. (We may assume that

p 6= −1 (q 6= 1).) Then note that
(

q(x−1)
xq−1

) 1
1−q

is operator monotone from the previous
argument. We now consider the following two cases:

(i) The case 0 < q < 1 (−1 < p < 0) : We have

fp(x) = f−q(x) =
(
−q(x − 1)
x−q − 1

) 1
1+q

=
(

q(x − 1)xq

xq − 1

) 1
1+q

=
(

q(x − 1)
xq − 1

) 1
1−q

# 2q
1+q

x
1
2 .

Hence fp(x) is operator monotone.
(ii) The case 1 < q ≤ 2 (−2 ≤ p < −1) : We may show that the adjoint f∗

p (x) =
fp(x−1)−1 of fp(x) is operator monotone. We see:

f∗
p (x) = f∗

−q(x) =
(
−q(x−1 − 1)

xq − 1

)− 1
1+q

=
(

q(x − 1)
(xq − 1)x

)− 1
1+q

=
(

q(x − 1)
xq − 1

) 1
1−q

# 2
1+q

x
1
2 .

Hence f∗
p (x) is operator monotone. The proof is completed.

As an application of Theorem 1.1, we show an alternative proof of the following result
due to Petz and Hasegawa [14] ([8]):

Theorem 3.4. For −1 ≤ p ≤ 2

hp(x) = p(1 − p) · (x − 1)2

(xp − 1)(x1−p − 1)
, p 6= 0, 1

(
h0(x) = h1(x) =

x − 1
log x

)
is operator monotone.

Proof. It is sufficient to consider the case for p 6= 0,±1, 2. First notice that

hp(x) =
(

p(x − 1)
xp − 1

) 1
1−p

#p

(
(1 − p)(x − 1)

x1−p − 1

) 1
p

.

(Here #p also expresses an extended weighted mean if p > 1 or p < 0.) By Theorem

1.1, both
(

p(x−1)
xp−1

) 1
1−p

and
(

(1−p)(x−1)
x1−p−1

) 1
p

are operator monotone. Hence if 0 < p < 1,

then we, at once, see that hp(x) is operator monotone. Next if 1 < p < 2, then putting
p = q + 1 (0 < q < 1), we have

hp(x) = hq+1(x) = (−q)(q + 1) · (x − 1)2

(xq+1 − 1)(x−q − 1)
=

q(q + 1)xq(x − 1)2

(xq+1 − 1)(xq − 1)
.

Now since 0 < q < 1, we see that
(

q(x−1)
xq−1

) 1
1−q

is operator monotone by Theorem 1.1.
Further, since 1 < q + 1 < 2, we see that

(η(x) :=)
(

(q + 1)(x − 1)
xq+1 − 1

) 1
1−(q+1)

=
(

(q + 1)(x − 1)
xq+1 − 1

)− 1
q
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is operator monotone by Theorem 1.1, so that its dual (η⊥(x) =) x ·
(

(q+1)(x−1)
xq+1−1

) 1
q

is
operator monotone. Hence(

q(x − 1)
xq − 1

) 1
1−q

#q x ·
(

(q + 1)(x − 1)
xq+1 − 1

) 1
q

= hp(x)

is operator monotone. Finally, if −1 < p < 0, then putting p = −q (0 < q < 1), we have

hp(x) =
(−q)(q + 1)(x − 1)2

(x−q − 1)(x1+q − 1)
=

q(q + 1)xq(x − 1)2

(xq+1 − 1)(xq − 1)
.

Hence hp(x) has the same expression as in case 1 < p < 2, so that it is operator monotone.

Remark 3.5. For the (extended) weighted geometric mean, the identity

A#α(A#βB) = A#αβB (α, β : real)

holds for positive operators A and B (cf. the interpolationality [3]). Using this formula, we
can get a slight extension of Theorem 3.4: Let 0 ≤ α ≤ 1. Then(

p(x − 1)
xp − 1

) 1
1−p

#αp

(
(1 − p)(x − 1)

x1−p − 1

) 1
p

=
(

p(x − 1)
xp − 1

) 1
1−p

#α

((
p(x − 1)
xp − 1

) 1
1−p

#p

(
(1 − p)(x − 1)

x1−p − 1

) 1
p

)
is operator monotone.

(If 0 < p < 1, then it is clear that(
p(x − 1)
xp − 1

) 1
1−p

#α

(
(1 − p)(x − 1)

x1−p − 1

) 1
p

is also operator monotone.)

Concluding Remark. In this note we began with an elementary proof of operator mono-

tonicity of the power arithmetic mean wp(x) =
(

1+xp

2

) 1
p

(
= π−1( 1+π(x)

2 )
)

for π(x) = xp.

We now conclude with stating operator monotonicity of a very general extension of this
fact [5]: Let f be a positive operator monotone function with f(1) = 1. Then f̂t(x) =
f−1(1 − t + tf(x)) is operator monotone for 0 ≤ t ≤ 1.

Acknowledgment. The authors would like to express their hearty thanks to the referee
for valuable advice.
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ABSTRACT.

For 0 < α ≤ 1, we consider the parabolic operatorL(α) = ∂/∂t + (−∆x)α on the upper
half-space of the Euclidean spaceRn+1. For1 ≤ p < ∞, theα-parabolic Hardy spacehp

α is the
set of all solutionsu of L(α) which have the finitehp

α norm. In this paper, we study fractional
calculus on parabolic Hardy spaces. Also, we investigate properties of maximal functions and
conjugate functions on parabolic Hardy spaces.

1. Introduction

Let n ≥ 1 andH the upper half-space of the(n + 1)-dimensional Euclidean space, that is,
H = {X = (x, t) ∈ Rn+1 : x = (x1, . . . , xn) ∈ Rn, t > 0}. For 0 < α ≤ 1, the parabolic
operatorL(α) is defined by

L(α) := ∂t + (−∆x)α,

where∂t = ∂/∂t, ∂j = ∂/∂xj , and∆x = ∂2
1 + · · · + ∂2

n. Let C(H) be the set of all real-valued
continuous functions onH. A functionu ∈ C(H) is said to beL(α)-harmonic ifL(α)u = 0 in the
sense of distributions (for details, see Section 2). For1 ≤ p < ∞, the Lebesgue spaceLp = Lp(Rn)
is defined to be the Banach space of Lebesgue measurable (real-valued) functionsf onRn with

‖f‖Lp :=
(∫

Rn

|f(x)|pdVn(x)
) 1

p

< ∞,

wheredVn is theLebesgue volume measure onRn. The parabolic Hardy spacehp
α is the set of all

L(α)-harmonic functionsu onH with

‖u‖hp
α

:= sup
t>0

‖u(·, t)‖Lp < ∞.

We remark thathp
1/2 coincide with the harmonic Hardy spaces of [1, Chapter 7].

Our aim of this paper is the study of fractional calculus on parabolic Hardy spaces. In [3], we
study fractional calculus on parabolic Bergman spaces, which are the Banach spaces consisting of
all Lp(H)-solutions of the parabolic operatorL(α). Parabolic Bergman spaces are often studied
by using fractional calculus (see [4], [5], and [7]). In this paper, we study properties of fractional
calculus on parabolic Hardy spaces. Moreover, we investigate properties ofα-parabolic maximal
functions andL(α)-conjugates of parabolic Hardy functions, which are the extension of the non-
tangential maximal functions and the harmonic conjugates, respectively.

To state our results of this paper, we give some notations. For a real numberκ, let Dκ
t =

(−∂t)κ be the fractional differential operator with respect tot, andFCκ the class of functionsϕ on
R+ = (0,∞) such thatDκ

t ϕ is well defined (the explicit definitions ofDκ
t andFCκ are described

2010Mathematics SubjectClassification.Primary 35K05; Secondary 42B30, 42A50.
Key words and phrases.hardy space, maximal function, harmonic conjugate, parabolic operator of fractional order.
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in Section 2). For a multi-indexγ = (γ1, · · · , γn) ∈ Nn
0 , let ∂γ

x := ∂γ1
1 · · · ∂γn

n . Theorem 1 shows
basic properties of fractional calculus on parabolic Hardy spaces.

THEOREM 1. Let 0 < α ≤ 1, 1 ≤ p < ∞, γ ∈ Nn
0 , andν > −(n/2α)(1/p) − |γ|/2α. If

u ∈ hp
α, then the following statements hold:

(1)The derivativeDν
t ∂γ

xu(x, t) is well defined, and there exists a constantC = C(n, α, p, γ, ν) >
0 such that

|Dν
t ∂γ

xu(x, t)| ≤ Ct−(n/2α)(1/p)−|γ|/2α−ν‖u‖hp
α

for all (x, t) ∈ H. Furthermore, ifν > −(n/2α)(1/p), then the derivative∂γ
xDν

t u(x, t) is well
defined, and the equation∂γ

xDν
t u(x, t) = Dν

t ∂γ
xu(x, t) holds.

(2) If β ∈ Nn
0 , then the derivative∂β

xDν
t ∂γ

xu(x, t) is well defined, and

∂β
xDν

t ∂γ
xu(x, t) = Dν

t ∂β+γ
x u(x, t).

(3) If κ satisfiesκ + ν > −(n/2α)(1/p) − |γ|/2α, then the derivativeDκ
t Dν

t ∂γ
xu(x, t) is well

defined, and
Dκ

t Dν
t ∂γ

xu(x, t) = Dκ+ν
t ∂γ

xu(x, t).

(4) The derivativeDν
t ∂γ

xu(x, t) is L(α)-harmonic on H.

We present the definition of anL(α)-conjugate of functions onH, which is introduced in [7].

DEFINITION 1 ([7, Definition 1]). Let0 < α ≤ 1 andu a function onH. We shall say that an
n-tuple of functions(v1, . . . , vn) on H is anL(α)-conjugate ofu if vj(x, · ), u(x, · ) ∈ FC1/2α

and(n + 1)-tuple(v1, . . . , vn, u) satisfies the following equations:

(N.1) ∂jvk = ∂kvj , 1 ≤ j, k ≤ n,

(N.2) ∂ju = −D1/2α
t vj , 1 ≤ j ≤ n,

and

(N.3) D1/2α
t u =

n∑
j=1

∂jvj .

We note that whenα = 1/2, the equations of Definition 1 coincide with the generalized Cauchy-
Riemann equations for harmonic functions in [13]. As we see below,u(x, · ) ∈ FC1/2α for
all u ∈ hp

α. Theorem 2 shows the existence and the norm estimates ofL(α)-conjugates ofhp
α-

functions.

THEOREM 2. Let0 < α ≤ 1 and1 < p < ∞, then the following statements hold:

(1) If u ∈ hp
α, then there exists a uniqueL(α)-conjugate(v1, . . . , vn) of u such thatvj ∈ hp

α.

(2) If an n-tuple of functions(v1, . . . , vn) with vj ∈ hp
α satisfies Equation (N.1), then there

exists a unique functionu ∈ hp
α such that(v1, . . . , vn) is theL(α)-conjugate ofu.

(3) There exists a constantC > 0 independent ofu ∈ hp
α such that

C−1‖u‖hp
α
≤

n∑
j=1

‖vj‖hp
α
≤ C‖u‖hp

α
,
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where(v1, . . . , vn) is theL(α)-conjugate ofu with vj ∈ hp
α.

We present the definition of anα-parabolic maximal function, which is the extension of the
non-tangential maximal function. Forx ∈ Rn andρ > 0, let

C(α)
ρ (x) := {(y, s) ∈ H : |y − x|2α ≤ ρ−1s}.

For a functionu onH, we define anα-parabolic maximal functionN (α)
ρ [u] onRn by

N (α)
ρ [u](x) := sup

{
|u(y, s)| : (y, s) ∈ C(α)

ρ (x)
}
, x ∈ Rn.

We remark that whenα = 1/2, the functionN (1/2)
ρ [u] coincides with the non-tangential maximal

function ofu. Theorem 3 shows that a functionu onH belongs tohp
α if and only if anα-parabolic

maximal functionN (α)
ρ [u] belongs toLp.

THEOREM 3. Let 0 < α ≤ 1, 1 < p ≤ ∞, ρ > 0, andu be anL(α)-harmonic function onH.
Then,u ∈ hp

α if and only ifN (α)
ρ [u] ∈ Lp. Furthermore, the propertyN (α)

ρ [u] ∈ Lp is independent

of ρ, that is, ifN (α)
ρ [u] ∈ Lp for someρ, thenN (α)

ρ [u] ∈ Lp for all ρ.

We note that Theorems 2 and 3 hold when1 < p < ∞. The investigations for the casep = 1 are
more difficult, whose results will be described elsewhere.

We describe the construction of this paper. In Section 2, we recall definitions of theL(α)-
harmonic functions and the fundamental solution ofL(α). Furthermore, some lemmas are presented.
In Section 3, we introduce anL(α)-harmonic extension, which is defined by the convolution of the
fundamental solution ofL(α). And we give several properties ofL(α)-harmonic extensions. In
Section 4, we study of fractional calculus on parabolic Hardy spaces, that is, we give the proof of
Theorem 1. In Section 5, we show the existence ofL(α)-conjugates on parabolic Hardy spaces. In
Section 6, we estimate the norms ofL(α)-conjugates of parabolic Hardy functions, that is, we give
the proof of Theorem 2. In Section 7, we study properties of theα-parabolic maximal functions of
parabolic Hardy functions, that is, we give the proof of Theorem 3. Throughout this paper,C will
denote a positive constant whose value is not necessarily the same at each occurrence; it may vary
even within a line.

2. Preliminaries

In this section, we recall definitions of theL(α)-harmonic functions, the fundamental solution of
L(α) (for details, see [9]), and fractional differential operators. We begin with describing the opera-
tor (−∆x)α. Since the caseα = 1 is trivial, we only describe the case0 < α < 1. Let C∞(H) ⊂
C(H) be the set of all infinitely differentiable functions onH and letC∞

c (H) ⊂ C∞(H) be the
set of all functions inC∞(H) with compact support. Then,(−∆x)α is the convolution operator
defined by

(2.1) (−∆x)αψ(x, t) := −Cn,α lim
ε→+0

∫
|y|>ε

ψ(x + y, t) − ψ(x, t)
|y|n+2α

dVn(y)

for all ψ ∈ C∞
c (H) and(x, t) ∈ H, whereCn,α = −4απ−n/2Γ

(
(n+2α)/2

)
/Γ(−α) > 0 andΓ is

the gamma function. Let̃L(α) := −∂t + (−∆x)α be the adjoint operator ofL(α). Then, a function
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u ∈ C(H) is said to beL(α)-harmonic ifu satisfiesL(α)u = 0 in the sense of distributions, that is,∫ ∞

0

∫
Rn

|u(x, t)L̃(α)ψ(x, t)|dVn(x)dt < ∞ and
∫ ∞

0

∫
Rn

u(x, t)L̃(α)ψ(x, t)dVn(x)dt = 0

for all ψ ∈ C∞
c (H). By (2.1) and the compactness ofsupp(ψ) (the support ofψ), there exist

0 < t1 < t2 < ∞ and a constantC > 0 such that

supp(L̃(α)ψ) ⊂ S = Rn × [t1, t2]

and

|L̃(α)ψ(x, t)| ≤ C(1 + |x|)−n−2α for (x, t) ∈ S.

Hence, the condition
∫

H
|u · L̃(α)ψ|dV < ∞ for all ψ ∈ C∞

c (H) is equivalent to the following: for
any0 < t1 < t2 < ∞,

(2.2)
∫ t2

t1

∫
Rn

|u(x, t)|(1 + |x|)−n−2αdVn(x)dt < ∞.

We present the explicit definition of the fundamental solution ofL(α). Forx ∈ Rn, let

W (α)(x, t) :=


1

(2π)n

∫
Rn

exp(−t|ξ|2α + i x · ξ) dVn(ξ) (t > 0)

0 (t ≤ 0),

wherex · ξ denotes the inner product onRn and|ξ| = (ξ · ξ)1/2. The functionW (α) is called the
fundamental solution ofL(α). We also describe basic properties ofW (α). It is well known that

(2.3) W (α)(x, t) > 0, (x, t) ∈ H

and

(2.4)
∫

Rn

W (α)(x, t)dVn(x) = 1, 0 < t < ∞.

We also remark thatW (α) is L(α)-harmonic onH andW (α) ∈ C∞(H). The following estimate is
[9, Lemma 3.1]: there exists a constantC = C(n, α) > 0 such that

(2.5) W (α)(x, t) ≤ C
t

(t + |x|2α)n/2α+1

for all (x, t) ∈ H.
In caseα = 1/2, the functionW (1/2) is the Poisson kernel, that is,

W (1/2)(x, t) =


Γ
(
(n + 1)/2

)
π(n+1)/2

t

(t2 + |x|2)(n+1)/2
(t > 0)

0 (t ≤ 0).

In caseα = 1, the functionW (1) is the Gauss kernel, that is,

W (1)(x, t) =

(4πt)−n/2 exp
(
−|x|2

4t

)
(t > 0)

0 (t ≤ 0).
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In other cases, simple explicit expressions forW (α) are not known.
We also present the following lemma, which is obtained from the proofs of [9, Theorem 4.1]

and [14, Lemma 3.1] when1 ≤ p < ∞, and which is obtained from [10, Proposition 11] when
p = ∞.

LEMMA 2.1. Let 0 < α ≤ 1 and letu beL(α)-harmonic onH. If 1 ≤ p < ∞ andu is p-th
integrable on any strip domain ofH, that is,

(2.6)
∫ t2

t1

∫
Rn

|u(x, t)|pdVn(x)dt < ∞ for all 0 < t1 < t2 < ∞,

thenu satisfies the following Huygens property, that is,

(2.7) u(x, t + s) =
∫

Rn

u(x − y, t)W (α)(y, s)dVn(y) =
∫

Rn

u(y, t)W (α)(x − y, s)dVn(y)

holds for allx ∈ Rn, 0 < s < ∞, and0 < t < ∞. Furthermore, ifu is bounded on any strip
domain ofH, that is,

(2.8) sup{|u(x, t)| : x ∈ Rn, t ∈ [t1, t2]} < ∞ for all 0 < t1 < t2 < ∞,

thenu satisfies the Huygens property(2.7).

As in the proof of [9, Lemma 5.6], we clearly obtain by Lemma 2.1 the following.

LEMMA 2.2. Let 0 < α ≤ 1 and letu beL(α)-harmonic onH. If 1 ≤ p < ∞ andu satisfies
the condition(2.6), then the functiont 7→ ‖u( · , t)‖Lp is non-increasing on(0,∞). Furthermore,
If u satisfies the condition(2.8),then the functiont 7→ ‖u( · , t)‖L∞ is non-increasing on(0,∞).

Now, we recall definitions of the fractional integral and differential operators for functions on
R+ = (0,∞). For a real numberκ > 0, let

FC−κ :=
{
ϕ ∈ C(R+) : ϕ(t) = O(t−κ′

) (t → ∞) for someκ′ > κ}.

For a functionϕ ∈ FC−κ, we can define the fractional integralD−κ
t ϕ of ϕ by

(2.9) D−κ
t ϕ(t) :=

1
Γ(κ)

∫ ∞

0

τκ−1ϕ(τ + t)dτ, t ∈ R+.

We putFC0 := C(R+) andD0
t ϕ := ϕ. Moreover, let

FCκ := {ϕ ; ∂
dκe
t ϕ ∈ FC−(dκe−κ)},

wheredκe is the smallest integer greater than or equal toκ. Then, we can also define the fractional
derivativeDκ

t ϕ of ϕ ∈ FCκ by

(2.10) Dκ
t ϕ(t) := D−(dκe−κ)

t

(
(−∂t)dκeϕ

)
(t), t ∈ R+.

Clearly, whenκ ∈ N0 := N∪{0}, the operatorDκ
t coincides with the ordinary differential operator

(−∂t)κ. For a real numberκ, we may call both (2.9) and (2.10)the fractional derivatives ofϕ with
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order κ. And, we callDκ
t the fractional differential operator with orderκ. Some basic properties

of the fractional differential operators are the following.

LEMMA 2.3. ([3, Proposition 2.1] and [4, Proposition 2.2])For real numbersκ, ν > 0, the
following statements hold.

(1) If ϕ ∈ FC−κ, thenD−κ
t ϕ ∈ C(R+).

(2) If ϕ ∈ FC−κ−ν , thenD−κ
t D−ν

t ϕ = D−κ−ν
t ϕ.

(3) If ∂k
t ϕ ∈ FC−ν for all integers0 ≤ k ≤ dκe − 1 and ∂

dκe
t ϕ ∈ FC−(dκe−κ)−ν , then

Dκ
t D−ν

t ϕ = D−ν
t Dκ

t ϕ = Dκ−ν
t ϕ.

(4) If ∂
k+dνe
t ϕ ∈ FC−(dνe−ν) for all integers0 ≤ k ≤ dκe − 1, ∂

dκe+`
t ϕ ∈ FC−(dκe−κ) for all

integers0 ≤ ` ≤ dνe − 1, and∂
dκe+dνe
t ϕ ∈ FC−(dκe−κ)−(dνe−ν), thenDκ

t Dν
t ϕ = Dκ+ν

t ϕ.

(5) If ∂
dκe
t ϕ ∈ FC−dκe and lim

t→∞
∂k

t ϕ(t) = 0 for all integers0 ≤ k ≤ dκe−1, thenD−κ
t Dκ

t ϕ =
ϕ.

Here, we give some examples of fractional derivatives of elementary functions.

EXAMPLE 2.4. Letκ > 0 andν be real numbers. Then, we have the following.

(1)Dν
t e−κt = κνe−κt.

(2) If −κ < ν, thenDν
t t−κ =

Γ(κ + ν)
Γ(κ)

t−κ−ν .

We need the following lemma in our later arguments.

LEMMA 2.5. Let 0 < α ≤ 1 and letc be a real number such thatn/2α − c < 0. Then, there
exists a constantC = C(n, α, c) > 0 such that∫

Rn

1
(t + |x − y|2α)c

dVn(y) = Ctn/2α−c

for all (x, t) ∈ H.

PROOF. Making a change of variable, we obtain∫
Rn

1
(t + |x − y|2α)c

dVn(y) =
∫

Rn

1
(t + |y|2α)c

dVn(y)

=
∫

Rn

tn/2α

(t + |t1/2αy|2α)c
dVn(y) = tn/2α−c

∫
Rn

1
(1 + |y|2α)c

dVn(y).

Sincen/2α − c < 0, we have

C =
∫

Rn

1
(1 + |y|2α)c

dVn(y) < ∞.

¤
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3. TheL(α)-harmonic extensions

In this section, we study several properties of theL(α)-harmonic extensions. The results ob-
tained in this section shall be used for investigations of parabolic Hardy spaces in the next section.
We begin with recalling the definition of the Lebesgue spacesLp. For 1 ≤ p ≤ ∞, the Lebesgue
spaceLp := Lp(Rn) is defined to be the Banach space of Lebesgue measurable (real-valued) func-
tionsf onRn with ‖f‖Lp < ∞, where

‖f‖Lp :=


(∫

Rn

|f(x)|pdVn(x)
)1/p

(1 ≤ p < ∞)

ess sup
x∈Rn

|f(x)| (p = ∞).

Let M := M(Rn) be the set of all finite signed Borel measures onRn. We denote by‖µ‖ the total
variation norm ofµ ∈ M . Now, we present the definition of anL(α)-harmonic extension, which is
introduced in [6].

DEFINITION 3.1 ([6, (1.2) and (1.3) of Section 1]). For1 ≤ p ≤ ∞, we define anL(α)-harmonic
extensionH(α)

f of f ∈ Lp by

H(α)
f (x, t) =

∫
Rn

W (α)(x − y, t)f(y)dVn(y), (x, t) ∈ H.

We also define anL(α)-harmonic extensionH(α)
µ of µ ∈ M by

H(α)
µ (x, t) =

∫
Rn

W (α)(x − y, t)dµ(y), (x, t) ∈ H.

We note thatL(α)-harmonic extensions off ∈ Lp andµ ∈ M areL(α)-harmonic onH (see [6,
Theorem 5.2]).

First, we study derivatives or fractional derivatives ofL(α)-harmonic extensions. For a multi-
index γ = (γ1, · · · , γn) ∈ Nn

0 , let ∂γ
x := ∂γ1

1 · · · ∂γn
n . We present some properties of fractional

derivatives of the fundamental solutionW (α). The following lemma is [3, Theorem 3.1].

LEMMA 3.2. ([3, Theorem 3.1])Let0 < α ≤ 1 andγ ∈ Nn
0 a multi-index. Ifν is a real number

such thatν > −n/2α, then the following statements hold:

(1) The derivatives∂γ
xDν

t W (α)(x, t) andDν
t ∂γ

xW (α)(x, t) are well defined, and the equation
∂γ

xDν
t W (α)(x, t) = Dν

t ∂γ
xW (α)(x, t) holds. Furthermore, there exists a constantC = C(n, α, γ, ν)

> 0 such that

|∂γ
xDν

t W (α)(x, t)| ≤ C
1

(t + |x|2α)(n+|γ|)/2α+ν

for all (x, t) ∈ H.

(2) If a real numberκ satisfiesκ + ν > −n/2α, then the derivativeDκ
t ∂γ

xDν
t W (α)(x, t) is well

defined, and
Dκ

t ∂γ
xDν

t W (α)(x, t) = ∂γ
xDκ+ν

t W (α)(x, t).

(3) The derivative∂γ
xDν

t W (α)(x, t) is L(α)-harmonic on H.

We define an auxiliary function onR, which is used in our later arguments. Forν ∈ R, let

ω(ν) =

{
dνe (ν ≥ 0)

0 (ν < 0).
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We give more general properties of fractional derivatives ofW (α).

LEMMA 3.3. Let 0 < α ≤ 1 and γ ∈ Nn
0 a multi-index. Ifν is a real number such that

ν > −(n + |γ|)/2α, then the following statements hold:

(1) The derivativeDν
t ∂γ

xW (α)(x, t) is well defined. Furthermore, there exists a constantC =
C(n, α, γ, ν) > 0 such that

(3.1) |Dν
t ∂γ

xW (α)(x, t)| ≤ C
1

(t + |x|2α)(n+|γ|)/2α+ν

for all (x, t) ∈ H.

(2) If β ∈ Nn
0 is a multi-index, then the derivative∂β

xDν
t ∂γ

xW (α)(x, t) is well defined, and

∂β
xDν

t ∂γ
xW (α)(x, t) = Dν

t ∂β+γ
x W (α)(x, t).

(3) If a real numberκ satisfiesκ+ ν > −(n+ |γ|)/2α, then the derivativeDκ
t Dν

t ∂γ
xW (α)(x, t)

is well defined, and
Dκ

t Dν
t ∂γ

xW (α)(x, t) = Dκ+ν
t ∂γ

xW (α)(x, t).

(4) The derivativeDν
t ∂γ

xW (α)(x, t) is L(α)-harmonic on H.

PROOF. (1) By Lemma 3.2 (1), we have|∂γ
xW (α)(x, t)| ≤ C(t + |x|2α)−(n+|γ|)/2α for all

(x, t) ∈ H. It suffices to show the lemma for the caseγ 6= 0 and−n/2α ≥ ν > −(n + |γ|)/2α.
The proof is similar to that of [3, Theorem 3.1 (1)].

(2) SinceW (α) ∈ C∞(H), the caseν ∈ N0 is trivial. Thus, suppose thatν /∈ N0. Then, the
definitions of the fractional derivatives (2.9) and (2.10) imply that

Dν
t ∂γ

xW (α)(x, t) =
1

Γ(ω(ν) − ν)

∫ ∞

0

τω(ν)−ν−1Dω(ν)
t ∂γ

xW (α)(x, τ + t)dτ.

Since we can differentiating under the integral sign by Lemma 3.3 (1), we obtain

∂β
xDν

t ∂γ
xW (α)(x, t) =

1
Γ(ω(ν) − ν)

∫ ∞

0

τω(ν)−ν−1Dω(ν)
t ∂β+γ

x W (α)(x, τ + t)dτ

= Dν
t ∂β+γ

x W (α)(x, t).

(3) Using Estimate (3.1), we obtain the desired result from Lemma 2.3 (2), (3), (4), and (5).
(4) The proof is similar to that of [3, Theorem 3.1 (3)]. ¤

Now, we give properties of fractional derivatives ofL(α)-harmonic extensions. We prepare the
following interval. Letn ≥ 1 and0 < α ≤ 1 be fixed. Forγ ∈ Nn

0 and1 ≤ p ≤ ∞, define the
intervalI(γ, p) by

I(γ, p) :=

{
{ν ∈ R : ν > −(n/2α)(1/p) − |γ|/2α} (p 6= ∞)

{ν ∈ R : ν > −|γ|/2α} ∪ {0} (p = ∞).

THEOREM 3.4. Let 0 < α ≤ 1, 1 ≤ p ≤ ∞, andγ ∈ Nn
0 . If f ∈ Lp andµ ∈ M , then the

following statements hold:

(1) If ν ∈ I(γ, p), then the derivativeDν
t ∂γ

xH
(α)
f (x, t) is well defined, and

(3.2) Dν
t ∂γ

xH
(α)
f (x, t) =

∫
Rn

Dν
t ∂γ

xW (α)(x − y, t)f(y)dVn(y).
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Furthermore, there exists a constantC = C(n, α, p, γ, ν) > 0 such that

|Dν
t ∂γ

xH
(α)
f (x, t)| ≤ Ct−(n/2α)(1/p)−|γ|/2α−ν‖f‖Lp

for all (x, t) ∈ H. If ν ∈ I(0, p), then the derivative∂γ
xDν

t H
(α)
f (x, t) is well defined, and the

equation∂γ
xDν

t H
(α)
f (x, t) = Dν

t ∂γ
xH

(α)
f (x, t) holds.

If ν ∈ I(γ, 1), then the derivativeDν
t ∂γ

xH
(α)
µ (x, t) is well defined, and

Dν
t ∂γ

xH(α)
µ (x, t) =

∫
Rn

Dν
t ∂γ

xW (α)(x − y, t)dµ(y).

Furthermore, there exists a constantC = C(n, α, γ, ν) > 0 such that

|Dν
t ∂γ

xH(α)
µ (x, t)| ≤ Ct−n/2α−|γ|/2α−ν‖µ‖

for all (x, t) ∈ H. If ν ∈ I(0, 1), then the derivative∂γ
xDν

t H
(α)
µ (x, t) is well defined, and the

equation∂γ
xDν

t H
(α)
µ (x, t) = Dν

t ∂γ
xH

(α)
µ (x, t) holds.

(2) If ν ∈ I(γ, p) andβ ∈ Nn
0 , then the derivative∂β

xDν
t ∂γ

xH
(α)
f (x, t) is well defined, and

∂β
xDν

t ∂γ
xH

(α)
f (x, t) = Dν

t ∂β+γ
x H(α)

f (x, t).

If ν ∈ I(γ, 1) andβ ∈ Nn
0 , then the derivative∂β

xDν
t ∂γ

xH
(α)
µ (x, t) is well defined, and

∂β
xDν

t ∂γ
xH(α)

µ (x, t) = Dν
t ∂β+γ

x H(α)
µ (x, t).

(3) If ν ∈ I(γ, p) andκ satisfiesκ+ ν ∈ I(γ, p), then the derivativeDκ
t Dν

t ∂γ
xH

(α)
f (x, t) is well

defined, and
Dκ

t Dν
t ∂γ

xH
(α)
f (x, t) = Dκ+ν

t ∂γ
xH

(α)
f (x, t).

If ν ∈ I(γ, 1) andκ satisfiesκ+ν ∈ I(γ, 1), then the derivativeDκ
t Dν

t ∂γ
xH

(α)
µ (x, t) is well defined,

and
Dκ

t Dν
t ∂γ

xH(α)
µ (x, t) = Dκ+ν

t ∂γ
xH(α)

µ (x, t).

(4) If ν ∈ I(γ, p), then the derivativeDν
t ∂γ

xH
(α)
f (x, t) is L(α)-harmonic on H. Ifν ∈ I(γ, 1)

then the derivativeDν
t ∂γ

xH
(α)
µ (x, t) is L(α)-harmonic on H.

PROOF. Since the proof ofH(α)
µ is analogous to that ofH(α)

f with f ∈ L1, we only show the

assertion forH(α)
f .

(1) Let ν ∈ N0. Suppose1 < p < ∞ and letq be the exponent conjugate top. Then, by the
Hölder inequality, Lemma 3.3 (1), and Lemma 2.5, we have∫

Rn

|Dν
t ∂γ

xW (α)(x − y, t)f(y)|dVn(y)

≤
(∫

Rn

|Dν
t ∂γ

xW (α)(x − y, t)|qdVn(y)
)1/q

‖f‖Lp

≤ C

(∫
Rn

1
(t + |x − y|2α){(n+|γ|)/2α+ν}q

dVn(y)
)1/q

‖f‖Lp

≤ Ct(n/2α)(1/q)−(n+|γ|)/2α−ν‖f‖Lp .(3.3)
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We remark that (3.3) for the casesp = 1 andp = ∞ are also obtained by Lemma 3.3 (1), the
property (2.4), and Lemma 2.5. Therefore, for1 ≤ p ≤ ∞, we can differentiate under the integral
sign, and we get (3.2) for the caseν ∈ N0. Furthermore, we also have

|Dν
t ∂γ

xH
(α)
f (x, t)| ≤

∫
Rn

|Dν
t ∂γ

xW (α)(x − y, t)f(y)|dVn(y)

≤ Ct−(n/2α)(1/p)−|γ|/2α−ν‖f‖Lp .(3.4)

Let ν ∈ I(γ, p)\N0. Then, (3.2) for the caseν ∈ N0 implies that

Dν
t ∂γ

xH
(α)
f (x, t)

=
1

Γ(ω(ν) − ν)

∫ ∞

0

τω(ν)−ν−1Dω(ν)
t ∂γ

xH
(α)
f (x, τ + t)dτ

=
1

Γ(ω(ν) − ν)

∫ ∞

0

τω(ν)−ν−1

∫
Rn

Dω(ν)
t ∂γ

xW (α)(x − y, τ + t)f(y)dVn(y)dτ.(3.5)

We show that we can apply the Fubini theorem to (3.5). Indeed, Estimate (3.4) implies that∫ ∞

0

τω(ν)−ν−1

∫
Rn

|Dω(ν)
t ∂γ

xW (α)(x − y, τ + t)f(y)|dVn(y)dτ

≤ C

∫ ∞

0

τω(ν)−ν−1(τ + t)−(n/2α)(1/p)−|γ|/2α−ω(ν)dτ < ∞,

becauseν ∈ I(γ, p). Therefore, we obtain (3.2) for the caseν ∈ I(γ, p)\N0. Furthermore, as in
the proof of (3.3), we also get (3.4) for the caseν ∈ I(γ, p)\N0 by Lemma 3.3 (1).

Let ν ∈ I(0, p). Since we have already shown (3.2) forγ = 0 andν ∈ I(0, p), we obtain

Dν
t H

(α)
f (x, t) =

∫
Rn

Dν
t W (α)(x − y, t)f(y)dVn(y).

Differentiating under the integral sign, we get

∂γ
xDν

t H
(α)
f (x, t) =

∫
Rn

∂γ
xDν

t W (α)(x − y, t)f(y)dVn(y).

Hence, the equation∂γ
xDν

t H
(α)
f (x, t) = Dν

t ∂γ
xH

(α)
f (x, t) is obtained.

(2) Letν ∈ I(γ, p) andβ ∈ Nn
0 . Then, by the proof of Theorem 3.4 (1), we have

Dν
t ∂γ

xH
(α)
f (x, t) =

∫
Rn

Dν
t ∂γ

xW (α)(x − y, t)f(y)dVn(y)

By differentiating under the integral sign, Lemma 3.3 (2) implies that

∂β
xDν

t ∂γ
xH

(α)
f (x, t) =

∫
Rn

∂β
xDν

t ∂γ
xW (α)(x − y, t)f(y)dVn(y)

=
∫

Rn

Dν
t ∂β+γ

x W (α)(x − y, t)f(y)dVn(y)

= Dν
t ∂β+γ

x H(α)
f (x, t),

becauseν ∈ I(β + γ, p).
(3) Using the estimate of Theorem 3.4 (1), we obtain the desired result from Lemma 2.3 (2), (3),

(4), and (5).
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(4) We show thatDν
t ∂γ

xH
(α)
f satisfies (2.2). For any0 < t1 < t2 < ∞, Theorem 3.4 (1) implies

that ∫ t2

t1

∫
Rn

|Dν
t ∂γ

xH
(α)
f (x, t)|(1 + |x|)−n−2αdVn(x)dt

≤ C

∫ t2

t1

t−(n/2α)(1/p)−|γ|/2α−νdt

∫
Rn

(1 + |x|)−n−2αdVn(x) < ∞.

Thus,Dν
t ∂γ

xH
(α)
f satisfies (2.2). TheL(α)-harmonicity ofDν

t ∂γ
xH

(α)
f follows from the Fubini the-

orem and Lemma 3.3 (4). ¤

Next, we shall give more properties ofL(α)-harmonic extensions. The following lemma is
shown in [6, Theorem 4.2].

LEMMA 3.5. ([6, Theorem 4.2])Let0 < α ≤ 1. Then, the following statements hold:

(1) Let1 ≤ p ≤ ∞ andf ∈ Lp. Then,

‖H(α)
f ( · , t)‖Lp ≤ ‖f‖Lp

for all t > 0.

(2) Letµ ∈ M . Then,
‖H(α)

µ ( · , t)‖L1 ≤ ‖µ‖
for all t > 0.

We note thatM = (C0)∗, whereC0 := C0(Rn) is the set of all continuous functions onRn that
vanish at∞. By properties (2.3), (2.4), and (2.5), the following results are obtained, which were
shown in [6, Theorem 5.1].

LEMMA 3.6. ([6, Theorem 5.1])Let0 < α ≤ 1. Then, the following statements hold:

(1) If 1 ≤ p < ∞ andf ∈ Lp, then the functionsH(α)
f ( · , t) converge tof in the norm topology

onLp ast → +0.

(2) If f ∈ L∞, then the functionsH(α)
f ( · , t) converge tof in the weak-star topology onL∞ as

t → +0.

(3) If µ ∈ M , then the measuresH(α)
µ ( · , t)dVn converge toµ in the weak-star topology onM

ast → +0.

We obtain the following theorem, which shall be used for investigations of parabolic Hardy
spaces.

THEOREM 3.7. Let0 < α ≤ 1. Then, the following statements hold:

(1) Let1 ≤ p ≤ ∞ andf ∈ Lp. Then,

sup
t>0

‖H(α)
f ( · , t)‖Lp = lim

t→0
‖H(α)

f ( · , t)‖Lp = ‖f‖Lp .

(2) Letµ ∈ M . Then,

sup
t>0

‖H(α)
µ ( · , t)‖L1 = lim

t→0
‖H(α)

µ ( · , t)‖L1 = ‖µ‖.
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PROOF. (1) Let1 ≤ p < ∞ andf ∈ Lp. Then, Lemma 3.6 (1) implies

lim
t→0

‖H(α)
f ( · , t)‖Lp = ‖f‖Lp .

By Lemma 3.5 (1) and Theorem 3.4 (4), the functionH(α)
f satisfies (2.6) and isL(α)-harmonic on

H. Thus, by Lemma 2.2, we have

sup
t>0

‖H(α)
f ( · , t)‖Lp = lim

t→0
‖H(α)

f ( · , t)‖Lp = ‖f‖Lp .

Let f ∈ L∞. Then, Lemma 3.6 (2) implies

‖f‖L∞ ≤ lim inf
t→0

‖H(α)
f ( · , t)‖L∞ .

By Lemma 3.5 (1) and Theorem 3.4 (4), the functionH(α)
f satisfies (2.8) and isL(α)-harmonic on

H. Thus, by Lemma 2.2, we have

sup
t>0

‖H(α)
f ( · , t)‖L∞ = lim

t→0
‖H(α)

f ( · , t)‖L∞ = ‖f‖L∞ .

(2) The proof of (2) is similar to that of (1) whenp = ∞. ¤

4. The parabolic Hardy spaces

The parabolic Hardy spaces were introduced in [9, Remark 5.7]. Hardly properties of their
spaces have been studied. In this section, we study properties of fractional derivatives of parabolic
Hardy functions. Particularly, we give the proof of Theorem 1. We begin with recalling definition
of the parabolic Hardy spaces. For0 < α ≤ 1 and1 ≤ p ≤ ∞, theα-parabolic Hardy spacehp

α is
the set of allL(α)-harmonic functionsu onH with

‖u‖hp
α

:= sup
t>0

‖u( · , t)‖Lp < ∞.

By Lemma 2.2, we have
‖u‖hp

α
= lim

t→0
‖u( · , t)‖Lp

for all 1 ≤ p ≤ ∞ andu ∈ hp
α. By Theorem 3.7 (1), the mappingf 7→ H(α)

f is a linear isometry of

Lp into hp
α when1 < p ≤ ∞. By Theorem 3.7 (2), the mappingµ 7→ H(α)

µ is also a linear isometry
of M into h1

α. In Theorem 4.1 below, we show that the mappings are onto. Consequently, we obtain
several properties of fractional derivatives ofhp

α-functions from Theorem 3.4. It also follows from
Theorem 4.1 thathp

α are Banach spaces for all1 ≤ p ≤ ∞.

THEOREM 4.1. Let0 < α ≤ 1. Then, the following statements hold:

(1) For 1 < p ≤ ∞, the mappingf 7→ H(α)
f is a linear isometry ofLp ontohp

α.

(2) The mappingµ 7→ H(α)
µ is a linear isometry ofM ontoh1

α.

PROOF. (1) Let1 < p ≤ ∞ andu ∈ hp
α. Also, letq be the exponent conjugate top. Then, the

set{u( · , t) : t > 0} is bounded inLp = (Lq)∗. SinceLq is separable, there exist a sequence{tj}
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and a functionf ∈ Lp such thattj → 0 andu( · , tj) converges tof in the weak-star topology. Let
(x, t) ∈ H be fixed. Then, by Lemma 2.1, we have

u(x, t + tj) =
∫

Rn

W (α)(x − y, t)u(y, tj)dVn(y).

Here, we note thatW (α)(x − · , t) ∈ Lq. Indeed, whenq = 1, the conditions (2.3) and (2.4) imply
that ∫

Rn

W (α)(x − y, t)dVn(y) =
∫

Rn

W (α)(y, t)dVn(y) = 1.

Furthermore, when1 < q < ∞, Estimate (2.5) and Lemma 2.5 show that∫
Rn

W (α)(x − y, t)qdVn(y) ≤ C

∫
Rn

1
(t + |x − y|2α)nq/2α

dVn(y) ≤ Ctn/2α−nq/2α.

Hence, letj → ∞, then we obtainu(x, t) = H(α)
f (x, t).

(2) Let u ∈ h1
α. Then, the set{u( · , t)dVn : t > 0} is bounded inM = (C0)∗. SinceC0 is

also separable, there exist a sequence{tj} and a measureµ ∈ M such thattj → 0 andu( · , tj)dVn

converges toµ in the weak-star topology. Let(x, t) ∈ H be fixed. Then, by Estimate (2.5), we have
W (α)(x−· , t) ∈ C0. Thus, by similar arguments in the proof of (1), we obtainu(x, t) = H(α)

µ (x, t).
¤

Now, we give the proof of Theorem 1.

PROOF OFTHEOREM 1. The assertion immediately follows from Theorems 3.4 and 4.1.¤

5. The existence ofL(α)-conjugates ofhp
α-functions

In this section, for givenhp
α-functions, we construct an conjugate system. In Theorem 5.2 below,

we show the existence ofL(α)-conjugates ofhp
α-functions. We need the following lemma.

LEMMA 5.1. ([5, Lemma 4.1])Let0 < α ≤ 1. Then,(
D1/α

t + ∆x

)
W (α)(x, t) = 0

for all (x, t) ∈ H.

Now, we show the existence ofL(α)-conjugates ofhp
α-functions.

THEOREM 5.2. Let0 < α ≤ 1 and1 ≤ p < ∞, then the following statements hold:

(1) If u ∈ hp
α, then for each1 ≤ j ≤ n, we can define a functionvj onH by

(5.1) vj(x, t) := −D−1/2α
t ∂ju(x, t), (x, t) ∈ H.

Also, each functionvj is L(α)-harmonic onH. Furthermore, then-tuple of functions(v1, . . . , vn)
is anL(α)-conjugate ofu.

(2) If an n-tuple of functions(v1, . . . , vn) with vj ∈ hp
α satisfies Equation (N.1), then we can

define a functionu onH by

(5.2) u(x, t) :=
n∑

j=1

D−1/2α
t ∂jvj(x, t), (x, t) ∈ H.
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Also, the functionu is L(α)-harmonic onH. Furthermore, then-tuple of functions(v1, . . . , vn) is
anL(α)-conjugate ofu.

PROOF. (1) Letu ∈ hp
α. By Theorem 1 (1), we can define a functionvj onH by (5.1), and we

also havevj(x, · ) ∈ FC1/2α. TheL(α)-harmonicity ofvj follows from Theorem 1 (4).
We show that the(n+1)-tuple(v1, . . . , vn, u) satisfies Equations (N.1) and (N.2). By Theorem

1 (2), we obtain

(5.3) ∂jvk(x, t) = −∂jD−1/2α
t ∂ku(x, t) = −D−1/2α

t ∂j∂ku(x, t), 1 ≤ j, k ≤ n.

Thus, Equation (N.1) is satisfied. Furthermore, by Theorem 1 (3), we have

−D1/2α
t vj(x, t) = D1/2α

t D−1/2α
t ∂ju(x, t) = ∂ju(x, t), 1 ≤ j ≤ n.

Therefore, Equation (N.2) is also satisfied.
We show that(v1, . . . , vn, u) also satisfies Equation (N.3). First, we claim that

(5.4)
(
D1/α

t + ∆x

)
u(x, t) = 0

for all (x, t) ∈ H. In fact, suppose that1 < p < ∞. By Theorem 4.1 (1), there exists a function
f ∈ Lp such thatu = H(α)

f . Thus, (3.2) of Theorem 3.4 and Lemma 5.1 imply that(
D1/α

t + ∆x

)
u(x, t) =

(
D1/α

t + ∆x

)
H(α)

f (x, t)

=
∫

Rn

(
D1/α

t + ∆x

)
W (α)(x − y, t)f(y)dVn(y) = 0.

The proof of the casep = 1 is similar to that of the case1 < p < ∞. Hence, we obtain (5.4) for all
1 ≤ p < ∞. We show that(n + 1)-tuple of functions(v1, . . . , vn, u) satisfies Equation (N.3). By
(5.3), we have

n∑
j=1

∂jvj(x, t) = −
n∑

j=1

D−1/2α
t ∂2

j u(x, t) = −D−1/2α
t ∆xu(x, t).

Therefore, (5.4) and Theorem 1 (3) imply that

n∑
j=1

∂jvj(x, t) = D−1/2α
t D1/α

t u(x, t) = D1/2α
t u(x, t).

(2) Suppose that ann-tuple of functions(v1, . . . , vn) with vj ∈ hp
α satisfies Equation (N.1). By

Theorem 1 (1), we can define a functionu onH by (5.2), and we also haveu(x, · ) ∈ FC1/2α. The
L(α)-harmonicity ofu follows from Theorem 1 (4).

We show that the(n+1)-tuple(v1, . . . , vn, u) satisfies Equations (N.2) and (N.3). By (5.2) and
Theorem 1 (2), for each1 ≤ k ≤ n, Equation (N.1) implies that

∂ku(x, t) =
n∑

j=1

D−1/2α
t ∂k∂jvj(x, t) = D−1/2α

t

( n∑
j=1

∂2
j vk(x, t)

)
= D−1/2α

t ∆xvk(x, t).

Since (5.4) holds for allhp
α-functions, Theorem 1 (3) shows that

∂ku(x, t) = −D−1/2α
t D1/α

t vk(x, t) = −D1/2α
t vk(x, t),
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so Equation (N.2) is satisfied. Moreover, (5.2) and Theorem 1 (3) imply that

D1/2α
t u(x, t) =

n∑
j=1

D1/2α
t D−1/2α

t ∂jvj(x, t) =
n∑

j=1

∂jvj(x, t),

so Equation (N.3) is also satisfied. ¤

6. The norms ofL(α)-conjugates ofhp
α-functions with 1 < p < ∞

In this section, we estimate the norms ofL(α)-conjugates ofhp
α-functions. Our estimates are

given for the case1 < p < ∞. Consequently, we give the proof of Theorem 2. For eachf ∈ L1∩L2,
the Fourier transform off is defined by (according to the definition of [12, p.28 (1.3 of Chapter II)])

f̂(y) :=
∫

Rn

f(x)e2πix·ydVn(x), y ∈ Rn,

and it is well known that the Fourier transform can be extended to all ofL2 by continuity. The
following lemma is Theorem 1 of [12, p.29 (2.2 of Chapter II)].

LEMMA 6.1. (Theorem 1 of [12, p.29 (2.2 of Chapter II)])LetK ∈ L2. We suppose:

(a)The Fourier transform ofK is essentially bounded

|K̂(x)| ≤ B, x ∈ Rn.

(b) K is of classC1(Rn) outside the origin and

|∇xK(x)| ≤ B

|x|n+1
, x ∈ Rn.

For f ∈ L1 ∩ Lp, let us set

Tf(x) =
∫

Rn

K(x − y)f(y)dVn(y), x ∈ Rn.

Then, the following statements hold:
(1) There exists a constantAp, so that

‖Tf‖Lp ≤ Ap‖f‖Lp .

One can thus extendT to all of Lp by continuity. The constantAp depends only onp, B, andn. In
particular, it does not depend on theL2 norm ofK.

(2) There exists a constantC = C(B,n), so that

Vn({x ∈ Rn : |Tf(x)| > λ}) ≤ C

λ
‖f‖1.

Theauthors also describe the following remark. The assumption thatK ∈ L2 is made for the
purpose of having direct definition ofTf on a dense subset ofLp (in this caseL1∩Lp), and it could
be replaced by other assumptions.
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We show the following lemma.

LEMMA 6.2. Let0 < α ≤ 1 and1 ≤ j ≤ n. We put

Kj(x, t) := D−1/2α
t ∂jW

(α)(x, t), (x, t) ∈ H.

Then, for fixedt > 0, we haveKj( · , t) ∈ Lq for all 1 < q < ∞, and the following conditions
hold:

(1) There exists a constantB > 0 such that

|K̂j(x, t)| ≤ B

for all (x, t) ∈ H and1 ≤ j ≤ n.

(2) For fixedt > 0, Kj( · , t) is of classC1(Rn) and there exists a constantB > 0 such that

|∇xKj(x, t)| ≤ B

|x|n+1

for all (x, t) ∈ H and1 ≤ j ≤ n.

PROOF. First, we show thatKj( · , t) ∈ Lq for all 1 < q < ∞. Indeed, by Lemma 3.3 (1) and
Lemma 2.5, we have∫

Rn

|Kj(x, t)|qdVn(x) ≤ C

∫
Rn

1
(t + |x|2α)qn/2α

dVn(x) = Ctn/2α−qn/2α.

(1) Since we can differentiate under the integral sign, we get

∂jW
(α)(x, t) = −2πi

∫
Rn

ξje
−(2π)2αt|ξ|2α

e−2πix·ξ dξ.

Thus, we have

Kj(x, t) = D−1/2α
t ∂jW

(α)(x, t)

= −2πi
1

Γ(1/2α)

∫ ∞

0

τ1/2α−1

∫
Rn

ξje
−(2π)2α(t+τ)|ξ|2α

e−2πix·ξ dξdτ.

The Fubini theorem and Example 2.4 (1) imply that

Kj(x, t) = −2πi

∫
Rn

ξj

(
D−1/2α

t e−(2π)2αt|ξ|2α)
e−2πix·ξ dξ

= −i

∫
Rn

ξj

|ξ|
e−(2π)2αt|ξ|2α

e−2πix·ξ dξ.

Therefore, by the inversion theorem of the Fourier transform, we obtain

K̂j(x, t) = −i
xj

|x|
e−(2π)2αt|x|2α

,

sowe get|K̂j(x, t)| ≤ 1 for all (x, t) ∈ H and1 ≤ j ≤ n.
(2) For each1 ≤ k ≤ n, Lemma 3.3 implies that

|∂kKj(x, t)| = |D−1/2α
t ∂k∂jW

(α)(x, t)| ≤ C

(t + |x|2α)(n+1)/2α
≤ C

|x|n+1
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for all (x, t) ∈ H and1 ≤ j ≤ n. ¤

By Lemmas 6.1 and 6.2, we give the following estimate.

PROPOSITION6.3. Let 0 < α ≤ 1 and1 < p < ∞. If u ∈ hp
α, then there exists a constant

C = C(n, α, γ, p) > 0 independent ofu such that

‖D−1/2α
t ∂ju‖hp

α
≤ C‖u‖hp

α

for all 1 ≤ j ≤ n.

PROOF. By Theorem 4.1 (1), there exists a functionf ∈ Lp such thatu = H(α)
f and‖u‖hp

α
=

‖f‖Lp . By Theorem 3.4 (1), we have

D−1/2α
t ∂ju(x, t) = D−1/2α

t ∂jH(α)
f (x, t)

=
∫

Rn

D−1/2α
t ∂jW

(α)(x − y, t)f(y)dVn(y)

=
∫

Rn

Kj(x − y, t)f(y)dVn(y),

whereKj(x, t) = D−1/2α
t ∂jW

(α)(x, t). Thus, by Lemmas 6.1 and 6.2, there exists a constantAp

so that (∫
Rn

|D−1/2α
t ∂ju(x, t)|pdVn(x)

)1/p

≤ Ap‖f‖Lp = Ap‖u‖hp
α

for all t > 0 and1 ≤ j ≤ n. Since the constantAp is independent oft > 0, we obtain

‖D−1/2α
t ∂ju‖hp

α
= sup

t>0

(∫
Rn

|D−1/2α
t ∂ju(x, t)|pdVn(x)

)1/p

≤ Ap‖u‖hp
α

for all 1 ≤ j ≤ n. ¤

Now, we give the proof of Theorem 2.

PROOF OFTHEOREM 2. (1) Letu ∈ hp
α. For each1 ≤ j ≤ n, let (v1, . . . , vn) be then-tuple of

functions defined by (5.1). Then, by Theorem 5.2 (1), then-tuple(v1, . . . , vn) is anL(α)-conjugate
of u. Furthermore, Proposition 6.3 implies that there exists a constantC = C(n, α, γ, p) > 0
independent ofu such that

‖vj‖hp
α
≤ C‖u‖hp

α

for all 1 ≤ j ≤ n, so we havevj ∈ hp
α. To show the uniqueness, we suppose that there exists an

n-tuple of functions(u1, . . . , un) with uj ∈ hp
α such that(u1, . . . , un) is anL(α)-conjugate ofu.

Then, by Lemma 3.3 (3) and Equation (N.2), we obtain

uj = D−1/2α
t D1/2α

t uj = −D−1/2α
t ∂ju = vj .

(2) Let (v1, . . . , vn) be then-tuple of functions withvj ∈ hp
α such that(v1, . . . , vn) satisfies

Equation (N.1). Letu be the function defined by (5.2). Then, by Theorem 5.2 (2), then-tuple
(v1, . . . , vn) is anL(α)-conjugate ofu. Furthermore, Proposition 6.3 implies that there exists a
constantC = C(n, α, γ, p) > 0 such that

‖u‖hp
α

= ‖
n∑

j=1

D−1/2α
t ∂jvj‖hp

α
≤

n∑
j=1

‖D−1/2α
t ∂jvj‖hp

α
≤ C

n∑
j=1

‖vj‖hp
α
,
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so we haveu ∈ hp
α. To show the uniqueness, we suppose that there exists an functionv ∈ hp

α such
that(v1, . . . , vn) is anL(α)-conjugate ofv. Then, by Lemma 3.3 (3) and Equation (N.3), we obtain

v = D−1/2α
t D1/2α

t v =
n∑

j=1

D−1/2α
t ∂jvj = u.

(3) The desired result immediately follows form the proofs of (1) and (2). ¤

We close this section with making a remark for the casep = 1.

REMARK 6.4. Using Lemma 6.1 (2) instead of (1), we have the following weak(1, 1) type
relations betweenu and(v1, . . . , vn) in Theorem 5.2 whenp = 1:

(1) If u ∈ h1
α, then we have for1 ≤ j ≤ n

sup
t>0

Vn({x ∈ Rn : |vj(x, t)| > λ}) ≤ C

λ
‖u‖h1

α

with some constantC, where(v1, . . . , vn) is defined in Theorem 5.2 (1).
(2) If ann-tuple of functions(v1, . . . , vn) with vj ∈ h1

α satisfies Equation (N.1), then we have

sup
t>0

Vn({x ∈ Rn : |u(x, t)| > λ}) ≤ C

λ

n∑
j=1

‖vj‖h1
α

with some constantC, whereu is defined in Theorem 5.2 (2).
In fact, if u ∈ h1

α, then fort > s > 0, we have

D−1/2α
t ∂ju(x, t) ≤

∫
Rn

Kj(x − y, t − s)u(y, s)dVn(y).

Hence, by Lemma 6.1 (2), we have

Vn({x ∈ Rn : |vj(x, t)| > λ}) ≤ C

λ
‖u(·, s)‖L1

with some constantC independent oft > s > 0, which shows (1). We obtain (2) similarly.

7. Theα-parabolic maximal functions

In this section, we study properties of theα-parabolic maximal functions, that is, we give the
proof of Theorem 3. We recall the definition of theα-parabolic maximal functions. Forx ∈ Rn and
ρ > 0, let

C(α)
ρ (x) := {(y, s) ∈ H : |y − x|2α ≤ ρ−1s}.

Theα-parabolic maximal functionN (α)
ρ [u] of a functionu onH is defined by

N (α)
ρ [u](x) := sup

{
|u(y, s)| : (y, s) ∈ C(α)

ρ (x)
}
, x ∈ Rn.

Clearly, for a functionu onH, we have

‖u‖hp
α
≤ ‖N (α)

ρ [u]‖Lp
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for all 0 < α ≤ 1, 1 ≤ p ≤ ∞, andρ > 0. We observe the relation with the Hardy-Littlewood
maximal functions. For1 ≤ p ≤ ∞, the Hardy-Littlewood maximal functionMf of f ∈ Lp is
defined by

Mf (x) = sup
r>0

1
Vn(B(x, r))

∫
|y−x|<r

|f(y)|dVn(y), x ∈ Rn,

whereB(x, r) is the ball of radiusr centered atx. Furthermore, the Hardy-Littlewood maximal
functionMµ of µ ∈ M is defined by

Mµ(x) = sup
r>0

1
Vn(B(x, r))

∫
|y−x|<r

d|µ|(y), x ∈ Rn.

The following lemma concerning the Hardy-Littlewood maximal functions is well known.

LEMMA 7.1. ([11, Theorem 7.4] and [12, Theorem 1])If 1 < p ≤ ∞ andf ∈ Lp, then there
exists a constantC = C(n, p) > 0 independent off such that

(7.1) ‖Mf‖Lp ≤ C‖f‖Lp .

Moreover, ifµ ∈ M and λ > 0 is a real number, then there exists a constantC = C(n) > 0
independent ofµ andλ such that

(7.2) Vn({x ∈ Rn : Mµ(x) > λ}) ≤ C

λ
‖µ‖.

Now we shall give a proof of Theorem 3. The following lemma is a generalization of [8, Lemma
5.2]. Here, we use the notation ofH(α)

µ andM(α)
µ for general positive Borel measuresµ on Rn,

which may take value+∞.

LEMMA 7.2. Letµ be a positive Borel measure onH. If we putu := H(α)
µ , then there exists a

constantC = C(n, α, ρ) > 0 independent ofµ such that

N (α)
ρ [u](x) ≤ C M(α)

µ (x)

for all x ∈ Rn.

PROOF. Let x ∈ Rn. Then for(y, s) ∈ C
(α)
ρ (x) andz ∈ Rn, we have

s + |x − z|2α ≤ s + (|x − y| + |y − z|)2α ≤ s + 2(|x − y|2α + |y − z|2α)

≤ s + 2(ρ−1s + |y − z|2α) ≤ C (s + |y − z|2α),

with some constantC. Now, letµ ≥ 0 be a Borel measure and putu := H(α)
µ . Then, (2.5) implies

that there exists a constantC = C(n, α) > 0 such that

|u(y, s)| =
∫

Rn

W (α)(y − z, s) dµ(z) ≤ C

∫
Rn

s

(s + |y − z|2α)n/2α+1
dµ(z)

≤ Cs

∫
Rn

1
(s + |x − z|2α)n/2α+1

dµ(z)

for all (y, s) ∈ C
(α)
ρ (x). Thus, putting

τz :=
1

(s + |x − z|2α)n/2α+1
,
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we have, by the Fubini theorem,

|u(y, s)| ≤ Cs

∫
Rn

1
(s + |x − z|2α)n/2α+1

dµ(z) = Cs

∫
Rn

∫ τz

0

dt dµ(z)

= Cs

∫ τz

0

∫
|z−x|<rt

dµ(z) dt ≤ Cs

∫ τz

0

Vn(B(x, rt))Mµ(x) dt

= C Mµ(x)s
∫ τz

0

∫
|z−x|<rt

dz dt

= C Mµ(x)s
∫

Rn

1
(s + |x − z|2α)n/2α+1

dVn(z),

wherert > 0 denotes|z| suchthatτz = t. The proof is complete by Lemma 2.5. ¤

THEOREM 7.3. Let0 < α ≤ 1 andρ > 0. Then, the following statements hold:
(1) If 1 < p ≤ ∞, then there exists a constantC = C(n, α, p, ρ) > 0 such that

‖u‖hp
α
≤ ‖N (α)

ρ [u]‖Lp ≤ C ‖u‖hp
α

for all L(α)-harmonic functionsu onH.

(2) If p = 1, then there exists a constantC = C(n, α, ρ) > 0 such that

Vn({x ∈ Rn : N (α)
ρ [u](x) > λ}) ≤ C

λ
‖u‖hp

α

for all λ andL(α)-harmonic functionsu onH.

PROOF. Let 1 ≤ p ≤ ∞ andu an L(α)-harmonic function onH. If ‖u‖hp
α

= ∞, then the
inequalities of (1) and (2) are always satisfied. Thus, suppose‖u‖hp

α
< ∞, that is,u ∈ hp

α.
We show the inequality of (1). It suffices to show the second inequality of (1). Suppose that

1 < p ≤ ∞. Then, by Theorem 4.1 (1), there exists a functionf ∈ Lp such thatu = H(α)
f and

‖u‖hp
α

= ‖f‖Lp . By Lemma 7.2 and (7.1), we obtain

‖N (α)
ρ [u]‖Lp ≤ C‖Mf‖Lp ≤ C‖f‖Lp = C‖u‖hp

α
.

We show the inequality of (2). By Theorem 4.1 (2), there exists a measureµ ∈ M such that
u = H(α)

µ and‖u‖h1
α

= ‖µ‖. By Lemma 7.2, we have

{x ∈ Rn : N (α)
ρ [u](x) > λ} ⊂ {x ∈ Rn : Mµ(x) > λ/C}

for all λ > 0. Therefore, (7.2) implies that

Vn({x ∈ Rn : N (α)
ρ [u](x) > λ}) ≤ Vn({x ∈ Rn : Mµ(x) > λ/C}) ≤ C ′

λ/C
‖µ‖ =

CC ′

λ
‖u‖h1

α

for all λ > 0. ¤

Now, we give the proof of Theorem 3.

PROOF OFTHEOREM 3. The assertion immediately follows from Theorem 7.3 (1). ¤
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A CRITERION ON APPORTIONMENT METHODS
MINIMIZING THE RÉNYI’S DIVERGENCE

Etsuo Kumagai
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Abstract. For the Rényi’s divergence with an index α, we propose a criterion with
respect to the index α on apportionment methods, which the criterion is the sum of
the Rényi’s divergence and a proposed function of α as a kind of penalty. Under the
criterion, we also obtain appropriate house seats in the House of Representatives and
the House of Councillors in Japan.

1 Introduction In democratic states, seats are contested in the election. The seats
are allocated by a rule which is regulated by the Diet, the Congress, or the Parliament.
In principle, their seats should be proportional to the populations or the voters in their
election districts, but it is difficult to determine them exactly because the seats are integers
and the ratios of populations are usually rationals. To dissolve the gap between them, a lot
of researches have been done from several research areas, for example, sociology, economics,
operations research, and statistics.

[1] is a nice reference for determining methods with respect to proportional representa-
tion systems in the seats. Among the famous five divisor methods, i.e., the Adams method,
the Dean method, the Hill method, the Webster (or Saint-Laguë) method, and the Jefferson
(or D’Hondt) method, they propose that the Webster method is the best one because it is
to minimize a bias, but there is counterviews against this proposal. [2] propose the primal
problem and dual problem based on a rounding rule with respect to signposts as an op-
timization approach to vector and matrix apportionment problems. [4] proposes a divisor
apportionment method based on the Kolm-Atkinson social welfare function. [3] shows that
apportionment methods maximizing the Rényi’s entropy are included in the divisor meth-
ods and that his approach with the index α is corresponding to the famous five methods.
But it is not clear which α we should use among the apportionment method maximizing
the Rényi’s entropy.

In this paper, we propose a criterion with respect to the index α on apportionment
methods, which the criterion is the sum of the Rényi’s divergence and a proposed function of
α as a kind of penalty and investigate the index α minimizing our proposed criterion. Under
the criterion, we also investigate appropriate house seats in the House of Representatives
(295 seats for single-seat constituency electoral system (2013)) and the House of Councillors
(73 seats for that in re-election of half the members (2013)) in Japan.

2 Divisor methods We have to allocate the seats in proportion to the population to
realize equivalent value of votes. The typical methods are the method of greatest remainders
and the divisor method. The former has unfavorable properties like Alabama paradox and
population paradox, but the latter is the only method which does not run such paradoxes.

2010 Mathematics Subject Classification. 62B10,91D20.
Key words and phrases. The Rényi’s divergence, apportionment method, divisor method, information

criterion.
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Suppose that a country has s states, the population in the state i is pi > 0, and the
total population is π =

∑s
i=1 pi. Also suppose that the seat allocated in the state i is

ai ≥ 0 by an appropriate divisor method and the total seats is h =
∑s

i=1 ai, where any ai

is non-negative integer and h > s. If single-seat constituencies in the state i are ai with the
same size, we can define the value of a voter in the state i as ai/pi and it is obvious that
the sum of the value of voters is equivalent to the total seats, i.e.,

s∑
i=1

(
ai

pi

)
× pi =

s∑
i=1

ai = h.

For non-negative integer a ∈ N0, we define a function d(a) as a rounding function. Then
it is a strictly increasing function of integers a and it satisfies that a ≤ d(a) ≤ a + 1. A
divisor method is decided by determining a rounding function, respectively, as follows:

Divisor method Adams Dean Hill Webster Jefferson

Rounding function d(a) a
a(a + 1)
a + 1

2

√
a(a + 1) a + 1

2 a + 1

Based on a rounding function d(a) for positive integers z > 0, an integer [z] is determined
by the following rules:

• If z < d(0), then [z] = 0.

• If d(a) < z < d(a + 1), then [z] = a + 1.

• If z = d(a), then [z] = a or [z] = a + 1.

Since 0 ≤ d(0) < d(1) < d(2) < · · · , the value of the integer [z] is uniquely determined
for arbitrary real number z > 0 except for the last rule. If we decide a rounding function d(a)
for arbitrary non-negative integer a and we select a positive real number x appropriately,
then, by the third rule, the total seats h is allocated as follows:

s∑
i=1

[pi

x

]
= h

and the seats in the state i is ai = [pi/x]. This method is called a divisor method based on
a rounding function d(a). If an allocated set is defined as follows:{

a

∣∣∣∣∣ ai =
[pi

x

]
where x satisfies

s∑
i=1

[pi

x

]
= h

}
,

where a = (a1, a2, . . . , as), this set is equivalent to the following set:

(2.1) A0 =
{

a

∣∣∣∣ max
i∈S|ai≥1

{
d(ai − 1)

pi

}
≤ min

j∈S

{
d(aj)
pj

}
; a ∈ F

}
,

where F = {a | a(S) = h; ai ∈ N0 (i ∈ S)}, S = {1, 2, . . . , s}, and a(S) =
∑s

i=1 ai. [1](page
100).
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3 Two types of the Rényi’s divergences We consider the value of a voter and the
size of constituency with respect to the Rényi’s entropy.

When we can make a probability distribution by {ai/(hpi)} as follows:

U =


p1︷ ︸︸ ︷

a1

hp1
, . . . ,

a1

hp1
, . . . ,

ps︷ ︸︸ ︷
as

hps
, . . . ,

as

hps

 ,

the Rényi’s entropy with respect to an index α is as follows:

Hα(U) =


1

1 − α
log2

(
s∑

i=1

(
ai

h pi

)α

pi

)
, α > 0, α 6= 1,

−
s∑

i=1

(
ai

h
log2

ai

h pi

)
, α = 1.

It is easy to obtain that the range of this entropy is mini log2 pi ≤ Hα(U) ≤ log2 π, but
that all hpi/π are integers is extremely rare, so that we have to consider an apportionment
which maximizes this entropy under some restrictions. Then the problem that the seats
apportionment a maximizing the Rényi’s entropy is equivalent to

(3.2) max
U

Hα(U) subject to a(S) = h, ai ∈ N0 (i ∈ S).

Let A be a distribution of proportion of each state’s seats for the total seats,

A =
(a1

h
, . . . ,

as

h

)
,

ai

h
≥ 0,

s∑
i=1

ai

h
= 1,

and P be that of proportion of each state’s population for the total population,

P =
(p1

π
, . . . ,

ps

π

)
,

pi

π
> 0,

s∑
i=1

pi

π
= 1,

and Iα(A‖P) be the Rényi’s divergence of A based on P,

Iα(A‖P) =
1

α − 1
log2

(
s∑

i=1

(ai

h

)α (pi

π

)1−α
)

, α > 0, α 6= 1.

Since the Rényi’s entropy with respect to U is transformed into

Hα(U) = − 1
α − 1

log2

(
s∑

i=1

(ai

h

)α (pi

π

)1−α
)

+ log2 π,

we have the following relationship:

Hα(U) + Iα(A‖P) = log2 π, α > 0, α 6= 1.

Note that, when α = 1, I1(A‖P) is the Kullback-Leibler divergence of A based on P.
Thus [3] shows that the maximization of the Rényi’s entropy Hα(U) is equivalent to the
minimization of the Rényi’s divergence Iα(A‖P), so that the problem (3.2) to obtain the
apportionment a maximizing the Rényi’s entropy is reformulated as

(3.3) min
a

Fα(a) subject to a(S) = h, ai ∈ N0 (i ∈ S),
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where

(3.4) Fα(a) =


1

α − 1

s∑
i=1

aα
i p1−α

i , α > 0, α 6= 1,

s∑
i=1

ai log2

ai

pi
, α = 1.

Let α 6= 1. Fα(a) is reformulated by Fα(a) =
∑s

i=1 fi(ai), where fi(ai) = aα
i /((α−1)pα−1

i )
and the difference of {fi(ai)} which are strictly convex is

(3.5) ui(ai) = fi(ai + 1) − fi(ai) =
(ai + 1)α − aα

i

(α − 1) pα−1
i

,

so that it is a strictly increasing function of ai and fi(ai) =
∑ai−1

k=0 ui(k). For the set
F = {a | a(S) = h; ai ∈ N0 (i ∈ S)}, a set of integer vector a is defined by

(3.6) A =
{

a

∣∣∣∣ max
i∈S|ai≥1

{ui(ai − 1)} ≤ min
j∈S

{uj(aj)} ; a ∈ F

}
.

For α = 1, we define the followings:

fi(ai) = ai log2

ai

pi
, ui(ai) = log2

(ai + 1)ai+1

aai
i pi

.

[3] shows that, for α > 0, a is the optimal solution of the problem (3.3) if and only if a ∈ A.
For the set A which is characterized by the differences {ui(ai)}, we have rewritten forms

ui(ai) =


α

α − 1

(
d(ai)
pi

)α−1

,

log2

d(ai)
pi

+ log2 e,

d(ai) =


(

(ai + 1)α − aα
i

α

) 1
α−1

, (α 6= 1, α > 0),

1
e

(ai + 1)ai+1

aai
i

, (α = 1),

so that the set A (3.6) is characterized by both the rounding function d(ai) and the ratios
d(ai)/pi like the set A0 (2.1). [3] shows that an apportionment method maximizing the
Rényi’s entropy Hα(U) (α > 0) is a divisor method.

The value of a voter ai/pi means the number of seats per person in the state because the
allocated seats in the state i is ai. On the other hand, we can also consider an apportionment
which satisfies the equality of pi/ai, which means the population per seat, i.e., the size of
constituency. In this case ai ≥ 1 is assumed, which guarantees that every state has at least
one seat. We regard pi/(πai) as a probability whose distribution is

W =


a1︷ ︸︸ ︷

p1

πa1
, . . . ,

p1

πa1
, . . . ,

as︷ ︸︸ ︷
ps

πas
, . . . ,

ps

πas

 ,

so that the Rényi’s entropy with respect to an index β is as follows:

Hβ(W) =


1

1 − β
log2

(
s∑

i=1

(
pi

π ai

)β

ai

)
, (β > 0, β 6= 1),

−
s∑

i=1

(
pi

π
log2

pi

π ai

)
, (β = 1).
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As a similar way in the value of a voter, the Rényi’s divergence of P based on A is

Iβ(P ‖A) =
1

β − 1
log2

(
s∑

i=1

(pi

π

)β (ai

h

)1−β
)

, β > 0, β 6= 1

and we have the following relationship:

Hβ(W) + Iβ(P ‖A) = log2 h, β > 0, β 6= 1.

Note that, when β = 1, I1(P ‖A) is the Kullback-Leibler divergence of P based on A.
The problem (3.2) to obtain the apportionment a = (a1, a2, . . . , as) maximizing the Rényi’s
entropy is reformulated as

(3.7) min
a

Fβ(a) subject to a(S) = h, ai ∈ N (i ∈ S),

where N = {1, 2, . . .} and

(3.8) Fβ(a) =


1

β − 1

s∑
i=1

pβ
i a1−β

i , β > 0, β 6= 1,

s∑
i=1

pi log2

pi

ai
, β = 1.

As the same way, we obtain the optimal set for the problem (3.7) and that an apportionment
method based on the optimal set is a divisor method. In this case, the rounding function
for ai ∈ N is

d(ai) =


(

(ai + 1)1−β − a1−β
i

1 − β

)− 1
β

, β 6= 0, 1,

1
log((ai + 1)/ai)

, β = 1.

[3] shows that an apportionment method maximizing the Rényi’s entropy Hβ(W) (β > 0)
is a divisor method and that the following relationship between an apportionment method
maximizing the Rényi’s entropy and the six popular divisor methods:

α > 0 α = 1 α = 2 α → ∞
d(a) (a+1)a+1

e aa a + 0.5 a + 1
method Theil Webster Jefferson
β > 0 β = 1 β = 2 β → ∞
d(a) 1

log((a+1)/a)

√
a(a + 1) a

method Theil & Schrage Hill Adams

4 A criterion on apportionment methods We understand that an apportionment
method minimizing the Rényi’s divergence is a divisor method and we have a question as
follows: Which value in α or β should we use in the apportionment method as the best
choice?

Before selecting the best value α, β, we consider properties of the Rényi’s divergence.

LEMMA 4.1 For Iα(Â‖P) given Â with α 6= 1, Iα(Â‖P) is a monotone-increasing function
with respect to α.
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Proof: Since

Iα(Â‖P) =
1

α − 1
log2 G(α) =

log G(α)
(α − 1) log 2

where

G(α) =
s∑

i=1

(ai

h

)α (pi

π

)1−α

=
s∑

i=1

(
ai

h

π

pi

)α
pi

π
,

the derivative of G(α) with respect to α is

Ġ(α) =
∂

∂ α
G(α) =

s∑
i=1

(
ai

h

π

pi

)α
pi

π
· log

(
ai

h

π

pi

)
.

Letting

gi(α) =
(

ai

h

π

pi

)α−1
ai

h

gives the relationships as follows:

G(α) =
s∑

i=1

gi(α) and Ġ(α) =
s∑

i=1

gi(α) · log
(

ai

h

π

pi

)
,

so that the derivative of Iα(Â‖P) with respect to α is

(4.9)
∂

∂ α
Iα(Â‖P) =

Ġ(α)(α − 1) − G(α) log G(α)
G(α) (α − 1)2 log 2

.

Since the denominator is positive without α = 1 and the property of Kullback-Leibler
divergence, the numerator is

Ġ(α)(α − 1) − G(α) log(G(α)) =
s∑

i=1

gi(α)
[
(α − 1) log

(
ai

h

π

pi

)
− log(G(α))

]

=
s∑

i=1

gi(α)

[
log

(
ai

h

π

pi

)α−1

+ log
ai

h
− log

ai

h
− log(G(α))

]

=
s∑

i=1

gi(α)
[
log gi(α) − log

ai

h
− log(G(α))

]
=

s∑
i=1

gi(α)
[
log

gi(α)
G(α)

− log
ai

h

]

= G(α)
s∑

i=1

gi(α)
G(α)

[
log

gi(α)
G(α)

− log
ai

h

]
≥ 0,(4.10)

so that the Rényi’s divergence Iα(Â‖P) given Â is a monotone-increasing function of α. 2

This means that the Rényi’s divergence itself does not work as a criterion to choose the
best index α. Then, in order to improve the Rényi’s divergence as a criterion, we will use
a kind of shrinkage function as follows:

(4.11) r(α) =
(

1
α

)α−1
α

(α > 0),

which is a unimodal which is less than or equal to 1 and maximizes at α = 1.
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PROPOSITION 4.1 Combining the monotonicity of the Rényi’s divergence Iα(A‖P) and
the unimodality of the shrinkage function (4.11) with respect to α, we propose a following
criterion based on the Rényi’s divergence:

IC(α) :=
1

α − 1
log2

(
s∑

i=1

(ai

h

)α (pi

π

)1−α

r(α)

)

= Iα(A‖P) + log2

(
1
α

) 1
α

.(4.12)

The second term in (4.12) is interpreted as a penalty term, which is monotone-decreasing
as α goes to exp(1) and is monotone-increasing as α goes from exp(1) to the infinity. 2

We might consider that this formulation (4.12) is very similar to a usual information criterion
which consists of both the likelihood and the penalty term, but the second term in this
formulation corresponding to the penalty term is not the dimension of parameters, so that
this formulation is not an information criterion exactly. It is, however, useful to obtain the
index α which minimizes this criterion IC(α) given Â and we can use a following algorithm
to obtain an appropriate index α and the appropriate apportionment.

With respect to the seat per voter:

• (Step 1) We choose arbitrary α > 0, put it α̂, and set a permissible error ε > 0.

• (Step 2) For α̂ > 0, we determine an allocated seats Â minimizing the Rényi’s diver-
gence:

Â = arg min
A

Iα̂(A‖P).

• (Step 3) We determine an index α̃ minimizing our proposed criterion:

α̃ = arg min
α

IC(α) = arg min
α

(
Iα(Â‖P) + log2

(
1
α

) 1
α

)
.

• (Step 4) If |α̂ − α̃| < ε, we output Â as a desired allocation. Otherwise, we replace α̃
with α̂ and go to (Step 2).

With respect to the population per seat:
As the same way with respect to the seat per voter, we determine β̃ minimizing our

proposed criterion:

β̃ = arg min
β

IC(β) = arg min
β

(
Iβ(P‖Â) + log2

(
1
β

) 1
β

)
.

THEOREM 4.1 For our proposed criterion IC(α), there exists α (0 < α < exp(1), α 6= 1)
such that it attains the minimum of IC(α). As the same way, it holds for IC(β) (0 < β <
exp(1), β 6= 1).
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Proof: From (4.9) and (4.10), the derivative of our proposed criterion IC(α) is

∂

∂ α
IC(α) =

Ġ(α)
G(α) (α − 1) − log(G(α))

(α − 1)2 log 2
− 1 − log α

α2 log 2

=
α2 γ(α) + (α − 1)2(log α − 1)

α2 (α − 1)2 log 2
,

where

γ(α) =
s∑

i=1

gi(α)
G(α)

[
log

gi(α)
G(α)

− log
ai

h

]
≥ 0,

so that the solution of ∂IC(α)/∂α = 0 is α which satisfies the equation

(
α

α − 1

)2

γ(α) = 1 − log α for 0 < α < exp(1), α 6= 1.

Note that ∂IC(α)/∂α ≥ 0 for α ≥ exp(1). As the same way for IC(β), we put the terms
as follows:

G̃(β) =
s∑

i=1

(pi

π

)β (ai

h

)1−β

=
s∑

i=1

(
pi

π

h

ai

)β−1
pi

π
,

g̃i(β) =
(

pi

π

h

ai

)β−1
pi

π
,

˙̃G(β) =
∂

∂ β
G̃(β) =

s∑
i=1

g̃i(β) log
(

pi

π

h

ai

)
,

γ̃(β) =
s∑

i=1

g̃i(β)
G̃(β)

[
log

g̃i(β)
G̃(β)

− log
pi

π

]
≥ 0,

so that we have the similar result for 0 < β < exp(1), β 6= 1. 2

5 The single-seat constituencies of the Japanese Diet We consider the single-seat
constituencies of the Japanese Diet based on 47 prefectures’ population and voters in 2011.
The Japanese Diet consists of the House of Representatives and the House of Councillors.
The total seats in the former is 295 and that in the latter is 73 every reelection. The
High Courts in Japan adjudges that the election of the House of Representatives in 2012
is unconstitutional under the present allocation with respect to the size of constituency.
For this problem, we show the best solution under our proposed criterion in Table 1 which
includes the results by the Webster and Hill methods for reference.
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Table 1: Estimated seats by our proposed criterion: The term ’all’ means the population
in thousands and and ’voter’ the voter in thousands. In the estimation, the term ’est.a’ in
the middle area in the 295 seats is an estimation with α̂ = 2.7 and IC(α̂) = −0.52308, ’a2’
is an estimation with α = 2, ’est.b’ with β̂ = 2.7 and IC(β̂) = −0.52321, and ’b2’ is an
estimation with β = 2. The term ’est.a’ in the right area in the 73 seats is an estimation
with α̂ = 2.4 and IC(α̂) = −0.399774, ’a2’ is an estimation with α = 2 which is the Webster
method, ’est.b’ with β̂ = 2.3 and IC(β̂) = −0.388826, and ’b2’ is an estimation with β = 2
which is the Hill method. Bold figures in the table indicate the difference of seats between
IC(α̂) and IC(β̂).

Prefecture all voter seat est.a a2 est.b b2 seat.C est.a a2 est.b b2
Hokkaido 5486 4582 12 13 13 13 13 2 3 3 3 3
Aomori 1363 1127 4 3 3 3 3 1 1 1 1 1
Iwate 1314 1083 4 3 3 3 3 1 1 1 1 1
Miyagi 2327 1908 6 5 5 5 5 2 1 1 1 1
Akita 1075 906 3 2 2 3 3 1 1 1 1 1
Yamagata 1161 957 3 3 3 3 3 1 1 1 1 1
Fukushima 1990 1624 5 5 5 5 5 1 1 1 1 1
Ibaraki 2958 2417 7 7 7 7 7 2 2 2 2 2
Tochigi 2000 1638 5 5 5 5 5 1 1 1 1 1
Gumma 2001 1629 5 5 5 5 5 1 1 1 1 1
Saitama 7207 5908 15 17 17 16 16 3 4 4 4 4
Chiba 6214 5127 13 14 14 14 14 3 4 4 3 3
Tokyo 13196 11173 25 30 30 30 30 5 8 8 6 6
Kanagawa 9058 7461 18 21 21 21 21 4 5 5 4 4
Niigata 2362 1949 6 5 5 5 5 2 1 1 1 1
Toyama 1088 898 3 3 3 3 3 1 1 1 1 1
Ishikawa 1166 951 3 3 3 3 3 1 1 1 1 1
Fukui 803 652 2 2 2 2 2 1 0 0 1 1
Yamanashi 857 699 2 2 2 2 2 1 0 0 1 1
Nagano 2142 1747 5 5 5 5 5 2 1 1 1 1
Gifu 2071 1681 5 5 5 5 5 1 1 1 1 1
Shizuoka 3749 3066 8 9 9 9 9 2 2 2 2 2
Aichi 7416 5992 15 17 17 17 17 3 4 4 4 4
Mie 1847 1505 5 4 4 4 4 1 1 1 1 1
Shiga 1414 1130 4 3 3 3 3 1 1 1 1 1
Kyoto 2632 2173 6 6 6 6 6 2 1 1 1 1
Osaka 8861 7283 19 20 20 20 20 4 5 5 4 4
Hyogo 5582 4554 12 13 13 13 13 2 3 3 3 3
Nara 1396 1142 4 3 3 3 3 1 1 1 1 1
Wakayama 995 820 3 2 2 2 2 1 1 1 1 1
Tottori 585 478 2 1 1 1 1 1 0 0 1 1
Shimane 712 587 2 2 2 2 2 1 0 0 1 1
Okayama 1941 1582 5 4 4 4 4 1 1 1 1 1
Hiroshima 2855 2332 7 7 7 7 7 2 2 2 1 1
Yamaguchi 1442 1193 4 3 3 3 3 1 1 1 1 1
Tokushima 780 649 2 2 2 2 2 1 0 0 1 1
Kagawa 992 814 3 2 2 2 2 1 1 1 1 1
Ehime 1423 1171 4 3 3 3 3 1 1 1 1 1
Kochi 758 631 2 2 2 2 2 1 0 0 1 1
Fukuoka 5079 4140 11 12 12 12 12 2 3 3 2 2
Saga 847 679 2 2 2 2 2 1 0 0 1 1
Nagasaki 1417 1154 4 3 3 3 3 1 1 1 1 1
Kumamoto 1813 1474 5 4 4 4 4 1 1 1 1 1
Oita 1191 979 3 3 3 3 3 1 1 1 1 1
Miyazaki 1131 916 3 3 3 3 3 1 1 1 1 1
Kagoshima 1699 1382 5 4 4 4 4 1 1 1 1 1
Okinawa 1401 1068 4 3 3 3 3 1 1 1 1 1
total 127797 105011 295 295 295 295 295 73 73 73 73 73

In this Japanese case, the indexes α, β which are obtained by our criterion IC(α), IC(β) are
equivalent to those corresponding to the famous Webster and Hill apportionment methods.
Thus we could consider that our criterion as a unified method is appropriate among the
famous apportionment methods.



402 E. KUMAGAI

6 Conclusion Based on the Rényi’s entropy corresponding to the previous famous ap-
portionment methods, we propose a criterion IC(α), IC(β) in order to select the best index
α, β given an allocated seats, respectively, and an algorithm to select the totally best index.
Under this criterion, we obtain appropriate seats in the single-seat constituencies of the
Japanese Diet.

We might need more theoretical derivation with respect to our criterion because this
does not exactly correspond to a usual information criterion.
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Abstract. This paper is devoted to investigating quantitatively the ODE model
for fish schooling which was introduced in the paper [15]. First, we will study how
each parameter in the model equations contributes to the geometrical structure of the
school created by fish such as school diameter, connectedness, graph, etc. Second,
we will concentrate on studying effects of the noise imposed to the model equations.
In particular, it will be shown that, if the noise’s magnitude is larger than a certain
threshold, then fish can no longer form a school.

1 Introduction In the preceding paper [15], we have introduced an ordinary differential
equation model:

(1.1)



dxi(t) = vidt + σidwi(t), i = 1, 2, . . . , N,

dvi(t) =
[
−α

N∑
j=1, j 6=i

(
rp

‖xi − xj‖p
− rq

‖xi − xj‖q

)
(xi − xj)

−β
N∑

j=1, j 6=i

(
rp

‖xi − xj‖p
+

rq

‖xi − xj‖q

)
(vi − vj)

+Fi(t, xi, vi)
]
dt, i = 1, 2, . . . , N,

for describing the process of schooling of N -fish system. Each fish is regarded as a moving
particle in the Euclidean space Rd, where d = 2 or 3. The unknown xi(t) is a stochastic
process with values in Rd denoting a position of the i-th fish of system at time t; meanwhile,
vi(t) is a stochastic process with values in Rd denoting a velocity of the i-th fish at time t.
The fish are allowed to swim in the unbounded, continuous and homogeneous space Rd.

The first equations of (1.1) are stochastic equations concerning xi, where σidwi denote
noise resulting from the imperfectness of information-gathering and action of the i-th fish.
In fact, {wi(t), t > 0} (i = 1, 2, ..., N) are independent d-dimensional Brownian motions
defined on a complete probability space with filtration (Ω, F, {Ft}t>0, P) satisfying the usual
conditions. The second equations are deterministic equations on vi, where 1 < p < q < ∞
are fixed exponents, α, β are positive coefficients for interaction between fish and velocity
matching, respectively, and r > 0 is a fixed distance. Since 1 < p < q < ∞, if ‖xi −xj‖ > r
then the i-th fish moves toward the j-th; to the contrary, if ‖xi − xj‖ < r, then the i-th
fish acts in order to avoid collision with the j-th fish. The number r > 0 therefore denotes
a critical distance. Finally, the functions Fi(t, xi, vi) denote external forces at time t which
are given functions defined for (xi, vi) with values in Rd. It is assumed that Fi(t, xi, vi)
(i = 1, 2, . . . , N) are locally Lipschitz continuous. In building up such a differential equation
model we have referred to the fish’s behavioral rules:

2010 Mathematics Subject Classification. Primary 60H10; Secondary 82C22.
Key words and phrases. Fish schooling, Geometrical structure, Ordinary differential equations, Particle

systems.
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1. The school has no leaders and each fish follows the same behavioral rules.

2. To decide where to move, each fish uses some form of weighted average of the position
and orientation of its nearest neighbors.

3. There is a degree of uncertainty in the individual’s behavior that reflects both the
imperfect information-gathering ability of a fish and the imperfect execution of the
fish’s actions.

introduced by Camazine-Deneubourg-Franks-Sneyd-Theraulaz-Bonabeau [4, Chapter 11].
We have also referred to the idea due to Reynolds [14]. For the details, however, consult
the paper [15].

The objective of the present paper is to investigate geometrical structures of the fish
school when the fish move by obeying the kinematic equations (1.1) and create a swarm.
For this purpose, we intend to introduce several quantitative notions: Distance to School
Mates, Minimum Distance, Mean Distance to School Mates, Diameter of School, Variance
of Velocity, and ε-Graph, to measure the geometrical structure of school. We in addition
introduce a notion of ε-schooling where ε is fixed almost equally to r. We then perform many
numerical computations to clarify effects of each parameter or exponent of the equations
in determining geometry of structures of school. These will be presented in Section 2 with
absence of noise. Next, in Section 3, we focus on studying effects of the noise which is an
indispensable factor in the real world.

Empirical study on fish schooling has been done in [1, 3, 5, 8, 13]. As for the theoretical
approach we want to quote [7, 10, 11, 16]. Vicsek et al. [16] introduced a simple difference
model, assuming that each particle is driven with a constant absolute velocity and the
average direction of motion of the particles in its neighborhood together with some random
perturbation. Oboshi et al. [10] presented another difference model in which an individual
selects one basic behavioral pattern from four based on the distance between it and its
nearest neighbor. Olfati-Saber [11] and D´Orsogna et al. [7] constructed deterministic
differential models using a generalized Morse and attractive/repulsive potential functions,
respectively. We use the ODE model mentioned above. Such a model can describe the fish’s
behavior precisely. Moreover, an ODE model is tractable for making numerical simulations.
In this paper, we will use the Euler scheme for stochastic differential equations which has
been introduced by Kloeden and Platen [6].

2 Various Measures for Geometrical Structures In this section we want to intro-
duce various measures to study the geometrical structures of school. Using these measures
we will also clarify contributions of exponents and parameters included in (1.1) to the
geometrical structure of school by examining many numerical examples.

For simplicity, we consider throughout this section the deterministic case, i.e., σi = 0
for all i. Therefore, (xi(t), vi(t)) denotes a trajectory of the i-th fish in the phase space
Rd × Rd.

2.1 Distance to School Mates For each fish i, put

DSi(t) = min
16j6N, j 6=i

‖xj(t) − xi(t)‖, 0 < t < ∞, i = 1, 2, . . . , N.

By definition, DSi(t) denotes the distance between the i-th individual to its nearest mates
at time t. We call DSi(t) the distance of i to the school mates. It is observed that DSi(t)
depends on the position xi(t) considerably. If xi(t) is near the center of school, i.e., x̄(t) =
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1
N

N∑
j=1

xi(t), then DSi(t) is much smaller than r; on the contrary, if xi(t) is in the periphery

of school, then DSi(t) can be almost equal to the maximum value r.
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Figure 1: Dependence of MiDS on the exponent p

2.2 Minimum Distance We define

MiDS(t) = min
16i6N

DSi(t), 0 < t < ∞,

and call this value the minimum distance of school. This is the nearest distance between
two fish in a group of N individuals at time t. Basically, MiDS(t) is dependent on r. But,
it is seen that MiDS(t) depends on the exponents p and q, too. For example, we have

lim
p→∞

MiDS(T ) = r,

provided that T is a sufficiently large time. That is the nearest distance tends to the critical
distance as power p tends to infinity for sufficiently large time T . By simulations, we shall
find such a relationship between r and MiDS(T ).

We consider a 100-fish system in the 2-dimensional space with Fi = −5.0vi, which is
often used to present the resistance against the moving particles. We fix two initial positions
for two examples of 100-individual system (the initial positions xi(0), 1 6 i 6 100, are
randomly distributed in the square domain [0, 10]2 ⊂ R2) with all null initial velocities
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vi = (0, 0), (1 6 i 6 100). Taking the critical distance r = 1 for the first example and
r = 0.5 for the second, we tune the exponent p from 1 to 12 and always keep the relation
q = p + 1. Other parameters are chosen as follows: α = 1, β = 0.5, step size δ = 0.001.
The result is got after 30.000 running steps, that is at time T = 30. Figure 1 illustrates
dependence of MiDS(T) on the exponent p.

Remark 2.1. The model we consider contains many parameters, but we can find that the
powers p and q are especially meaningful. p and q are concerned with a range of interactions
among fish. As p and q increase, the range shortens and approaches sharply to the critical
length r, namely, if ‖xi−xj‖ > r the attraction between i and j is weak and if ‖xi−xj‖ < r
the repulsive is very strong. ¤

In order to simplify our arguments, in what follows, we will always take q so that
q = p+1. This assures the condition q > p in modeling and the difference is similar to that
of the Van der Waals and the Newton’s law, where p = 3 and q = 4.
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Figure 2: Dependence of MDS on the total number of fish

2.3 Mean Distance to School Mates We consider the mean of DSi(t), i.e.,

MDS(t) =
1
N

N∑
i=1

DSi(t), 0 < t < ∞.
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This quantity is called the mean distance of school mates and is one of quantitative measures
which are used to study the internal structure of the fish school.

It may be a very interesting question to know how MDS(t) depends on the total number
of fish. In order to examine this, we consider an N -fish system in the 3-dimensional space
with Fi = −5.0vi, 1 6 i 6 N . Let α = 5, β = 1, p = 3, q = 4 and r = 0.5. We take various
values N between 20 and 200. Initial positions xi(0), 1 6 i 6 N , are randomly distributed
in the cubic domain [0, 20]3 with all null initial velocities vi(0) = (0, 0, 0). The time T is
fixed as T = 120 throughout the simulations. Figure 2 then shows dependence of MDS(T)
on the total number N . In order to reduce the effect of the random initial positions to
the result, for each value of N , we run 10 simulations each with different random initial
positions in [0, 20]3 ⊂ R3. The mean distance for each N is drawn by a cross ×. After that
we take the mean value of these and then interpolate these values by a smooth curve.

As seen, MDS(T ) decreases monotonically as N increases. This means that the school
becomes “more condensed” as N is larger. This agrees with the results stated in a number
of works, such as [2, 8, 9, 12] in which the authors show that the mean distance to school
mates decreases as a function of the number of fish. From Figure 2, we also see that the
range of the simulation results for MDS decreases as N increases.
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Figure 3: Dependence of MDS and δS on the critical distance r

2.4 Diameter of School The diameter of school is defined by

δS(t) = sup
16i6N

‖xi(t) − x̄(t)‖, 0 < t < ∞,

where x̄(t) = 1
N

N∑
i=1

xi(t) is the center of the group at time t.
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The diameter of school is, by definition, the radius of the minimal ball centered at x̄(t)
and containing all the individuals at time t.

The following numerical example shows that MDS(T ) and δS(T ) are linearly dependent
on r for sufficiently large time T . We consider a 50-fish system in the 3-dimensional space
with Fi = −5vi. Let α = 5, β = 1, p = 3 with q = p + 1. Now, r is a tuning parameter
which varies from 0.5 to 2. Initial positions xi(0), 1 6 i 6 50, are randomly distributed in
the cubic domain [0, 20]3 with null initial velocities vi(0) = (0, 0, 0). The time T is fixed as
T = 150. Figure 3 then illustrated the dependence of MDS(T ) and δS(T ) on the critical
distance r. The plots of these values are approximately on linear lines δS(T ) = ar and
MDS(T ) = br, respectively. In this parameter setting we observe that a = 1.18984 and
b = 0.60158.
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Figure 4: Dependence of δS on the total number N

How does δS(T ) respond when the total number N increases? To examine this question,
we consider an N -fish system in the 2 or 3-dimensional space with Fi = −5.0vi, and set
α = 1, β = 0.5, p = 3, q = p + 1, r = 1 and T = 20. As stated before, in order to simplify
the arguments, each value shown in the figure is calculated by taking the mean value of the
corresponding values for 10 simulations with different initial positions. Figure 4 shows that
the diameter of school typically increases with the fish number. This is generally true in
animal flocks, cf. also [7].

By observing the figure we find that the slope of the school radius as function of N is
larger when p becomes larger.
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2.5 Variance of Velocity In order to measure matching of velocity each other, we will
use the ordinary variance

σVS(t) =

√√√√ 1
N

N∑
i=1

‖vi(t) − v̄(t)‖2, 0 < t < ∞,

where v̄(t) = 1
N

N∑
i=1

vi(t) is the average of all velocities of fish at time t.
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Figure 5: Effect of the total number N for Nε

2.6 ε-Graph of School We finally introduce the ε-graph. Let ε > 0 be a fixed length.
The vertices of graph at time t are all the positions of particles, xi(t), 1 6 i 6 N . Two
vertices xi(t) and xj(t) are connected by the edge of graph if and only if ‖xi(t)−xj(t)‖ 6 ε.
This graph is called the ε-graph of school at time t and is denoted by GSε(t). We also
denote by Nε(t) the number of connected components of GSε(t). When Nε(t) = 1, we
consider that the fish have created a school with max

16i6N
DSi(t) 6 ε. If Nε(t) > 2, Nε(t)

denotes the number of sub-schools.

Let us now examine effects of the total population N on Nε(t) for sufficiently large time
t. To create a single school, N must be sufficiently large. To see this fact, consider an
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N -fish system in the 2-dimensional space with Fi = −5.0vi. Let α = 1, β = 0.5, p = 4,
q = p + 1, r = ε = 0.5. Initial positions xi(0), 1 6 i 6 N , are randomly distributed in
[0, 10]2 with null initial velocities vi(0) = (0, 0). The population number N changes from 20
to 50. Figure 5 illustrates the graph GS0.5(400) for each N . Up to N = 39, N0.5(400) > 2
and so the fish are divided into a few sub-schools. But after a threshold number N = 40,
they can create a single school.

3 Robustness of ε, θ-Schooling against Noise In this section, we consider the stochas-
tic model (1.1). Under σi > 0, we want to study how the terms σidwi(t) affect the geomet-
rical structure of school. Can the fish system still create a school?

Let us here give a mathematical definition of school.

Definition 3.1 (ε, θ-Schooling). For a given length ε > 0 and a tolerance θ > 0, we say
that the fish system is in ε, θ-schooling if there exists a time T > 0 such that Nε(t) = 1 and
σV S(t) < θ for every t > T .

According to the above definition, a system forms a school only if velocities of all the
fish tend to their average with the error less than tolerance θ. Therefore, the distance
‖xi(t) − xj(t)‖ between any pair (i, j) will almost remain unchanged for t > T . So, the
school structure remains unchanged, too. The second condition ensures that all the fish
keep the relation DSi(t) 6 ε for t > T . As a consequence, Nε(t) = 1 remains to hold for
t > T .

Assume that a system is in ε, θ-schooling for t > T . According to Remark 2.1 (cf. also
Figure 1), if ‖xi(t)− xj(t)‖ > ε, then i and j keep their distance far away and consquently

(3.1)
(

rp

‖xi(t) − xj(t)‖p
− rq

‖xi(t) − xj(t)‖q

)
(xi(t) − xj(t))

is sufficiently small. In the meantime, if ‖xi(t) − xj(t)‖ ≈ ε, then their distance is ‖xi(t) −
xj(t)‖ ≈ r and consequently (3.1) is again sufficiently small. In addition, it is clear that(

rp

‖xi(t) − xj(t)‖p
+

rq

‖xi(t) − xj(t)‖q

)
(vi(t) − vj(t))

is sufficiently small because of ‖vi(t) − vj(t)‖ ≈ 0. We thus verify that

n∑
i=1

dvi ≈
N∑

i=1

Fi(t, xi, vi)dt.

In particular, if we take Fi(t, xi, vi) = −cvi (1 6 i 6 N), then

N∑
i=1

dvi ≈ −c

(
N∑

i=1

vi

)
dt.

Consequently,
N∑

i=1

vi(t) decays exponentially as t → ∞ and the system converges to a steady

state.

Figure 6 shows an example of ε, θ-schooling generated by (1.1). 100 fish are situated at
random positions in [0, 10]2 ⊂ R2 with null velocities at time t = 0. Then they interact
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Figure 6: Example of ε, θ-schooling

with each other with α = 5, β = 1, p = 3, q = 4, r = 0.5, σ = 0, Fi = −5vi, (1 6 i 6 100),
we set ε = 0.5 = r and θ = 10−6.

In the first three subfigures, we show ε-graphs of the system at different instants t. Each
of these figure shows the positions of fish by points, their velocities by vectors and ε-graph
edges by lines. The last subfigure draws the variance of velocity and the radius of school as
functions of t.

Of course whether a system creates a school or not depends strongly on initial posi-
tions. It is also observed that 3-dimensional systems can create schools much easier than
2-dimensional ones.

Let us next study effects of the noise. We set σi(t) = σ, for i = 1, 2, . . . , N. Simulations
are implemented in the 3-dimensional space. We fix initial positions taking randomly in
[0, 5]3 ⊂ R3 with 50 fish, run 10 simulations with different realizations of the Wiener process
for each value of σ. We observe the end point of each trajectories of σVS(T ) and δS(T ) at
T = 50. Other parameters are set as p = 3, q = p + 1, α = 5, β = 1, r = 0.5, Fi = −5.0vi,
step size δ = 0.001. Figure 7 shows that the fish can keep schooling against the noises when
their magnitude σ is small enough. To the contrary, when it is large, the noises prevent the
fish from creating a single school. It might be allowed, however, to insist that the swarming
behavior described by our model (1.1) possesses the robustness for schooling. Figure 8
shows the expectation of school diameter as a function of σ. From this figure, too, we can
find a similar tendency.
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Figure 7: Influence of the noise magnitude σ for schooling
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LOWER DECAY ESTIMATES FOR NON-DEGENERATE
DISSIPATIVE WAVE EQUATIONS OF KIRCHHOFF TYPE
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Abstract. Consider the initial-boundary value problem for non-degenerate dissipa-
tive wave equations of Kirchhoff type. Using the energy method, we see that the
energies have exponential decay rates. Also, we show that the decay rates from below
of the solutions are exponentially.

1 Introduction In this paper, we study on the asymptotic behavior of solutions to the
initial boundary value problem for the following non-degenerate dissipative wave equations
of Kirchhoff type :

ρu′′ +
(
1 + ‖A1/2u(t)‖2γ

)
Au + u′ = 0 in Ω × (0,∞)

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω
u(x, t) = 0 on ∂Ω × (0,∞) ,

(1.1)

where u = u(x, t) is an unknown real value function, Ω is a bounded domain in RN with
smooth boundary ∂Ω, ′ = ∂/∂t, A = −∆ = −

∑N
j=1 ∂2/∂x2

j is the Laplace operator with
the domain D(A) = H2(Ω) ∩ H1

0 (Ω), ‖ · ‖ is the usual norm of L2 = L2(Ω), and 0 < ρ ≤ 1
and γ > 0 are constants.

In the case of N = 1, Equation (1.1) describes a small amplitude vibration of an elastic
string (see Kichhoff [7] for the original equation ; also see [4], [5], [10]).

Many authors have shown the local in time solvability for initial data in suitable Sobolev
spaces (see [1], [2], [6], [18], [19]).

By help of dissipation we can show the global in time solvability for initial data in certain
Sobolev spaces (see [3], [17] for small data and γ ≥ 1), and we can derive some exponential
decay estimates for energies.

In previous paper [13], when γ ≥ 1, we have derive some exponential decay estimates,
that is,

‖Au(t)‖2 + ‖A1/2u′(t)‖2 + ‖u′′(t)‖2 ≤ Ce−θt

with some constant θ > 0 under the small data condition (see Theorem 5.1).
Ghisi and Gobbino [9] have given some decay estimates of the solutions of (1.1) :

C ′e−θ2t ≤ ‖A1/2u(t)‖2 ≤ Ce−θ1t ,

C ′e−θ2t ≤ ‖Au(t)‖2 ≤ Ce−θ1t ,

‖u′(t)‖2 ≤ Ce−θt for t ≥ 0 .

2010 Mathematics Subject Classification. Primary 35L20; Secondary 35B40.
Key words and phrases. Kirchhoff strings, dissipative wave equations, decay rates.
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under the smallness condition for the coefficient ρ > 0. However, from their results we
can not know the lower decay estimate of the norm ‖u(t)‖2 (cf. [8], [9], [11], [14] and the
references cited therein for mildly degenerate cases).

The purpose of this paper is to give the condition for the global solvability of (1.1) for
any γ > 0 (see Theorem 3.1), and to derive a lower decay estimate of the L2 norm of the
solution u(t) (see Theorem 4.6).

The notations we use in this paper are standard. The symbol (·, ·) means the inner
product in L2 = L2(Ω) or sometimes duality between the space X and its dual X ′. Positive
constants will be denoted by C and will change from line to line.

2 A-priori Estimate By applying the Banach contraction mapping theorem, we obtain
the following local existence theorem. The proof is standard and we omit it here (see [1],
[2], [15], [16]).

Proposition 2.1 If the initial data [u0, u1] belong to D(A) × D(A1/2), then the problem
(1.1) admits a unique local solution u(t) in the lass C0([0, T );D(A))∩C1([0, T );D(A1/2))∩
C0([0, T );L2(Ω)) for some T = T (‖Au0‖ , ‖A1/2u1‖) > 0. Moreover, ‖Au(t)‖+ ‖A1/2u(t)‖
< ∞ for t ≥ 0, then we can take T = ∞.

In what follows in this section, let u(t) be a solution of (1.1) and we assume that

ρ
|M ′(t)|
M(t)

≤ 1
γ + 1

.(2.1)

By fundamental calculation, we have the energy identity

d

dt
E(t) + 2‖u′(t)‖2 = 0 or E(t) + 2

∫ t

0

‖u′(s)‖2 ds = E(0) ,(2.2)

where E(t) is defined by

E(t) ≡ ρ‖u′(t)‖2 +
(

1 +
1

γ + 1
M(t)γ

)
M(t) with M(t) ≡ ‖A1/2u(t)‖2 .(2.3)

Proposition 2.2 Under the assumption (2.1), it holds that

‖Au(t)‖2

M(t)
≤ G(t) ≤ G(0)(2.4)

where

G(t) ≡ ‖Au(t)‖2

M(t)
+ ρQ(t) ,(2.5)

Q(t) ≡ 1
(1 + M(t)γ)M(t)2

(
‖A1/2u′(t)‖2M(t) − 1

4
|M ′(t)|2

)
.(2.6)
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Proof. From Equation (1.1) we observe

d

dt

‖Au(t)‖2

M(t)

=
1

(1 + M(t)γ)M(t)2
(2 ((1 + M(t)γ)Au,Au′)M(t) − ((1 + M(t)γ)Au,Au)M ′(t))

=
−1

(1 + M(t)γ)M(t)2

(
2

(
‖A1/2u′(t)‖2 + ρ(A1/2u′′, A1/2u′)

)
M(t)

−
(

1
2
|M ′(t)|2 + ρ

(
‖A1/2u′(t)‖2 − 1

2
M ′′(t)

)
M ′(t)

) )

= −2Q(t) + ρR(t)
(2.7)

where

R(t) ≡ 1
(1 + M(t)γ)M(t)2

(
2(A1/2u′′, A1/2u′)M(t) +

(
‖A1/2u′(t)‖2 − 1

2
M ′′(t)

)
M ′(t)

)
.

On the other hand, by simple calculation we have

d

dt
Q(t) = −M ′(t)

M(t)
2 + (γ + 2)M(t)γ

1 + M(t)γ
Q(t) − R(t) .(2.8)

Thus, from (2.7) and (2.8) we obtain

d

dt

(
‖Au(t)‖2

M(t)
+ ρQ(t)

)
+ 2

(
1 +

ρ

2
M ′(t)
M(t)

2 + (γ + 2)M(t)γ

1 + M(t)γ

)
Q(t) = 0 .

Since it follows from (2.1) and (2.5) that

1 +
ρ

2
M ′(t)
M(t)

2 + (γ + 2)M(t)γ

1 + M(t)γ
≥ 0 and Q(t) ≥ 0 ,

we conclude the desired estimate (2.5). ˜

Proposition 2.3 Under the assumption (2.1), it holds that

‖u′(t)‖2

M(t)
≤ B(0)(2.9)

where

B(0) = max
{
‖u1‖2

M(0)
,

γ + 1
γ

G(0)(1 + E(0)γ)2
}

.(2.10)

Proof. Multiplying (1.1) by 2M(t)−1u′ and integrating it over Ω, we have

ρ
d

dt

‖u′(t)‖2

M(t)
+ 2

(
1 +

ρ

2
M ′(t)
M(t)

)
‖u′(t)‖2

M(t)
= −1 + M(t)γ

M(t)
M ′(t)

≤ 2
‖u′(t)‖
M(t)

1
2

‖Au(t)‖
M(t)

1
2

(1 + M(t)γ) .
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Since it follows from (2.1) that

1 +
ρ

2
M ′(t)
M(t)

≥ 2γ + 1
2(γ + 1)

,(2.11)

the Young inequality yields

ρ
d

dt

‖u′(t)‖2

M(t)
+

γ

γ + 1
‖u′(t)‖2

M(t)
≤ ‖Au(t)‖2

M(t)
(1 + M(t)γ)2

≤ G(0)(1 + E(0)γ)2

where we used the estimates (2.2) and (2.4) at the last inequality. Thus, by standard
calculation for ODE, we obtain the desired estimate (2.9). ˜

3 Global Solvability for γ > 0

Theorem 3.1 Let the initial data [u0, u1] belong to D(A) × D(A1/2). Suppose that the
coefficient ρ > 0 and the initial data [u0, u1] satisfy

2ρB(0)
1
2 G(0)

1
2 <

1
γ + 1

(3.1)

where G(0) and B(0) are given by (2.5) and (2.10), respectively. Then, the problem (1.1)
admits a unique global solution u(t) in the class C0([0,∞);D(A)) ∩ C1([0,∞);D(A1/2)) ∩
C0([0,∞); L2(Ω)), and moreover, the solution u(t) satisfies

ρ
|M ′(t)|
M(t)

<
1

γ + 1
and M(t) ≤ E(t) ≤ E(0) ,(3.2)

‖Au(t)‖2

M(t)
≤ G(0) and

‖u′(t)‖2

M(t)
≤ B(0)(3.3)

for t ≥ 0.

Proof. Let u(t) be a solution of (1.1) on [0, T ]. Since it follows from (2.5), (2.10), and (3.1)
that

ρ
|M ′(0)|
M(0)

≤ 2ρ
‖u1‖

M(0)
1
2

‖Au0‖
M(0)

1
2
≤ 2ρB(0)

1
2 G(0)

1
2 <

1
γ + 1

,

putting

T1 ≡ sup
{

t ∈ [0,∞)
∣∣ ρ

|M ′(s)|
M(s)

<
1

γ + 1
for 0 ≤ s < t

}
,

we see that T1 > 0. If T1 < T , then

ρ
|M ′(t)|
M(t)

<
1

γ + 1
for 0 ≤ t < T1 and ρ

|M ′(T1)|
M(T1)

=
1

γ + 1
.(3.4)

On the other hand, from Proposition 2.2 and Proposition 2.3, we observe

ρ
|M ′(t)|
M(t)

≤ 2ρ
‖u′(t)‖
M(t)

1
2

‖Au(t)‖
M(t)

1
2

≤ 2ρB(0)
1
2 G(0)

1
2 <

1
γ + 1

for 0 ≤ t ≤ T1(3.5)
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which is a contradiction to (3.4), and hence, we have that T1 ≥ T .
Moreover, for 0 ≤ t ≤ T , multiplying (1.1) by 2(1+M(t)γ)−1Au′ and integrating it over

Ω, we have

d

dt

(
ρ
‖A1/2u′(t)‖2

1 + M(t)γ
+ ‖Au(t)‖2

)
+ 2

(
1 +

γ

2
ρ

M(t)γ

1 + M(t)γ

M ′(t)
M(t)

)
‖A1/2u′(t)‖2

1 + M(t)γ
= 0 .

Since it follows from (3.5) that

1 +
γ

2
ρ

M(t)γ

1 + M(t)γ

M ′(t)
M(t)

≥ 1 − γ

2
ρ
|M ′(t)|
M(t)

≥ γ + 2
2(γ + 1)

,

we observe

d

dt

(
ρ
‖A1/2u′(t)‖2

1 + M(t)γ
+ ‖Au(t)‖2

)
≤ 0 ,

and hence, we see that ‖Au(t)‖ + ‖A1/2u′(t)‖ ≤ C for 0 ≤ t ≤ T . Therefore, by the
second statement of Proposition 2.1, we conclude that the problem (1.1) admits a unique
global solution. Moreover, from Proposition 2.2 and Proposition 2.3, we obtain the desired
estimate (3.3). ˜

4 Decay

Proposition 4.1 Under the assumption of Theorem 3.1, it holds that,

M(t) ≤ E(t) ≤ 2α

ρ
E(0)e−k1t(4.1)

with

α = max
{

3
2
ρ , ρ + c2

∗

}
and k1 = α−1 = min

{
2
3ρ

,
1

ρ + c2
∗

}
,(4.2)

where c∗ is the Sobolev-Poincaré constant such that ‖φ‖ ≤ c∗‖A1/2φ‖.

Proof. We define E1(t) by

E1(t) ≡ E(t) +
1
2ρ

‖u(t)‖2 + (u′(t), u(t))

with E(t) given by (2.3). Since |(u′, u)| ≤ (ρ/2)‖u′‖2 + (1/2ρ)‖u‖2, we observe from the
Sobolev-Poincaré inequality that

1
2
E(t) ≤ E1(t) ≤

α

ρ
E(t) with α = max

{
3
2
ρ , ρ + c2

∗

}
.(4.3)

Multiplying (1.1) by 2u′ + ρ−1u and integrating it over Ω, we have

d

dt
E1(t) + ‖u′(t)‖2 +

1
ρ
(1 + M(t)γ)M(t) = 0 ,

and moreover, it follows from (4.3) that

d

dt
E1(t) + k1E1(t) ≤ 0 with k1 = α−1 .

Thus, we obtain that E1(t) ≤ E1(0)e−k1t, and hence, from (4.3) we arrive at the desired
estimate. ˜
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Proposition 4.2 Under the assumption of Theorem 3.1, it holds that

H(t) ≡ ρ
‖A1/2u′(t)‖2

M(t)
+

1 + M(t)γ

M(t)
‖Au(t)‖2 ≤ m1

ρ2
(4.4)

with m1 = 2α max{ρH(0) , γ−1(ρ(γ + 1)E(0)γG(0) + 1)}.

Proof. We define H1(t) by

H1(t) ≡ H(t) +
1
2ρ

+
(A1/2u′(t), A1/2u(t))

M(t)
.

Since |(A1/2u′, A1/2u)| ≤ (ρ/2)‖A1/2u′‖2 + (1/2ρ)‖A1/2u‖2, we observe from the Sobolev-
Poincaré inequality that

1
2
H(t) ≤ H1(t) ≤

α

ρ
H(t) with α = max

{
3
2
ρ , ρ + c2

∗

}
.(4.5)

Multiplying (1.1) by M(t)−1(2Au′ + ρ−1Au) and integrating it over Ω, we have

d

dt
H1(t) +

(
1 + ρ

M ′(t)
M(t)

)
‖A1/2u′(t)‖2

M(t)
+

1
ρ

1 + M(t)γ

M(t)
‖Au(t)‖2

= − (1 − (γ − 1)M(t)γ)
M ′(t)
M(t)

‖Au(t)‖2

M(t)
− 1

2ρ

M ′(t)
M(t)

− 1
2
|M ′(t)|2

M(t)2
.

Since it follows from (3.2) that

1 + ρ
M ′(t)
M(t)

≥ γ

γ + 1
,(4.6)

we have from (3.2) and (3.3) that

d

dt
H1(t) +

γ

γ + 1
‖A1/2u′(t)‖2

M(t)
+

1
ρ

1 + M(t)γ

M(t)
‖Au(t)‖2

≤ |M ′(t)|
M(t)

(
(γ + 1)M(t)γ ‖Au(t)‖2

M(t)
+

1
2ρ

+
1
2
|M ′(t)|
M(t)

)
≤ 1

ρ(γ + 1)

(
(γ + 1)E(0)γG(0) +

1
ρ

)
,

and moreover, we observe from (4.5) that

d

dt
H1(t) +

γ

(γ + 1)α
H1(t) ≤

γ

ρ2(γ + 1)
I(0)

with I(0) ≡ γ−1 (ρ(γ + 1)E(0)γG(0) + 1). Thus, we obtain

H1(t) ≤ max
{

H1(0) ,
α

ρ2
I(0)

}
and from (4.5) we conclude the desired estimate (4.4). ˜
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Proposition 4.3 Under the assumption of Theorem 3.1, it holds that

P (t) ≡ ρ
‖u′′(t)‖2

M(t)
+

1 + M(t)γ

M(t)
‖A1/2u′(t)‖2 +

γ

2
M(t)γ |M ′(t)|2

M(t)2
≤ m2

ρ3
(4.7)

with m2 = 2α max{ρ2P (0) , γ−1(6(γ + 1)2E(0)αm1 + ρ(γ + 1)γ−1B(0))}.

Proof. We define P1(t) by

P1(t) ≡ P (t) +
1
2ρ

‖u′(t)‖2

M(t)
+

(u′′(t), u′(t))
M(t)

.

Since |(u′′, u′)| ≤ (ρ/2)‖u′′‖2+(1/2ρ)‖u′‖2, we observe from the Sobolev-Poincaré inequality

1
2
P (t) ≤ P1(t) ≤

α

ρ
P (t) with α = max

{
3
2
ρ , ρ + c2

∗

}
.(4.8)

Multiplying (1.1) differentiated with respect to t by M(t)−1(2u′′+ρ−1u′) and integrating
it over Ω, we have

d

dt
P1(t) +

(
1 + ρ

M ′(t)
M(t)

)
‖u′′(t)‖2

M(t)
+

1
ρ

1 + M(t)γ

M(t)
‖A1/2u′(t)‖2 +

γ

2ρ
M(t)γ |M ′(t)|2

M(t)2

= −(1 − (3γ − 1)M(t)γ)
M ′(t)
M(t)

‖A1/2u′(t)‖2

M(t)
+

γ(γ − 2)
2

M(t)γ (M ′(t))3

M(t)3

− 1
2ρ

M ′(t)
M(t)

‖u′(t)‖2

M(t)
− M ′(t)

M(t)
(u′′(t), u′(t))

M(t)
.

From the Young inequality and (4.6) (or (3.2)) we observe

d

dt
P1(t) +

γ

2(γ + 1)
‖u′′(t)‖2

M(t)
+

1
ρ

1 + M(t)γ

M(t)
‖A1/2u′(t)‖2 +

γ

2ρ
M(t)γ |M ′(t)|2

M(t)2

≤ 3(γ + 1)2M(t)γ |M ′(t)|
M(t)

‖A1/2u′(t)‖2

M(t)

+
1
2ρ

|M ′(t)|
M(t)

‖u′(t)‖2

M(t)
+

γ + 1
2γ

|M ′(t)|2

M(t)2
‖u′(t)‖2

M(t)

≤ 1
ρ(γ + 1)

(
3(γ + 1)2E(0)γ m1

ρ2
+

γ + 1
2ργ

B(0)
)

where we used the estimates (3.2) and (3.3), and moreover, we have from (4.8) that

d

dt
P1(t) +

γ

2(γ + 1)α
P1(t) ≤

γ

2ρ3(γ + 1)
J(0)

with J(0) ≡ γ−1(6(γ + 1)2E(0)γm1 + ρ(γ + 1)γ−1B(0)). Thus, we obtain

P1(t) ≤ max
{

P1(0) ,
α

ρ3
J(0)

}
and from (4.8) we conclude the desired estimate (4.7). ˜

Proposition 4.4 Under the assumption of Theorem 3.1, it holds that if u0 6= 0,

M(t) ≥ C ′e−k2t with k2 = ρ−1 max{2 , γ − 2}(1 + E(0)γ)
1
2 G(0)

1
2 ,(4.9)

where C ′ is some positive constant.
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Proof. Multiplying by 2M(t)−2u′ and integrating it over Ω, we have

d

dt

(
ρ
‖u′(t)‖2

M(t)2
+

1 + M(t)γ

M(t)

)
+ 2

(
1 + ρ

M ′(t)
M(t)

)
‖u′(t)‖2

M(t)2
= −2 − (γ − 2)M(t)γ

M(t)2
M ′(t) ,

and from (3.2), (3.3), and the Young inequality we observe

d

dt

(
ρ
‖u′(t)‖2

M(t)2
+

1 + M(t)γ

M(t)

)
≤ 2max{2, γ − 2}(1 + M(t)γ)

1
2
‖Au(t)‖
M(t)

1
2

(
1 + M(t)γ

M(t)

) 1
2 ‖u′(t)‖

M(t)

≤ ρ−1 max{2, γ − 2}(1 + E(0)γ)
1
2 G(0)

1
2

(
1 + M(t)γ

M(t)
+ ρ

‖u′(t)‖2

M(t)2

)
.

Thus, we obtain

ρ
‖u′(t)‖2

M(t)2
+

1 + M(t)γ

M(t)
≤ Cek2t with k2 = ρ−1 max{2 , γ − 2}(1 + E(0)γ)

1
2 G(0)

1
2

which gives the desired estimate (4.9). ˜

Proposition 4.5 Under the assumption of Theorem 3.1, it holds that if u0 6= 0,

‖u(t)‖2 ≥ C ′e−k3t with k3 = k2 + m2/ρ2 ,(4.10)

where C ′ is some positive constant.

Proof. From Equation (1.1), we observe

d

dt

M(t)
‖u(t)‖2

=
−2ρ

‖u(t)‖2

(
Au(t) − M(t)

‖u(t)‖2
u(t), u′′(t)

)
− 2(1 + M(t)γ)

‖u(t)‖2

(
Au(t) − M(t)

‖u(t)‖2
u(t), Au(t)

)
or

d

dt

M(t)
‖u(t)‖2

+
2(1 + M(t)γ)

‖u(t)‖2
‖Au(t) − M(t)

‖u(t)‖2
u(t)‖2

=
−2ρ

‖u(t)‖2

(
Au(t) − M(t)

‖u(t)‖2
u(t), u′′(t)

)
≤ 2ρ

1
‖u(t)‖

‖Au(t) − M(t)
‖u(t)‖2

u(t)‖‖u
′′(t)‖

‖u(t)‖
.

The Young inequality yields

d

dt

M(t)
‖u(t)‖2

≤ ρ2 ‖u′′(t)‖2

‖u(t)‖2
= ρ2 ‖u′′(t)‖2

M(t)
M(t)
‖u(t)‖2

≤ m2

ρ2

M(t)
‖u(t)‖2

where we used the estimate (4.7). Thus, we have

M(t)
‖u(t)‖2

≤ Ce
m2
ρ2 t

,

and hence, from (4.9) we obtain the desired estimate (4.10). ˜

From Propositions 4.1–4.5, we arrive at the following theorem.
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Theorem 4.6 Under the assumption of Theorem 3.1, the solution u(t) of (1.1) satisfies
that if u0 6= 0,

C ′e−k3t ≤ ‖u(t)‖2 ≤ Ce−k1t ,(4.11)

C ′e−k2t ≤ ‖A1/2u(t)‖2 ≤ Ce−k1t ,(4.12)

C ′e−k2t ≤ ‖Au(t)‖2 ≤ Ce−k1t ,(4.13)

‖A1/2u′(t)‖2 + ‖u′′(t)‖2 ≤ Ce−k1t for t ≥ 0(4.14)

with constants k1, k2, k3 given by (4.1), (4.9), (4.10), where C and C ′ are some positive
constants.

Proof. (4.12) follows from (4.1) and (4.9). (4.11) follows from (4.12) and (4.10). (4.13)
follows from (4.12) and (3.3). (4.14) follows from (4.12) and (4.7). ˜

5 Appendix : Global Sovability for γ ≥ 1 When γ ≥ 1, if the initial energy E(0) is
small, then there exists a unique global solution and the solution decays exponentially. We
intoroduce the function F (t) as

F (t) ≡ ρ‖A1/2u′(t)‖2 + (1 + M(t)γ)‖Au(t)‖2 .(5.1)

Theorem 5.1 Let the initial data [u0, u1] belong to D(A) × D(A1/2). Suppose that the
initial energy E(0) is small such that

25γ2αE(0)2γ−1F (0) < 1(5.2)

with α = max{3ρ/2 , ρ + c∗}. Then, the problem (1.1) admits a unique global solution u(t)
in the class C0([0,∞);D(A))∩C1([0,∞);D(A1/2))∩C0([0,∞);L2(Ω)), and moreover, the
solution u(t) satisfies

‖Au(t)‖2 + ‖A1/2u′(t)‖2 + ‖u′′(t)‖2 ≤ Ce−θt for t ≥ 0(5.3)

with θ = (4ρ)−1, where C is some positive constant.

Proof. Let u(t) be a solution of (1.1) on [0, T ]. We define F1(t) by

F1(t) ≡ F (t) +
1
2ρ

‖A1/2u(t)‖2 + (A1/2u′(t), A1/2u(t)) ,

Since |(A1/2u′, A1/2u)| ≤ (ρ/2)‖A1/2u′‖2 + (1/2ρ)‖A1/2u‖2, we observe from the Sobolev-
Poincaré inequality that

1
2
F (t) ≤ F1(t) ≤

α

ρ
F (t) with α = max

{
3
2
ρ , ρ + c2

∗

}
.(5.4)

Multiplying (1.1) by 2Au′ + ρ−1Au and integrating it over Ω, we have

d

dt
F1(t) + ‖A1/2u′(t)‖2 +

1
ρ
(1 + M(t)γ)‖Au(t)‖2 = γM ′(t)M(t)γ−1‖Au(t)‖2 .(5.5)

We observe from (2.2) and (5.1) that

γM ′(t)M(t)γ−1 ≤ 2γM(t)γ−1‖Au(t)‖ ≤ 2γρ−
1
2 E(0)γ− 1

2 F (t)
1
2 .(5.6)
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Since 24γ2ρE(0)2γ−1F (0) < 1 (by (5.2)), putting

T1 ≡ sup
{
t ∈ [0,∞)

∣∣ µ(s) ≡ 24γ2ρE(0)2γ−1F (s) < 1 for 0 ≤ s < t
}

,

we see that T1 > 0. If T1 < T , then

µ(t) < 1 for 0 ≤ t < T1 and µ(T1) = 1(5.7)

or

γM ′(t)M(t)γ−1‖Au(t)‖2 ≤ 1
2ρ

‖Au(t)‖2 .(5.8)

Thus, for 0 ≤ t ≤ T1, it follows from (5.4), (5.5), and (5.8) that

d

dt
F1(t) + θF1(t) ≤ 0 with θ = (4ρ)−1 ,

and hence,

F1(t) ≤ F1(0)e−θt or F (t) ≤ 2α

ρ
F (0)e−θt .(5.9)

Then, we observe

‖u′′(t)‖ ≤ ‖ρ−1(1 + M(t)γ)Au(t) + ρ−1u′(t)‖2 ≤ CF (t) ≤ Ce−θt(5.10)

and

µ(t) ≡ 24γ2ρE(0)2γ−1F (t) ≤ 25γ2αE(0)2γ−1F (0) < 1 for 0 ≤ t ≤ T1

which is a contradiction to (5.7), and hence, we have that T1 ≥ T and ‖Au(t)‖+‖A1/2u′(t)‖
≤ C for 0 ≤ t ≤ T . Therefore, by the second statement of Proposition 2.1, we conclude
that the problem (1.1) admits a unique global solution. Moreover, from (5.9) and (5.10) we
obtain the desired estimate (5.3). ˜
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Abstract

We consider an optimal stopping problem for the operation of system
that deteriorates with age and fails stochastically until the fixed time
limit in advance. When the system fails unexpectedly, we choose one of
two actions, repair or stop. The optimal stopping time which minimizes
the total expected cost is derived by means of a simple mathematical
model and dynamic programming technique. Some numerical examples
are presented to illustrate our results in detail when the failure and the
repair distributions are given specifically.

1 Introduction

In practice, most system operational periods are fixed in advance. For instance,
consider the management of some airline company with B747 jumbo jet. From
the view point of running cost, the company takes into consideration of replacing
B747 with B787 carbon fiber aircraft. The deliver time of a new aircraft is
3 years from now on. If the B747 jumbo jet fails unexpectedlly, there are
two alternatives, repair and revolve service or stop flighting service until the
delivery time. It is clear that if the failure such as engine trouble occurs just
before the fixed time limit, then it will be better not to repair sevice. Hence, it
is an important problem to find a critical point in time between repairing and
stopping.

Another example is concerned with the operation of atomic power plants
in Japan. As a turning point with the Fukushima’s nuclear accident in 2011,
the Japanese government has established the operating time limit of all atomic
power plants in 2030. In this case, the same problem happens, because the
voluntary moratorium on one atomic plant will loss about 1 billion dollar/year.
So, one of important problems to the electric power company is to find the
optimal operating and stopping policy for existing atomic power plant.

In general, all the system will deteriorate with age and will fail stochastically.
When the system fails, it is repaired with a specified repair time distribution or
left as it is until the fixed time limit in advance. From the view point of cost, if
the system fails close to the time limit, we should stop and not repair the system.
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As a result of stopping action, an idle time occurs and a cost is incurred due
to the failed system remaining idle[2,7]. It is an interesting problem to find
a critical point in time to repair or to leave the failed system as it is. Such
problems have been investigated by some authors in the fields of operations
research and reliability engineering[1,2,6]. Kijima and et al [4] discussed the
periodic replacement problem and Nair and Hopp[5] gave a simple and efficient
algorithm for finding the optimal stopping rule of an equipment replacement.
A recent survey paper on maintenance strategy has been written by Wang[8].

In the next section, we provide a simple model to derive the optimal operat-
ing and stopping rule for the system with arbitrary failure and repair distribu-
tions. In section 3, numerical examples with some failure and repair distribu-
tions are given to derive the critical point in time explicitly. Section 4 includes
our conclusion.

2 Model and Formulation

Consider a system that deteriorates with age and fails stochastically. When the
system fails, we can choose one of two actions, repair or stop. If the repair action
with repair distribution R(t) is chosen, the setup cost K2 and the idle time cost
per unit time C are incurred. On the other hand, if the stop action is chosen,
the system will be idle until the fixed time limit and the fixed cost K1 (cost
of decommissioning) and the idle time cost per unit time C are incurred. Our
problem is to find the optimal action in order to minimize the total expected
cost and to derive the critical point in time to repair or to stop the failed system.

Concentrating our model, we define the following notation:

• F (y) and f(y) = failure distribution and its density function

• λ(y) = f(y)/(1 − F (y)) = failure rate. So λ(y)∆y represents the proba-
bility that the system aged y fails between y and y + ∆y.

• U(x, y) = minimum expected cost up to the fixed time limit when there
is still a time x to go and the system aged y is in the state of failure

• V (x, y) = minimum expected cost up to the fixed time limit when there
is still a time x to go and the system aged y is in the operable state.

Under these notation, consider the situation in which the system aged y is failed
when there is still a time x to go and let us compare the system at two closely
spaced remaining times x and x − ∆x. In this case, we have two alternatives,
repair the system or stop the system. If the repair action is chosen at x, either
the system turns out to be an operable state with probability R(t) or the repair
action does not finish until the fixed time limit with probability 1−R(t). If we
choose stop action, then the next state is still failure state and the cost K1 +Cx
is incurred.

On the other hand, if the current state is operable, then after the small time
interval ∆y, the state remains as operable with probability 1− λ(y)∆y and the
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state will run into the failure state with probability λ(y)∆y. When the repair
action is over, the age of the system is A, a given value which may not exceed
the system age prior to failure. It should be noted that A = y corresponds
to the minimal repair and A = 0 major repair. Then, we have the following
functional equation:

U(x, y) = min


K1 + Cx, : stop
K2 +

∫ x

0
{Ct + V (x − t, A)}dR(t)

+(K1 + Cx)
∫ ∞

x
dR(t), : repair

(1)

For simplicity, we assume that the repair is minimal A = y. The first line in
the bracket represents the cost of stopping action and the second one the total
expected cost of repair service. If x is small enough, it is clear that the stopping
action is preferable. Thus, for small x,

(2) U(x, y) = K1 + Cx.

On the other hand, for small ∆y, V (x, y) is expressed as
(3){

V (x, y) = λ(y)∆yU(x − ∆y, y + ∆y) + (1 − λ(y)∆y)V (x − ∆y, y + ∆y)
V (0, y) = K1

Using a Taylor expansion for U and V and ∆y → 0, we have a quasi-linear
partial differential equation with the boundary condition V (0, y) = K1.

(4)
∂V (x, y)

∂x
− ∂V (x, y)

∂y
= λ(y)(K1 + Cx − V (x, y)).

Applying the standard method, the solution for this equation is given by

V (x, y) = K1 + Ce−
R x
0 λ(x+y−z)dz

∫ x

0

λ(x + y − z)ze
R z
0 λ(x+y−ξ)dξdz

= K1 + C

∫ x

0

(1 − e−
R y+ξ

y
λ(z)dz)dξ

= K1 +
C

1 − F (y)
[
∫ x

0

(F (y + ξ) − F (y))dξ].(5)

Therefore, the functional equation (1) for U(x, y) can be written as

(6) U(x, y) = K1 + Cx + min{ 0 ; Gy(x)},

where V (x, y) is given by (5) and Gy(x) expresses the optimal stopping time
function as

Gy(x) = K2 − K1R(x) − C

∫ x

0

R(t)dt +
∫ x

0

V (x − t, y)dR(t)

= K2 − K1R(0) +
C

1 − F (y)
[
∫ x

0

∫ x−t

0

F (y + ξ)dξdR(t)

−
∫ x

0

R(t)dt + F (y)R(0)x].(7)
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Note that for each y > 0,

Gy(0) = K2 − K1R(0).

So, if Gy(0) = K2−K1R(0) > 0, then the stopping action should be made, where
K1R(0) shows the expected stopping cost at x = 0. And if K2 − K1R(0) < 0,
then the repair action is preferential.

Since R(0) means the probability that finishes the repair action in a moment,
we assume that R(0) = 0 without a special case. Under this assumption, Gy(x)
is given by

Gy(x) = K2 +
C

1 − F (y)
[
∫ x

0

∫ x−t

0

F (y + ξ)dξdR(t) −
∫ x

0

R(t)dt]

and from this result we can observe that the solution of Gy(x∗) = 0 does not
depend on K1.

(Proposition) If R(0) = 0, then the optimal stopping time x∗(y) does not
depend on the stopping cost K1.

It should be noted that the relation

U(x, y) = K1 + Cx

is valid for the preferential region of stopping and

U(x, y) = K1 + Cx + Gy(x)

gives the expected cost for repair action, that is

Gy(x) > 0 ⇒ stop action Gy(x) < 0 ⇒ repair action

Thus, the critical value of x, for which the repair action should be made, is
given by the minimum positive root of

Gy(x) = 0.

Moreover,
x∗(y) = inf

x>0
{ x : Gy(x) ≤ 0}

represents the critical value for which the repair action should be made. It is
intuitively clear, and can be easily demonstrated, that the optimal region is
provided by the simple form as{

stop for 0 < x ≤ x∗(y)
repair for x ≥ x∗(y).
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3 Simple Examples

In this section, we show some simple examples to find a critical value x∗(y)
explicitly.

(1) General Failure Distribution and Negligible Repair Time
The first example is shown by an instanteneous repair time distribution R(0) = 1
and a genenral failure distribution F (t). By equation (7), we have

Gy(x) = K2 − Cx +
C

1 − F (y)
[
∫ x

0

{F (y + ξ) − F (y)}dξ].

Especially, if the failure distribution F (t) is given by the exponential distribution
F (t) = 1 − e−λt, λ > 0, then

Gy(x) = K2 +
C

λ
(e−λx − 1).

Under the condition C > λK2, we have

x∗(y) = − 1
λ

ln(
C − λK2

C
).

On the other hand, if the repair is maximal( that is, after the repair the system’s
age is always y = 0) and F (0) ̸= 1, we have

Gy(x) = K2 − Cx +
C

1 − F (0)
[
∫ x

0

{F (ξ) − F (0)}dξ]

and
Gy(0) = K2 > 0, Gy(∞) = −∞ < 0.

Therefore, the optimal stopping time equation Gy(x) = 0 has at least one root
for x > 0.

1. If F (0) = 1, then the optimal rule is always stop since Gy(x) = ∞ > 0
and the repaired system fails in a moment.

2. If F (0) ̸= 1, then

Gy(x) = K2 − Cx +
C

1 − F (0)
[
∫ x

0

F (ξ)dξ − F (0)x].

So, the optimal stopping time x∗(y) satisfies the following equation:

(1 − F (0))K2 = C[
∫ x∗

0

(1 − F (ξ))dξ].

Especially, if F (0) = 0, then

Gy(x) = K2 − C[
∫ x

0

(1 − F (ξ))dξ] = K2 − C[m − TF (x)]
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where m is the mean time to failure and

TF (x) =
∫ ∞

x

(x − ξ)dF (ξ).

Note that the transform TF (x) is a nonnegative convex and strictly de-
creasing function of x as was pointed out by DeGroot[2]. So, the optimal
stopping time x∗ is given by

x∗ = T−1
F (m − K2

C
)

as shown in Figure 1.

Figure 1: Graph of TF (x)

(2) Gamma Type Failure Distribution
Suppose that the failure distribution F (t) is Gamma type as

F (t) =
∫ t

0

λk

(k − 1)!
e−λξξk−1dξ.

Let

Γk(a, b) =
∫ b

a

e−λttk−1dt,

then
λΓk(a, b) = kΓk(a, b) + ake−λa − bke−λb

and equation (5) can be denoted as

V (x, y) = K1 +
C

Γk(y,∞)
[(x + y)Γk(y, x + y) − Γk+1(y, x + y)].

It is difficult to carry out the operation of integral explicitly except for k = 1.
Let k = 1, then the failure distribution is reduced to an exponential distribution
and we have

V (x, y) = K1 + Cx − C

λ
(1 − e−λx).
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Thus,

Gy(x) = K2 − Ce−λx

∫ x

0

e−λ(x−t)R(t)dt.

From this relationship, the critical value x* is given by the solution of

K2

C
= f(x) ∗ R(x)

where the symbol * denotes the convolution integral.
In addition to the assumption that the failure distribution is exponential, we

suppose that the repair time is subject to an exponential distribution R(t) =
1 − exp(−µt) and µ/λ = ρ > 1. Then the optimal stopping time function can
be written as

Gy(x) = K2 −
C

λ
(1 − e−µx) − Cµ

λ(µ − λ)
(e−µx − e−λx).

Letting e−λx = z, we can write Gy(x) = 0 as

(
ρ

µ − λ
− 1

λ
)zρ − ρ

µ − λ
z =

K2

C
− 1

λ
.

For λ = 2, µ = 1, C/K2 = 8, this equation yields a quardratic equation in z
which has the solution x∗ = ln 2.

Especially, if C > λK2, we can easily obtain the analytical form of this value
x∗ for two extreme cases µ = ∞ and µ = 0. The assumption of µ = ∞ shows a
negligible repair time. Thus, the above equation is expressed as

Gy(x) = K2 −
C

λ
(1 − e−λx).

Since Gy(x) is a decreasing function of x, there exists the unique value

x∗ = − 1
λ

ln(
C − λK2

C
)

as was derived above.
On the other hand, we consider the case of µ = 0. This means that the

repair action never finishes in the finite horizon. Then we have Gy(x) = K2 > 0
and

U(x, y) = K1 + Cx + min{0 : K2} = K1 + Cx.

The result shows that the optimal policy is to be always idle for any x.
As the last example of repair time, we consider it as constant in time D. The
distribution function R(t) is written as

R(t) =
{

0, for 0 ≤ t < D
1, for t ≥ D
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Accordingly we have

Gy(x) =
{

K2 for 0 ≤ x < D
K2 − C

λ (1 − e−λ(x−D)) for x ≥ D

From the equation the optimal policy is described as follows:
(i) C > λK2

stop for 0 ≤ x < x∗

repair for x ≥ x∗(> D)

where x∗ is given by

x∗ = D − 1
λ

ln(
C − λK2

C
)

(ii) C ≤ λK2 idle for all x since the second term is positive for all x.

(3) Linear Failure Distribution
Let

F (t) =
{

βt, 0 ≤ t ≤ 1/β
1, t ≥ 1/β,

then the failure rate is given by

λ(t) =
β

1 − βt
, (0 ≤ t ≤ 1/β)

To derive an explicit expression of V (x, y) and Gy(x), we consider the following
three cases:

Case(i) x + y ≤ 1/β

V (x, y) = K1 +
Cβx2

2(1 − βy)

and

Gy(x) = K2 +
Cβ

1 − βy

∫ x

0

(x + y − t − 1
β

)R(t)dt.

Note that the condition x + y ≤ 1/β suggests that the time remaining until the
fixed time limit is short and the system is in the nearly new state.

Case (ii) x + y ≥ 1/β and y ≤ 1/β
This case means that the time remaining is long enough and the system is nearly
new. Then we have

V (x, y) = K1 + C{x +
1
2
(y − 1

β
)}

and

Gy(x) = K2 +
CR(x)

2
(y − 1

β
).

　 Case(iii) y ≥ 1/β
It is clear that V (x, y) = ∞. It follows that the optimal action should be
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always idle since the system aged y(≥ 1/β) fails with probability 1. To study
the optimal policy in detail, we specify that distribution of repair time R(t) as
follows:

(A) Exponential Repair Distribution R(t) = 1 − exp(−µt)
From the results of three cases mentioned above, it follows that

Gy(x) =


K2 + Cβ

1−βy [x2

2 + (y − 1
β − 1

µ ){x − 1
µ (1 − e−µx)}] for x + y ≤ 1/β

K2 + C
2 (y − 1

β )(1 − e−µx) for x + y ≥ 1/β and y ≤ 1/β

∞ for y ≥ 1/β

It is clear that the critical point x∗ depends on x and y. We can find the critical
point by the numerical calculation and the following figure 2 and figure 3 are
useful.

Figure 2: 3 dimensional graph of Gy(x) Figure 3: Graph of Gy(x)

(B) Straight Line Repair Distribution
Let the repair time distribution be a linear function as

R(t) =
{

αt, 0 ≤ t ≤ 1/α
1, t ≥ 1/α

To avoid unnecessary complications, we assume that α ≥ β. Then we have the
following result:

Gy(x) = K2+



Cαx2

2 { βx
3(1−βy) − 1} for x + y ≤ 1/β, 0 ≤ x ≤ 1/α

C[ 1
2α − x + β

2(1−βy) (x
2 − x

α + 1
3α2 )] for x + y ≤ 1/β, 1/α ≤ x

Cαx
2 (y − 1

β ) for x + y ≥ 1/β, y ≤ 1/β, x ≥ 1/α
C
2 (y − 1

β ) for x + y ≥ 1/β, y ≤ 1/β, x ≤ 1/α

∞ for y ≥ 1/β

The shaded portion in the figure shows a preferential region of repair service
for this example. Note that the optimal stopping time x∗(y) depends on the
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Figure 4: Repair Region

remaining time x and the system age y.

(4) Weibull Failure Distribution
Let

f(t) = αβ(αt)β−1e−(αt)β

.

Then
λ(t) = βαβtβ−1

1. If α = 1, β = 2, then the failure distribution shows an increasing failure
rate(IFR). In this case we have

Gy(x) = K2 − C
√

πey2
∫ x

0

{Φ(
√

2(x + y − t)) − Φ(
√

2y)}dR(t).

2. If α = 1, β = 1/2, then the failure distribution shows a decreasing failure
rate(DFR). In this case we have

Gy(x) = K2 − 2Ce
√

y

∫ x

0

{e−y(1 +
√

y) − e−
√

x+y−t(1 −
√

x + y − t)}dR(t).

Unfortunately, it is difficult to carry out the operation of integrals explicitly.

4 Conclusion

The present paper is concerned with an optimal maintenance policy for the
system with repair and idle time during the fixed time limit. An optimal policy
and a critical point in time to repair or to leave the failed system as it is
are provided by the method of dynamic programming technique. We show



that the optimal policy depends not only the time until the fixed time limit
but on the system age. It is difficult to obtain an explicit form of optimal
policy for arbitrary distributions of failure and repair. The interesting results
are that the critical value x∗(y) does not depend on the system’s age y for
the exponential ditribution family by the memoryless property. Except the
exponential distribution, the critical value depends on the remaining time x
and the system’s age y. A numerical calculation presents a solution to this
difficult problem. For some simple examples, convenient figures which specify
the critical point and the preferential region of repair action are easily described
by the numerical calculation. The results will be useful to solve the practical
problems.
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  Abstract.  In this paper, a characteristic function depending on the state of a pair’s 

relationship is introduced to a coalitional game with the Shapley value. By applying 

the characteristic function, we draw some theorems where a specific player makes 

his reward the maximum or the minimum. Furthermore, some properties in two 

concrete models are shown and various strategies of each player are discussed in 

two simulations.  Especially, it is investigated how a player with low original 

reward should cooperate with other players in order to make his portion the 

maximum. 

1  Introduction 

If three people obtain reward when they cooperate, there exists a problem how to 

divide reward to them.  Ordinary person simply thinks it should be divided reward by 

three evenly. But with different potential or skills, that division way is not proper from 

the perspective of each person’s satisfaction.  In real life, if you think about your wage 

in the company, this wages are divided by your experience, your role, and the 

significance of your position. We think that the system is rational in our real life.  

In this research, based on the Shapley value L.S. Shapley introduced, we will discuss 

how to divide reward in a coalitional game depending on the state of player’s 

relationship.  It was well known that L.S. Shapley won the 2012 Nobel Memorial Prize 

in Economic Sciences. In the coalitional game, it is clear that when relationship among 

all players should be good, their sum of reward becomes the maximum. But we are not 

sure that a specific player can get the most reward from that relationship. For a specific 

player, there exists the strategy what kind of relationship the player makes to other 

players. Here, we give each relationship between two players, and we define the value of 

characteristic function depending on the state of that relationship. If the relationship is 

good, the value of characteristic function goes high.  If the relationship is bad, that 

value goes down.  We define a characteristic function being like this situation and 

discuss the strategy of each player.  

2  Definition of a characteristic function 

Let S be the set of relationship between two players, S= {s1, s2, s3,…, sm}. 

For any i < j, let si≫sj. ≫ means that the relationship of si is better than that of sj . 
Mathematics Subject classification 2010. 91A12
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All elements of S are the following relations, s1≫ s2≫ s3≫ ….. ≫si≫ ….. ≫sm. Of course, 

s1 means the best relationship and sm means the worst relationship.  Let P be the set of 

players, P= {p1, p2, p3, …. , pn }. 

When the relationship of two players pi and pj is sh , we make the characteristic function 

giving reward based on the relationship.  

[ Definition 1 ] 

That characteristic function is defined as  

v (pi ∪ pj , sh ), where for k<l, v(pi ∪ pj , sk ) ≧ v(pi ∪ pj , sl ) . 

When we have the characteristic function with three people, we define 

v(pi ∪ pj ∪ pk ) = ଵ
ଶ
{ v(pi ∪ pj , s’ ) + v(pi ∪ pk , s’’ ) + v(pk ∪ pj , s’’’ )}, 

where s’ is the relationship between pi and pj ,s’’ is the relationship between pi and pk , 

and s’’’ is the relationship between pj and pk . 

For four players, we define as follows, 

v(pi ∪ pj ∪ pk ∪ pl )=
ଵ

ଷ
{v(pi ∪ pj ∪ pk ) +v( pj ∪ pk ∪ pl ) + v (pi ∪ pk ∪ pl ) +v 

(pi ∪ pj ∪ pl )} . 

We can define the same things to others following this. 

By applying the characteristic function depending on the relationship, we discuss the 

strategy that each player makes the Shapley value the maximum. 

[ Definition 2 ] 

For the coalitional game (P, v), the Shapley value of player pi is given 

݂ሺpሻ ൌ
݆! ሺ݊ െ ݆ െ 1ሻ!

݊!
ሼvሺPᇱ ∪ Pሻ െ vሺPᇱሻሽ

P'

 

where n is the number of players in the set P, P’ represents any set except player pi , 

 P’ ∪ pi  is the set P’ adding player pi ,j represents the number of players in the set P’, 

and ∑P' can give us the sum of all of the combination of P’. 

[ Example ] 

In the coalitional game of three players, let be P= {p1, p2, p3} and S= {s1, s2, s3,…, sm}. 

It is assumed the reward to be able to get alone as follows,  

v( p1) = q1,  v( p2)= q2,  v( p3)= q3 . 

We can get the Shapley value of each player as follows, 

f(p1 )= ଶ!
ଷ!

 {v(p1) –v(φ)} + ଵ
ଷ!

{v(p1 ∪ p2, s’) – v(p2)} +
ଵ

ଷ!
{v(p1 ∪ p3, s’’) – v(p3)} + ଶ!

ଷ!
{v(p1 ∪ p2 

∪ p3 ) – v (p2 ∪ p3, s’’’)}  

  = ଵ

{2 q1  –(q2, +q3)} + ଵ


{2 (v(p1 ∪ p2 , s’ ) +v (p1 ∪ p3 , s’’ ) )– v(p2 ∪ p3, s’’’ )} 

f(p2 )= ଵ

{2 q2 –(q1+ q3)} + ଵ


{2 (v (p1 ∪ p2, s’ ) +v (p2 ∪ p3, s’’’ ))– v(p1 ∪ p3, s’’ ) } 

f(p3 )= ଵ

{2 q3 –(q1+ q2)} + ଵ


{2 (v (p2 ∪ p3, s’’’ ) +v (p1 ∪ p3, s’’ )) – v(p1 ∪ p2, s’ ) } 
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where s’ , s’’ and s’’’ are elements of S= {s1, s2, s3,…, sm}. 

Since the property of v(pi ∪ pj , sk ) ≧ v(pi ∪ pj , sl ) for k<l, the strategy to make 

f(p1 ) be the maximum is (s’,s”,s”’) = (s1, s1, sm) . 

We get as follows similarly, the strategy to make f(p2 ) be the maximum is (s’,s”,s”’) = (s1, 

sm, s1) ,the strategy to make f(p3 ) be the maximum is (s’,s”,s”’) = (sm, s1, s1) . 

Even if it extends a player to n persons from three persons, it is clear that the same 

structure is held. 

[Theorem 1] 

When the relationship of pi ∪ pj for every j (j≠i) is s1 and the relationship of pj ∪ pk is 

sm (j≠i and k≠i), f(pi) becomes the maximum. 

[Theorem 2] 

When the relationship of pi ∪ pj for every j (j≠i) is sm and the relationship of pj ∪ pk is 

s1 (j≠i and k≠i), f(pi) becomes the minimum. 

[ Proof ] 

Two theorems can be quickly derives from Definition 1 and Definition 2. 

From Theorem 1, when one chooses good relationship of a pair with oneself and does 

worse relationship of other pair except oneself, one can make one’s reward the 

maximum.  Conversely, to make reward of specific player the minimum is by having a 

bad relationship of a pair with the player, and also relationship of others except the 

player needs to be good.  

3  Simulation Model Ⅰ 

Let P＝｛A,B,C｝be a set of 3 players, S=｛g,n,w｝be the state set of relationship between 

two players. Let g be “good” of relationship, n be “neutral”, and w be “worse”. 

Each of the 3 players can choose a element of the state set and the selection is carried 

out to their strategies. 

The characteristic function v is defined as follows. 

v(A)＝a, v(B)＝b, v(C)＝c, 

2(a+b),  s=g 

v(A∪B,s)= ଷ

ଶ
(a+b),  s=n 

a+b,  s=w 

2(a+c),  t=g 

v(A∪C,t)= ଷ

ଶ
(a+c),  t=n 

a+c, t=w 

2(b+c),  u=g 

v(B∪C,u)= ଷ

ଶ
(b+c),  u=n 
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b+c, u=w 

v(A∪B∪C)=ଵ
ଶ
{v(A∪B,s) +v(A∪C,t) +v(B∪C,u)} 

The Shapley value of each player can be calculated by using the dividend. 

f(A)＝ଵ


(2a－b－c) +ଵ


{2v(A∪B,s) +2v(A∪C,t) －v(B∪C,u)} 

f(B)＝ଵ


(2b－a－c) +ଵ


{2v(A∪B,s) +2v(B∪C,u) －v(A∪C,t)} 

f(C)＝ଵ


(2c－a－b) +ଵ


{2v(A∪C,t) +2v(B∪C,u) －v(A∪B,s)} 

[Property Ⅰ] 

When relationships between three players are all “good”, the sum of all players reward 

becomes the maximum. But the strategy which makes each individual’s reward the 

maximum can be expressed by Theorem Ⅰ. 

Each strategy of player A, player B, and player C is (s,t,u)=(g,g,w), (s,t,u)=(g,w,g), 

and (s,t,u)=(w,g,g), respectively. 

[Property Ⅱ] 

When relationships between three players are all “worse”, the sum of all players reward 

becomes the minimum. But the strategy which makes each individual’s reward the 

minimum can be expressed by Theorem Ⅱ. 

Each strategy of player A, player B and player C is (s,t,u)=(w,w,g),(s,t,u)=(w,g,w), 

or (s,t,u)=(g,w,w), respectively. 

[Property Ⅲ] 

When (s,t,u)=(n,*,g) or (s,t,u)=(w,*,w),  f(A) does not depend on b. 

When (s,t,u)=(*,n,g) or (s,t,u)=(*,w,w),  f(A) does not depend on c. 

The symbol* denotes an arbitrary state of relationship. 

Especially, when (s,t,u)=(n,n,g), f(A)= ଷ

ସ
a does not depend on both b and c. 

[Property Ⅳ] 

When (s,t,u)=(n,g,*) or (s,t,u)=(w,w,*),  f(B) does not depend on a. 

When (s,t,u)=(*,g,n) or (s,t,u)=(*,w,w),  f(B) does not depend on c. 

Especially, when (s,t,u)=(n,g,n), f(B)= ଷ

ସ
b does not depend on both a and c. 

[Property Ⅴ] 

When (s,t,u)=(g,*,n) or (s,t,u)=(w,*,w),  f(C) does not depend on b. 

When (s,t,u)=(g,n,*) or (s,t,u)=(w,w,*),  f(C) does not depend on a. 

Especially, when (s,t,u)=(g,n,n), f(C) = ଷ

ସ
c does not depend on both a and b. 
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[Property Ⅵ] 

When (s,t,u)=(w,w,w), f(A)=a, f(B)=b, and f(C)=c. 

[Property Ⅶ] 

When (s,t,u)=(w,*,g) or (s,t,u)=(*,w,g),  f(A) is decreasing in b and is decreasing in c, 

respectively.  Especially, when (s,t,u)=(w,w,g), f(A) is decreasing in both b and c. 

[Property Ⅷ] 

When (s,t,u)=(g,w,*) or (s,t,u)=(*,g,w),  f(B) is decreasing in a and is decreasing in c, 

respectively.  Especially, when (s,t,u)=(w,g,w), f(B) is decreasing in both a and c. 

[Property Ⅸ] 

When (s,t,u)=(g,w,*) or (s,t,u)=(g,*,w),  f(C) is decreasing in b and is decreasing in c, 

respectively.  Especially, when (s,t,u)=(g,w,w), f(B) is decreasing in both a and b. 

[Numerical analysis of Model Ⅰ] 

When v(A)=a=4,  v(B)=b=3, and  v(C)=c=2, the Shapley value of each player can be 

calculated in each strategy. 

From Property Ⅰ, when you choose good relationship of a pair with yourself and does 

worse relationship of a pair except yourself, you can make your reward the maximum. 

The number of strategies which 3 players take the state is 27.  Figure 1-1 represents 

that it arranges in many order with reward f(A) of player A. 

Figure 1-2 and Figure 1-3 are also the same. 
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  Figure 1-1 

  Figure 1-2 

442



   Figure 1-3 

When relationships among three players are all “good”, the strategy (s,t,u)=(g,g,g) is 

not necessarily best for each player.  In the arrangement of f(A),f(B), and f(C), the 

ranking of the strategy (s,t,u)=(g,g,g) is 3rd,4th and 5th,respectively. When original 

reward v(C) of player C is the lowest value of three players, a player like player C is 

called “low potential player”.  For low potential player like player C, (s,t,u)=(g,g,g) is 

not so an important strategy. If the value of v(C) becomes small, the importance of the 

strategy (s,t,u)=(g,g,g) will fall for player C. 

     Figure 1-4 

If player C takes the strategy (s,t,u)=(w,g,g) which makes one’s reward the maximum, it 

is investigated how f(A), f(B), and f(C) will change by the variable of v(C)=c. 
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Figure 1-4 represents the changes of f(A), f(B), and f(C) where v(A)=4, v(B)=3 and v(C) is 

changed to 3 from 1.  If v(C) exceeds 1.7, f(C) will become the maximum among three 

players. 

4  Simulation Model Ⅱ 

In Model Ⅰ, the characteristic function v depends on the sum of 2 player’s reward 

and is linear function of v(A), v(B) and v(C).  In Model Ⅱ, the characteristic function v 

changes the product of 2 player’s reward. The reward of each player will become large if 

a good relationship is chosen. 

The characteristic function v is defined as follows. 

v(A)＝a, v(B)＝b, v(C)＝c, 

2ab, s=g 

v(A∪B,s)= ଷ

ଶ
ab, s=n 

a+b, s=w 

2ac, t=g 

v(A∪C,t)= ଷ

ଶ
ac, t=n 

a+c, t=w 

2bc, u=g 

v(B∪C,u)= ଷ

ଶ
bc, u=n 

b+c, u=w 

v(A∪B∪C)= ଵ

ଶ
{v(A∪B,s) +v(A∪C,t) +v(B∪C,u)} 

Since this characteristic function v satisfies the conditions of Theorem Ⅰ and Ⅱ, 

ModelⅡ is keeping the same properties as Property Ⅰ, Property Ⅱ and Property Ⅵ 

in Model Ⅰ. 

[Numerical analysis of Model Ⅱ] 

444



   Figure 2-1 

  Figure 2-2 
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  Figure 2-3 

In the arrangement of many order of f(C), the ranking of the strategy (s,t,u)=(g,g,g) is 

6th. Furthermore, the importance of this strategy will fall for player C. 

 [ Property Ⅹ] 

When a≧b≧c> ଵ
ଶ
 and (s,t,u)=(w,w,g), f(A) is decreasing in both b and c. 

When a≧b≧c> ଵ
ଶ
 and (s,t,u)=(w,g,w), f(B) is decreasing in both a and c. 

When a≧b≧c> ଵ
ଶ
 and (s,t,u)=(g,w,w), f(C) is decreasing in both a and b. 

[ Property Ⅺ] 

Except (s,t,u)=(w,w,g) ,(s,t,u)=(w,g,w), and (s,t,u)=(g,w,w), let a≧b≧c>ଵ
ଶ
,then f(A), f(B), 

and f(C) are increasing in all a, b and c. 

    Figure 2-4 

It is investigated how f(A), f(B) and f(C) will change by the variable of v(C)=c like Model 
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Ⅰ. In spite of the best strategy (s,t,u)=(w,g,g) for player C, it becomes the lowest at 

v(C)=1. When v(C) exceeds 1.6, f(C) will become the top of three players.  The 

structure of characteristic function v is disadvantageous for the low potential player. 

5  Comparison of Model Ⅰand Model Ⅱ 

In Model Ⅰand Model Ⅱ,since 3 players can choose three kinds of relationships each 

one ,the number of their strategies is 27. We investigate the reward distribution of 3 

players in all strategies.  In Model Ⅰand Model Ⅱ, the order of strategies make a 

small difference for each player. In particular, the change of the order is large for the 

low potential player.  In all strategies, the average of each player’s distribution 

percentage is as follows. 

In Model Ⅰ,when v(A)=4, v(B)=3, and v(C)=2, we can see the share of f(A) in v(A∪B∪

C). We take the average of that and let it be ASR(Average Share Rate). 

ASR of f(A): ASR of f(B): ASR of f(C) =42.6% : 33.3% : 24.1% , and 

the average of all of f(A): the average of all of f(B): the average of all of f(C) = 5.75 : 4.5 : 

3.25 . 

Compared with an original reward, the average of each player becomes large 

comparatively.  Especially, when an original reward, v(C)=2 becomes the average 3.25, 

the satisfaction of player C may be high. 

When relationships among three players are all “worse”, f(A),f(B), and f(C) depend on 

each original reward only from Property Ⅵ. The structure of cooperative relation will 

not exist at all. 

In Model Ⅱ, when v(A)=4, v(B)=3 and v(C)=2, 

ASR of f(A): ASR of f(B): ASR of f(C) = 44.9%:34.9%:20.2%, 

the average of all of f(A): the average of all of f(B): the average of all of f(C) =8.2777 : 

6.4444 : 3.4444. 

Compared with an original reward, the average of each player becomes large 

comparatively like Model Ⅰ. On the contrary to Model Ⅰ, the satisfactions of player A 

and player B will be high. The structure of the characteristic function is 

disadvantageous for the low potential player like player C. 

6  Conclusion 

It is clear that a high potential player is advantageous in the coalitional game with 

the Shapley value. Since a characteristic function depending on the state of a pair’s 

relationship is introduced to a coalitional game, there exists the strategy where a 

specific player makes his reward the maximum or the minimum. 
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Since two models hold v(pi ∪ pj , sk ) ≧ v(pi )+ v(pj ) for any sk, the Shapley value of 

each player becomes more than an original reward in a coalitional game. A low potential 

player is disadvantageous in two models.  But when the low potential player C takes 

two strategies (s,t,u)=(w,g,g) or (s,t,u)=(w,n,g) in Model Ⅰ ,four strategies 

(s,t,u)=(w,g,g), (s,t,u)=(w,g,n), (s,t,u)=(w,n,g), or (s,t,u)=(w,n,n) in Model Ⅱ,respectively, 

reward of the player will become the top of three players. The choice is increasing in 

spite of the disadvantageous structure of Model Ⅱ for the low potential player C. 

  In the future, we can extend to 4 players and 5 players from three players and may 

draw many properties from these models.  In this paper, the characteristic function of 

more than three players was made from two players’ relationship.  We can make 

directly the relationship of more than three players and will discuss the structure of a 

complicated relationship.  
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