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平均の非可換三角関数係数表現

— 作用素平均の泉野構成法 —

大阪教育大学　藤井淳一

今回は駆け出しのころに本協会誌に発表した [7, 8] が中心の話ですが、当時は学会発表してもあまり

反響がなかったので、あまりいい結果ではないのかもと思っていました。しかし、最近この視点で少し

結果を出すことができて重要性が再確認でき、またこれらの論文が [9, 10]などでも再評価され、その意

味でももう少し現時点での振り返りが必要かと思い始めました。基本原理は簡単なもので、例えば、正

数 a, bについて、次の変形は高校数学でもよくある話で、変化をとらえるのに有効です：

(∗) a sin θ + b cos θ =
√

a2 + b2 sin(θ + α) =
√

a2 + b2 cos(θ − β)

(
tanα =

b

a
=

1

tanβ

)
.

ちょっとした視点の違いで振る舞いが見やすくなることはよくありますが、a, bを正規化して三角関数に

することはたやすいことです。こんなことが非可換な行列や作用素でもできるというのが「作用素平均

の泉野構成法」と著者が呼んだもので、著者自身としてはいい視点だと思って、自画自賛ですが少し高

揚しました。この話は結構歴史的に重要な流れもあるので、ここで振り返ってみたいと思います。

発端の平均理論は，Pusz-Woronowicz [13, 14]（後者の先生は量子群導入者の一人として有名で、本学

にも講演に来られたことがあります）の汎関数の平均理論として，別の Hilbert空間に表現することに

よって（三角関数のように 2乗の）「和が 1」の平均に帰着させる話が論じられました。別空間への表現

が間接的なこともあって，安藤毅先生が空間の表現を使わず、正作用素の幾何平均・調和平均を作用素

内で構成されました [1]．院生だった当時、先輩の久保文夫先生（当時北大応電研の安藤毅先生の助手）

と中村研究室 1)で彼らの仕事について何度かゼミをしたので，手法はある程度理解できました．このゼ

ミやそれ以前に出していた結果 [3, 4, 6, 5]が作用素の平均の理論の確立に多少役立ち、その後一般化・

公理化されて今や基本的な作用素平均理論として（何種類かあるので久保-安藤理論と区別して）認知さ

1)大教大の中村正弘先生の研究室のことですが、中村先生は本協会にも創設当時から貢献されたとお聞きしています。
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れ [12]、その傍証としてアメリカ数学会の Mathematical Subject Classifications に 47A64 として「作

用素平均」が追加されました。同時に追加された作用素不等式 47A63 は「古田不等式」のおかげだと思

いますが、前者の方は久保-安藤理論の影響が大きいでしょう。

久保-安藤作用素平均は基本的に作用素平均 F (A,B) ≡ AmBについて，重要な性質として作用素同

次性; 可逆作用素 T について

F (T ∗AT, T ∗BT ) = T ∗F (A,B)T,

を満たす 2項演算であることがわかります 2)。この性質で T をユニタリにとれば 1mxとの可換性が出

て、Schur補題によって実数値関数 f(x) = 1mxが導かれ，作用素が可逆な場合は

AmB = A
1
2 f
(
A− 1

2BA− 1
2
)
A

1
2

で再生し，この作用素単調関数 3) f と作用素平均が 1対 1に対応するので，平均の表現関数と呼ばれま

した。きれいな対応ですが、可逆作用素のみの表現なので、一般には極限を挟む必要があり、少し計算

上の面倒さが残りました：

AmB = lim
ε↘0

(A+ ε)m (B + ε).

その後、泉野佐一先生が研究のためはるばる富山から通われて中村ゼミに参加されていたので、幸運

にも先生の研究内容に直接触れることができました。泉野先生の手法 [11]は、非有界作用素を有界作用

素の分数としてとらえる幅広いものですが、私が利用したのはホンの一部で、f(x) = (1−x)mxという

作用素凹関数から構成する方法として定式化しました [8]。私自身 Pusz-Woronowicz を院生時代に学ん

だ背景にあったこともあり（cf.[7]）、もともと安藤先生たちも証明内では使われたりしたのですが、個

別に使われていた手法を泉野先生方式で一般論に拡げたもので、これが非可換三角関数的になります：

正作用素A,Bに対し、いわゆるDouglasのmajorization theorem [2]によって、

√
A+BD =

√
A (= D∗√A+B),

√
A+BE =

√
B (= E∗√A+B)

となる作用素D,Eが適当な条件下で一意的にとれます。(∗)の変形と同様に、上記の式は√√
A

2
+
√
B

2
D =

√
A,

√√
A

2
+

√
B

2
E =

√
B

であり、さらに、
√
A+B(DD∗ + EE∗)

√
A+B =

√
A

2
+
√
B

2
＝A+B

2)作用素平均理論では、むしろ一般の T についての

トランス不等式： T ∗F (A,B)T ≤ F (T ∗AT, T ∗BT )

の方が有名です。可逆な T の場合は、上式に T−1 についてトランス不等式を再度考えれば逆の不等式が得られ、作用素同次

性が成り立ちます。
3)スペクトルが一定の開区間 I に属するエルミット作用素で、I 上の実関数 f の functional calculusによって、通常の順
序で

A ≤ B =⇒ f(A) ≤ f(B)

が成り立つ関数を I 上の作用素単調関数といい、

f((1− t)A+ tB) ≥ (1− t)f(A) + tf(B) (t ∈ [0, 1])

が成り立つ関数を I 上の作用素凹関数といいます。これらは解析的で上半平面に解析接続できる Pick関数になります。
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で、空間をA+Bの値域の閉包Kに制限すれば、「非可換 2乗和が 1」に当たる

DD∗ + EE∗ = IK

と解釈できます。これはまさに非可換三角関数ではありませんか。しかも、D,Eは非可換ですが、非可

換 2乗形の DD∗, EE∗は可換になります。この時、作用素平均は f(x) = (1− x)mxによって、

AmB =
√
A+Bf(EE∗)

√
A+B

と表現でき、これを泉野構成法、f を表現凹関数と呼ばせていただきました。これなら表現に可逆性は

不要で、純代数的に簡潔に処理できます。しかも、これは平均オリジナルの Pusz-Woronowiczの方法の

space-free版であることが、[9, 10]などで見直されたようです。

この話の発端となった対象が並列和A : Bと呼ばれる安藤先生の調和平均A !Bの半分でした：

A : B = max

{
X ≥ 0

∣∣∣∣∣
(
A 0

0 B

)
≥

(
X X

X X

)}
.

上記は安藤先生 [1]の定式化を直したものですが、これは、電気回路の接続における並列接続の抵抗値の

非可換形です。この定式化も概念的にいろんな性質を導ける有用なものですが、平均自体を求めるとき

には直接的なものが欲しくて、よく使われるのは（これも可逆性より少し緩いですが、A+Bの値域が

閉である場合には、Moore-Penroseの一般化逆元 (A+B)†が行列と同様に使えるので）

A : B = A(A+B)†B = B(A+B)†A

という公式です。例えば次のような変形が可能です：

A : B = (A+B)(A+B)†B −B(A+B)†B = B −B(A+B)†B.

しかしいずれにせよ、この公式にも「値域閉」の足枷があります。

けれども泉野構成法であれば、DD∗, EE∗は逆作用素的な性質がありますので、似たような公式が無

条件で出てきます: 並列和の表現凹関数は

f(x) =
(1− x)x

(1− x) + x
= (1− x)x = x− x2

という一種のロジスティック型の関数になりますので、

A : B =
√
A+Bf(EE∗)

√
A+B

=
√
A+B(EE∗)

√
A+B −

√
A+B(EE∗EE∗)

√
A+B

=
√
B

2
−
√
B(E∗E)

√
B

= B −
√
B(E∗E)

√
B.

という計算公式が無条件で成り立ちます。この公式自体は、単なる例として当時からわかっていたこと

ですが、（まだ未発表なので詳しく言えませんが）今回の結果でこの公式が思ったより威力を発揮したの

で、ちょっとしたことですが、「小さな障害もできれば除去しておくに限る」と改めて思いました。
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因みに作用素同次性を満たす正作用素の 2項演算 F ならば、この手法が使えます。逆に万能とはいか

なくて、加重幾何平均では

A#tB =
√
A+B(1− EE∗)1−t(EE∗)t

√
A+B =

√
A+B

(
(EE∗)

t
1−t − (EE∗)

1
1−t

)1−t√
A+B

と、あまり有効性のない変形どまりの場合ももあります。ただ、エルミット作用素 C で EE∗ = cos2C

と視れば、中身の部分は (sin2C)1−t(cos2C)t = (sin2(1−t)C)(cos2tC)に相当しますが・・・。
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