ON IMPLICATIVE BCI-ALGEBRAS

YISHENG HUANG*

Received November 3, 2005

Abstract. In this paper, we give an axiom system of implicative BCI-algebras, investigate some properties of the branches of an implicative BCI-algebra, which are similar to those of implicative BCK-algebras, and show that for every initial section of an implicative BCI-algebra, it with respect to the BCI-ordering forms a Boolean algebra.

As is well known, commutative BCK-algebras, positive implicative BCK-algebras and implicative BCK-algebras are three classes of the most important BCK-algebras. In order to get the similar classes in BCI-algebras, J. Meng and X. L. Xin in [9], [11] and [10] introduced commutative BCI-algebras, positive implicative BCI-algebras and implicative BCI-algebras respectively, and investigated their fundamental properties similar to those of the corresponding algebras in BCK-algebras. And the author in [1], [2] and [3] gave some further properties of theirs.

The ideas of this paper are originated from [1]. Like [1], we will mainly use lattices and branches as well as initial sections to explore implicative BCI-algebras in this paper. And we will obtain a number of interesting results similar to those of implicative BCK-algebras.

0 Preliminaries For the notations and elementary properties of BCK and BCI-algebras, we refer the reader to [5], [4] and [8]. And we will use some familiar notions and properties of lattices without explanation.

Recall that according to the H. S. Li’s axiom system (see [7]), a BCI-algebra \((X; \ast, 0)\) means that it is an algebra of type \((2, 0)\), satisfying the following conditions: for any \(x, y, z \in X\),

\[
\begin{align*}
\text{BCI-1} & \quad ((x \ast y) \ast (x \ast z)) \ast (z \ast y) = 0, \\
\text{BCI-2} & \quad x \ast 0 = x, \\
\text{BCI-3} & \quad x \ast y = 0 \text{ and } y \ast x = 0 \text{ imply } x = y.
\end{align*}
\]

It is known that given a BCI-algebra \(X\), the following identities are valid:

\[
\begin{align*}
(0.1) & \quad (x \ast y) \ast z = (x \ast z) \ast y, \\
(0.2) & \quad x \ast y = x \ast (x \ast (x \ast y)), \\
(0.3) & \quad 0 \ast (x \ast y) = (0 \ast x) \ast (0 \ast y), \\
(0.4) & \quad (x \ast y) \ast x = 0 \ast x.
\end{align*}
\]

2000 Mathematics Subject Classification. 06F35.

Key words and phrases. implicative BCI-algebra, branch, initial section, lattice, Boolean algebra.

*Supported by Fujian Province Natural Science Foundation Z0511050.
And X with respect to its BCI-ordering \leq forms a partially ordered set $(X; \leq)$ satisfying the following quasi-identities:

\begin{align}
(0.5) & \quad (x * y) * (x * z) \leq z * y, \\
(0.6) & \quad (x * z) * (y * z) \leq x * y, \\
(0.7) & \quad (x * (x * y)) * (x * (x * z)) \leq y * z,
\end{align}

where the binary relation \leq on X is defined as follows: $x \leq y$ if and only if $x * y = 0$. Moreover, the following assertions hold: for any $x, y, z \in X$,

\begin{align}
(0.8) & \quad x \leq y \text{ implies } z * y \leq z * x, \\
(0.9) & \quad x \leq y \text{ implies } x * z \leq y * z.
\end{align}

A minimal element a of X means that a is an element in X such that $x \leq a$ (i.e., $x * a = 0$) implies $x = a$ for any $x \in X$. Given a minimal element a of X, the set $\{x \in X \mid x \geq a\}$ is called a branch of X, denoted by $V(a)$.

Given an element c in X, the set $\{x \in X \mid x \leq c\}$ is called an initial section of X, denoted by $A(c)$.

Theorem 0.1 ([8], §1.3). Assume that P is the set of all minimal elements of a BCI-algebra X. Then the collection $\{V(a) \mid a \in P\}$ of branches of X forms a partition of X, that is, $X = \bigcup_{a \in P} V(a)$ and $V(a) \cap V(b) = \emptyset$ if $a \neq b$ for any $a, b \in P$. Moreover, the following fold: for any $x, y \in V(a)$,

\begin{align}
(0.10) & \quad 0 * (0 * x) = a, \\
(0.11) & \quad 0 * (x * y) = 0.
\end{align}

Definition ([9], [11] and [10]). A BCI-algebra X is called commutative if

\[x \leq y \text{ implies } x = y * (y * x) \quad \text{for all } x, y \in X; \]

it is called positive implicative if

\[(x * (x * y)) * (y * x) = x * (x * (y * (y * x))) \quad \text{for all } x, y \in X; \]

it is called implicative if

\[x * (x * y) = (y * (y * x)) * (x * y) \quad \text{for all } x, y \in X. \]

Theorem 0.2 ([8], §2.4). A BCI-algebra X is commutative if and only if for any branch $V(a)$ of X, $x \in V(a)$ and $y \in V(a)$ imply

\[x * (x * y) = y * (y * x). \]

Moreover, $(V(a); \leq)$ forms a lower semilattice such that for any $x, y \in V(a)$,

\begin{align}
(0.14) & \quad x \wedge y = y * (y * x), \\
(0.15) & \quad x * y = x * (x \wedge y).
\end{align}

Theorem 0.3 ([1], Theorem 3.2). If $A(c)$ is an initial section of a commutative BCI-algebra X, then $(A(c); \leq)$ is a distributive lattice with

\[x \wedge y = y * (y * x) \quad \text{and} \quad x \vee y = c * ((c * x) \wedge (c * y)). \]
Theorem 0.4 ([3], Corollary 3). A BCI-algebra X is positive implicative if and only if
\[(0.16)\quad x \ast y = ((x \ast y) \ast y) \ast (0 \ast y) \quad \text{for any } x, y \in X.\]
Thus
\[(0.17)\quad x \ast y = (x \ast y) \ast y \quad \text{if } y \geq 0.\]

Theorem 0.5 ([11], Theorem 6). A BCI-algebra X is implicative if and only if it is commutative and positive implicative.

1 An axiom system of implicative BCI-algebras
Let’s begin our discussion with giving an axiom system of implicative BCI-algebras.

Theorem 1.1. An algebra $(X; \ast, 0)$ of type $(2,0)$ is an implicative BCI-algebra if and only if it satisfies the following identities:

1. $x \ast 0 = x$;
2. $x \ast x = 0$;
3. $(x \ast y) \ast z = (x \ast z) \ast y$;
4. $(x \ast z) \ast (x \ast y) = ((y \ast z) \ast (y \ast x)) \ast (x \ast y)$.

Proof. Necessity. (1) is just BCI-2. Repeatedly applying BCI-2, we have
\[x \ast x = ((x \ast 0) \ast (x \ast 0)) \ast (0 \ast 0).\]
Then BCI-1 implies $x \ast x = 0$, (2) holding. By (0.1), (3) is true. By the definition of the implicativity of X, we have
\[x \ast (x \ast y) = (y \ast (y \ast x)) \ast (x \ast y).\]
Right \ast multiplying both sides of the last identity by z, we derive
\[(x \ast (x \ast y)) \ast z = ((y \ast (y \ast x)) \ast (x \ast y)) \ast z.\]
Then (0.1) gives $(x \ast z) \ast (x \ast y) = ((y \ast z) \ast (y \ast x)) \ast (x \ast y)$, showing (4).

Sufficiency. BCI-2 is just (1). Putting $z = 0$ in (4) and using (1), we have
\[(1.1)\quad x \ast (x \ast y) = (y \ast (y \ast x)) \ast (x \ast y),\]
which is the implicativity of X. It is easily seen from (1.1) and (1) that BCI-3 is true. It remains to show BCI-1. In fact, by (4), we have
\[x \ast (x \ast z) = ((z \ast y) \ast (z \ast x)) \ast (x \ast z).\]
Right \ast multiplying both sides of the last identity by $z \ast y$, we obtain
\[(1.2)\quad ((x \ast y) \ast (x \ast z)) \ast (z \ast y) = (((z \ast y) \ast (z \ast x)) \ast (x \ast z)) \ast (z \ast y).\]

By (3), the right side of (1.2) coincides with
\[(1.3)\quad (((z \ast y) \ast (z \ast y)) \ast (z \ast x)) \ast (x \ast z).\]

By (2), $(z \ast y) \ast (z \ast y) = 0 = z \ast z$, then (1.3) is identical with
\[(1.4)\quad ((z \ast z) \ast (z \ast x)) \ast (x \ast z).\]
Using (3) once again, (1.4) is the same as

\[(1.5) \quad ((z * (z * x)) * (x * z)) * z.\]

By (1.1), (1.5) is identical with \((x * (x * z)) * z\), that is, \((x * z) * (x * z)\) by (3). Now, since \((x * z) * (x * z) = 0\) by (2), we see that (1.2) is equivalent to

\[((x * y) * (x * z)) * (z * y) = 0,
\]

showing BCI-1. The proof is complete.

2 On branches of implicative BCI-algebras

We now consider the branches of an implicative BCI-algebra. It is known very well that the identity \(x * (y * x) = x\) is just the implicativity of BCK-algebras. It is interesting that the same identity holds in a branch of an implicative BCI-algebra.

Proposition 2.1. Let \(X\) be a BCI-algebra. If \(X\) is implicative, then for any branch \(V(a)\) of \(X\), \(x \in V(a)\) and \(y \in V(a)\) imply \(x * (y * x) = x\).

Proof. Since \(x, y \in V(a)\), we have \(0 * (x * y) = 0\) by (0.11). Then (0.4) gives

\[(2.1) \quad (x * (y * x)) * x = 0 * (y * x) = 0.
\]

On the other hand, replacing \(y\) by \(y * x\) in (0.12), we have

\[(2.2) \quad x * (x * (y * x)) = ((y * x) * ((y * x) * x)) * (x * (y * x)).
\]

Also, since every implicative BCI-algebra is positive implicative, by (0.16), we derive

\[(2.3) \quad y * x = ((y * x) * x) * (0 * x).
\]

Right \(\ast\) multiplying both sides of (2.3) by \((y * x) \ast x\), it follows

\[(2.4) \quad (y * x) * ((y * x) * x) = (((y * x) * x) * (0 * x)) * ((y * x) * x).
\]

By (0.4), the right side of (2.4) is equal to \(0 * (0 * x)\). Then

\[(2.5) \quad (y * x) * ((y * x) * x) = 0 * (0 * x).
\]

Right \(\ast\) multiplying both sides of (2.5) by \(x * (y * x)\), it yields

\[\quad ((y * x) * ((y * x) * x)) * (x * (y * x)) = (0 * (0 * x)) * (x * (y * x)).
\]

Comparison with (2.2) gives

\[x * (x * (y * x)) = (0 * (0 * x)) * (x * (y * x)),
\]

which means from (0.1) that

\[(2.6) \quad x * (x * (y * x)) = (0 * (x * (y * x))) * (0 * x).
\]

Moreover, since \(x, y \in V(a)\), by (0.3) and (0.11) as well as BCI-2, we obtain

\[0 * (x * (y * x)) = (0 * x) * (0 * (y * x)) = (0 * x) * 0 = 0 = 0 * x.
\]

Now, substituting \(0 * x\) for \(0 * (x * (y * x))\) in (2.6), and noticing \(0 * x) * (0 * x) = 0\), the following holds:

\[(2.7) \quad x * (x * (y * x)) = (0 * x) * (0 * x) = 0.
\]

Combining (2.1) with (2.7) and using BCI-3, it follows \(x * (y * x) = x\).
It is a pity that unlike Theorem 0.2, the converse of Proposition 2.1 is not true as shown in the following counter example.

Example 2.1. The set \(X = \{0, 1, 2, 3\} \) together with the operation * on \(X \) given by the Cayley table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

forms a BCI-algebra (see [6], the author H. Jiang denotes it by \(I_{4-2-1} \)). It is not difficult to see that the whole minimal elements of \(X \) are 0 and 2, and the branches \(V(0) = \{0, 1\} \) and \(V(2) = \{2, 3\} \). Now, it is easy to verify that for any branch \(V(a) \) of \(X \), \(x \in V(a) \) and \(y \in V(a) \) imply \(x * (y * x) = x \). However, \(X \) is not implicative. That is because

\[
3 * (3 * 1) = 1 \neq 0 = (1 * (1 * 3)) * (3 * 1).
\]

Nevertheless, we have still the next interesting fact.

Proposition 2.2. Let \(X \) be a BCI-algebra. If for any branch \(V(a) \) of \(X \), \(x \in V(a) \) and \(y \in V(a) \) imply \(x * (y * x) = x \), then \(X \) is commutative.

Proof. Let \(x \) and \(y \) be any elements in \(X \) such that \(x \leq y \) (i.e., \(x * y = 0 \)). By Theorem 0.1, there exists a minimal element \(a \) of \(X \) such that \(x \in V(a) \). Since \(a \leq x \) and \(x \leq y \), we obtain \(a \leq y \), that is, \(y \geq a \). Then \(y \in V(a) \). So our hypothesis gives \(x * (y * x) = x \). Hence \((0.6)\) implies

\[
x * (y * (y * x)) = (x * (y * x)) * (y * (y * x)) \leq x * y = 0.
\]

In other words, \(x \leq y * (y * x) \). The opposite inequality is naturally true. Therefore \(x = y * (y * x) \), and \(X \) is commutative. \(\square \)

As an implicative BCI-algebra \(X \) must be commutative, according to Theorem 0.2, every branch \(V(a) \) of \(X \) forms a lower semilattice \((V(a); \leq) \), thus the greatest lower bound of any two elements in \(V(a) \) exists. And we have the following analogy.

Proposition 2.3. Let \(X \) be an implicative BCI-algebra and \(V(a) \) be a branch of \(X \). Then for any \(x, y, z \in V(a) \),

1. \((x * y) \land (y * x) = 0;\)
2. \((x \land y) * z = (x * z) \land (y * z);\)
3. the least upper bound \((z * x) \lor (z * y)\) of \(z * x \) and \(z * y \) exists and

\[
z * (x \land y) = (z * x) \lor (z * y).
\]

Proof. (1) Since \(x, y \in V(a) \), by (0.1) and Proposition 2.1, we have

\[
(y * x) * (x * y) = (y * (x * y)) * x = y * x.
\]

Then \((0.14)\) gives

\[
(x * y) \land (y * x) = (y * x) * ((y * x) * (x * y)) = (y * x) * (y * x) = 0.
\]
Also, by (0.6) and (0.15), we obtain
\[z^* t \leq z , x \] (2.9)

Since

Now, comparing (2.10) with (2.9), we derive

Let

the following analogy.

Let

the least upper bound

That is,

It is not difficult to see that two elements in a branch of an implicative BCI-algebra have generally not their least upper bound. If the least upper bound exists, we also have the following analogy.

Proposition 2.4. Let \(x \) and \(y \) be any elements in a branch \(V(a) \) of a BCI-algebra \(X \). If the least upper bound \(x \lor y \) of \(x \) and \(y \) exists, then the following hold:

1. \((x \lor y) \ast x = y \ast x \) and \((x \lor y) \ast y = x \ast y \);
2. the least upper bound \((x \ast z) \lor (y \ast z)\) of \(x \ast z \) and \(y \ast z \) exists and

\[(x \lor y) \ast z = (x \ast z) \lor (y \ast z) \]

for any \(z \in V(a) \);
3. \(z \ast (x \lor y) = (z \ast x) \lor (z \ast y) \) for any \(z \in V(a) \).
Corollary 2.5. Let \(x \) and \(y \) be any elements in a branch \(V(a) \) of an implicative BCI-algebra \(X \). If \(x \lor y \) exists, then \((x * y) \lor (y * x)\) exists and
\[
(x \lor y) \cdot (x \land y) = (x * y) \lor (y * x).
\]
3 On initial sections of implicative BCI-algebras

Finally let’s consider the initial sections of an implicative BCI-algebra. It is known that if X is a BCK-algebra and $A(c)$ is an initial section of X, then $(A(c); \leq)$ forms a Boolean algebra (refer to [5], Theorem 12). It is interesting that the same conclusion is true if X is an implicative BCI-algebra.

Theorem 3.1. Let $A(c)$ be an initial section of an implicative BCI-algebra X. Then $(A(c); \leq)$ is a Boolean algebra with $x \land y = y \ast (y \ast x)$, $x \lor y = c \ast ((c \ast x) \land (c \ast y))$ and $x' = (c \ast x) \ast (0 \ast x)$ for any $x, y \in A(c)$.

Proof. As any implicative BCI-algebra is commutative, by Theorem 0.3, $(A(c); \leq)$ is a distributive lattice with $x \land y = y \ast (y \ast x)$ and $x \lor y = c \ast ((c \ast x) \land (c \ast y))$ for any $x, y \in A(c)$. Also, c is clearly the unit element of the lattice $A(c)$. Moreover, it is easy to verify from Theorem 0.1 that there exists some branch $V(a)$ of X such that $A(c) \subseteq V(a)$.

Because a is the least element of the branch $V(a)$, it is the zero element of the lattice $(A(c); \leq)$. It remains to show that $A(c)$ is a complemented lattice with $(c \ast x) \ast (0 \ast x)$ as the complement x' of x for any $x \in A(c)$. Let u denote $(c \ast x) \ast (0 \ast x)$. Then we need to show is just the following facts:

1. $u \in A(c)$;
2. $x \land u = a$;
3. $x \lor u = c$.

In fact, by (0.6) and BCI-2, we have $(c \ast x) \ast (0 \ast x) \leq c \ast 0 = c$, that is, $u \leq c$. Then $u \in A(c)$, (i) holding. To show (ii) and (iii), let’s first assert that $u \ast x = c \ast x$. In fact, since X is positive implicative, by (0.1) and (0.16), the following holds:

$((c \ast x) \ast (0 \ast x)) \ast x = ((c \ast x) \ast x) \ast (0 \ast x) = c \ast x$.

That is, $u \ast x = c \ast x$, as asserted. Now, we have

$x \land u = u \ast (u \ast x) = u \ast (c \ast x)$.

Because of $x \in V(a)$, by (0.4) and (0.10), we obtain

$u \ast (c \ast x) = ((c \ast x) \ast (0 \ast x)) \ast (c \ast x) = 0 \ast (0 \ast x) = a$.

Therefore $x \land u = a$, showing (ii). Because X is commutative and $u \leq c$, we derive $c \ast (c \ast u) = u$. Then $(c \ast (c \ast u)) \ast x = u \ast x$, that is, $(c \ast x) \ast (c \ast u) = u \ast x$ by (0.1). So, the fact that $u \ast x = c \ast x$ gives $(c \ast x) \ast (c \ast u) = c \ast x$. Let \ast multiplying both sides of the last equality by $c \ast x$, it follows

$(c \ast x) \ast ((c \ast x) \ast (c \ast u)) = (c \ast x) \ast (c \ast x)$.

That is, $(c \ast u) \land (c \ast x) = 0$, in other words, $(c \ast x) \land (c \ast u) = 0$. Therefore

$c \land ((c \ast x) \land (c \ast u)) = c \land 0 = c$.

Note that $x \lor u = c \ast ((c \ast x) \land (c \ast u))$, it yields $x \lor u = c$, proving (iii). \[\square\]

A BCI-algebra X is called **locally bounded** if every branch $V(a)$ of X is bounded, i.e., there is $m_a \in V(a)$ such that $x \leq m_a$ for all $x \in V(a)$.

Corollary 3.2 ([10], Theorem 5). Assume that X is a locally bounded implicative BCI-algebra. Then for every branch $V(a)$ of X, it with respect to the BCI-ordering \leq forms a Boolean algebra $(V(a); \leq)$.
ON IMPLICATIVE BCI-ALGEBRAS

REFERENCES

Department of Mathematics, Sanming College, Sanming, Fujian 365004, P. R. China
E-mail: smcaihy@126.com