ON SUNS, MOONS AND BEST APPROXIMATION IN M-SPACES

T.D.Narang*, Sangeeta, Shavetambry Tejpal†

Received June 9, 2006; revised July 28, 2006

Abstract. A metric space \((X, d)\) in which for every \(x, y \in X\) and for every \(t, 0 \leq t \leq 1\) there exists exactly one point \(z \in X\) such that \(d(x, z) = (1 - t)d(x, y)\) and \(d(z, y) = td(x, y)\) is called an M-space. In this paper we discuss suns and moons in M-spaces and characterize these via best approximation thereby extending corresponding known results in normed linear spaces to M-spaces.

Introduction The concept of a sun in Approximation Theory was first introduced in normed linear spaces by Klee [5] but the terminology 'sun' was proposed by Effimov and Steckin [3]. We recall that a set \(V\) is a sun iff whenever \(v_0 \in V\) is a best approximation to some element \(x \notin V\) then \(v_0\) is a best approximation to every element on the ray from \(v_0\) through \(x\). Since every convex set in a normed linear space has this property, a sun may be regarded as a generalization of a convex set. Vlasov [10], who developed the concept further, showed that in a smooth Banach space every proximinal sun is convex. In view of Vlasov's result, the most famous unsolved problem in Approximation Theory viz. whether or not every Chebyshev set in a Hilbert space is convex, may be stated equivalently as "Is every Chebyshev set in a Hilbert space a sun?" The concept of a moon, which is a generalization of sun, was introduced by Amir and Deutsch [1] and their special interest was in determining those normed linear spaces in which every moon is a sun. Knowing such spaces is quite useful as it is much easier to verify that a given set is a moon than verify it is a sun.

Our purpose in this paper is to discuss these concepts in M-spaces [4] (also called strongly convex spaces [9]) and extend some of the results proved in [1] and [6] to M-spaces.

To start with, we give a few notations and recall a few definitions.

Let \((X, d)\) be a metric space and \(x, y, z \in X\). We say that \(z\) is between \(x\) and \(y\) if \(d(x, z) + d(z, y) = d(x, y)\). For any two points \(x, y\) of \(X\), the set \(\{z \in X : d(x, z) + d(z, y) = d(x, y)\}\) is called the metric segment and is denoted by \(G(x, y)\).

A metric space \((X, d)\) is said to be convex [9] if for every \(x, y \in X\) and for every \(t, 0 \leq t \leq 1\) there exists at least one point \(z \in X\) such that

\[
d(x, z) = (1 - t)d(x, y)\quad \text{and}\quad d(z, y) = td(x, y)
\]

The space \((X, d)\) is said to be strongly convex [9] or an M-space [4] if such a \(z\) exists and is unique for each pair \(x, y\) of \(X\).

Thus for strongly convex metric spaces each \(t, 0 \leq t \leq 1\), determines a unique point of the segment \(G(x, y)\).

Let \(G(x, y, -)\) denote the largest line segment containing \(G(x, y)\) for which \(x\) is an extreme point i.e. the ray starting from \(x\) and passing through \(y\), \(G_1(x, y, -)\) denotes \(G(x, y, -) \setminus G(x, y)\) and \(K(v_0, x) \equiv \bigcup B(z, d(z, v_0))\), \(z \in G_1(v_0, x, -)\) where \(B(z, r)\) stands for an open ball with centre \(z\) and radius \(r\).

2000 Mathematics Subject Classification. 41A65, 51K05, 51K99.

Key words and phrases. M-space, best approximation, Chebyshev set, solar point, lunar point, sun, moon.
A subset V of an M-space (X,d) is said to be a cone with vertex v_0 if $G(v_0, y, -) \subseteq V$ whenever $y \in V$.

Let V be a non-empty subset of a metric space (X,d) and $x \in X$. An element $v_0 \in V$ is called a best approximation to x if $d(x,v_0) = \text{dist}(x,V)$. We denote by $P_V(x)$, the set of all best approximants to x in V. The set V is said to be proximinal if $P_V(x) \neq \emptyset$ for each $x \in X$ and is said to be Chebyshev if $P_V(x)$ is exactly singleton for each $x \in X$.

For $v_0 \in V$, $P_V^{-1}(v_0) = \{x \in X : v_0 \in P_V(x)\}$. It is easy to prove (see [8]) that if $x \in P_V^{-1}(v_0)$ then $x_\lambda \in P_V^{-1}(v_0)$ for every $x_\lambda \in G[v_0,x]$ i.e. $v_0 \in P_V(x_\lambda)$. On the other hand, v_0 may not be in $P_V(x_\lambda)$ for $x_\lambda \in G_1(v_0,x,-)$. This motivates the following definition introduced in normed linear spaces by Effimov and Steckin [3]: If V is a proximinal subset of an M-space (X,d), a point $v_0 \in V$ is called a solar point (see Fig. 1 left diagram) if $x \in P_V^{-1}(v_0)$ implies $x_\lambda \in P_V^{-1}(v_0)$ for every $x_\lambda \in G_1(v_0,x,-)$. The set V is called a sun (see Fig. 1 right diagram) if for each $x \in X \setminus V$, every $v_0 \in P_V(x)$ is a solar point of V i.e. for all $v_0 \in P_V(x)$, $v_0 \in P_V(z)$ for all $z \in G_1(v_0,x,-)$.

Let V be a subset of an M-space (X,d). A point $v_0 \in V$ is called a lunar point if $x \in X$ and $K(v_0,x) \cap V \neq \emptyset$ imply $v_0 \in K(v_0,x) \cap V$. The set V is called a moon if each of its point is lunar.

The set $V = \{(x,y) \in R^2 : x^2 + 4y^2 \geq 1\}$ in Euclidean 2-space R^2 is a moon (see [2], p.38). We shall see that each sun in an M-space is a moon. However, the converse is not true (see [1]).

For proximinal subsets of an M-space, we have:

Theorem 1 A proximinal subset V of an M-space (X,d) is a sun if and only if for any $v_0 \in V$, the set $P_V^{-1}(v_0)$ is a cone with vertex v_0.

Proof Suppose V is a sun and $x \in P_V^{-1}(v_0)$ i.e. $v_0 \in P_V(x)$. We want to show that $G(v_0, x, -) \subseteq P_V^{-1}(v_0)$. Since $v_0 \in P_V(x)$ and V is a sun, $v_0 \in P_V(z)$ for all $z \in G_1(v_0,x,-)$ and consequently for all $z \in G(v_0, x, -)$ i.e. $z \in P_V^{-1}(v_0)$ for all $z \in G(v_0, x, -)$ i.e. $P_V^{-1}(v_0)$ is a cone with vertex v_0.

Conversely, let $x \in X \setminus V$ and $y \in P_V(x)$ i.e. $x \in P_V^{-1}(y)$ where $y \in V$. Since $P_V^{-1}(y)$ is a cone with vertex y, $G(y,x,-) \subseteq P_V^{-1}(y)$ i.e. $y \in P_V(z)$ for all $z \in G(y,x,-)$. Hence V is a sun.

Theorem 2 A proximinal subset V of an M-space (X,d) is a sun if and only if for any $v_0 \in V$ and $x \in P_V^{-1}(v_0)$, $K(v_0,x) \cap V = \emptyset$.

Proof Suppose V is a sun. Let $v_0 \in V$ and $x \in P_V^{-1}(v_0)$. Since $v_0 \in P_V(x)$ and V is a sun, $v_0 \in P_V(z)$ for all $z \in G(v_0,x,-)$. To show $K(v_0,x) \cap V = \emptyset$. Suppose $u \in K(v_0,x) \cap V$.
i.e. \(u \in B(z, d(z,v_0)) \) for some \(z \in G_1(v_0, x, -) \) i.e. \(d(z,u) \leq d(z,v_0) \) and so \(v_0 \notin P_V(z) \) as \(u \in V \), a contradiction. Therefore \(K(v_0, x) \cap V = \emptyset \).

For the converse part, suppose \(V \) is not a sun. Then there exists \(x \in X \setminus V \) and \(v_0 \in P_V(x) \) such that \(v_0 \notin P_V(z) \) for some \(z \in G(v_0, x, -) \). Then \(d(z,v_1) \leq d(z,v_0) \) where \(v_1 \in P_V(z) \) i.e. \(v_1 \in B(z, d(z,v_0)) \) for some \(z \in G(v_0, x, -) \). i.e \(v_1 \in K(v_0, x) \). Also \(v_1 \in V \) and therefore \(K(v_0,x) \cap V \neq \emptyset \), a contradiction. Hence \(V \) is a sun.

Note In normed linear spaces, Theorem 2 was proved by Amir and Deutsch [1] (see also [6], p. 467).

Lemma 3 \(K(v_0,x) = K(v_0,y) \) for all \(y \in G[v_0, x] \), where \(x \in X \), \(V \subset X \) and \(v_0 \in P_V(x) \).

Proof \(K(v_0,x) = \bigcup B(z_1, d(z_1, v_0)) \), \(z_1 \in G_1(v_0, x, -) \), \(K(v_0, y) = \bigcup B(z_2, d(z_2, v_0)) \), \(z_2 \in G_1(v_0, y, -) \).

Let \(z \in K(v_0,x) \) then \(z \in B(z_1, d(z_1, v_0)) \) for at least one \(z_1 \in G_1(v_0, x, -) \). Now any \(z_1 \in G_1(v_0, x, -) \) is also a point on \(G_1(v_0, y, -) \) i.e. \(z_1 = z_2 \) for some \(z_2 \in G_1(v_0, y, -) \) i.e. \(z \in \bigcup B(z_2, d(z_2, v_0)) \), \(z_2 \in G_1(v_0, y, -) \). Therefore,

\[
K(v_0,x) \subseteq K(v_0,y)
\]

Let \(z \in K(v_0,y) \) i.e \(z \in B(z_2, d(z_2, v_0)) \) for at least one \(z_2 \in G_1(v_0, y, -) \). If \(z_2 \in G_1(v_0, x, -) \) then \(z \in K(v_0,x) \) and so \(K(v_0,y) \subseteq K(v_0,x) \). If \(z_2 \in G[y,x] \), consider \(z \in G_1(v_0, x, -) \). Then

\[
d(z,z') \leq d(z, z_2) + d(z_2, z') \\
\leq d(z_2, v_0) + d(z_2, z') \\
= d(z', v_0).
\]

Therefore \(z \in B(z', d(z', v_0)) \) and so \(z \in K(v_0,x) \). Consequently

\[
K(v_0,x) \subseteq K(v_0,y)
\]

(1) and (2) imply \(K(v_0,x) = K(v_0,y) \).

The following theorem shows that we may assume in the definition of lunar point that \(x \) has \(v_0 \) as a best approximation from \(V \).

Theorem 4 Let \(V \) be a subset of an \(M \)-space \((X,d)\) and \(v_0 \in V \). Then the following are equivalent:

(i) \(v_0 \) is a lunar point

(ii) whenever \(v_0 \) is a best approximation to \(x \) with \(K(v_0, x) \cap V \neq \emptyset \) then \(v_0 \in \overline{K(v_0, x) \cap V} \).

Proof (i) \(\Rightarrow \) (ii) is trivial. (ii) \(\Rightarrow \) (i). Let \(x \in X \) and \(K(v_0, x) \cap V \neq \emptyset \). To show \(v_0 \in K(v_0, x) \cap V \). If \(v_0 \) is a best approximation to \(x \) then by (ii), \(v_0 \in \overline{K(v_0, x) \cap V} \). If \(v_0 \) is not a best approximation to \(x \) then two cases arise:

(a) \(v_0 \) is not a local best approximation to \(x \).

(b) \(v_0 \) is a local best approximation to \(x \).

Case (a): If \(v_0 \) is not a local best approximation to \(x \) i.e. for all \(\epsilon \geq 0 \) there exists \(v_\epsilon \in V \) such that \(d(v_\epsilon, v_0) \leq \epsilon \) and \(d(v_\epsilon, x) \leq d(v_0, x) \). Then \(v_\epsilon \in B(x, d(v_0, x)) \subset K(v_0, x) \). Therefore every neighbourhood of \(v_0 \) contains an element \(v_\epsilon \) of \(K(v_0, x) \cap V \) other than \(v_0 \). i.e. \(v_0 \) is a limit point of \(K(v_0, x) \cap V \) and so \(v_0 \in \overline{K(v_0, x) \cap V} \). Hence \(v_0 \) is a lunar point.

Case (b): If \(v_0 \) is a local best approximation to \(x \) i.e. \(v_0 \) is a best approximation to \(x \) from \(V \cap B(v_0, \epsilon) \) for some \(\epsilon \geq 0 \). Let \(z \in G[v_0, x] \) such that \(d(z, v_0) \leq \frac{\epsilon}{2} \) then by Lemma 3 \(K(v_0, z) = K(v_0, x) \) and \(v_0 \) is a best approximation to \(z \) from \(V \) [7]. So (ii) implies \(v_0 \in \overline{K(v_0, z) \cap V} = \overline{K(v_0, x) \cap V} \) and therefore \(v_0 \) is a lunar point.
Remark For normed linear spaces, above theorem was proved by Amir and Deutsch [1].

Corollary 5 Every sun in an M-space is a moon.

Proof Let V be a sun. Suppose V is not a moon i.e. there exists $v_0 \in V$ which is not a lunar point i.e. v_0 is a best approximation to $x \in X$ with $K(v_0, x) \cap V \neq \emptyset$ but $v_0 \notin K(v_0, x) \cap V$.

As V is a sun, Theorem 2 implies $K(v_0, x) \cap V = \emptyset$ whenever v_0 is a best approximation to $x \in X$.

Since these two statements are contradictory, the result follows.

Acknowledgements First author is thankful to University Grant Commission, India and third author is thankful to Council of Scientific and Industrial Research (CSIR), India for financial support.

References

DEPARTMENT OF MATHEMATICS, GURU NANAK DEV UNIVERSITY, AMRITSAR-143005 (INDIA)

* E-mail:tdnarang1948@yahoo.co.in
† E-mail:shwetambry@rediffmail.com