COMMON FIXED POINT THEOREMS IN SMALL SELF DISTANCE QUASI-SYMMETRIC DISLOCATED METRIC SPACE

F. M. Zeyada, M. R. A. Moubarak* and A. H. Soliman

ABSTRACT. In this paper we introduce common fixed point theorems in a new type of generalized metric space so called a small self distance quasi-symmetric dislocated metric space (ssd-q-s-d-metric space for short). Our results are generalizations of Theorem 2.1 [1] due to Mohamed Aamri and Driss El Moutawakil.

1 Introduction and Preliminaries

There have been a number of generalizations of metric space. One such generalization is symmetric space. M. Aamri and D. El Moutawakil [1] introduced the following theorem in symmetric space.

Theorem 2.1. Let \(d \) be a symmetric for \(X \) that satisfies (W.3) and (HE). Let \(A \) and \(B \) be two weakly compatible selfmappings of \((X, d)\) such that (1) \(d(Ax, Ay) \leq \phi(\max\{d(Bx, By), d(Bx, Ay), d(Ay, By)\}) \) for all \((x, y) \in X^2\), (2) \(A \) and \(B \) satisfy the property (E.A), and (3) \(AX \subseteq BX \). If the range of \(A \) or \(B \) is a complete subspace of \(X \), then \(A \) and \(B \) have a unique common fixed point.

The aim of the present paper is to give generalizations of Theorem 2.1 [1] in a type of generalized metric space weaker than symmetric space so called small self distance quasi-symmetric dislocated metric space.

Let \(X \) be a nonempty set and let \(d \) be a distance function. The pair \((X, d)\) is called a distance space [3].

We need the following conditions:

\[
\begin{align*}
& (d_1) \forall x \in X, d(x, x) = 0, \\
& (d_2) \forall x, y \in X, d(x, y) = 0 \Rightarrow x = y, \\
& (d_3) \forall x, y \in X, d(x, y) = d(y, x), \\
& (d_4) \forall x, y, z \in X, d(x, y) \leq d(x, z) + d(z, y), \\
& (d_5) \forall x, y \in X, d(x, x) \leq \min\{d(x, y), d(y, x)\}
\end{align*}
\]

for all \(x, y, z \in X \). If \(d \) satisfies conditions \((d_1) - (d_4)\), then \((X, d)\) is called a metric space. If it satisfies conditions \((d_2) - (d_4)\), then \((X, d)\) is called a dislocated metric space [3]. Also \((X, d)\) is called a symmetric space if satisfies \((d_1) - (d_3)\).

Definition 1.2 [2]. Let \(A \) and \(B \) be two selfmappings of a metric space \((X, d)\). We say that \(A \) and \(B \) satisfy the property (E.A) if there exists a sequence \((x_n)\) such that

\[
\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Bx_n = t
\]

for some \(t \in X \).

2000 Mathematics Subject Classification. Primary 54H25, 47H10.

Key words and phrases. symmetric space, dislocated metric space fixed point.

* Corresponding author.
2 Main results Definition 2.1. A distance space \((X, d)\) is called a small self distance quasi-symmetric-dislocated metric space (ssd-q-s-d-metric space, for short) if \(d\) satisfies \((d_2)\)′ and \((d_3)\).

Example 2.1. Let \(X\) be a nonempty set and \(d : X \times X \to [0, \infty)\) defined by \(d(x, y) = \frac{1}{3}\) if \(x = y\) and \(d(x, y) = 1\) if \(x \neq y\). Then \((X, d)\) is a small self distance quasi-symmetric-dislocated metric space.

Definition 2.2. Let \((X, d)\) be a ssd quasi-symmetric dislocated metric space and let \(Y \subset X\). \(Y\) said to be \(l\)-closed (resp. \(r\)-closed) if \(d(x, Y) = 0\) (resp. \(d(Y, x) = 0\)), then \(x \in Y\).

Definition 2.3. Two selfmapping \(A\) and \(B\) of ssd-q-s-d-metric \(X\) are said to be weakly compatible if they commute at there coincidence points; i.e., if \(Bu = Au\) for some \(u \in X\), then \(BAu = ABu\).

Definition 2.4. Let \((X, d)\) a ssd-q-sd-metric space. Then \((X, d)\) satisfies \((\ell u; 3)\) if for every sequence \((x_n)\) in \(X\) and \(x, y \in X\), if \(\lim_{n \to \infty} d(x, x_n) = \lim_{n \to \infty} d(y, x_n) = 0\), then \(x = y\); and satisfies \((ru; 3)\) if for every sequence \((x_n)\) in \(X\) and \(x, y \in X\), \(\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x_n, y) = 0\), then \(x = y\).

Definition 2.5. Let \((X, d)\) be a ssd-q-s-d-metric space. Two self mappings \(A\) and \(B\) of \((X, d)\) are said to have the property \((\ell - E.A - H_E)\) if

(a) \(AX \subseteq BX\),
(b) there exists a sequence \((x_n)\) such that \(\lim_{n \to \infty} d(t, Ax_n) = \lim_{n \to \infty} d(t, Bx_n) = \lim_{n \to \infty} d(Bx_n, Ax_n) = 0\) for some \(t \in X\).

Also, \(A\) and \(B\) are said to have the property \((r - E.A - H_E)\) if

\(a')\) \(AX \subseteq BX\),
\(b')\) there exists a sequence \((x_n)\) such that \(\lim_{n \to \infty} d(Ax_n, t) = \lim_{n \to \infty} d(Bx_n, t) = \lim_{n \to \infty} d(Bx_n, Ax_n) = 0\) for some \(t \in X\).

In the sequel, we need a function \(\phi : R^+ \to R^+\) satisfying the condition \(0 < \phi(t) < t\) for each \(t > 0\).

Theorem 2.1. Let \((X, d)\) be a ssd-q-sd-metric space that satisfies \((\ell u; 3)\). Let \(A\) and \(B\) be two weakly compatible selfmappings of \((X, d)\) such that

1. \(d(Ax, Ay) \leq \phi(\max\{d(Bx, By), d(Bx, Ay), d(Ay, By)\})\) \(\forall x, y \in X\);
2. \(A\) and \(B\) satisfies \((\ell - E.A - H_E)\). If \(AX\) or \(BX\) is \(l\)-closed. Then \(A\) and \(B\) have a unique common fixed point.

Proof. From (2), there exists a sequence \((x_n)\) in \(X\) such that \(\lim_{n \to \infty} d(t, Ax_n) = \lim_{n \to \infty} d(t, Bx_n) = \lim_{n \to \infty} d(Bx_n, Ax_n) = 0\). Since \(BX\) is \(l\)-closed or \(AX\) is \(l\)-closed, then \(t \in BX\) or \(t \in AX\). Thus there exists \(u \in X\) such that \(Bu = t\). Now, we prove that \(Au = Bu\). If \(Au \neq Bu\), then from \((\ell u; 3)\), \(\lim_{n \to \infty} d(Au, Ax_n) = \alpha > 0\). Thus for \(0 < \epsilon < \alpha\), there exists \(n_0 (\epsilon) \in N\) such that \(\forall n \geq n_0 (\epsilon), |d(Au, Ax_n) - \alpha| < \epsilon\), i.e., \(\alpha - \epsilon < d(Au, Ax_n) < \alpha + \epsilon\). Thus \(\forall n \geq n_0 (\epsilon)\),

\[d(Au, Ax_n) \leq \phi(\max\{d(Bu, Bx_n), d(Bu, Ax_n), d(Bx_n, Ax_n)\})\]
\[< \max\{d(Bu, Bx_n), d(Bu, Ax_n), d(Bx_n, Ax_n)\}\]

Letting \(n \to \infty\) we have \(\lim_{n \to \infty} d(Au, Ax_n) = 0\). So from \((\ell u; 3)\), \(Au = Bu\). The weak compatibility of \(A\) and \(B\) implies that \(ABu = BAu\) and then \(AAu = ABu = BAu = BBu\). Let us show that \(Au\) is a common fixed point of \(A\) and \(B\). Suppose that \(AAu \neq Au\), then
Proof. unique common fixed point
Let us show that compatibility of which is a contradiction. Therefore \(Au = AAu = BAu = BBu. \) Second if \(d(Au, AAu) \neq 0, \) then

\[
d(Au, AAu) \leq \phi(\max\{d(Bu, BAu), d(BAu, Bu)\}) = \phi(d(Au, AAu))
\]

which is a contradiction. Therefore \(Au = AAu = BAu. \) Hence \(Au \) is a common fixed point of \(A \) and \(B. \) Suppose \(u \) and \(v \) are two fixed points of \(A \) and \(B \) and \(u \neq v. \) Then \(d(u, v) > 0 \) or \(d(v, u) > 0. \) If \(d(u, v) > 0, \) then

\[
d(u, v) = d(Au, Av) \leq \phi(\max\{d(Bu, v), d(Bu, v)\}) = \phi(d(u, v)) < d(u, v),
\]

which is a contradiction. Also if \(d(v, u) > 0, \) one can deduce that \(d(v, u) < d(v, u) \) which is a contradiction. Therefore \(u = v. \)

Theorem 2.2. Let \((X, d)\) be a ssd-q-sd-metric space that satisfies \((r \, w.3)\). Let \(A \) and \(B \) be two weakly compatible selfmappings of \((X, d)\) such that

1. \(d(Ax, Ay) \leq \phi(\max\{d(Bx, By), (Ax, By), d(Bx, Ax)\}) \) \(\forall x, y \in X; \)
2. \(A \) and \(B \) satisfies \((r - E.A - H_E)\). If \(AX \) or \(BX \) is \(r- \) closed, then \(A \) and \(B \) have a unique common fixed point

Proof. From (2), there exists a sequence \((x_n)\) in \(X \) such that \(\lim_{n \to \infty} d(Ax_n, t) = \lim_{n \to \infty} d(Bx_n, t) = \lim_{n \to \infty} d(Ax_n, Ax_n) = 0. \) Since \(BX \) is \(r- \) closed or \(AX \) is \(r- \) closed, then \(t \in BX \) or \(t \in AX. \) Thus there exists \(u \in X \) such that \(Bu = t. \) Now, we prove that \(Au = Bu. \) If \(Au \neq Bu, \) then from \((ru3), \) \(\lim_{n \to \infty} d(Ax_n, Bu) = \alpha > 0. \) Thus for \(0 < \epsilon < \alpha, \) there exists \(n_0(\epsilon) \in N \) such that \(\forall n \geq n_0(\epsilon), \) \(d(Ax_n, Bu) < \alpha - \epsilon < d(Ax_n, Bu) < \epsilon + \alpha. \) Thus \(\forall n \geq n_0(\epsilon), \)

\[
d(Ax_n, Au) \leq \phi(\max\{d(Bx_n, Bu), d(Ax_n, Bu), d(Bx_n, Ax_n)\})
\]

Letting \(n \to \infty \) we have \(\lim_{n \to \infty} d(Ax_n, Au) = 0. \) So from \((ru3), \) \(Au = Bu. \) The weak compatibility of \(A \) and \(B \) implies that \(ABu = BAu \) and then \(AAu = ABu = BAu = BBu. \) Let us show that \(Au \) is a common fixed of \(A \) and \(B. \) Suppose that \(AAu \neq Au, \) then

\[
d(AAu, Au) \leq \phi(\max\{d(Bu, Bu), d(Au, Bu), d(Bu, Au)\}) = \phi(d(Au, Au))
\]

which is a contradiction. Therefore \(Au = AAu = BAu = BBu. \) Second if \(d(Au, AAu) \neq 0, \) then

\[
d(Au, AAu) \leq \phi(\max\{d(Bu, BAu), d(Au, BAu), d(Bu, Au)\}) = \phi(d(Au, AAu))
\]

< \(d(Au, AAu), \)
which is a contradiction. Therefore \(Au = AAu = BAu \). Hence \(Au \) is a common fixed of \(A \) and \(B \). Suppose \(u \) and \(v \) are two fixed points of \(A \) and \(B \) and \(u \neq v \). Then \(d(u, v) > 0 \) or \(d(v, u) > 0 \). If \(d(u, v) > 0 \), then
\[
d(u, v) = d(Au, Av) \leq \phi(\max\{d(Bu, Bv), d(Au, Bv), d(Bu, Au)\}) = \phi(d(u, v)) < d(u, v),
\]
which is a contradiction. The same is obtained if \(d(v, u) > 0 \). Therefore \(u = v \).

Conclusion. Since any symmetric space is ssd-q-s-d-metric space and the conditions in Theorem 2.1 \([1]\) implies the conditions in Theorem 2.1 or in Theorem 2.2, then Theorem 2.1 \([1]\) is obtained as a corollary of Theorem 2.1 or Theorem 2.2.

Acknowledgments. The authors thank Prof. Dr. Rus (Universitatea Babes-Bolyai Din Cluj-Napoca) for useful comments and suggestions.

References

Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, Egypt

Department of Mathematics, Faculty of Science, Minia University, Minia, Egypt

E-mail address: a...h...soliman@yahoo.com