LUKASIEWICZ FINITELY LOCAL ALGEBRAS

FRANCESCO LACAVA

Received July 13, 2001

Abstract. In this paper finitely local L-algebras are introduced as a generalization of quasi-local L-algebras. The class of finitely local algebras includes the semilocal L-algebras. Some properties are studied and characterizations are given.

1 Introduction

A \(L \)-algebra is said to be local if it has a unique maximal ideal [5]. Local \(L \)-algebras are also characterized as the \(L \)-algebra where for each element \(x \) exists a positive integer \(n \) such that \(nx = 1 \) or \(nx' = 1 \) [1].

A generalization of these algebras are semilocal \(L \)-algebras which are defined and studied in [4]. They are characterized as the \(L \)-algebra with finitely many maximal ideals. Another generalization, that arises from the second characterization of the local \(L \)-algebras, are the quasi-local \(L \)-algebras in which for each element \(x \) exists a positive integer \(n \) such that \(nx \) or \(nx' \) is a boolean element [7].

These two generalizations, semilocal and quasi-local, are independent, i.e. there are semilocal algebras that are not quasi-local and vice versa.

In this paper we define a new class of \(L \)-algebras, called finitely local, containing both quasi-local and semilocal \(L \)-algebras.

2 Preliminaries

Following [9] we recall that a \(L \)-algebra \(<A, +, \cdot, 0, 1> \) (Lukasiewicz-algebra or MV-algebra [1], [2], [4]) is a sistem such that, \(\forall x, y \in A, \)

1) \(<A, +, 0> \) is an Abelian monoid
2) \(x + 1 = 1 \)
3) \((x')' = x \)
4) \(0' = 1 \)
5) \(x + x' = 1 \)
6) \((x' + y')' + y = (x + y)' + x. \)

Setting as well

\(i) \quad x \cdot y = (x' + y')' \)
\(ii) \quad x \lor y = (x' + y')' + y \)
\(iii) \quad x \land y = (x' \lor y')' \)
\(iv) \quad x \leq y \text{ if and only if } x' + y = 1. \)

2000 Mathematics Subject Classification. 03G20, 06D30, 06D35.
Key words and phrases. Local L-algebra, semi-local MV-algebra.
The structure \(<A, \lor, \land, \leq, 0, 1>\) is a bounded distributive lattice. A \(L\)-algebra \(A\) is said to be a \(L\)-chain if the \(\leq\) order is linear. Every \(L\)-algebra is a subdirect product of \(L\)-chains [2].

Given a \(L\)-algebra \(A\), let \(B_A\) denote the set of its boolean (idempotent) elements, i.e. the set of all \(x \in A\) with \(2x = x\). The set \(B_A\) is a Boolean subalgebra of \(A\) [2] and, \(\forall x, y \in B_A\), \(x + y = x \lor y\) and \(x \cdot y = x \land y\).

A non-empty subset \(I \subseteq A\) is an ideal if it is closed under + and if \(x \in I\), \(y \in A\) with \(y \leq x\) imply \(y \in I\).

For \(a, b \in A\), \(a \leq b\), let \(A_{a,b} = \{x \in A : a \leq x \leq b\}\).

The system \(<A_{a,b}, \oplus, \land, \lor; a, b>\) is a \(L\)-algebra with respect to the following operations:

\[
x \oplus y = a + [(x' + a)(y' + a)]'(y' + a)'
\]

\[
x' = a + (y' + x)'
\]

Every \(L\)-algebra is isomorphic to \(A_{0,b'} \times A_{a,b}\), where \(b \in B_A\) with \(b \neq 0, 1\).

Recall that an element \(a \in A\) has finite order \(n\) if \(n\) is the least positive integer such that \(na = 1\) and we write \(\text{ord}(a) = n\). If no such \(n\) exists, we say that \(a\) has infinite order.

An element \(a \in A\) is said to be quasi-archimedean if \(na \in B_A\) for some integer \(n > 0\). If no such \(n\) exists the element \(a\) is said to be non-archimedean.

A \(L\)-algebra \(A\) is said to be

- \(n\)-local if, for each \(x \in A\), \(\text{ord}x \oplus \text{ord}x'\) is finite, i.e. if and only if \(A\) has a unique maximal ideal;
- \(\text{semi-local}\) if, for each \(a \in A\), \(a\) or \(a'\) is quasi-archimedean;
- \(\text{finitely local}\) if it has only finitely many maximal ideals (we refer the reader to [5], [7] and [4]).

3 Finitely local \(L\)-algebras

Definition 1 A \(L\)-algebra \(A\) is called \(n\)-local, \(n \geq 2\), if the following properties hold:

1) For each non-archimedean \(x \in A\) there exist \(b \in B_A\), \(b \neq 0\), and a positive integer \(m\) such that \(mx \land b\) is non-archimedean and \(mx' \land b\) is boolean;

2) For any \(b_1, b_2, \ldots, b_n \in B_A\), for which \(b_i \land b_j = 0\) \(\forall i \neq j\), there exists \(k, 1 \leq k \leq n\), such that \(x < b_k\) is not true for every non-archimedean element \(x \in A\).

A is called 1-local if it is a local \(L\)-algebra.

Hence, we say that \(A\) is a finitely local \(L\)-algebra if it is \(n\)-local for some \(n \geq 1\).

We remark that if \(A\) is \(n\)-local, then it is \(m\)-local for any \(m \geq n\).

Throughout this paper, \(\text{Rad}(A)\) denotes the radical of \(A\), that is, the intersection of all maximal ideals of \(A\) and \(\pi\) denotes the canonical omomorphism of \(A\) on \(A_{\text{rad}(A)}\).

Lemma 1 Let \(A\) be a \(L\)-algebra. Then \(B_A\) is isomorphic to \(B_{A_{\text{rad}(A)}}\).

Proof. It is suffices to check that if \([b]\) is a boolean element of \(A_{\text{rad}(A)}\), then there exists a unique \(y \in B_A\) such that \(\pi(y) = [b]\).

Let \(x\) be an element of \(A\) such that \(\pi(x) = [b]\) and put \(y = (2(2x))'\). Thus

\[
\pi(y) = \pi((2(2x))') = (2(2\pi(x))')' = \pi(x) = [b].
\]
Now we note that
\[
((2y)' + y)' = ((2(2x)' + (2x)')' + (2(2x)' + (2x))' = (2x)' + 2(2x)' = (2x)' + (2x)'
\]
Since, by (2) of Definition 1,
\[
\text{we obtain } ((2(2x)' + 2x)' + (2x)')' = \text{ is a semilocal } \mathbb{L} \text{-algebra.}
\]

We show that Proposition 3

\[
\text{Let } A \text{ be a semilocal } \mathbb{L} \text{-algebra. Then } A \text{ is a } \text{finitely local } \mathbb{L} \text{-algebra.}
\]

Proof. Let \(A \) be a direct product of finitely many local \(\mathbb{L} \)-algebras. Then, by Theorem 2.6 in [4], \(A \) is semilocal.

Conversely, suppose that \(A \) is a semilocal \(\mathbb{L} \)-algebra. Thus the \(\mathbb{L} \)-algebra \(A \) is a direct product of finitely many simple \(\mathbb{L} \)-chains (see [4]).

Let \(b_1, b_2, \ldots, b_n \) be the atoms of \(B_{\text{Rad}(A)} \). By Lemma 7, we can suppose that \(b_1, b_2, \ldots, b_n \) are atoms of \(B_A \). Then \(A \) is isomorphic to the direct product \(A_{b_1} \times A_{b_2} \times \cdots \times A_{b_n} \), where each \(A_{b_i} \simeq \frac{A}{\text{Rad}(A)} \), \(i = 1, 2, \ldots, n \), is semilocal. Since \(B_{A_{b_i}} = \{0, 1\} \), the \(\mathbb{L} \)-algebras \(A_{b_i} \) are local.

Proposition 3 Let \(A \) be a semilocal \(\mathbb{L} \)-algebra. Then \(A \) is a finitely local \(\mathbb{L} \)-algebra.

Proof. Take \(b_1, b_2, \ldots, b_n \in B_A \) as in Proposition 1. Let \(x \) be a non-archimedean element of \(A \) and let \(B_x = \{ b_i : x \wedge b_i \text{ is non-archimedean} \} \).

We remark that \(B_x \) is not empty: otherwise, by Proposition 7 ii) in [7], the element \(\bigvee (x \wedge b_i) = x \) would be quasi-archimedean.

Thus, put \(b = \bigvee \{ b_i : b_i \in B_x \} \), the element \(x \wedge b \) is non-archimedean. But, since for each \(b_i, i = 1, 2, \ldots, n, x \wedge b_i \) or \(x' \wedge b_i \) is quasi-archimedean, the element \(x' \wedge b \) is quasi-archimedean.

Hence we conclude that \(A \) is a \(m \)-local \(\mathbb{L} \)-algebra with \(m \leq n \).

Proposition 4 \(A \) is a quasi-local \(\mathbb{L} \)-algebra if and only if it is a 2-local \(\mathbb{L} \)-algebra.

Proof. If \(A \) is a quasi-local \(\mathbb{L} \)-algebra, then the claim follows from Proposition 8 in [7]. Suppose that \(A \) is a 2-local \(\mathbb{L} \)-algebra. Let \(x \) be a non-archimedean element of \(A \). By hypothesis, there exist \(b \in B_A, b \neq 0 \), and a positive integer \(m \) such that \(mx \wedge b \) is non-archimedean and \(mx' \wedge b \) is boolean.

Since, by (2) of Definition 1, \(mx \wedge b \) non-archimedean gives \(mx' \wedge b' \) quasi-archimedean, then the element \(mx' = (mx' \wedge b) \vee (mx' \wedge b') \) is quasi-archimedean.

Let \(I_A = \{ x \in A : x \wedge z \text{ is quasi-archimedean, } \forall z \in A \} \).

We show that

Proposition 5 \(I_A \) is an ideal of \(A \).
Proof. Take \(x \in I_A \) and \(y \in A \) with \(y \leq x \). Since \(y \wedge z = (x \wedge y) \wedge z = x \wedge (y \wedge z) \) is quasi-archimedean, the element \(y \) lies in \(I_A \).

Let \(x, y \in I_A \), then we can find an integer \(n \geq 1 \) such that \(nx, ny \in B_A \). Since \(x \wedge z \) and \(y \wedge z \) are quasi-archimedean, from \(n((x + y) \wedge z) = (nx + ny) \wedge nz = (nx \wedge nz) \vee (ny \wedge nz) = n((x \wedge z) \vee (y \wedge z)) \) follows that the element \((x + y) \wedge z \) is also quasi-archimedean. Hence \(x + y \in I_A \).

\[\square \]

Proposition 6 Let \(A \) be a \(n \)-local \(L \)-algebra which is not \((n-1) \)-local. Then there exist \(b_1, b_2, ..., b_{n-1} \in B_A \), with \(b_i \wedge b_j = 0 \) for \(i \neq j \), with the following properties

1) \((\bigvee b_i) \in I_A \)

2) For each \(x \) non-archimedean, there is \(0 < j < n \) such that \(x \wedge b_j \) is non-archimedean.

Proof. Since \(A \) is not \((n-1) \)-local, there exist \(b_1, b_2, ..., b_{n-1} \in B_A \), \(b_i \wedge b_j = 0 \) for \(i \neq j \), such that for each \(b_i \) there is a non-archimedean element \(x \in A \) with \(x < b_i \). Since \(A \) is \(n \)-local, for each non-archimedean element \(x \in A \), \(x \notin (\bigvee b_i)' \). Then \((\bigvee b_i)' \in I_A \). This implies that the element \((x \wedge (\bigvee b_i)') \) is quasi-archimedean, for each \(x \) non-archimedean.

Then, since \(x = x \wedge (b_1 \vee b_2 \vee ... \vee b_{n-1} \vee (\bigvee b_i)') = (x \wedge b_1) \vee (x \wedge b_2) \vee ... \vee (x \wedge b_{n-1}) \vee (x \wedge (\bigvee b_i)') \), at least one element \(x \wedge b_j \) must be non-archimedean.

\[\square \]

Theorem 7 \(A \) is a finitely local \(L \)-algebra if and only if \(\frac{A}{I_A} \) is a semilocal \(L \)-algebra.

Proof. Suppose that \(\overline{A} = \frac{A}{I_A} \) is semilocal. First we show that if \([x] \in B_{\overline{A}} \), then there exists \(b \in B_A \) such that \([x] = [b] \). From \([x] = 2[x] \) we have \(z = ((2x)' + x)' \in I_A \). Let \(n \) be the positive integer such that \(nz \in B_A \). Then \(x + nz = x + (n+1)z = 2x + nz = 2x + 2nz = 2(x + nz) \), that is \(x + nz \in B_A \) and \([x + nz] = [x] \).

Now let \(x \) be a non-archimedean element of \(A \).

We remark that \([x] \) is also non-archimedean: otherwise would exist a non-archimedean \(a \in A \) and \(b \in B_A \) such that \([a] = [b] \). This implies that there is a boolean \(c \in I_A \) such that \(a + c = a \vee c = b \) which gives \((e' \wedge (a \vee c)) \vee (a \wedge c) = a \). Hence \(a \wedge c \) would be non-archimedean which is a contradiction being \(c \in I_A \).

Since \(\overline{A} \) is semilocal, we can take the atoms \([b_1], [b_2], ..., [b_n] \) of \(B_{\overline{A}} \) (see proposition 1).

Then, from \([x] = ([b_1] \wedge [x]) \vee ([b_2] \wedge [x]) \vee ... \vee ([b_n] \wedge [x]) \), follows that there is at least a \([b_i] \wedge [x] \) which is non-archimedean. Hence \(b_i \wedge x \) is non-archimedean.

On the other hand, since \(\overline{A}_{b_i} \) is local, we have \([b_i] \wedge [x'] = [b_i] \) which implies \(b_i \wedge x' \) quasi-archimedean. Now it is easy to conclude that \(A \) is \(n+1 \)-local.

Conversely, suppose \(A \) finitely local. Let \(b_1, b_2, ..., b_{n-1} \in B_A \) as in the above proposition. Let \(J_i \) be the ideal generated by

\[H_i = \{ b \in B_A : b \wedge (x \wedge b_i) \text{ quasi-archimedean } \forall x \} \cup \{ x \wedge b_i \text{ non-archimedean} \}. \]

We show that \(J_i \) is a maximal ideal of \(A \) containing \(I_A \). Let \(\overline{J} \) be an ideal of \(A \) with \(J_i \subseteq \overline{J} \). Take \(a \in \overline{J} - J_i \). This element \(a \) is quasi-archimedean: otherwise, by proposition 5, we would have \(a < b_i \), for \(j \neq i \), which implies \(a \in J_i \), since \(b_j \in H_i \). Then there exists \(n \) such that \(na = b \in B_A \). Since \(b \notin H_i \), there is a non-archimedean \(z \in A \) such that \(\overline{a} = \overline{b} \wedge z \wedge b_i \) is non-archimedean. If \(\overline{b} \wedge x \wedge b_i \) is quasi-archimedean for each \(x \), then \(\overline{b} \in H_i \) which gives \(1 \in \overline{J} \), that is \(\overline{J} = A \). Conversely, if there is \(y \in A \) with \(\overline{b} \wedge y \wedge b_i = \overline{y} \) non-archimedean, then \(\overline{b} \wedge b_i > \overline{y}, \overline{b} \wedge b_i > \overline{y} \) and \((\overline{b} \wedge b_i) \wedge (\overline{b} \wedge b_i) = 0 \). Since \(A \) is \(n \)-local, we obtain a contradiction.

Now we take a maximal ideal \(J \) of \(A \) different from \(J_1, J_2, ..., J_{n-1} \) and show that \(I_A \subseteq J \).
If, for each \(i = 1, 2, \ldots, n - 1 \), \(b_i \in J \), then \((\bigvee b_i)^' \notin J \) which implies \(I_A \not\subseteq J \).

Hence we can suppose that there exists \(1 \leq k \leq n - 1 \) such that \(b_k \notin J \). Since \(H_k \not\subseteq J \), we distinguish two cases:

1) There is \(b \in B_A \) such that \(b \land (x \land b_k) \) is quasi-archimedean, for each \(x \in A \), and \(b \notin J \);

2) There is \(x \land b_k \) non-archimedean such that \(x \land b_k \notin J \).

In the first case, being \(J \) a prime ideal of \(A \), the element \(b \land b_k \) lies in \(I_A \) but not in \(J \).

In the second case, by Theorem 4.7 in [2], there is a positive integer \(n \) such that \(n(x \land b_k)^' \in J \).

Thus, for some integer \(m \), \(b = m(x \land b_k)^' \in J \cap B_A \) that is \(b' \notin J \). We remark that \(b + b_k = m(x \land b_k)^' + b_k = mx' \lor b_k' + b_k = 1 \) that is \(b' \leq b_k \). Thus we have \(b_k \land x = [(b \land b_k) \lor b'] \land x = [(b \land b_k) \land x] \lor (b' \land x) \). Since \(b' \land x \) is quasi-archimedean, the above relation gives \((b \land b_k) \land x \) non-archimedean. It follows that, for each \(y \in A \), the element \(b' \land y \) is quasi-archimedean, hence \(b' \in I_A \) and \(b' \notin J \).

We can conclude that \(A \) has \(n \) maximal ideals that is, by [4], it is semilocale.

\[\square \]

Corollary 8 A \(L \)-algebra \(A \) is quasi-local if and only if \(\frac{A}{I_A} \) is a local \(L \)-algebra.

Theorem 9 A \(L \)-algebra \(A \) is finitely local if and only if it is isomorphic to a direct product of finitely many quasi local \(L \)-algebras.

Proof. We remark that if \(b \in B_A \), then \(I_{A_{b,b}} = \{ x \land b : x \in I_A \} \). Hence the claim follows by the propositions 1 and 6 and the corollary 1. \(\square \)

References

Dipartimento di Matematica “U.Dini”
Viale Morgagni 67/A
50134 Florence(ITALY)
Tel. 055-4237143 Fax 055-4222695
email: francesco.lacava@mate.unifi.it