ON THE NUMBER OF NON-EQUIVALENT ODD 1-FACTORS OF A COMPLETE GRAPH

OSAMU NAKAMURA

Received April 9, 2003; revised July 18, 2003

Abstract. For even \(n > 0 \), let \(K_n \) be the complete graph with vertices \(v_0, v_1, \ldots, v_{n-1} \). An edge \(v_i v_j \) is called odd or even accordingly as \(|i - j| \) is odd or even. An odd(even) 1-factor of \(K_n \) is a 1-factor of \(K_n \) whose edges are all odd(even). The Dihedral group \(D_n \) acts on \(K_n \) naturally, and this action induces an action of \(D_n \) on the family of all 1-factors of \(K_n \). In this paper, by applying Burnside’s lemma, we calculate the number of the equivalence classes of odd(even) 1-factors under the action of \(D_n \).

1 Introduction

For even \(n > 0 \), let \(K_n \) be the complete graph with vertices \(v_0, v_1, \ldots, v_{n-1} \). An edge \(v_i v_j \) is called odd or even accordingly as \(|i - j| \) is odd or even. An odd(even) 1-factor of \(K_n \) is a 1-factor of \(K_n \) whose edges are all odd (even). Let \(X_n \) be the set of the odd 1-factors of \(K_n \) and let \(Y_n \) be the set of the even 1-factors of \(K_n \).

The action of the Dihedral group \(D_n = \{ \rho_0, \rho_1, \ldots, \rho_{n-1}, \sigma_0, \sigma_1, \ldots, \sigma_{n-1} \} \) on \(K_n \) is defined by

\[
\rho_i(v_k) = v_{(k+i) \mod n} \quad \text{for} \quad 0 \leq i \leq n - 1, \quad 0 \leq k \leq n - 1
\]

\[
\sigma_i(v_k) = v_{(n+i-k) \mod n} \quad \text{for} \quad 0 \leq i \leq n - 1, \quad 0 \leq k \leq n - 1
\]

Then this action induces the action of \(D_n \) on \(X_n \) and \(Y_n \). The equivalence classes of \(X_8 \) are given with the next figure.

The equivalence classes of \(X_{10} \) are given with the next figure.

By applying Burnside’s lemma, we calculate the number of the equivalence classes of \(X_n \) and \(Y_n \) under this group action. This problem was presented by Dr. Shun-ichiro Koh who is a physicist of Kochi University. This problem is related to Feynman diagram in quantum mechanical many body problem.

2000 Mathematics Subject Classification. 05C70, 05C30.

Key words and phrases. matching, enumeration.
Notation 1. For each integer \(i \) such that \(0 \leq i \leq n-1 \), let \(d = (n, i) \) and \(R_i^n \) be defined by the following formula:

\[
R_i^n = \begin{cases}
0 & \text{if } d \text{ is odd and } n/2 \equiv 0 \pmod{2} \\
\sum_{d = 2^s t, s \geq 0, t \geq 0} \frac{d!}{2^s s! t!} \left(\frac{n}{2d}\right)^s & \text{if } d \text{ is odd and } n/2 \equiv 1 \pmod{2} \\
\left(\frac{d}{2}\right)! \times \left(\frac{n}{d}\right)^{d/2} & \text{if } d \text{ is even}
\end{cases}
\]

Remark 1. It is easily checked that \(R_0^n \) is equal to \((n/2)!\).

Notation 2. Let \(S_0^n \) and \(S_1^n \) be defined by the following formula:

\[
S_0^n = \begin{cases}
0 & \text{if } n/2 \equiv 0 \pmod{2} \\
\left(\frac{n-2}{4}\right)! \times 2^{n/2} & \text{if } n/2 \equiv 1 \pmod{2}
\end{cases}
\]

\[
S_1^n = \sum_{d = 2^s t, s \geq 0, t \geq 0} \frac{d!}{2^s s! t!} \left(\frac{n}{d}\right)^{d/2}
\]

Theorem 1. For even \(n > 0 \), the number of non-equivalent odd 1-factors of \(K_n \) under the action of the Dihedral group \(D_n \) is

\[
\frac{1}{2^n} \left\{ \sum_{i=0}^{n-1} R_i^n + \frac{n}{2} (S_0^n + S_1^n) \right\}
\]

Remark 2. We calculated the non-equivalent odd 1-factors of \(K_n \), \(n \leq 16 \), under the action of the Dihedral group \(D_n \) by a computer. The numbers agreed with the numbers that are given by Theorem 1. The results is as follows:

<table>
<thead>
<tr>
<th>(n)</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>53</td>
</tr>
<tr>
<td>14</td>
<td>260</td>
</tr>
<tr>
<td>16</td>
<td>1466</td>
</tr>
</tbody>
</table>

Notation 3. Let \(n \equiv 0 \pmod{4} \). For each integer \(i \) such that \(0 \leq i \leq n-1 \), let \(d = (n, i) \) and \(P_i^n \) be defined by the following formula:

\[
P_i^n = \begin{cases}
\sum_{d = 2^s t, s \geq 0, t \geq 0} \frac{(d/2)! \times (d/2)!}{2^{s_1+t_1} s_1! t_1! s_2! t_2!} \left(\frac{n}{d}\right)^{s_1+s_2} & \text{if } d \text{ is even and } n/d \equiv 0 \pmod{2} \\
\left(\frac{d-2}{2}\right)! \times \left(\frac{d-2}{2}\right)! \times \left(\frac{n}{d}\right)^{d/2} & \text{if } d \text{ is even and } n/d \equiv 1 \pmod{2} \\
\sum_{d = 2^s t, s \geq 0, t \geq 0} \frac{d!}{2^s s! t!} \left(\frac{n}{2d}\right)^s & \text{if } d \text{ is odd}
\end{cases}
\]
Remark 3. It is easily checked that if $n \equiv 0 \pmod{4}$ then P^n_0 is equal to $(n/2 - 1)!! \times (n/2 - 1)!!$.

Notation 4. Let $n \equiv 0 \pmod{4}$. Let Q^n_0 and Q^n_1 be defined by the following formula:

\[Q^n_0 = \sum_{s_1 + t_1, s_2 + t_2 \geq 0} \frac{(\frac{n}{4})!(\frac{n-4}{4})!}{2^{s_1 + s_2} s_1! t_1! s_2! t_2!} \times 2^{s_1 + s_2} \]

\[Q^n_1 = \left(\frac{n-2}{2} \right)!! \]

Theorem 2. If $n \equiv 2 \pmod{4}$ then K_n has no even 1-factors. If $n \equiv 0 \pmod{4}$ then the number of the non-equivalent even 1-factors of K_n under the action of the Dihedral group D_n is

\[\frac{1}{2n} \left\{ \sum_{i=0}^{n-1} P^n_i + \frac{n}{2} (Q^n_0 + Q^n_1) \right\} \]

Remark 4. We calculated the non-equivalent even 1-factors of K_n, $n \leq 16$, under the action of the Dihedral group D_n by a computer. The numbers agreed with the numbers that are given by Theorem 2. The results is as follows:

<table>
<thead>
<tr>
<th>n</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>436</td>
</tr>
</tbody>
</table>

These computations can be done by applying Burnside’s lemma.

Theorem 3. (Burnside’s lemma) Let G be a group of permutations acting on a set S. Then the number of orbits induced on S is given by

\[\frac{1}{|G|} \sum_{\pi \in G} |fix(\pi)| \]

where $fix(\pi) = \{ x \in S | \pi(x) = x \}$.

2 Odd 1-factors

We prove Theorem 1. We must determine the numbers of the fixed points of each permutation ρ_i and σ_i to prove the Theorem by applying Burnside’s Lemma.

Lemma 1. The number of the odd 1-factors of K_n is $(n/2)!$. This is the number of the fixed points of ρ_0.

Proof. v_0 is able to join any vertex of $\{ v_1, v_3, \ldots, v_{n-1} \}$. Then the number of ways of joining is $n/2$. Since the suffix of one vertex of the first edge is even and the suffix of the other is odd, the number of ways of choosing of the second edge is $(n-2)/2$ even if we choose any vertex as one end vertex of the edge. When we choose j edges, we use j vertices which have even suffix and j vertices which have odd suffix. Then the number of ways of choosing of the $j + 1$th edge is $(n-2j)/2$ even if we choose any vertex as one end vertex of the edge. Therefore, the number of the odd 1-factors of K_n is $(n/2)!$. \qed
Lemma 2. If \((n, i) = 1\) then the number of the fixed points of \(\rho_i\) is one if \(n \equiv 2 \pmod{4}\) and is zero if \(n \equiv 0 \pmod{4}\).

Proof. Let \(M_n\) be the 1-factor \(\{v_{\alpha}v_{n/2+\alpha} | 0 \leq \alpha \leq n/2 - 1\}\) of \(K_n\). If \(n \equiv 2 \pmod{4}\) then \(n/2\) is odd and \(M_n\) is the odd 1-factor of \(K_n\) and \(\rho_i(M_n) = M_n\). Conversely, let \(H\) be a odd 1-factor of \(K_n\) which is fixed by \(\rho_i\) and let \(v_0v_m\) be an edge of \(H\). Since \((n, i) = 1\), there is an integer \(\alpha\) such that \(\alpha i \equiv m \pmod{n}\). Then \(\rho_i^\alpha(v_0) = v_m\) and \(\rho_i^\alpha(v_m) = v_{m+i\alpha} \pmod{n}\). Since \(\rho_i(H) = H\), we have \(v_0v_m = v_{\alpha}v_{n/m+i\alpha} \pmod{n}\). Then we have \(m + i\alpha \equiv 0 \pmod{n}\) and \(2m \equiv 0 \pmod{n}\) and therefore \(m = n/2\) and \(v_0v_{n/2} \in H\). If \(n \equiv 0 \pmod{4}\) then \(n/2\) is even. This is contradiction. Then if \(n \equiv 0 \pmod{4}\) then the number of fixed points of \(\rho_i\) is zero. We assume that \(n \equiv 2 \pmod{4}\). Since \(\{\rho_i^\alpha(0) | 0 \leq \alpha \leq n-1\} = \{0, 1, 2, \ldots, n-1\}\), \(H\) is uniquely determined by \(v_0v_{n/2}\) and \(H = \{v_\alpha v_{n/2+\alpha} | 0 \leq \alpha \leq n/2 - 1\}\). Then the number of the fixed points of \(\rho_i\) is one.

\[\square\]

Lemma 3. Let \((n, i) = d\) be greater than one. The number of the fixed points of \(\rho_i\) is given by the following formula:

1. In the case that \(d\) is odd:
 \[(a)\] if \(n/2 \equiv 0 \pmod{2}\) then 0.
 \[(b)\] if \(n/2 \equiv 1 \pmod{2}\) then
 \[
 \sum_{d=2s+1 \atop s \geq 0, t \geq 0} \frac{d!}{2^{s+t}t!} \left(\frac{n}{2d}\right)^s.
 \]

2. If \(d\) is even then
 \[
 \left(\frac{d}{2}\right)! \times \left(\frac{n}{d}\right)^{\frac{d}{2}}.
 \]

Proof. Let \(V_0 = \{v_0, v_1, v_2, \ldots, v_{n-2}\}\), \(V_1 = \{v_1, v_{d+1}, v_{2d+1}, \ldots, v_{n-d+1}\}\), \(V_2 = \{v_2, v_{d+2}, v_{2d+2}, \ldots, v_{n-d-2}\}\), \ldots, \(V_{d-1} = \{v_{d-1}, v_{2d-1}, v_{3d-1}, \ldots, v_{n-1}\}\).

Since \((n, i) = d\), the equation \(xi \equiv m \pmod{n}\) has a solution if and only if \(d\) divides \(m\). Then we have \(\rho_i(V_k) = V_k\) for \(0 \leq k \leq d - 1\).

Let \(H\) be an odd 1-factor of \(K_n\) which is fixed by \(\rho_i\) and let \(v_\alpha v_\beta\) be an edge of \(H\). If \(v_\alpha\in V_k\) and \(v_\beta\in V_k\) then the induced subgraph \(H[V_k]\) is an odd 1-factor of \(K_{n/d}\) which is fixed by \(\rho_i/d\) and it is unique odd 1-factor of \(M_{n/d}\) by Lemma 2. If \(v_0\in V_{k_1}\) and \(v_3\in V_{k_2}\) then the induced subgraph \(H[V_{k_1} \cup V_{k_2}]\) is an odd 1-factor of \(K_{2n/d}\) which is fixed by \(\rho_i/d\).

We first consider the case that \(d\) is odd. Since \(n/d\) is even, the number of the vertices in \(V_k\) whose suffixes are odd is equal to the number of the vertices in \(V_k\) whose suffixes are even for any \(k\).

If \(n/2\) is even then \(V_k\) is not able to make the odd 1-factor which is fixed by \(\rho_i\) alone, because \(n/2\) is even. Furthermore, we can not partition \(\{V_0, V_1, V_2, \ldots, V_{d-1}\}\) into \(d/2\) pairs, since \(d\) is odd. Therefore, if \(n/2\) is even then the number of the fixed points of \(\rho_i\) is zero.

On the other hand, if \(n/2\) is odd then \(v_0v_{d(\frac{n}{2})}\) is an odd edge. Then \(V_k\) is able to make the unique odd 1-factor which is fixed by \(\rho_i\) alone. Furthermore, any \(V_{k_1}\) and \(V_{k_2}\) are able to make \(\frac{d}{2}\) odd 1-factors which are fixed by \(\rho_i\). The number of ways to partition \(\{V_0, V_1, V_2, \ldots, V_{d-1}\}\) into \(s\) pairs and \(t\) singletons is equal to

\[
\frac{d!}{2^{s+t}t!}.
\]
Then, the number of the odd 1-factors fixed by ρ_i is

$$\sum_{d=2^{s+1}}^{n} \frac{d!}{2^s s!} \left(\frac{n}{2d} \right)^s.$$

Next we consider the case that d is even.

$V_0, V_2, V_4, \ldots, V_{d-2}$ are the set whose elements have even suffix and $V_1, V_3, V_5, \ldots, V_{d-1}$ are the set whose elements have odd suffix. Then V_k is not able to make odd 1-factor which is fixed by ρ_i alone. But V_k, for k is even, and V_i, for i is odd, are able to make $\frac{n}{d}$ odd 1-factors fixed by ρ_i. The number of ways to partition $\{V_0, V_1, V_2, \ldots, V_{d-1}\}$ into $d/2$ pairs of the type $\{V_{even}, V_{odd}\}$ is equal to $(\frac{n}{d})!$. Then, the number of the odd 1-factors fixed by ρ_i is

$$\left(\frac{d}{2} \right)! \times \left(\frac{n}{d} \right)!.$$

We have the results.

Lemma 4. The number of the fixed points of σ_0 is equal to the number of the fixed points of σ_{2d} for all $1 \leq d \leq n/2 - 1$.

Proof. Let H be an odd 1-factor of K_n fixed by σ_0. Then it is easily verified that $\rho_d(H)$ is an odd 1-factor of K_n fixed by σ_{2d}. Conversely, if H is an odd 1-factor of K_n fixed by σ_{2d} then $\rho_d^{-1}(H)$ is an odd 1-factor of K_n fixed by σ_0. Then we have the results.

Similarly, we have the next lemma.

Lemma 5. The number of the fixed points of σ_1 is equal to the number of the fixed points of σ_{2d+1} for all $1 \leq d \leq n/2 - 1$.

Lemma 6. The number of the fixed points of σ_0 is given by the following formula:

1. if $n/2 \equiv 0 \pmod{2}$ then 0.
2. if $n/2 \equiv 1 \pmod{2}$ then $\left(\frac{n-2}{4} \right)! \times 2^{\frac{n-2}{2}}$.

Proof. Since the axis of σ_0 passes through v_0 and $v_{n/2}$, the odd 1-factor of K_n fixed by σ_0 must contain the edge $v_0v_{n/2}$. If $n/2 \equiv 0 \pmod{2}$ then the edge $v_0v_{n/2}$ is even and the number of the fixed points of σ_0 must be zero. Therefore we assume that $n/2 \equiv 1 \pmod{2}$. Let $V_1 = \{v_1, v_{n-1}\}, V_2 = \{v_2, v_{n-2}\}, V_3 = \{v_3, v_{n-3}\}, \ldots, V_{n/2-1} = \{v_{n/2-1}, v_{n/2+1}\}$. Then we have $\sigma_0(V_k) = V_k$ for $1 \leq k \leq n/2 - 1$. $V_1, V_3, V_5, \ldots, V_{n/2-2}$ are the sets whose elements have odd suffixes and $V_2, V_4, V_6, \ldots, V_{n/2-1}$ are the sets whose elements have even suffixes.

Let H be an odd 1-factor of K_n fixed by σ_0 and let $v_\alpha v_\beta$ be an edge of H. If α and β are not equal to zero then $v_\alpha \in V_{2k}$ and $v_\beta \in V_{2l+1}$ or $v_\alpha \in V_{2k+1}$ and $v_\beta \in V_{2l}$ for some k and l. The number of ways to partition $\{V_1, V_2, \ldots, V_{n/2-1}\}$ into $(n - 2)/4$ pairs of the type $\{V_{even}, V_{odd}\}$ is equal to $(\frac{n}{2})!$. The number of ways to choosing the edge between V_{2k} and V_{2l+1} is two. Then the number of the fixed points of σ_0 is

$$\left(\frac{n-2}{4} \right)! \times 2^{\frac{n-2}{2}}.$$

We have the results.
Lemma 7. The number of the fixed points of σ_1 is

$$\sum_{n/2=2s+t\atop s \geq 0, t \geq 0} \frac{\left(\frac{n}{2}\right)!}{2^s s! t!}.$$

Proof. Let $V_1 = \{v_1, v_0\}, V_2 = \{v_2, v_{n-1}\}, V_3 = \{v_3, v_{n-2}\}, \ldots, V_{n/2} = \{v_{n/2}, v_{n/2+1}\}$. Then we have $\sigma_1(V_k) = V_k$ for $1 \leq k \leq n/2$. Each V_k contains one vertex whose suffix is even and one vertex whose suffix is odd. Let H be an odd 1-factor of K_n fixed by σ_1 and let $v_\alpha v_\beta$ be an edge of H. Then v_α and v_β are contained in same V_k or $v_\alpha \in V_{k_1}$ and $v_\beta \in V_{k_2}$ for some k_1 and k_2. The number of ways to partition $\{V_1, V_2, V_3, \ldots, V_{n/2}\}$ into s pairs and t singletons is equal to

$$\frac{\left(\frac{n}{2}\right)!}{2^s s! t!}.$$

Then the number of the fixed points of σ_1 is

$$\sum_{n/2=2s+t\atop s \geq 0, t \geq 0} \frac{\left(\frac{n}{2}\right)!}{2^s s! t!}.$$

We have the results. \hfill \Box

3 Even 1-factors

Next we prove Theorem 2. We must determine the numbers of the fixed points of each permutation ρ_i and σ_i to prove the Theorem by applying Burnside’s Lemma.

Lemma 8. The number of the even 1-factors of K_n is zero if $n \equiv 2 \pmod 4$ and is $(n/2 - 1)!! \times (n/2 - 1)!!$ if $n \equiv 0 \pmod 4$. This is the number of the fixed points of ρ_0.

Proof. In order to partition $\{v_0, v_2, v_4, \ldots, v_{n-2}\}$ into $n/4$ subsets which consist two elements $n/2$ must be even. Then, if $n \equiv 2 \pmod 4$ then the number of the even 1-factors of K_n is zero. Therefore we assume that $n \equiv 0 \pmod 4$. The number of ways to partition $\{v_0, v_2, v_4, \ldots, v_{n-2}\}$ into $n/4$ pairs is equal to $(n/2 - 1)!!$ and the number of ways to partition $\{v_1, v_3, v_5, \ldots, v_{n-1}\}$ into $n/4$ pairs is equal to $(n/2 - 1)!!$. Therefore if $n \equiv 0 \pmod 4$ then the number of the even 1-factors of K_n is $(n/2 - 1)!! \times (n/2 - 1)!!$. We have the results. \hfill \Box

By Lemma 8 we have that if $n \equiv 2 \pmod 4$ then the number of the non-equivariant even 1-factors of K_n is zero.

Therefore we assume from now on that $n \equiv 0 \pmod 4$.

Lemma 9. If $(n, i) = 1$ then the number of the fixed points of ρ_i is one.

Proof. Let M_n be the 1-factor $\{v_\alpha v_{n/2+\alpha}\}$ $0 \leq \alpha \leq n/2 - 1$ of K_n. Since $n/2$ is even, M_n is the even 1-factor of K_n and $\rho_i(M_n) = M_n$. Conversely, let H be an even 1-factor of K_n which is fixed by ρ_i and let $v_0 v_n$ be an edge of H. By the essentially the same methods, we have $H = \{v_\alpha v_{n/2+\alpha}\}$ $0 \leq \alpha \leq n/2 - 1$. Then the number of the fixed points of ρ_i is one. \hfill \Box
Lemma 10. Let \((n, i) = d\) be greater than one. The number of the fixed points of \(\rho_i\) is given by the following formula:

1. If \(d\) is odd then
\[
\sum_{d=2a+1, s,t \geq 0} \frac{d!}{2^{s+t} s! t!} \left(\frac{n}{2d} \right)^s.
\]

2. In the case that \(d\) is even:

 (a) If \(n/d \equiv 0 \pmod{2}\) then
 \[
 \sum_{d=2a_1+t_1, d=2a_2+t_2, s_1, s_2, t_1, t_2 \geq 0} \frac{(d/2)! \times (d/2)!}{2^{a_1+s_1} a_1! s_2! t_1! t_2!} \left(\frac{n}{d} \right)^{s_1+s_2}.
 \]

 (b) If \(n/d \equiv 1 \pmod{2}\) then
 \[
 \left(\frac{d-2}{2} \right)! \times \left(\frac{d-2}{2} \right)! \times \left(\frac{n}{d} \right)^{d/4}.
 \]

Proof. Let \(V_0 = \{v_0, v_d, v_{2d}, \ldots, v_{n-d}\}\), \(V_1 = \{v_1, v_{d+1}, v_{2d+1}, \ldots, v_{n-d+1}\}\), \(V_2 = \{v_2, v_{d+2}, v_{2d+2}, \ldots, v_{n-d+2}\}\), \ldots, \(V_{d-1} = \{v_{d-1}, v_{2d-1}, v_{3d-1}, \ldots, v_{n-1}\}\). Then we have \(\rho_i(V_k) = V_k\) for \(0 \leq k \leq d-1\).

We first consider the case that \(d\) is odd. Each \(V_k\), for \(0 \leq k \leq d-1\), contains \(\frac{n}{2d}\) vertices whose suffix is even and \(\frac{n}{2d}\) vertices whose suffixes are odd. Since \(\frac{n}{2d}\) is even, each \(V_k\) is able to make unique even 1-factors fixed by \(\rho_i\) alone. Furthermore, any \(V_k\) and \(V_l\) are able to make \(\frac{n}{2d}\) even 1-factors fixed by \(\rho_i\). Then the number of the fixed points of \(\rho_i\) is
\[
\sum_{d=2a+1, s,t \geq 0} \frac{d!}{2^{s+t} s! t!} \left(\frac{n}{2d} \right)^s.
\]

Next we consider the case that \(d\) is even. We first consider the case that \(n/d\) is even. \(V_0, V_2, V_4, \ldots, V_{d-2}\) contain \(n/d\) vertices whose suffixes are even and and \(V_1, V_3, V_5, \ldots, V_{d-1}\) contain \(n/d\) vertices whose suffixes are odd. Since \(n/d\) is even, each \(V_k\) is able to make unique even 1-factor fixed by \(\rho_i\). Furthermore, any two elements of \(\{V_0, V_2, V_4, \ldots, V_{d-2}\}\) and any two elements of \(\{V_1, V_3, V_5, \ldots, V_{d-1}\}\) are able to make \(\frac{n}{d}\) even 1-factors fixed by \(\rho_i\), respectively. Then the number of the fixed points of \(\rho_i\) is
\[
\sum_{d=2a+1, s,t \geq 0} \frac{(d/2)! \times (d/2)!}{2^{a_1+s_1} a_1! s_2! t_1! t_2!} \left(\frac{n}{d} \right)^{s_1+s_2}.
\]

Next we consider the case that \(n/d\) is odd. Since \(n/d\) is odd, \(V_k\) is not able to make even 1-factor fixed by \(\rho_i\) alone. But any two elements of \(\{V_0, V_2, V_4, \ldots, V_{d-2}\}\) and any two elements of \(\{V_1, V_3, V_5, \ldots, V_{d-1}\}\) are able to make \(\frac{n}{d}\) even 1-factors fixed by \(\rho_i\), respectively. Since \(n \equiv 0 \pmod{4}\) and \(n/d\) is odd, \(d \equiv 0 \pmod{4}\). Then the number of the fixed points of \(\rho_i\) is
\[
\left(\frac{d-2}{2} \right)! \times \left(\frac{d-2}{2} \right)! \times \left(\frac{n}{d} \right)^{d/4}.
\]

We have the results. \qed
The next two Lemmas are proved by the essentially the same methods as Lemma 4.

Lemma 11. The number of the fixed points of \(\sigma_0 \) is equal to the number of the fixed points of \(\sigma_{2d} \) for all \(1 \leq d \leq n/2 - 1 \).

Lemma 12. The number of the fixed points of \(\sigma_1 \) is equal to the number of the fixed points of \(\sigma_{2d+1} \) for all \(1 \leq d \leq n/2 - 1 \).

Lemma 13. The number of the fixed points of \(\sigma_1 \) is

\[
\sum_{\frac{n}{2} = 2s_1 + t_1, \frac{n}{2} = 2s_2 + t_2} \frac{(\frac{n}{2})! \times (\frac{n}{4})!}{2^{s_1 + s_2} [s_1]_1 [s_2]_2} \times 2^{s_1 + s_2}.
\]

Proof. Let \(V_1 = \{v_1, v_{n-1}\}, V_2 = \{v_2, v_{n-2}\}, V_3 = \{v_3, v_{n-3}\}, \ldots, V_{n/2-1} = \{v_{n/2-1}, v_{n/2+1}\} \). Then we have \(\sigma_0(V_k) = V_k \) for \(1 \leq k \leq n/2 - 1 \). Each of \(V_1, V_3, \ldots, V_{n/2-1} \) contains two vertices whose suffixes are odd and each of \(V_2, V_4, \ldots, V_{n/2-2} \) contains two vertices whose suffixes are odd. Then each \(V_k \) is able to make unique even 1-factor fixed by \(\sigma_0 \) alone. Furthermore any two elements of \(\{V_2, V_4, \ldots, V_{n/2-2}\} \) and any two elements of \(\{V_1, V_3, \ldots, V_{n/2-1}\} \) are able to make two even 1-factors fixed by \(\sigma_0 \), respectively. Then the number of the fixed points of \(\rho_1 \) is

\[
\sum_{\frac{n}{2} = 2s_1 + t_1, \frac{n}{2} = 2s_2 + t_2} \frac{(\frac{n}{2})! \times (\frac{n}{4})!}{2^{s_1 + s_2} [s_1]_1 [s_2]_2} \times 2^{s_1 + s_2}.
\]

Lemma 14. The number of the fixed points of \(\sigma_1 \) is \((n/2 - 1)!!\).

Proof. Let \(V_1 = \{v_1, v_0\}, V_2 = \{v_2, v_{n-1}\}, V_3 = \{v_3, v_{n-2}\}, \ldots, V_{n/2} = \{v_{n/2}, v_{n+1}\} \). Then we have \(\sigma_1(V_k) = V_k \) for \(1 \leq k \leq n/2 \). Each \(V_k \) contains one vertex whose suffix is even and one vertex whose suffix is odd. Then \(V_k \) is not able to make even 1-factor fixed by \(\sigma_1 \) alone. But any two elements of \(\{V_1, V_2, \ldots, V_{n/2}\} \) are able to make unique even 1-factor fixed by \(\sigma_1 \). Then the number of the fixed points of \(\sigma_1 \) is \((n/2 - 1)!!\).

We have the results.

Then we completely proved Theorem 2.

References

[4] Osamu Nakamura, On the number of the non-equivalent 1-regular spanning subgraphs of the complete graphs of even order, SCMJ, 57 (2003), 431-437
[5] Osamu Nakamura, On the number of the non-equivalent \(K_m \)-spanning subgraphs of the complete graphs with order \(km \), SCMJ, 57 (2003), 485-492
[6] Osamu Nakamura, On the number of the non-equivalent \(C_m \)-spanning subgraphs of the complete graphs with order \(km \), SCMJ, 57 (2003), 527-539

Department of Mathematics
Faculty of Education
Kochi University
AKEBONOCHO 2-5-1
KOCHI, JAPAN
osamu@cc.kochi-u.ac.jp