INFINITE PRODUCT PROBLEMS ON $\delta\theta$-REFINABLE SPACES

ZHU PEIYONG AND SUN SHIXIN

Received December 23, 2002

Abstract. Suppose that $X=\prod_{\alpha<\omega}X_{\alpha}$, if each space $\prod_{\alpha<\omega}X_{\alpha}$ is $\delta\theta$-refinable (i.e., submetaindelsity), is X also $\delta\theta$-refinable? K.Chiba asked in [1]. This paper first show that an inverse limit theorem for $\delta\theta$-refinable spaces. Using this, we obtain the result: Let $X=\prod_{\alpha \in \Lambda}X_{\alpha}$ be $|\Lambda|$-paracompact, X is $\delta\theta$-refinable if $\prod_{\alpha \in F}X_{\alpha}$ is $\delta\theta$-refinable for each $F \in [\Lambda]^{<\omega}$. Then, the above problem is answered positively. Next, we show that there are similar results on hereditarily $\delta\theta$-refinable spaces.

In the paper [1], K.Chiba asked: Suppose that $X=\prod_{\alpha<\omega}X_{\alpha}$, if each space $\prod_{\alpha<\omega}X_{\alpha}$ is $\delta\theta$-refinable (i.e., submetaindelsity), is X also $\delta\theta$-refinable? This paper first prove respectively the following:

Theorem 1. Let X be the inverse limit of an inverse system $\{X_{\alpha}, \pi_{\alpha}\}$ and let the projection π_{α} be an open and onto map for each $\alpha \in \Lambda$. If X is $|\Lambda|$-paracompact and each X_{α} is $\delta\theta$-refinable, then X is $\delta\theta$-refinable.

Theorem 2. Let X be the inverse limit of an inverse system $\{X_{\alpha}, \pi_{\alpha}\}$ and let the projection π_{α} be an open and onto map for each $\alpha \in \Lambda$. If X is hereditarily $|\Lambda|$-paracompact and each X_{α} is hereditarily $\delta\theta$-refinable, then X is also hereditarily $\delta\theta$-refinable.

Using the above, we obtain the results:

Theorem 3. Let $X=\prod_{\alpha \in \Lambda}X_{\alpha}$ be $|\Lambda|$-paracompact (resp. hereditarily $|\Lambda|$-paracompact), X is $\delta\theta$-refinable (resp. hereditarily $\delta\theta$-refinable) if $\prod_{\alpha \in F}X_{\alpha}$ is $\delta\theta$-refinable (resp. hereditarily $\delta\theta$-refinable) for each $F \in [\Lambda]^{<\omega}$.

Therefore, the following holds trivially:

Theorem 4. Let $X=\prod_{i \in \Gamma}X_{i}$ be countable paracompact (resp. hereditarily countable paracompact), then the following are equivalent:

1. X is $\delta\theta$-refinable (resp. hereditarily $\delta\theta$-refinable).
2. $\prod_{i \in F}X_{i}$ is $\delta\theta$-refinable (resp. hereditarily $\delta\theta$-refinable) for each $F \in [\Gamma]^{<\omega}$.
3. $\prod_{i \in \omega}X_{i}$ is $\delta\theta$-refinable (resp. hereditarily $\delta\theta$-refinable) for each $n \in \omega$.

We use that $N_{Y}(x)$ denotes the neighbourhood system of a point x of a subspace Y of a space X. Equally, $N(x)$ denotes $N_{Y}(x)$ when $Y=X$. $|[\Lambda]|$, d_{Λ}, IntA and A' denote respectively the cardinality, the closure, the interior and the complementary set of a set A; $(U)x$, $(U)|_{A}$ and $\bigwedge_{n \in F}H_{x}$ denote respectively $\{U \in \mathcal{U}: x \in U\}$, $\{U \cap A: U \in \mathcal{U}\}$ and $\{\bigwedge_{n \in F}H_{x}: H_{x} \in H_{x}\}$; ω and $[\omega]^{<\omega}$ denote respectively, the first infinite ordinal number and the collection of all non-empty finite subsets of a non-empty set ω. And assume that all spaces are Hausdorff spaces throughout this paper.

Definition 1. Let κ be a cardinal number, A is κ-paracompact if its every open cover \mathcal{U} of cardinal $|\mathcal{U}| \leq \kappa$ has a locally finite open refinement; A is $[\omega]^{\omega}$-paracompact if it is κ-paracompact, where $\kappa = |\omega|$.

2000 Mathematics Subject Classification. 54B10, 54E18.

Key words and phrases. $\delta\theta$-refinable, weakly $\delta\theta$-refinable, inverse limit, $[\omega]^{\omega}$-paracompact, countable paracompact.
Definition 2. A space X is said to be $\delta\theta$-refinable (submetalindefel) if its every open cover \mathcal{U} has a sequence $(G_n)_{n \in \omega}$ of open refinements such that for every $x \in X$ there is an $n \in \omega$ with $\text{ord}(x,G_n) \leq \omega$; a space X is said to be weakly $\delta\theta$-refinable if its every open cover \mathcal{U} has an open refinement $G = \bigcup_{n \in \omega} G_n$ such that for every $x \in X$ there is an $n \in \omega$ such that $1 \leq \text{ord}(x,G_n) \leq \omega$.

Lemma 1. Let λ be a cardinal number. Suppose X is λ-paracompact, λ is a directed set with $|\lambda| = \lambda$, and $\mathcal{H} = \{H_\alpha : \alpha \in \lambda\}$ is an open cover of X such that $H_\alpha \subseteq H_\beta$ for each $\alpha, \beta \in \lambda$ satisfying $\alpha \leq \beta$. Then there is an open cover $K = \{K_\alpha : \alpha \in \lambda\}$ of X such that $\text{cl}K_\alpha \subseteq H_\alpha$ for each $\alpha \in \lambda$ and $K_\alpha \cap K_\beta$ for each $\alpha, \beta \in \lambda$ satisfying $\alpha \leq \beta$.

Lemma 2. A space X is hereditarily $\delta\theta$-refinable (resp. hereditarily weakly $\delta\theta$-refinable) iff each open subspace of X is $\delta\theta$-refinable (resp. weakly $\delta\theta$-refinable).

This lemma is a direct result of Definition 2. Now we prove main theorems of this paper.

Proof of Theorem 1. Let $\mathcal{U} = \{U_\xi : \xi \in \Xi\}$ be an arbitrary open cover of X. For each $\alpha \in \Lambda$ and each $\xi \in \Xi$, let us put

$$V_{\alpha,\xi} = \{V : V \subseteq X_\alpha \text{ and } \pi^{-1}_\alpha(V) \subseteq U_\xi\},$$

and put $V_\alpha = \bigcup\{V_{\alpha,\xi} : \xi \in \Xi\}$, then

1. $\bigcup\{\pi^{-1}_\alpha(V_{\alpha,\xi}) : \xi \in \Xi\} = V_\alpha$, and $\pi^{-1}_\beta(V_{\alpha,\xi}) \subseteq \pi^{-1}_\beta(V_{\alpha,\beta})$ if $\alpha \leq \beta$.

Since X is $|\Lambda|$-paracompact, there is an open cover $\{W_\alpha : \alpha \in \Lambda\}$ of X such that

2. $\text{cl}W_\alpha \subseteq \pi^{-1}_\beta(V_{\alpha,\xi})$ for each $\alpha \in \Lambda$, and $W_\alpha \subseteq W_\beta$ if $\alpha \leq \beta$.

For each $\alpha \in \Lambda$, let us put $T_\alpha = X_\alpha - \pi^{-1}_\alpha(X - \text{cl}W_\alpha)$, then T_α is closed in X_α because π^{-1}_α is an open map. Again let $C_\alpha = \text{Int}T_\alpha$ for each $\alpha \in \Lambda$.

3. $\{C_\alpha : \alpha \in \Lambda\}$ is an open cover of X.

In fact, for each $x \in X$ there is $\alpha \in \Lambda$ such that $x \in W_\alpha$. There are some $\beta \in \Lambda$ and some open set V in X_β such that $x \in \pi^{-1}_\beta(V) \subseteq W_\alpha$ since W_α is open in X. We choose a $\gamma \in \Lambda$ satisfying $\gamma \geq \alpha$ and $\gamma \geq \beta$, then $x \in C_\gamma$ because $\pi^{-1}_\beta(V) \subseteq \pi^{-1}_\gamma(T_\gamma)$. To show this, let $y = (x_\delta)_{\delta \in \lambda} \in \pi^{-1}_\gamma(V) - \pi^{-1}_\gamma(T_\gamma)$, then $\gamma \in Y \subseteq V$ and $y_\gamma \in \pi^{-1}_\gamma(X - \text{cl}W_\gamma)$, i.e., there is an element $z = (z_\delta)_{\delta \in \lambda} \in X - \text{cl}W_\gamma$ such that $y_\gamma = \pi_\gamma(z) = z_\gamma$, $y_\beta = \pi_\beta(z_\beta) \subseteq V$, $x \in \pi^{-1}_\beta(V) = \pi^{-1}_\gamma(V) \subseteq W_\alpha$, then $x \in W_\alpha$. This is a contradiction.

By $|\Lambda|$-paracompactness of X, there is a locally finite open cover $\{O_\alpha : \alpha \in \Lambda\}$ of X such that $O_\alpha \subseteq C_\alpha$ for each $\alpha \in \Lambda$. Since $T_\alpha \subseteq V_\alpha = \bigcup\{V_{\alpha,\xi} : \xi \in \Xi\}$ and T_α is closed in X_α, then there is a sequence $(G_n(\alpha))_{n \in \omega}$ of open sets of X_α, satisfying

4. Each $G_n(\alpha)$ is a part refinement of $\{V_{\alpha,\xi} : \xi \in \Xi\}$ and $T_\alpha \subseteq \bigcup G_n(\alpha)$ for each $n \in \omega$.

5. For each $x \in T_\alpha$ there is an $n \in \omega$ such that $\text{ord}(x,G_n(\alpha)) \leq \omega$ and $G_n \cap G_m \subseteq G_n(\alpha)$ if $G_1 \cap G_2 \subseteq G_n(\alpha)$ if $G_1, G_2 \subseteq G_n(\alpha)$.

For each $n \in \omega$, let $H_n = \{\pi^{-1}_\alpha(G) \cap \text{cl}(\bigcup_{\alpha \in \Lambda} G_n(\alpha)) : \alpha \in \Lambda\}$, then

6. H_n is an open refinement of \mathcal{U} for each $n \in \omega$.

In fact, for each $x \in X$, there is $\alpha \in \Lambda$ such that $x \in \text{cl}(\bigcup_{\alpha \in \Lambda} G_n(\alpha))$ and there is $G \subseteq G_n(\alpha)$ such that $x \in \pi^{-1}_\alpha(G) \cap \bigcup_{\alpha \in \Lambda} G_n(\alpha)$, i.e., H_n is a cover of X. Again since for each $\alpha \in \Lambda$ and each $G \subseteq G_n(\alpha)$ there is some $\xi(G) \in \Xi$ such that $G \subseteq V_{\alpha,\xi(G)}$, then $\pi^{-1}_\alpha(G) \cap \bigcup_{\alpha \in \Lambda} G_n(\alpha)$.

Finally, we prove:

8. For each $x \in X$, there is a $F \subseteq [\omega]^{<\omega}$ such that $\text{ord}(x,H_F) \leq \omega$.

Let $x \in X$, since $\{O_\alpha : \alpha \in \Lambda\}$ is a locally open cover of X, a nonempty finite set. And for each $\alpha \in \Delta$, since $x \in \text{cl}(\bigcup_{\alpha \in \Lambda} G_n(\alpha))$, there is some $n_\alpha \in \omega$ such that $\text{ord}(x,G_n(\alpha)) \leq \omega$. Put $F = \{n_\alpha : \alpha \in \Delta\}$ and let $G_n^{-1}(\alpha) = \{\pi^{-1}_\alpha(G) \cap \bigcup_{\alpha \in \Lambda} G_n(\alpha) : \alpha \in \Delta\}$, then

$$(H_F)_x \subseteq \bigcap_{\alpha \in \Delta}(\bigcup_{n_\alpha \in \omega} G_n^{-1}(\alpha))_x \text{ and } \Delta' \in [\omega]^{<\omega}$$
Therefore, \(\text{ord}(x, \mathcal{H}_F) \leq \omega\). □

Proof of Theorem 2. Let \(\mathcal{U} = \{U_\xi : \xi \in \Xi\}\) be an open cover of open subspace \(Y\) of \(X\). For each \(\alpha \in \Lambda\) and each \(\xi \in \Xi\), we put \(V_{\alpha \xi} = \bigcup \{V : V \text{ is in } X_{\alpha} \text{ and } \pi_{\alpha}^{-1}(V) \subseteq U_\xi\}\) and \(V_{\alpha} = \bigcup \{V_{\alpha \xi} : \xi \in \Xi\}\), then

1. \(\{\pi_{\alpha}^{-1}(V_{\alpha}) : \alpha \in \Lambda\}\) is an open cover of \(Y\) and \(\pi_{\alpha}^{-1}(V_{\alpha}) \subseteq \pi_{\beta}^{-1}(V_{\beta})\) if \(\alpha \leq \beta\).

Since \(X\) is hereditarily \(|\cdot|\)-paracompact, the open cover \(\{\pi_{\alpha}^{-1}(V_{\alpha}) : \alpha \in \Lambda\}\) of \(Y\) has an open refinement \(\{W_\alpha : \alpha \in \Lambda\}\) such that

2. \(dW_\alpha \subseteq \pi_{\alpha}^{-1}(V_{\alpha})\) for each \(\alpha \in \Lambda\), and \(W_\alpha \subseteq W_\beta\) if \(\alpha \leq \beta\).

For each \(\alpha \in \Lambda\), put \(E_\alpha = \bigcup \{E : E\text{ is open in } X_{\alpha} \text{ and } \pi_{\alpha}^{-1}(E) \subseteq W_\alpha\}\), then

3. \(\pi_{\alpha}^{-1}(E_\alpha) \subseteq W_\alpha\) for each \(\alpha \in \Lambda\) and \(\pi_{\alpha}^{-1}(E_\alpha) \subseteq \pi_{\beta}^{-1}(E_\beta)\) if \(\alpha \leq \beta\).

Now, we assert that

4. \(\{\pi_{\alpha}^{-1}(E_\alpha) : \alpha \in \Lambda\}\) is an open cover of \(Y\).

In fact, for each \(x \in Y\) there is a \(\alpha \in \Lambda\) such that \(x \in W_\alpha\). There are some \(\beta \in \Lambda\) and some open set \(V\) in \(X_{\beta}\) such that \(x \in \pi_{\beta}^{-1}(V) \subseteq W_\alpha\) by [4, Theorem 2.5.5]. Let us put \(\gamma \in \Lambda\) such that both \(\gamma \geq \alpha\) and \(\alpha \geq \beta\), then \(x \in \pi_{\beta}^{-1}(V) = (\pi_{\beta}^{-1}(\pi_{\gamma})^{-1}(V)) = (\pi_{\gamma})^{-1}(V) \subseteq W_\alpha \subseteq W_\gamma\), from which \(x \in \pi_{\gamma}^{-1}(E_\gamma)\).

Put \(F_\alpha = \text{cl}(E_\alpha) \cap \bigcap \{\text{cl}(V_{\alpha \xi}) : \xi \in \Xi\}\) for each \(\alpha \in \Lambda\), we assert that

5. \(\pi_{\alpha}^{-1}(F_\alpha) \cap Y = \phi\).

Indeed, if there is some \(x = (x_\alpha)_{\alpha \in \Lambda} \in \pi_{\alpha}^{-1}(F_\alpha) \cap Y\), then \(x_\alpha \in F_\alpha \subseteq \text{cl}(V_{\alpha \xi}) \subseteq V_{\alpha \xi}\). Since \(x_\alpha \not\in \pi_{\alpha}^{-1}(E_\alpha)\) we have \(x \in \pi_{\alpha}^{-1}(E_\alpha) \subseteq F_\alpha\). To prove this, let us put \(H = \pi_{\alpha}^{-1}(E_\alpha) \cap \mathcal{H}_F\), then there are some \(\beta \in \Lambda\) and some open set \(V\) in \(X\) such that \(x \in \pi_{\beta}^{-1}(V) \subseteq H\). Pick \(\gamma \geq \alpha\), \(\gamma \geq \beta\) and let \(V' = (\pi_{\beta}^{-1}(V))\), then

\[
x \in \pi_{\gamma}^{-1}(V') = \pi_{\gamma}^{-1}(\pi_{\beta}^{-1}(V)) = (\pi_{\gamma}^{-1}(\pi_{\beta}^{-1}(V))) = \pi_{\gamma}^{-1}(V) \subseteq H.
\]

Since \(x_\alpha \in F_\alpha \subseteq \text{cl}(E_\alpha)\) and \(x_\beta \in V'\), then \(\pi_{\gamma}^{-1}(V') \cap E_\alpha \neq \phi\). Let us put \(b \in \pi_{\gamma}^{-1}(V') \cap E_\alpha\), then there is \(c \in V'\) such that \(\pi_{\gamma}^{-1}(c) = b\). There is \(y_\gamma = (y_\alpha)_{\alpha \in \Lambda} \in X\) such that \(y_\gamma = \pi_{\gamma}(y) = c\).

6. \((X_{\alpha}, F_\alpha) \cap \text{cl}(E_\alpha) \subseteq \bigcup \{V_{\alpha \xi} : \xi \in \Xi\}\) for each \(\alpha \in \Lambda\).

In fact, for each \(x \in (X_{\alpha}, F_\alpha) \cap \text{cl}(E_\alpha)\), we have \(\pi_{\gamma}^{-1}(c) = b \in \pi_{\gamma}^{-1}(V') \cap E_\alpha\). Since \(t \in \text{cl}(V_{\alpha \xi}) \subseteq V_{\alpha \xi}\) and \(E_\alpha \subseteq V_{\alpha \xi}\), then \(t \in V_{\alpha \xi}\).

By \(\delta\)-refinability of \(X_{\alpha}, F_\alpha\), there is a sequence \(\langle G_\alpha(x) \rangle_{n \in \omega}\) of open covers of \((X_{\alpha}, F_\alpha) \cap \text{cl}(E_\alpha)\) such that

7. Each \(G_\alpha(x)\) is a fine cover of \(\{V_{\alpha \xi} : \xi \in \Xi\}\) and \(G_1 \cap G_2 \subseteq G_\alpha(x)\) if \(G_1, G_2 \subseteq G_\alpha(x)\)

8. For each \(x \in (X_{\alpha}, F_\alpha) \cap \text{cl}(E_\alpha)\) there is a \(n \in \omega\) such that \(\text{ord}(x, G_\alpha(x)) \leq \omega\).

Next, since \(X\) is hereditarily \(|\cdot|\)-paracompact, the open cover \(\{\pi_{\alpha}^{-1}(E_\alpha) : \alpha \in \Lambda\}\) of the subspace \(Y\) has a locally fine dense refinement \(\{O_\alpha : \alpha \in \Lambda\}\) such that \(O_\alpha \subseteq \pi_{\alpha}^{-1}(V_{\alpha \xi})\) for each \(\alpha \in \Lambda\)

Define \(\mathcal{H}_F = \{O_\alpha \cap \pi_{\alpha}^{-1}(G) : G \in G_\alpha(x), \alpha \in \Lambda\}\) and let \(\mathcal{H}_F = \bigwedge_{n \in \omega} \mathcal{H}_n\) for each \(F \in [\omega]^\omega\), then

9. Each \(\mathcal{H}_F\) is an open refinement of \(\mathcal{U}\).

In fact, for each \(x \in Y\) and each \(n \in \omega\), there is some \(\alpha \in \Lambda\) such that \(x \in O_\alpha \subseteq \pi_{\alpha}^{-1}(E_\alpha)\), then \(x_\alpha \in (X_{\alpha}, F_\alpha) \cap \text{cl}(E_\alpha)\). There is \(G_\alpha(x)\) such that \(x_\alpha \in G_\alpha(x), x_\alpha \in O_\alpha \subseteq \pi_{\alpha}^{-1}(G)\), i.e., \(\mathcal{H}_n\) is an open cover of \(Y\). Since for each \(G \in G_\alpha(x)\) there is \(\xi \in \Xi\) such that \(G \subseteq V_{\alpha \xi}\), then \(O_\alpha \subseteq \pi_{\alpha}^{-1}(G) \subseteq \pi_{\alpha}^{-1}(V_{\alpha \xi}) \subseteq V_{\alpha \xi}\), hence \(\mathcal{H}_F\) is an open refinement of \(\mathcal{U}\) for each \(F \in [\omega]^\omega\).

Finally, we assert that

10. For each \(x \in Y\), there is some \(F \in [\omega]^\omega\) such that \(\text{ord}(x, \mathcal{H}_F) \leq \omega\).
Let $x \in Y$, $\Delta = \{ \alpha \in \Lambda : x \in O_\alpha \}$ is an nonempty finite set. For each $\alpha \in \Delta$, $x \in O_\alpha \subseteq \pi^{-1}_\alpha(E_\alpha)$, we have $x_\alpha \in (X_\alpha \cap F_\alpha) \setminus E_\alpha$ by (5), there is some $n_\alpha \in \omega$ such that $\text{ord}(x, G_{n_\alpha}(\alpha)) \leq \omega$. Put $F = \{ n_\alpha : \alpha \in \Delta \}$, then $(\mathcal{H}_F x) \subset (\bigcap_{\alpha \in \Delta} O_\alpha \setminus G^{-1}_{n_\alpha}(\alpha)) x$ and $\Delta' \in [\Delta]^{<\omega}$, i.e., $\text{ord}(x, \mathcal{H}_F) \leq \omega$.

So, X is a hereditarily $\delta\theta$-refine space. □

Now, we discuss Tychonoff products of infinite factors about both $\delta\theta$-refinable spaces and hereditarily $\delta\theta$-refinable spaces.

Proof of Theorem 3. (\Leftarrow) When $|\Lambda| < \omega$, it is obvious that $X = \prod_{\alpha \in \Lambda} X_\alpha$ is $\delta\theta$-refinable since $F = \Lambda \in [\Lambda]^{<\omega}$. Without the loss of generality, we suppose $|\Lambda| \geq \omega$. Define the relation \leq: $F \leq E$ if and only if $F \subseteq E$ for each $F, E \in [\Lambda]^{<\omega}$. Then $[\Lambda]^{<\omega}$ is a directed set on the relation \leq. Put $X_F = \prod_{\alpha \in F} X_\alpha$ for each $F \in [\Lambda]^{<\omega}$ and define the projection: $$\pi^F_F : X_F \to X_E$$ when $F \leq E$, where $\pi^F_F(x) = (x_\alpha)_{\alpha \in F}$ for each $x = (x_\alpha)_{\alpha \in E} \in X_E$.

It is easy to prove that π^F_F is an open and onto map. $\{X_F, \pi^F_F, [\Lambda]^{<\omega} \}$ is an inverse system of spaces X_F with bounding maps $\pi^F_F : X_E \to X_F$ when $E \subseteq F$.

Let X' be the inverse limit of the inverse system $\{X_F, \pi^F_F, [\Lambda]^{<\omega} \}$, by [4, 2.5.3 Example], X' is homeomorphic to $X = \prod_{\alpha \in \Lambda} X_\alpha$.

In other respects, since each $X_F = \prod_{\alpha \in F} X_\alpha$ is $\delta\theta$-refinable (resp. hereditarily $\delta\theta$-refinable), the inverse system $\{X_F, \pi^F_F, [\Lambda]^{<\omega} \}$ satisfies the condition of Theorem 1. X' is $\delta\theta$-refinable (resp. hereditarily $\delta\theta$-refinable). Therefore, so is $X = \prod_{\alpha \in \Lambda} X_\alpha$ also.

(\Rightarrow) Assume that the product $X = \prod_{\alpha \in \Lambda} X_\alpha$ is $\delta\theta$-refinable (resp. hereditarily $\delta\theta$-refinable). For every $F \in [\Lambda]^{<\omega}$, let us put a point $x_\alpha \in X_\alpha$ when $\alpha \in \Lambda \setminus F$, then the closed subspace $X_F = \prod_{\alpha \in F} X_\alpha \times \prod_{\alpha \in \Lambda \setminus F} \{ x_\alpha \}$ of X is $\delta\theta$-refinable (resp. hereditarily $\delta\theta$-refinable). Thus, X_F is $\delta\theta$-refinable (resp. hereditarily $\delta\theta$-refinable). □

Proof of Theorem 4. The equivalence of (1) and (2) is direct by Theorem 3. (2)\Rightarrow(3) hold obviously. Now, we prove (3)\Rightarrow(2). In fact, for each $F \in [\Lambda]^{<\omega}$, let $m = \max F$ since $F \neq \emptyset$. We pick a fixed $x_\alpha \in X_\alpha$ when $\alpha \in \{0, 1, \ldots, m\} \setminus F$, then $\prod_{\alpha \in F} X_\alpha \times \prod_{\alpha \in \{0, 1, \ldots, m\} \setminus F} \{ x_\alpha \}$ is a closed set of $\prod_{\alpha \in \Lambda} X_\alpha$. So, $\prod_{\alpha \in F} X_\alpha$ is $\delta\theta$-refinable (resp. hereditarily $\delta\theta$-refinable). □

Finally, we point out that there are similar results about both weakly $\delta\theta$-refinable spaces and hereditarily weakly $\delta\theta$-refinable spaces.

Corollary 1. Let X be the inverse limit of an inverse system $\{X_\alpha, \pi^*_\alpha, \Lambda\}$ and let the projection π_α be an open and onto map for each $\alpha \in \Lambda$. If X is $[\Lambda]$-paracompact (resp. hereditarily $[\Lambda]$-paracompact) and each X_α is weakly $\delta\theta$-refinable (resp. hereditarily weakly $\delta\theta$-refinable), then X is weakly $\delta\theta$-refinable (resp. hereditarily weakly $\delta\theta$-refinable).

Proof. We only prove the situation of weakly $\delta\theta$-refinable spaces, the Proof of hereditarily weakly $\delta\theta$-refinable spaces is similar to Theorem 2.

Let $\mathcal{U} = \{ U_\xi : \xi \in \Xi \}$ be an arbitrary open cover of X. For each $\alpha \in \Lambda$ and each $\xi \in \Xi$, the following are the same as the symbols in the proof of the above theorem: $V_{\alpha \xi}$, V_α, W_α, T_α, C_α and O_α. And there are the results which are same as (1)-(3) in Theorem 1.

Since $T_\alpha \subseteq V_\alpha = \bigcup \{ V_{\alpha \xi} : \xi \in \Xi \}$, there is an open cover $\bigcup_{n \in \omega} G_{n}(\alpha)$ of T_α such that

(4') For each $G \in \bigcup_{n \in \omega} G_{n}(\alpha)$, there is some $\xi \in \Xi$ such that $G \subseteq V_{\alpha \xi}$, and $G_1 \cap G_2 \subseteq G_{n}(\alpha)$ for each $G_1, G_2 \in G_{n}(\alpha)$

(5') For each $x \in T_\alpha$ there is some $n_\alpha \in \omega$ such that $1 \leq \text{ord}(x, G_{n_\alpha}(\alpha)) \leq \omega$.

For each $n \in \omega$ and each $F \in [\omega]^{<\omega}$, let us put $\mathcal{H}_n = \{ \pi^{-1}_n(G) \setminus O_\alpha : G \in G_{n}(\alpha) \}$ and $\alpha \in \Lambda$ and $\mathcal{H}_F = \bigwedge_{n \in F} \mathcal{H}_n$, then

(6') Each \mathcal{H}_F is an open part refinement of \mathcal{U}.

Finally, we prove:

(7') For each $x \in X$ there is some $F \in [\omega]^{<\omega}$ such that $\text{ord}(x, \mathcal{H}_F) \leq \omega$.

Let \(x \in X \), since \(\{ O_\alpha : \alpha \in \Lambda \} \) is a locally open cover of \(X \), \(\Delta = \{ \alpha \in \Lambda : x \in O_\alpha \} \) is an nonempty finite set. And for each \(\alpha \in \Delta \), since \(x \in \bigcap_{n=1}^{\omega} (T \alpha) \), then \(s_\alpha \in T \alpha \). There is some \(n_\alpha \in \omega \) such that \(1 \leq \text{ord}(x, G_{n_\alpha}(\alpha)) \leq \omega \). Put \(F = \{ n_\alpha : \alpha \in \Delta \} \), then
\[
\phi \notin \mathcal{H}_F x \subset \bigcap_{n \in \Delta} \left(G_{n_\alpha}(\alpha) \right) x \text{ and } \Delta' \in [\Delta]^{<\omega}.
\]
So, \(1 \leq \text{ord}(x, \mathcal{H}_F) \leq \omega \). □

Corollary 2. Let \(X = \prod_{\alpha \in \Lambda} X_\alpha \) be \(\Lambda \)-paracompact, \(X \) is \(\delta \theta \)-refinable (resp. \(\delta \theta \)-refinable) iff \(\prod_{\alpha \in F} X_\alpha \) is \(\delta \theta \)-refinable (resp. \(\delta \theta \)-refinable) for each \(F \in [\Sigma]^{<\omega} \).

Corollary 3. Let \(X = \prod_{i \in \omega} X_i \) is countable paracompact, then the following are equivalent:

1. \(X \) is weakly \(\delta \theta \)-refinable (resp. hereditarily weakly \(\delta \theta \)-refinable).
2. \(\prod_{i \in F} X_i \) is weakly \(\delta \theta \)-refinable (resp. hereditarily weakly \(\delta \theta \)-refinable) for each \(F \in [\Sigma]^{<\omega} \).
3. \(\prod_{i \in n} X_i \) is weakly \(\delta \theta \)-refinable (resp. hereditarily weakly \(\delta \theta \)-refinable) for each \(n \in \omega \).

Acknowledgement. The author would like to express his thanks to the Scientific Fund of the Educational Committee in Sichuan of China for its subsidy to this subject.

References

Zhu Peiyong’s address: Department of Mathematics, Southwest University for Nationalities, Chengdu, 610041, P.R.China.

Sun Shixin’s address: School of Computer Science and Technology, University of Electronic Science and Technology, Chengdu, 610054, P.R.China.