ON A PROCEDURE FOR FINDING THE GALOIS GROUP OF A
QUINTIC POLYNOMIAL

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

Received November 27, 2001

Abstract. In [4, Proposition, pp. 883–884] a procedure is given to find the Galois

group of an irreducible quintic polynomial $f(x) \in \mathbb{Z}[x]$. It is shown that this procedure does

not always find the Galois group.

1. Introduction. Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible quintic polynomial. The Galois

group $\text{Gal}(f)$ of $f(x)$ over \mathbb{Q} is isomorphic to one of S_5 (the symmetric group of order 120),

A_5 (the alternating group of order 60), F_{20} (the Frobenius group of order 20), D_5 (the dihedral
group of order 10) or \mathbb{Z}_5 (the cyclic group of order 5), see [1, p. 872] or [3, pp.

556–557]. Let p be a prime. We write

$$f(x) \equiv (d_1)^{n_1} \cdots (d_r)^{n_r} \quad (\text{mod } p)$$

to denote that $f(x)$ factors modulo p into r distinct irreducible factors of degrees d_1, \ldots, d_r

and multiplicities n_1, \ldots, n_r respectively. The following procedure [4, Proposition, pp.

883–884] has been given for determining $\text{Gal}(f)$.

Let p be a prime $\equiv 1$ (mod 5) such that

$$f(x) \equiv (1)(1)(1)(1)(1) \quad (\text{mod } p).$$

We know that such a prime exists by the Tchebotarev density theorem.

1. If there exists a prime $p_1 < p$ such that $f(x) \equiv (2)(3) \quad (\text{mod } p_1)$ then $\text{Gal}(f) \cong S_5$.

2. If there exists a prime $p_2 < p$ such that $f(x) \equiv (1)(1)(3) \quad (\text{mod } p_2)$ and case 1 does

not hold then $\text{Gal}(f) \cong A_5$.

3. If there exists a prime $p_3 < p$ such that $f(x) \equiv (1)(4) \quad (\text{mod } p_3)$ and cases 2 and 3 do

not hold then $\text{Gal}(f) \cong F_{20}$.

4. If there exists a prime $p_4 < p$ such that $f(x) \equiv (1)(2)(2) \quad (\text{mod } p_4)$ and cases 2, 3 and

4 do not hold then $\text{Gal}(f) \cong D_5$.

5. If for every prime $q < p$ either $f(x) \equiv (1)(1)(1)(1)(1) \quad (\text{mod } q)$ or $f(x) \equiv (5) \quad (\text{mod } q)$

then $\text{Gal}(f) \cong \mathbb{Z}_5$.

We show that this procedure is not guaranteed to determine $\text{Gal}(f)$. We illustrate this

with the parametric family

$$c_k(x) = x(x + 9)(x^3 + 3x + 3) + 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11(3k + 1), \quad k \in \mathbb{Z}. \quad (1)$$

2000 Mathematics Subject Classification. Primary 11R09, 11R32, 11Y40.

Key words and phrases. quintic polynomial, Galois group.
We prove

Theorem. (a) \(c_k(x) \) is irreducible for all \(k \in \mathbb{Z} \).

\[
\begin{align*}
c_k(x) &\equiv (1)(3)(\text{mod } 2), \\
c_k(x) &\equiv (1)(3)(\text{mod } 3), \\
c_k(x) &\equiv (1)(3)(\text{mod } 5), \\
c_k(x) &\equiv (1)(1)(2)(\text{mod } 7), \\
c_k(x) &\equiv (1)(1)(1)(1)(\text{mod } 11).
\end{align*}
\]

(c) \(\text{Gal}(c_k(x)) \cong S_5 \) for all \(k \) in \(\mathbb{Z} \).

(d) Let \(p_1 = 13, p_2 = 17, p_3 = 19, \ldots \) be the primes \(> 11 \). For each positive integer \(t \) there exist infinitely many \(k \in \mathbb{Z} \) such that the least prime \(p \) for which \(c_k(x) \equiv (2)(3) \) (mod \(p \)) satisfies \(p > p_t \).

With \(p = 11 \) the procedure gives \(\text{Gal}(c_k(x)) \cong A_5 \) \((k \in \mathbb{Z}) \) contradicting \(\text{Gal}(c_k(x)) \cong S_5 \) \((k \in \mathbb{Z}) \). Thus the procedure does not find the correct Galois group for infinitely many quintics. Part (d) of the Theorem shows that however large we choose the prime \(p \) the procedure still fails for infinitely many quintics. In order to prove part (d) of the Theorem we use the following result.

Proposition. Let \(g(x) \in \mathbb{Z}[x] \). Let \(p \) be a prime such that

\[
g(x) \not\equiv c h(x)^2 \pmod{p}, \quad c \in \mathbb{Z}, \quad h(x) \in \mathbb{Z}[x].
\]

Then

\[
\sum_{x=0}^{p-1} \left(\frac{g(x)}{p} \right) \leq (n-1)\sqrt{p},
\]

where \(n \) denotes the degree of \(g(x) \) and \(\left(\frac{s}{p} \right) \) is the Legendre symbol modulo \(p \).

This character sum estimate is due to Weil [7, p. 207] and is a consequence of his proof of the Riemann hypothesis for algebraic function fields over a finite field [6].

2. **Proof of Theorem.** (a) From (1) we have

\[
c_k(x) = x^5 + 9x^4 + 3x^3 + 30x^2 + 27x + 6930k + 2310
\]

so that \(c_k(x) \) is 3—Eisenstein and thus irreducible.

\[
\begin{align*}
c_k(x) &\equiv x(x+1)(x^3+x+1) \pmod{2}, \\
c_k(x) &\equiv x^5 \pmod{3}, \\
c_k(x) &\equiv x(x+4)(x^3+3x+3) \pmod{5}, \\
c_k(x) &\equiv x(x+2)(x+6)(x^2+x+4) \pmod{7}, \\
c_k(x) &\equiv x(x+2)(x+3)(x+6)(x+9) \pmod{11}.
\end{align*}
\]

(c) The discriminant of \(c_k(x) \) is

\[
d(k) = 720747193753125000k^4 + 148399767947315800k^3
\]
\[+996640539362977500k^2 + 2785738364780554260k + 278489107278162009.\]

As \(d(k) \equiv 5 \pmod{7}\) we deduce that \(d(k)\) is not a perfect square. Hence \(\text{Gal}(c_k(x))\) is not a subgroup of \(A_5\) and so

\[\text{Gal}(c_k(x)) \cong F_{20} \text{ or } S_5.\]

Further, as \(d(k) \not\equiv 0 \pmod{2}\) and

\[c_k(x) \equiv (1)(1)(3) \pmod{2},\]

by [3, Corollary 41, p. 554] \(\text{Gal}(c_k(x))\) contains a 3-cycle. Hence 3 divides the order of \(\text{Gal}(c_k(x))\). But 3 does not divide the order of \(F_{20}\) so \(\text{Gal}(c_k(x)) \cong S_5\).

(d) Let \(p\) be a prime \(> 11\). The number \(N\) of pairs \((k, y)\) of integers modulo \(p\) satisfying the congruence

\[y^2 \equiv d(k) \pmod{p}\]

is

\[N = \sum_{k=0}^{p-1} \left(1 + \left(\frac{d(k)}{p} \right) \right) = p + \sum_{k=0}^{p-1} \left(\frac{d(k)}{p} \right).\]

Now the coefficient of \(k^4\) in \(d(k)\) is

\[2^4 \cdot 3^8 \cdot 5^6 \cdot 7^4 \cdot 11^4\]

and the discriminant of \(d(k)\) is

\[-2^{20} \cdot 3^{55} \cdot 5^{15} \cdot 7^{12} \cdot 11^{12} \cdot 37^2 \cdot 382103^2 \cdot 8570461^2\]

so that for \(p \neq 37, 382103, 8570461\) we have

\[d(k) \not\equiv c h(k)^2 \pmod{p}\]

for any \(c \in \mathbb{Z}\) and any polynomial \(h(k) \in \mathbb{Z}[x]\). Hence by the Proposition

\[\left| \sum_{k=0}^{p-1} \left(\frac{d(k)}{p} \right) \right| \leq (\deg(d(k)) - 1) \sqrt{p} = 3 \sqrt{p}.\]

Thus for \(p \neq 13, 17, 37, 382103, 8570461\) we have

\[N \geq p - 3 \sqrt{p} \geq 5,\]

so that there exists \(k_p \in \mathbb{Z}\) such that

\[(2) \quad \left(\frac{d(k_p)}{p} \right) = 1.\]

For \(p = 13, 17, 37, 382103, 8570461\) we choose \(k_p = 1, 4, 3, 3, 2\) respectively so that (2) holds in these cases as well.

Let \(t \in \mathbb{N}\). By the Chinese remainder theorem we can choose infinitely many integers \(k\) such that

\[(3) \quad k \equiv k_p \pmod{p_i}, \quad i = 1, \ldots, t.\]
Hence, by (2) and (3), we have

\[
\left(\frac{d(k)}{p_i} \right) = \left(\frac{d(k_{p_i})}{p_i} \right) = 1, \quad i = 1, \ldots, t.
\]

But, by Stickelberger’s theorem [5], [2], we have

\[
\left(\frac{d(k)}{p_i} \right) = (-1)^{5-r_i}, \quad i = 1, \ldots, t,
\]

where \(r_i \) is the number of irreducible factors of \(c_k(x) \) (mod \(p_i \)). Thus, by (4) and (5), we have

\[
r_i \equiv 1 \pmod{2}, \quad i = 1, \ldots, t.
\]

Hence

\[
c_k(x) \not\equiv (2)(3) \pmod{p_i}, \quad i = 1, \ldots, t.
\]

Thus the least prime \(p \) for which

\[
c_k(x) \equiv (2)(3) \pmod{p}
\]

satisfies \(p > p_i \).

References

Department of Mathematics and Statistics
Okanagan University College
Kelowna, British Columbia V1V 1V7
Canada
e-mail: bspearman@okanagan.bc.ca

Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S 5B6
Canada
e-mail: williams@math.carleton.ca