Fuzzy congruence on BCI-algebras

Michiro Kondo

Received April 24, 2002

Abstract. In this paper we define fuzzy congruences on BCI-algebras and their quotient algebras, and prove some fundamental results:

1. There is a one to one correspondence between the set $FC(X)$ of all fuzzy closed ideals of X and the set $FCon_R(X)$ of all fuzzy regular congruences on X.

2. Let X,Y be BCI-algebras and $f : X \rightarrow Y$ be a BCI-homomorphism. If \bar{A} is a fuzzy ideal of Y, then the quotient algebra $X/f^{-1}(\bar{A})$ and $f(X)/\bar{A}$ are BCI-algebras and $X/f^{-1}(\bar{A}) \cong f(X)/\bar{A}$

1 Introduction While there are many papers about fuzzy BCK/BCI-algebras and fuzzy ideals of those, we find few papers about fuzzy congruences. In the usual theory of crisp BCK/BCI-algebras, there exists a close relationship between ideals and congruences. It is a natural question to extend the relationship to the case of fuzzy BCK/BCI-algebras. In this paper we define fuzzy congruences on BCI-algebras and quotient fuzzy BCI-algebras by those and investigate their properties.

2 Preliminaries By a BCI-algebra we mean an algebraic structure $(X, s, 0)$ of type $(2,0)$ satisfying the following conditions: For all $x, y, z \in X$,

1. $(x * y) * (x * z) = (x * z) * (x * y) = 0$
2. $(x * (x * y)) * y = 0$
3. $x * x = 0$
4. $x * y = y * x = 0$ implies $x = y$

We define a relation \leq on X by $x \leq y$ if and only if $x * y = 0$. It is clear from definition that \leq is a partial order on X. If a BCI-algebra X satisfies the extra condition $0 * x = 0$ for all $x \in X$, then it is called a BCK-algebra. In any BCI-algebra X, we have:

$(P1)$ $x * 0 = x$
$(P2)$ $x * y \leq x$
$(P3)$ $(x * y) * z = (x * z) * y$
$(P4)$ $(x * z) * (y * z) \leq x * y$
$(P5)$ $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$

A non-empty subset A of a BCI-algebra X is said to be an ideal of X if

$(I1)$ $0 \in A$
$(I2)$ $x * y \in A$ and $y \in A$ imply $x \in A$.

2000 Mathematics Subject Classification. 06B05, 08N17.

Key words and phrases. Fuzzy congruence, Fuzzy BCI-algebra.
Moreover an ideal \(A \) is called \textit{closed} if \(x \in A \) implies \(0 \preceq x \in A \).

We denote by \(C(X) \) the set of all closed ideals of \(X \).

A binary relation \(\theta \) on \(X \) is called a \textit{congruence} on \(X \) if

\[
(C1) \quad \theta \text{ is an equivalence relation on } X
\]

\[
(C2) \quad (x, y) \in \theta \text{ implies } (x \circ z, y \circ z) \in \theta \text{ and } (z \circ x, z \circ y) \in \theta \text{ for all } x, y, z \in X
\]

Also a relation \(\theta \) is called \textit{regular} if

\[
(R) \quad (x \circ y, 0) \in \theta \text{ and } (y \circ x, 0) \in \theta \text{ imply } (x, y) \in \theta
\]

By \(\text{Con}_R(X) \) we mean the set of all regular congruences on \(X \). We have the following result ([1, 2]):

Proposition 1. Let \(X \) be a BCI-algebra. Then \(C(X) \) and \(\text{Con}_R(X) \) are lattices with respect to set inclusion and they are isomorphic as lattices, that is, \(C(X) \cong \text{Con}_R(X) \).

Let \(X \) be a BCI-algebra. By a fuzzy set of \(X \) we mean a mapping from \(X \) to \([0, 1]\). A fuzzy set \(\tilde{A} \) of \(X \) (i.e. \(\tilde{A}: X \to [0, 1] \)) is called a \textit{fuzzy ideal} if, for all \(x, y, z \in X \),

\[
(i) \quad \tilde{A}(0) \preceq \tilde{A}(x)
\]

\[
(ii) \quad \tilde{A}(x) \preceq \tilde{A}(x \circ y) \wedge \tilde{A}(y)(= \min \{ \tilde{A}(x \circ y), \tilde{A}(y) \})
\]

A fuzzy ideal \(\tilde{A} \) of \(X \) is called \textit{closed} if \(\tilde{A}(0 \circ x) \preceq \tilde{A}(x) \) for every \(x \in X \). It is easy to show the next result. So we omit the proof.

Lemma 1. Let \(\tilde{A} \) be a fuzzy ideal of \(X \). Then

(1) If \(x \preceq y \) then \(\tilde{A}(x) \preceq \tilde{A}(y) \)

(2) \(\tilde{A}(x \circ y) \preceq \tilde{A}(x) \wedge \tilde{A}(y) \wedge \tilde{A}(y \circ z) \)

We define a fuzzy congruence on a BCI-algebra \(X \). A binary function \(\tilde{\theta} \) from \(X \times X \) to \([0, 1]\) is called a \textit{fuzzy congruence} on \(X \) if it satisfies the conditions: For all \(x, y, z \in X \),

1. \(\tilde{\theta}(0, 0) = \tilde{\theta}(x, x) \)
2. \(\tilde{\theta}(x, y) = \tilde{\theta}(y, x) \)
3. \(\tilde{\theta}(x, z) \preceq \tilde{\theta}(x, y) \wedge \tilde{\theta}(y, z) \)
4. \(\tilde{\theta}(x \circ u, y \circ u), \tilde{\theta}(u \circ x, u \circ y) \preceq \tilde{\theta}(x, y) \)

Lemma 2. If \(\tilde{\theta} \) satisfies the conditions (2), (3), and (4) above, then (1) \(\tilde{\theta}(0, 0) = \tilde{\theta}(x, x) \) if and only if (1) \(\tilde{\theta}(0, 0) \preceq \tilde{\theta}(x, y) \), for all \(x, y \in X \).

Proof. Suppose that \(\tilde{\theta}(0, 0) = \tilde{\theta}(x, x) \). Since \(\tilde{\theta} \) satisfies the conditions (2) and (3), we have \(\tilde{\theta}(0, 0) = \tilde{\theta}(x, x) \preceq \tilde{\theta}(x, y) \wedge \tilde{\theta}(y, x) = \tilde{\theta}(x, y) \).

Conversely, it is sufficient to prove \(\tilde{\theta}(0, 0) \leq \tilde{\theta}(x, x) \). From (4), we have \(\tilde{\theta}(0, 0) \leq \tilde{\theta}(x \circ 0, y \circ 0) = \tilde{\theta}(x, x) \).

Theorem 1. If \(\tilde{A} \) is a fuzzy ideal of \(X \), then the fuzzy relation \(\tilde{\theta}_A(x, y) \) defined by \(\tilde{\theta}_A(x, y) = \tilde{A}(x \circ y) \wedge \tilde{A}(y \circ x) \) is a fuzzy congruence.
Proof. We only show that \(\tilde{\sigma}_A \) satisfies the conditions (3) and (4). For the case of (3), we have
\[
\tilde{\sigma}_A(x, z) = \tilde{\alpha}(x * z) \land \tilde{\alpha}(z * x) \geq \tilde{\alpha}(x * y) \land \tilde{\alpha}(y * z) \land \tilde{\alpha}(z * y) \land \tilde{\alpha}(y * x) \\
= (\tilde{\alpha}(x * y) \land \tilde{\alpha}(y * x)) \land (\tilde{\alpha}(y * z) \land \tilde{\alpha}(z * y)) \\
= \tilde{\sigma}_A(x, y) \land \tilde{\sigma}_A(y, z)
\]
For the case of (4), it follows from lemma 1 that
\[
\tilde{\sigma}(x * u, y * u) = \tilde{\alpha}((x * u) * (y * u)) \land \tilde{\alpha}((y * u) * (x * u)) \\
\geq \tilde{\alpha}(x * y) \land \tilde{\alpha}(y * x) \\
= \tilde{\sigma}_A(x, y)
\]
It is similar the case of \(\tilde{\sigma}_A(u * x, u * y) \geq \tilde{\sigma}_A(x, y) \).

Conversely,

Theorem 2. If \(\tilde{\sigma} \) is a fuzzy congruence, then the function \(\tilde{\alpha}_\theta \) from X to \([0,1]\) defined by \(\tilde{\alpha}_\theta(x) = \tilde{\sigma}(x, 0) \) is a fuzzy ideal of X.

Proof. By lemma 2, \(\tilde{\alpha}_\theta(0) = \tilde{\sigma}(0, 0) \geq \tilde{\sigma}(x, 0) = \tilde{\alpha}_\theta(x) \) and \(\tilde{\alpha}_\theta(x) = \tilde{\sigma}(x, 0) \geq \tilde{\sigma}(x, x * y) \land \tilde{\sigma}(x * y, 0) \geq \tilde{\alpha}(x, 0) \land \tilde{\alpha}(y, 0) = \tilde{\alpha}_\theta(y) \land \tilde{\alpha}_\theta(x * y)

Hence \(\tilde{\alpha}_\theta \) is the fuzzy ideal of X.

In general, for every fuzzy ideal \(\tilde{\alpha} \) of X, we have \(\tilde{\alpha}_\theta\tilde{\alpha}(x) = \tilde{\sigma}_\theta(x, 0) = \tilde{\alpha}(x * 0) \land \tilde{\alpha}(0 * x) = \tilde{\alpha}(x) \land \tilde{\alpha}(0 * x) \leq \tilde{\alpha}(x) \)

In particular if X is a BCK-algebra then we have \(\tilde{\alpha}_\theta\tilde{\alpha} = \tilde{\alpha} \) for every fuzzy BCK-ideal \(\tilde{\alpha} \) of X.

Lemma 3. If \(\tilde{\alpha} \) is a fuzzy closed ideal, then we have \(\tilde{\sigma}_A(x * y, 0) \land \tilde{\sigma}_A(y * x, 0) = \tilde{\sigma}_A(x, y), \)
that is, \(\tilde{\sigma}_A \) is a fuzzy regular congruence.

Proof. Since \(\tilde{\alpha} \) is closed, it follows that \(\tilde{\sigma}_A(x * y, 0) = \tilde{\alpha}(x * y) \land \tilde{\alpha}(0 * (x * y)) = \tilde{\alpha}(x * y) \) and similarly \(\tilde{\sigma}_A(y * x, 0) = \tilde{\alpha}(y * x) \). Hence \(\tilde{\sigma}_A(x * y, 0) \land \tilde{\sigma}_A(y * x, 0) = \tilde{\alpha}(x * y) \land \tilde{\alpha}(y * x) = \tilde{\sigma}_A(x, y) \).

This means that if \(\tilde{\alpha} \in FC(X) \) then \(\tilde{\sigma}_A \in FC_{on}(X) \).

Conversely we have

Lemma 4. If \(\tilde{\sigma} \) is a fuzzy regular congruence, then \(\tilde{\alpha}_\theta \) is a fuzzy closed ideal.

Proof. It follows from definition that
\[
\tilde{\alpha}_\theta(0 * x) = \tilde{\sigma}(0 * x, 0) \\
= \tilde{\sigma}(0 * x, x * x) \\
\geq \tilde{\sigma}(0, x) = \tilde{\sigma}(x, 0) = \tilde{\alpha}_\theta(x)
\]
Thus \(\tilde{\alpha}_\theta \) is closed.

From the above we can conclude that

1. For any fuzzy closed ideal \(\tilde{\alpha} \) of X, \(\tilde{\alpha} = \tilde{\alpha}_\theta \tilde{\alpha} \).
2. For any fuzzy regular congruence \(\tilde{\sigma} \) of X, \(\tilde{\sigma} = \tilde{\sigma}_A \).
Because, for the case of (1), we have $	ilde{A}(x) = \hat{A}(x, 0) = \hat{A}(x) \wedge \hat{A}(0, x) = \tilde{A}(x)$ and for the case of (2), since \tilde{A} is regular, $\hat{A}(x, y) = \hat{A}(0, x) \wedge \hat{A}(0, y) = \hat{A}(x, y)$.

Thus we get one of main theorems of the paper.

Theorem 3. Let X be a BCI-algebra. Then we have $FC(X) \cong FC_{on}(X)$

Proof. We define a map ξ from $FC(X)$ to $FC_{on}(X)$ by $\xi(A) = \tilde{A}$ for any fuzzy closed ideal \tilde{A} of X. It is clear from the above that ξ is an isomorphism. We note that $FC(X)$ and $FC_{on}(X)$ are lattices with set inclusion orders, respectively.

We can also show the next theorem, which is so-called the transfer principle ([3]).

Theorem 4. If \tilde{A} is a fuzzy relation on X, then \tilde{A} is a fuzzy congruence if and only if for all $\alpha \in [0, 1]$ if $U(\tilde{A} : \alpha) \neq \emptyset$ then $U(\tilde{A} : \alpha)$ is a congruence on X, where $U(\tilde{A} : \alpha) = \{(x, y) \in X \times X | \tilde{A}(x, y) \geq \alpha \}$

Proof. (\Rightarrow) Suppose that \tilde{A} is a fuzzy congruence relation on X. Take any $\alpha \in [0, 1]$ such that $U(\tilde{A} : \alpha)$ is not empty. It is sufficient to show that $U(\tilde{A} : \alpha)$ is a congruence on X. Since $U(\tilde{A} : \alpha)$ is not empty, there is an element $(u, v) \in X \times X$ such that $(u, v) \in U(\tilde{A} : \alpha)$. This means that $\alpha \leq \tilde{A}(u, v)$. Since \tilde{A} is the congruence, we have $\alpha \leq \tilde{A}(u, v) \leq \tilde{A}(0, 0) = \tilde{A}(x, y)$.

That is, $(x, y) \in U(\tilde{A} : \alpha)$.

Suppose that $(x, y), (y, z) \in U(\tilde{A} : \alpha)$. Since $\alpha \leq \tilde{A}(x, y), \tilde{A}(y, z)$, we have $\alpha \leq \tilde{A}(x, y) \wedge \tilde{A}(y, z) = \tilde{A}(x, z)$.

At last we assume that $(x, y) \in U(\tilde{A} : \alpha)$. Since $\alpha \leq \tilde{A}(x, y) \leq \tilde{A}(x, y) \wedge \tilde{A}(y, z)$, we have $(x * u, y * u, y * y) \in U(\tilde{A} : \alpha)$.

Hence from the above we can conclude that $U(\tilde{A} : \alpha)$ is the congruence on X if it is not empty.

(\Leftarrow) Conversely, suppose that for all $\alpha \in [0, 1]$ if $U(\tilde{A} : \alpha) \neq \emptyset$ then $U(\tilde{A} : \alpha)$ is a congruence on X. We only show that $\tilde{A}(x, z) \geq \tilde{A}(x, y) \wedge \tilde{A}(y, z)$. Take any $\alpha \in [0, 1]$ such that $U(\tilde{A} : \alpha)$ is not empty. Since the relation $U(\tilde{A} : \alpha)$ is transitive, if $(x, y), (y, z) \in U(\tilde{A} : \alpha)$ then $(x, z) \in U(\tilde{A} : \alpha)$. This means that if $\tilde{A}(x, y), \tilde{A}(y, z) \geq \alpha$ then $\tilde{A}(x, z) \geq \alpha$ for any α.

Hence we have $\tilde{A}(x, z) \geq \tilde{A}(x, y) \wedge \tilde{A}(y, z)$.

The other cases can be proved similarly.

Now we will define a quotient algebra by a fuzzy ideal. Let X be a BCI-algebra and \tilde{A} be a fuzzy ideal of X. For any element $x, y \in X$, we define $x \sim_{\tilde{A}} y$ by

$\tilde{A}(x, y) = \tilde{A}(y, x) = \tilde{A}(0)$,

that is, $\theta_{\tilde{A}}(x, y) = \tilde{A}(x)$. Then it is clear that

Lemma 5. $\sim_{\tilde{A}}$ is a congruence relation on X.

We define $X/\tilde{A} = \{x/\tilde{A} | x \in X\}$ and $x/\tilde{A} = \{y \in X | x \sim_{\tilde{A}} y\}$. We note that these sets are not fuzzy sets but crisp ones. By a fuzzy congruent BCI-algebra induced by a fuzzy ideal \tilde{A}, we mean a map ξ from X/\tilde{A} to $[0, 1]$ which is defined by $\xi(x/\tilde{A}) = \tilde{A}(x)$. It is obvious that the map ξ is well-defined. Now we consider the property of a crisp set X/\tilde{A}.

For any element $x/\tilde{A}, y/\tilde{A} \in X/\tilde{A}$, we define $x/\tilde{A} * y/\tilde{A} = (x * y)/\tilde{A}$. It is easy to show

Theorem 5. For any BCI-algebra X and fuzzy ideal \tilde{A} of X, X/\tilde{A} is a BCI-algebra.

Proof. We only show that X/\tilde{A} satisfies the condition (4) : $x/\tilde{A} * y/\tilde{A} = y/\tilde{A} * x/\tilde{A} = 0/\tilde{A}$ implies $x/\tilde{A} = y/\tilde{A}$. Suppose that $x/\tilde{A} * y/\tilde{A} = y/\tilde{A} * x/\tilde{A} = 0/\tilde{A}$. Since $x * y \sim_{\tilde{A}} y * x \sim_{\tilde{A}} 0$, it follows from definition that $\tilde{A}(x * y) = \tilde{A}(y * x) = \tilde{A}(0)$ and hence $x \sim_{\tilde{A}} y$. This means that $x/\tilde{A} = y/\tilde{A}$. □
We have some applications. A BCK-algebra X is called commutative when it satisfies $x \ast (x \ast y) = y \ast (y \ast x)$ for all $x, y \in X$. It is well-known that the condition is equivalent to the following: $x \ast y = 0$ implies $x \ast (y \ast (y \ast x)) = 0$. For a fuzzy ideal \tilde{A} of a BCK-algebra X is called fuzzy commutative if it satisfies the condition $\tilde{A}(x \ast (y \ast (y \ast x))) \geq \tilde{A}(x \ast y)$ for all $x, y \in X$. In this case we have the following.

Theorem 6. Let \tilde{A} be a fuzzy ideal of a BCK-algebra X. Then we have \tilde{A} : fuzzy commutative ideal $\iff X/\tilde{A}$: commutative BCK-algebra.

Proof. (\Rightarrow) It is sufficient to prove that $x/\tilde{A} \ast y/\tilde{A} = 0/\tilde{A}$ implies $x/\tilde{A} \ast (y/\tilde{A}) (x/\tilde{A} \ast y) = 0/\tilde{A}$. That is, $x \ast y \sim 0$ implies $x \ast (y \ast (y \ast x)) \sim 0$. Suppose that $x \ast y \sim 0$. It follows from definition that $\tilde{A}(x \ast y) = \tilde{A}(0)$. Since \tilde{A} is commutative, we have $\tilde{A}(0) = \tilde{A}(x \ast y) \leq \tilde{A}(x \ast (y \ast (y \ast x)))$ and hence $\tilde{A}(x \ast (y \ast (y \ast x))) = \tilde{A}(0)$. On the other hand, since X is the BCK-algebra, it follows that $\tilde{A}(0) \ast (x \ast y) = \tilde{A}(0)$. Hence we get that $x \ast (y \ast (y \ast x)) \sim 0$.

(\Leftarrow) Suppose that X/\tilde{A} is a commutative BCK-algebra. Since \tilde{A} is a fuzzy ideal, we have $\tilde{A}(x \ast (y \ast (y \ast x))) \geq \tilde{A}(x \ast (y \ast (y \ast x))) \ast (y \ast (y \ast x)) = \tilde{A}(x \ast (y \ast (y \ast x))) \wedge \tilde{A}(x \ast y) = \tilde{A}(x \ast (y \ast (y \ast x))) \wedge \tilde{A}(x \ast y)$. That X/\tilde{A} is the commutative BCK-algebra implies $x \ast (y \ast (y \ast x)) / \tilde{A} = y / \tilde{A} \ast (y \ast (y \ast x)) / \tilde{A}$, hence $x \ast y \sim y \ast (y \ast x)$. This means that $\tilde{A}(x \ast y) \ast y \ast (y \ast x) = \tilde{A}(0)$. From the above we get $\tilde{A}(x \ast (y \ast (y \ast x))) \geq \tilde{A}(0) \wedge \tilde{A}(x \ast y) = \tilde{A}(x \ast y)$. Thus \tilde{A} is the fuzzy commutative ideal. \square

For the other cases, we can show the similar result. For example, we can show the following for the positive implicative BCK-algebra. A BCK-algebra X is called positive implicative if $(x \ast y) \ast y = 0$ implies $x \ast y = 0$ for all $x, y \in X$. For a fuzzy ideal \tilde{A} of X, \tilde{A} is said to be fuzzy positive implicative if $\tilde{A}(x \ast y) \geq \tilde{A}(x \ast y \ast y)$ for all $x, y \in X$. In this case, we can show the next. The proof is clear, so we omit it.

Theorem 7. For any BCK-algebra X and a fuzzy ideal \tilde{A} of X, X/\tilde{A} is a positive implicative BCK-algebra if and only if \tilde{A} is a fuzzy positive implicative ideal of X.

These results are extenstions of the following results respectively: For any BCK-algebra X and ideal A of X,

1. X/A : commutative BCK-algebra $\iff A$: commutative ideal
2. X/A : positive implicative BCK-algebra $\iff A$: positive implicative ideal

Let X, Y be BCI-algebras and f be a BCI-homomorphism, that is, a map satisfying $f(x \ast y) = f(x) \ast f(y)$ for all $x, y \in X$. If \tilde{B} is a fuzzy ideal of Y, then the map $f^{-1}(\tilde{B})$ defined by $f^{-1}(\tilde{B})(x) = \tilde{B}(f(x))$ for all $x \in X$ is a fuzzy ideal of X ([4]).

In this case we can show the following result which is an extension of homomorphism theorem.

Theorem 8. Let X, Y be BCI-algebras, f a BCI-homomorphism, and \tilde{B} a fuzzy ideal of Y. Then there is a bijective BCI-homomorphism from $X/ f^{-1}(\tilde{B})$ onto $f(X)/ \tilde{B}$, that is, $X/ f^{-1}(\tilde{B}) \cong f(X)/ \tilde{B}$.

Proof. We define a map h from $X/ f^{-1}(\tilde{B})$ to $f(X)/ \tilde{B}$ by $h(x/ f^{-1}(\tilde{B})) = f(x)/ \tilde{B}$ for all $x \in X$. The map h is well-defined. Because, if $x/ f^{-1}(\tilde{B}) = y/ f^{-1}(\tilde{B})$, since $x \sim_{f^{-1}(\tilde{B})} y$, then we have $f^{-1}(\tilde{B})(x \ast y) = f^{-1}(\tilde{B})(y \ast x) = f^{-1}(\tilde{B})(0)$ and hence $\tilde{B}(f(x) \ast f(y)) = \tilde{B}(f(x) \ast f(y)) = \tilde{B}(f(0)) = \tilde{B}(0)$ by definition of $f^{-1}(\tilde{B})$. This means that $f(x) \sim_{\tilde{B}} f(y)$, that is, $f(x)/ \tilde{B} = f(y)/ \tilde{B}$. Hence h is well-defined.
For injectiveness of \(h \), we suppose that \(h(x/f^{-1}(B)) = h(y/f^{-1}(B)) \), that is, \(f(x)/B = f(y)/\bar{B} \). Since \(f(x) \sim_B f(y) \), we have \(\bar{B}(f(x) * f(y)) = \bar{B}(f(y) * f(x)) = \bar{B}(0') \). It follows from definition that \(f^{-1}(B)(x * y) = f^{-1}(B)(y * x) = f^{-1}(B)(0) \) and hence that \(x/f^{-1}(B) = y/f^{-1}(B) \).

It is easy to show that \(h \) is a surjective BCI-homomorphism.

Thus we can conclude that \(X/f^{-1}(\bar{B}) \cong f(X)/\bar{B} \). □

In particular, if \(f \) is surjective then we have \(X/f^{-1}(B) \cong Y/B \).

From the above we can prove that two quotient algebras \(X/f^{-1}(B) \) and \(f(X)/B \) are isomorphic as fuzzy quotient algebras, that is,

Theorem 9. For two fuzzy quotient algebras \(\xi \) and \(\eta \) which are defined by
\[
\xi : X/f^{-1}(B) \rightarrow [0,1], \quad \xi(x/f^{-1}(B)) = f^{-1}(B)(x),
\]
\[
\eta : f(X)/B \rightarrow [0,1], \quad \eta(f(x)/B) = B(f(x)), \text{ respectively},
\]
there exists a bijective map \(h \) from \(X/f^{-1}(B) \) to \(f(X)/B \) such that \(\eta \circ h = \xi \).

References

Michiro Kondo

e-mail: kondo@die.dendai.ac.jp

School of Information Environment

Tokyo Denki University, Inzai, 270-1382

JAPAN