A WEIGHTED VERSION OF OZEKI’S INEQUALITY

SAICHI IZUMINO* AND JOSIP E. PEČARIĆ**

Received July 5, 2001; revised November 30, 2001

ABSTRACT. As an extension of Ozeki’s inequality we give an inequality which estimates the difference

\[\sum_{k=1}^{n} p_k a_k^2 \sum_{k=1}^{n} p_k b_k^2 - \left(\sum_{i=1}^{n} p_i a_i b_i \right)^2 \]

derived from the weighted Cauchy-Schwarz inequality for n-tuples \(a = (a_1, \ldots, a_n) \), \(b = (b_1, \ldots, b_n) \) and \(p = (p_1, \ldots, p_n) \) of positive numbers under certain conditions. We discuss the upper bound of the difference not only in the general case but also in the special cases that \(a \) and \(b \) are monotonic in the opposite sense and in the same sense.

1 Introduction As a complement of Cauchy-Schwartz inequality, the following inequality was given in [4] (cf. [7, p. 121]) which was originally presented by Ozeki [8]: If \(a = (a_1, \ldots, a_n) \) and \(b = (b_1, \ldots, b_n) \) are n-tuples of positive numbers satisfying

\[m_1 \leq a_k \leq M_1, \quad m_2 \leq b_k \leq M_2 \quad (k = 1, 2, \ldots, n), \quad 0 < m_1 < M_1 \quad \text{and} \quad 0 < m_2 < M_2, \]

then

(2) \[\sum_{k=1}^{n} a_k^2 \sum_{k=1}^{n} b_k^2 - \left(\sum_{i=1}^{n} a_i b_i \right)^2 \leq \frac{n^2}{3} (M_1 M_2 - m_1 m_2)^2. \]

Put \(T(a, b) \) the left-hand side of the above inequality, then \(T(a, b) \) is considered as a function on the product \([m_1, M_1]^n \times [m_2, M_2]^n \) of n-dimensional cubes \([m_1, M_1]^n \) and \([m_2, M_2]^n \). Then it is Ozeki’s idea to make use of the following two facts in order to prove the inequality (2) (and the technique was also useful for further results in [3, 5]):

(i) \(T(a, b) \) is a separately convex function with respect to \(a \) and \(b \), so that its maximum is attained at an extreme point, namely, vertex of \(2n \)-dimensional rectangle \([m_1, M_1]^n \times [m_2, M_2]^n \).

(ii) Denote by \(\bar{c} = (\bar{c}_1, \ldots, \bar{c}_n) \) and \(\bar{\tau} = (\bar{\tau}_1, \ldots, \bar{\tau}_n) \) the rearrangements of a nonnegative n-tuple \(c = (c_1, \ldots, c_n) \) in nonincreasing order and in nondecreasing order, respectively. Then for \(a \) and \(b \)

(3) \[T(\bar{a}, \bar{b}) = T(\bar{\tau}, \bar{b}) \geq T(a, b). \]

As a result, from (3) the inequality (2) was obtained by considering \(T(a, b) \) for \(a \) and \(b \) such that they are monotonic in the opposite sense.

2000 Mathematics Subject Classification. 47A63.

Key words and phrases. Cauchy-Schwartz inequality, Ozeki’s inequality, Čebyšev’s inequality, Grüss’ inequality, rearrangement of numbers.
Now let $D(a, b) = n \sum_{k=1}^{n} a_k b_k - \sum_{k=1}^{n} a_k \sum_{k=1}^{n} b_k,$ which is n^2 times of the covariance between a and $b.$ As an estimation of $D(a, b),$ Biermaak, Pidek and Ryll-Nardzewski [1] (cf. [7, p. 299]) presented the following result:

$$|D(a, b)| \leq \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) (M_1 - m_1)(M_2 - m_2) \quad \text{for} \ (a, b) \text{ satisfying (1)}.$$

In particular, taking $D(a, b)$ for a and b such that they are monotonic in the same sense, (say, $a = \sigma$ and $b = \delta$), we obtain an inequality, which is nothing but a complement of the well-known Čebyšev’s inequality, a kind of Grüss type inequalities. It is a problem to estimate $T(a, b)$ with the restriction that a and b are monotonic in the same sense, likely to the above consideration and several works [6], [9], [10], etc., related to Grüss’ inequality.

Now to consider the problem more generally, define by

$$T(a, b; p) = \sum_{k=1}^{n} \sum_{k=1}^{n} p_k a_k^2 - \sum_{k=1}^{n} p_k a_k b_k^2$$

the difference derived from the weighted Cauchy-Schwartz inequality with a positive n-weight $(n$-tuple $p = (p_1, \ldots, p_n),$ $\sum_{k=1}^{n} p_k = 1.$ Then unlike $T(a, b)$ the equality-inequality $T(\sigma, \delta; p) = T(\sigma, \sigma; p)$ corresponding to (3) are false in general. (For example, if $a = (1, 1, 1),$ $b = (2, 1, 2)$ and $p = (\frac{1}{13}, \frac{1}{13}, \frac{1}{13})$ then $T(\sigma, \delta; p) = \frac{16}{13},$ $T(\sigma, \sigma; p) = \frac{10}{13}$ and $T(a, b; p) = \frac{16}{13}.$) This means that rearrangements of a and b to be monotonic in the opposite sense are not effective to obtain the maximum of $T_p(a, b) = T(a, b; p).$ However, the calculation of the maximum for such a and b yields, in a sense, an extension of (2).

In this paper, using Ozeki’s technique on convex functions, we give upper bounds of (4) not only in the general case for a and $b,$ but also in the special cases that a and b are monotonic in the opposite sense and in the same sense.

2 Preliminaries We prepare some useful facts for our discussion. Let $I_n = \{1, \ldots, n\}$ and define an index set Δ in $I_n^2 = I_n \times I_n$ by

$$\Delta = \{(i, j) \in I_n^2; i < j\}.$$

Now we state a weighted version of Lagrange’s formula (cf. [7, p. 84]), which we can prove easily.

Lemma 2.1

$$T(a, b; p) = \sum_{(i, j) \in \Delta} p_i p_j (a_i b_j - a_j b_i).$$

From this lemma we can see the following:

Lemma 2.2 $T_p(a, b) = T(a, b; p)$ is a separably convex function on $[m_1, M_1]^n \times [m_2, M_2]^n$ with respect to a and $b,$ that is,

$$T_p(\lambda a + (1 - \lambda) a', b) \leq \lambda T_p(a, b) + (1 - \lambda) T_p(a', b), \quad \lambda \in [0, 1]$$

and

$$T_p(a, \mu b + (1 - \mu) b') \leq \mu T_p(a, b) + (1 - \mu) T_p(a, b'), \quad \mu \in [0, 1].$$
Consequently, we see that $T_p(a, b)$ attains its maximum at a point (a, b) of $[m_1, M_1]^n \times [m_2, M_2]^n$, with both a and b being vertices of $[m_1, M_1]^n$ and $[m_2, M_2]^n$, respectively. (Note that a point $v = (v_1, ..., v_n) \in [m, M]^n$ is a vertex if (and only if) each v_k is equal to m or M.)

For two real numbers m, M, $m < M$, let

$$K = \{(x_1, ..., x_n) \in [m, M]^n; x_1 \leq \cdots \leq x_n\}$$

and

$$L = \{(x_1, ..., x_n) \in [m, M]^n; x_1 \geq \cdots \geq x_n\}.$$

Then K and L are convex subsets in $[m, M]^n$. The following fact related to their extreme points is easily seen, say, by the induction method.

Lemma 2.3 Every extreme point of K (or L) is a vertex of $[m, M]^n$.

Now assume that $A, B, C > 0$, and put

$$\hat{A} = B + C - A, \quad \hat{B} = C + A - B, \quad \hat{C} = A + B - C \quad \text{and}$$

$$D = A\hat{A} + B\hat{B} + C\hat{C} = 2AB + 2BC + 2CA - A^2 - B^2 - C^2.$$

Then it is not difficult to see that

(i) at least two of \hat{A}, \hat{B} and \hat{C} are positive, and

(ii) if all of \hat{A}, \hat{B} and \hat{C} are positive then $D > 0$.

The following general fact (cf. [4]) is very useful for our discussion.

Lemma 2.4 With the same notations as above, consider the function

$$u = f(x, y, z) = Ax + Bxz + Cyz$$

under the condition

$x, y, z \geq 0$, $x + y + z = k > 0$ (k is a constant).

(i) If $\hat{A}, \hat{B}, \hat{C} > 0$, then $D > 0$ and

$$u = -C \left\{ \left(y - \frac{B\hat{B}}{D} k \right) + \frac{\hat{A}}{2C} \left(x - \frac{C\hat{C}}{D} k \right) \right\}^2 - \frac{D}{4C} \left(x - \frac{C\hat{C}}{D} k \right)^2 + \frac{ABC}{D} k^2,$$

so that

$$u \leq u_{\text{max}} (= \text{the maximum of } u) = \frac{ABC}{D} k^2,$$

and u_{max} is attained at a point

$$(x, y, z) = \left(\frac{C\hat{C}}{D} k, \frac{B\hat{B}}{D} k, \frac{A\hat{A}}{D} k \right).$$

(ii) If one of $\hat{A}, \hat{B}, \hat{C}$ is nonpositive, say, $\hat{B} \leq 0$, (hence $\hat{A}, \hat{C} > 0$), then

$$u = -\hat{B}xz + Ax(k - x) + Cz(k - z)$$
and
\[u \leq u_{max} = \frac{B}{4} k^2. \]

The value \(u_{max} \) is attained at
\[(x, y, z) = (k/2, 0, k/2). \]

Proof. (i) Putting \(z = k - x - y \), we have, from (8),
\[u = -Cy^2 - \left(Ax - Ck \right) y - Bx^2 + Bkx. \]

Taking the 4C times of the both sides, we have
\[
4Cu = -4C^2 y^2 - 4C \left(Ax - Ck \right) y - 4BCx^2 + 4BCkx
\]
\[= - \left(2Cy + Ax - Ck \right)^2 - D \left(x - \frac{C\hat{C}}{D} k \right)^2 + \frac{4ABC^2}{D} k^2. \]

Hence we have
\[
u = -C \left(y + \frac{Ax - Ck}{2C} \right)^2 - \frac{D}{4C} \left(x - \frac{C\hat{C}}{D} k \right)^2 + \frac{ABC}{D} k^2
\]
\[= -C \left(\left(y - \frac{B\hat{B}}{D} k \right) + \frac{A}{2C} \left(x - \frac{C\hat{C}}{D} k \right) \right)^2 - \frac{D}{4C} \left(x - \frac{C\hat{C}}{D} k \right)^2 + \frac{ABC}{D} k^2. \]

Now, if \(x = \frac{C\hat{C}}{D} k, y = \frac{B\hat{B}}{D} k \), (so that \(z = k - x - y = \frac{A\hat{A}}{D} k \)), then \(u = u_{max} = \frac{ABC}{D} k^2 \).

(ii) Putting \(y = k - x - z \), we have, from (8),
\[
u = -Bxz + Ax(k - x) + Cz(k - z). \]
Since \(xz \leq \left(\frac{x + z}{2} \right)^2 \leq \frac{k^2}{4}, x(k - x) \leq \frac{k^2}{4} \) and \(z(k - z) \leq \frac{k^2}{4} \), we have
\[u \leq -B \cdot \frac{1}{4} k^2 + A \cdot \frac{1}{4} k^2 + C \cdot \frac{1}{4} k^2 = \frac{1}{4} Bk^2. \]

Hence \(u_{max} = \frac{1}{4} Bk^2 \), which is attained at \((x, y, z) = (k/2, 0, k/2). \)

\[\square \]

3 Weighted Ozeki’s inequality In this section we give an upper bound of \(T(a, b, p) \) without any assumption of monotony on positive \(n \)-tuples \(a \) and \(b \). Let us define, for a positive \(n \)-weight \(p = (p_1, \ldots, p_n) \) with \(\sum_{k=1}^n p_k = 1 \),
\[
P(X) = \sum_{k \in X} p_k \quad \text{for } X \subset I_n.
\]
say, as in [11]. Then we have:
Lemma 3.1 Let $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ be n-tuples such that $a_k = 1$ or α and $b_k = 1$ or β $(k = 1, \ldots, n)$, and let $p = (p_1, \ldots, p_n)$ be a positive weight with $\sum_{k=1}^n p_k = 1$.

Put

$$J_a = \{k \in I_n; a_k = 1\} \quad \text{and} \quad J_b = \{k \in I_n; b_k = 1\}.$$

Then

$$T(a, b; p) = \sum_{J_a \cap J_b} p(J_a \cap J_b) P(J_a \cap J_b) (1 - \beta)^2 + P(J_a \cap J_b) P(J_a \cap J_b) (1 - \alpha)^2 \quad \text{or} \quad \beta = \frac{1}{2}$$

$$+ \sum_{J_a \cap J_b} P(J_a \cap J_b) (1 - \alpha)^2 + P(J_a \cap J_b) P(J_a \cap J_b) (1 - \alpha)^2 \quad \text{or} \quad \beta = \frac{1}{2}.$$

Proof. First note that I_n is divided into the four subsets

$$J_1 = J_a \cap J_b, \quad J_2 = J_a \cap J_b^c, \quad J_3 = J_a^c \cap J_b, \quad \text{and} \quad J_4 = J_a^c \cap J_b^c,$$

so that $\Delta = \{(i, j) \in I_n^2; i < j\}$ is divided into the ten subsets

$$\Delta_{k, l} = J_k \times J_l, \quad 1 \leq k \leq l \leq 4.$$

Let $\sum_{\Delta_{k, l}} = \sum_{(i, j) \in \Delta_{k, l}} p_i p_j (a_i b_j - a_j b_i)^2$. Then we see that $T(a, b; p)$ is the total of sums $\sum_{\Delta_{k, l}}, 1 \leq k \leq l \leq 4$ by Lemma 2.1. We can easily see that $\sum_{\Delta_{k, l}} = 0$. It is also easy to compute $\sum_{\Delta_{k, l}}$, for $k < l$: say, for $k = 1, l = 2$ we have

$$\sum_{\Delta_{1, 2}} = \sum_{(i, j) \in J_1 \times J_2} p_i p_j (a_i b_j - a_j b_i)^2 = P(J_1) P(J_2) (1 - \beta)^2.$$

Consequently, we have

$$T(a, b; p) = \sum_{\Delta_{1, 2}} + \sum_{\Delta_{1, 3}} + \sum_{\Delta_{1, 4}} + \sum_{\Delta_{2, 3}} + \sum_{\Delta_{2, 4}}$$

$$= P(J_1) P(J_2) (1 - \beta)^2 + P(J_1) P(J_2) (1 - \alpha)^2 + P(J_1) P(J_2) (\alpha - \beta)^2$$

$$+ P(J_2) P(J_3) (1 - \alpha)^2 + P(J_2) P(J_3) (1 - \beta)^2 + P(J_2) P(J_4) \alpha^2 (1 - \beta)^2.$$

Now we have the following extension of Ozeki’s inequality (cf. [4, Theorem 2.1]).

Theorem 3.2 Let a and b be positive n-tuples satisfying (1) and let p be a positive weight with $\sum_{k=1}^n p_k = 1$. Assume that $\alpha = M_1/M_1 \geq M_2/M_2 = \beta$. Then

$$T(a, b; p) \leq M_1^2 M_2^2 \max_{X \in L_n} \left\{ \frac{(1 - \alpha \beta)^2}{4} (1 - P(X))^2 + (1 - \beta)^2 P(X) (1 - P(X)) \right\}.$$

Proof. We may assume that $M_1 = M_2 = 1$ (and then write $\alpha = m_1$, $\beta = m_2$) for convenience. In order to obtain the maximum or the best upper bound of $T_p(a, b) = T(a, b; p)$, we have to calculate, by convexity of $T(a, b; p)$, its value for a and b such that $a_i = 1$ or α, $b_i = 1$ or β $(i = 1, \ldots, n)$. Hence we may apply the preceding lemma. Put

$$A = \beta^2 (1 - \alpha)^2, \quad B = (1 - \alpha \beta)^2, \quad C = \alpha^2 (1 - \beta)^2.$$
\[E = (1 - \beta)^2, \quad F = (\alpha - \beta)^2, \quad G = (1 - \alpha)^2, \]
and furthermore put
\[x = P(J_a \cap J_b^c), \quad y = P(J_b^c \cap J_a^c), \quad z = P(J_b^c \cap J_b^c) \quad \text{and} \quad w = P(J_a \cap J_b). \]
Then we have
\[x + y + z + w = 1 \quad (x, y, z, w \geq 0) \]
and from (12)
\[u := T(a, b, p) = Axy + Bxz + Cyz + Exw + Fyw + Gzw. \]
First note that for positive numbers \(A, B, C \) we have
\[\hat{B} = C + A - B = \alpha^2(1 - \beta)^2 + \beta^2(1 - \alpha)^2 - (1 - \alpha\beta)^2 \]
\[= -(1 - \alpha)(1 - \beta)(1 + \alpha + \beta - \alpha\beta) < 0, \]
because \(0 < \alpha < 1 \) and \(0 < \beta < 1 \). Hence since \(x + y + z = 1 - w \), we have, by Lemma 2.4 (ii),
\[Ax + Bxz + Cyz \leq \frac{B}{4}(1 - w)^2. \]
Next from the assumption \(\alpha \geq \beta \), we see \(E \geq F, G \), so that
\[Exw + Fyw + Gzw \leq Ew(x + y + z) = Ew(1 - w). \]
Hence we have
\[(14) \quad T(a, b, p) \leq \frac{B}{4}(1 - w)^2 + Ew(1 - w), \]
from which we obtain the desired inequality (13). \(\square \)

Now we obtain the following result [4, Theorem 4.1] from the preceding theorem.

Theorem 3.3 With the same notations and the same assumptions as in Theorem 3.2,
\[T(a, b, p) \leq \frac{1}{3}M_1^2M_2^2(1 - \alpha\beta)^2 = \frac{1}{3}(M_1M_2 - m_1m_2)^2. \]

Proof. As before we may assume \(M_1 = M_2 = 1 \). Write \(g(w) \) the right-hand side of (14). Then it suffices to show that
\[g(w) \leq \frac{1}{3}B \quad (0 \leq w \leq 1). \]
Since \(E \leq B \leq 4E \) and
\[g(w) = -\frac{4E - B}{4}w^2 + \frac{2E - B}{2}w + \frac{B}{4}, \]
we have, by an elementary computation,
\[\max_{0 \leq w \leq 1} g(w) = \begin{cases} \frac{E^2}{4E - B} & \text{if } (E \leq B) \leq 2E, \\ \frac{B}{4} & \text{if } 2E \leq B \leq 4E. \end{cases} \]
Furthermore, it is not difficult to see that
\[\frac{E^2}{4E - B} \leq \frac{1}{3}B \quad (\text{if } E \leq B \leq 2E). \]
Hence we have the desired inequality. \(\square \)
The difference $T(a, b; p)$ for oppositely ordered a and b in this section we give an upper bound of $T_p(a, b) = T(a, b; p)$ for a and b ordered oppositely. We confine ourselves to the case that a is ordered nonincreasingly and b is ordered nondecreasingly. Recall that from Lemmas 2.2 and 2.3 the function $T_p(a, b)$ is separately convex with respect to a and b, and attains its maximum at a point (a, b) such that

\[(15) \quad a = (M_1, \ldots, M_1, m_1, \ldots, m_1) \quad \text{and} \quad b = (m_2, \ldots, m_2, M_2, \ldots, M_2), \]
\[s, t \in P_0^* = I_n \cup \{0\}.\]

Now we have

Lemma 4.1 Let $a^{(s)}$ and $b^{(t)}$ be n-tuples of real numbers such that

\[(16) \quad a^{(s)} = (1, \ldots, 1, \alpha_1, \ldots, \alpha_s) \quad \text{and} \quad b^{(t)} = (\beta_1, \ldots, 1, \beta_{t-n}, \ldots, 1), \]
\[s, t \in P_0^* = I_n \cup \{0\},\]

and let $p = (p_1, \ldots, p_n)$ be a positive n-weight with $\sum_{i=1}^{n} p_i = 1$. Write $P_k = \sum_{i=1}^{k} p_i$, for $k \in I_n$ ($P_0 = 0$). Then

\[(17) \quad T(a^{(s)}, b^{(t)}; p) = \begin{cases}
 P_t(P_s - P_t)(1 - \beta)^2 + P_t(P_t - P_s)(1 - \alpha)^2 \\
 + (P_s - P_t)(1 - P_s)(1 - \alpha)^2 \\
 \quad \text{if } 0 \leq t \leq s \leq n, \\
 P_s(P_t - P_s)(1 - \alpha)^2 + P_s(P_s - P_t)(1 - \beta)^2 \\
 + (P_t - P_s)(1 - P_t)(1 - \beta)^2 \\
 \quad \text{if } 0 \leq s \leq t \leq n.
\end{cases}\]

Proof.

Case I: $0 \leq t \leq s \leq n$. Rewriting $a = a^{(s)}$ and $b = b^{(t)}$ more precisely, we have

\[a = (1, \ldots, 1, \alpha_1, \ldots, \alpha_s), \quad b = (\beta_1, \ldots, 1, \beta_{t-n}, \ldots, 1).\]

Then with the same notations as in Section 3 we have

\[J_a = \{1, \ldots, s\} \quad \text{and} \quad J_b = \{t + 1, \ldots, n\},\]

and $\Delta = \{(i, j) \in \mathbb{I}^2; i < j\}$ is divided into the three subsets

\[J_a \cap J_b^c (= J_2), \quad J_a \cap J_b \cup J_b^c (= J_1) \quad \text{and} \quad J_a^c \cap J_b (= J_3).\]

Hence similarly as in Lemma 3.1 of Section 3, $T(a, b; p)$ is the sum of $\sum_{S_2} \sum_{S_3}$ and $\sum_{S_2} \sum_{S_3}$. Note that $P(J_2) = P_t$, $P(J_1) = P_s - P_t$ and $P(J_3) = 1 - P_s$. Hence we have

\[T(a, b; p) = P(J_1)P(J_2)(1 - \beta)^2 + P(J_1)P(J_3)(1 - \alpha)^2 + P(J_2)P(J_3)(1 - \alpha\beta)^2 = P_t(P_s - P_t)(1 - \beta)^2 + P_t(P_s - P_t)(1 - \alpha)^2 + P_s(P_s - P_t)(1 - \beta)^2 + (P_s - P_t)(1 - P_t)(1 - \alpha)^2.\]

Case II: $0 \leq s \leq t \leq n$. By the similar argument as in Case I, we have

\[T(a^{(s)}, b^{(t)}; p) = \beta^2(1 - \alpha)^2 P_t(P_s - P_t) + (1 - \alpha \beta)^2 P_s(P_s - P_t) + \alpha^2(1 - \beta)^2(P_s - P_t)(1 - P_t).\]
Summarizing Cases I and II, we obtain (17). \hfill \Box

Now we show the following result stronger than Theorem 3.2 with the restriction that \(a \) and \(b \) are oppositely ordered.

Theorem 4.2 Let \(a \) and \(b \) be positive \(n \)-tuples satisfying

\[M_1 \geq a_1 \geq \cdots \geq a_n \geq m_1 \quad \text{and} \quad m_2 \leq b_1 \leq \cdots \leq b_n \leq M_2, \]

and let \(p = (p_1, \ldots, p_n) \) be an \(n \)-weight with \(\sum_{k=1}^{n} p_k = 1 \). Put \(\alpha = m_1/M_1, \beta = m_2/M_2, \)

\[A = (1 - \beta)^2, \quad B = (1 - \alpha \beta)^2, \quad C = (1 - \alpha)^2, \]

\[A_1 = \beta^2(1 - \alpha)^2, \quad B_1 = B, \quad C_1 = \alpha^2(1 - \beta)^2, \]

and define \(\tilde{A}, \tilde{B}, \tilde{C} \) and \(D \) similarly as (7). (Furthermore, correspondingly define \(\tilde{A}_1, \tilde{B}_1 \) and \(\tilde{C}_1 \).) Then

\[D = \left\{ 4 - (1 + \alpha)(1 + \beta) \right\} (1 + \alpha)(1 + \beta)(1 - \alpha^2)(1 - \beta^2) \]

and

\[\frac{ABC}{D} = \frac{(1 - \alpha \beta)^2}{4(1 + \alpha)(1 + \beta)(1 + \alpha)(1 + \beta^2)}, \]

and the following results hold.

(i) If \((1 + \alpha)(1 + \beta) < 2\), then

\[T(a, b; p) \leq M_1^2 M_2^2 \max \left\{ \frac{ABC}{D} - C\mu^2 - \frac{D}{4C} \lambda^2, \quad B \left(1 - \frac{1}{4} - \nu^2 \right) \right\}. \]

(ii) If \((1 + \alpha)(1 + \beta) \geq 2\), then

\[T(a, b; p) \leq M_1^2 M_2^2 B \left(1 - \frac{1}{4} - \nu^2 \right). \]

Here, \(\lambda, \mu \) and \(\nu \) are defined as follows:

\[\left\{ \begin{array}{l}
\lambda = \min_{1 \leq t \leq n-1} \left| P_t - \frac{\tilde{A} \tilde{C}}{D} \right|, \\
\mu = \min_{1 \leq s \leq s \leq n-1} \left| (P_s - P_t) - \frac{\tilde{A} \tilde{B}}{D} + \frac{\tilde{B}}{C} \left(P_t - \frac{\tilde{C}}{D} \right) \right| \\
\nu = \min_{1 \leq t \leq n-1} \left| \frac{B}{P_t} \right|
\end{array} \right. \]

and

\[\frac{ABC}{D} = \frac{1}{4} \quad \text{and} \quad \frac{ABC}{D} = \frac{1}{4} - \nu^2. \]

Proof. We may assume that \(M_1 = M_2 = 1 \), and write \(m_1 = \alpha \) and \(m_2 = \beta \) as in Theorem 3.2. Then by convexity of \(T(a, b; p) = T_p(a, b) \) and Lemma 2.3 we may compute the maximum of \(T_p(a, b) \) for \((a, b) = (a^{(s)}, b^{(s)})\), \(s, t \in \mathcal{I}_n \), where \(a^{(s)} \) and \(b^{(s)} \) are positive \(n \)-tuples defined as (16). First we consider

Case I: \(0 \leq t \leq s \leq n \). Put

\[x = P_t, \quad y = P_s - P_t \quad \text{and} \quad z = 1 - P_t. \]

Then from (17) of Lemma 4.1

\[T(a^{(s)}, b^{(s)}; p) = Axy + Bxz + Cyz. \]
Now consider the two subcases I-(1) and I-(2) as follows.

I-(1): Assume \((1 + \alpha)(1 + \beta) < 2\). Then
\[
\hat{B} = C + A - B = (1 - \alpha)^2 + (1 - \beta)^2 - (1 - \alpha \beta)^2 = 2 - (1 + \alpha)(1 + \beta) > 0.
\]
(Note that \((1 + \alpha)(1 + \beta) < 2\) is equivalent to \(\hat{B} > 0\).) For \(\hat{A}\) and \(\hat{C}\), since \(B = (1 - \alpha \beta)^2 > (1 - \beta)^2 = A\), we have \(A = B + C - A > 0\), and similarly \(C > 0\). By Lemma 2.4 (cf. (10)) we can write
\[
u = -C \left\{ \left(y - \frac{BB}{D} \right) + \frac{\hat{A}}{2C} \left(x - \frac{CC}{D} \right) \right\}^2 - \frac{D}{4C} \left(x - \frac{CC}{D} \right)^2 + \frac{ABC}{D}.
\]
Hence from the above definition of \(\lambda\) and \(\mu\), we have
\[
u \leq -\lambda \mu^2 - \frac{D}{4C} \lambda^2 + \frac{ABC}{D}.
\]
Here, it is an elementary computation to show that \(D\) and \(ABC/D\) are expressed as (18) in \(\alpha\) and \(\beta\).

I-(2): Assume \((1 + \alpha)(1 + \beta) \geq 2\). Then \(\hat{B} \leq 0\), so that \(\hat{A}, \hat{C} > 0\). By Lemma 2.4 (cf. (11)) we can write
\[
u = -\hat{B} xz + Ax(1 - x) + Cz(1 - z),
\]
and since
\[
xz = x(1 - x - y) \leq x(1 - x) = \frac{1}{4} - \left(\frac{1}{2} - x \right)^2 \leq \frac{1}{4} - \nu^2,
\]
\[
z(1 - z) \leq \frac{1}{4} - \nu^2 \quad \text{ (cf. } \nu \text{ is defined in (21))},
\]
we then have
\[
u \leq (-\hat{B} + A + C) \left(\frac{1}{4} - \nu^2 \right) = B \left(\frac{1}{4} - \nu^2 \right).
\]
Case II: \(0 \leq s \leq t \leq n\). Put
\[
x = P_s, \quad y = P_t - P_s \quad \text{and} \quad z = 1 - P_t.
\]
Then similarly as Case I, from Lemma 4.1
\[
u = T(a^{(s)}, b^{(t)}; p) = A_1 xy + B_1 xz + C_1 yz,
\]
and furthermore
\[
\hat{A}_1 = B_1 + C_1 - A_1 = (1 - \alpha \beta)^2 + \alpha^2(1 - \beta)^2 - \beta^2(1 - \alpha)^2
\]
\[
= (1 - \beta) \{ (1 + \alpha^2)(1 - \beta) + 2 \beta(1 - \alpha) \} > 0,
\]
\[
\hat{B}_1 = C_1 + A_1 - B_1 = -(1 - \alpha)(1 - \beta)(1 + \alpha + \beta - \alpha \beta) \leq 0,
\]
\[
\hat{C}_1 = A_1 + B_1 - C_1 = (1 - \alpha) \{ (1 + \beta^2)(1 - \alpha) + 2 \alpha(1 - \beta) \} > 0.
\]
Hence by Lemma 2.4 (ii)
\[
u \leq B_1 \left(\frac{1}{4} - \nu^2 \right) = B \left(\frac{1}{4} - \nu^2 \right).
\]
so that

\[T(a, b, p) \leq M_1^2 M_2^2 \left(\frac{1}{4} - \nu^2 \right). \]

We notice that the constant \(\nu \) is independent from \(A, B, \ldots \), so that it is identical in Cases I and II. Summarizing the two cases, we obtain the desired facts (i) and (ii). \(\Box \)

Considering the special cases \(\lambda = \mu = 0 \) and \(\nu = 0 \) in the preceding theorem, we have:

Theorem 4.3 With the same notations and the same assumptions as in Theorem 4.2, the following results hold.

(i) If \((1 + \alpha)(1 + \beta) < 2\), then

\[T(a, b, p) \leq \frac{M_1^2 M_2^2 ABC}{D} = \frac{M_1^2 M_2^2 (1 - \alpha \beta)^2}{4 - (1 + \alpha)(1 + \beta)} \]

If there are integers \(s_0, t_0 \) (\(s_0 > t_0 \)) such that

\[P_{s_0} = \frac{C^C}{D} \quad \text{and} \quad P_{s_0} - P_{t_0} = \frac{B^B}{D}, \]

then

\[T_{\text{max}} (= \text{the maximum of } T_p(a, b) = T(a, b, p)) = \frac{M_1^2 M_2^2 ABC}{D}, \]

which is attained at \((a, b)\) such that

\[a = (M_1, \ldots, M_1, m_1, \ldots, m_1) \quad \text{and} \quad b = (m_2, \ldots, m_2, M_2, \ldots, M_2). \]

(ii) If \((1 + \alpha)(1 + \beta) \geq 2\) then

\[T(a, b, p) \leq \frac{M_1^2 M_2^2 B}{4} = \frac{M_1^2 M_2^2 (1 - \alpha \beta)^2}{4}. \]

If there is an integer \(t = t_0 \) such that \(P_{t_0} = \frac{1}{2} \), then

\[T_{\text{max}} = \frac{M_1^2 M_2^2 B}{4}, \]

which is attained at \((a, b)\) such that

\[a = (M_1, \ldots, M_1, m_1, \ldots, m_1) \quad \text{and} \quad b = (m_2, \ldots, m_2, M_2, \ldots, M_2). \]

Proof. By Theorem 4.2 it suffices to see that

\[\frac{ABC}{D} \geq \frac{B}{4}, \]

which is easily obtained, say, from (18). \(\Box \)
5 The difference \(T(a, b, p) \) for similarly ordered \(a \) and \(b \) We here give an upper bound of \(T_p(a, b) = T(a, b, p) \) under the condition that \(a \) and \(b \) are similarly ordered. We may confine ourselves for the case that both \(a \) and \(b \) are nondecreasingly ordered.

Theorem 5.1 Let \(a \) and \(b \) be positive \(n \)-tuples satisfying

\[
m_1 \leq a_1 \leq \cdots \leq a_n \leq M_1 \quad \text{and} \quad m_2 \leq b_1 \leq \cdots \leq b_n \leq M_2,
\]

and let \(p = (p_1, \ldots, p_n) \) be an \(n \)-weight with \(\sum_{k=1}^n p_k = 1 \). Put, for \(\alpha = m_1/M_1, \beta = m_2/M_2, \)

\[
A = \alpha^2(1 - \beta)^2, \quad B = (\alpha - \beta)^2, \quad C = (1 - \alpha)^2,
\]

\[
A_1 = \beta^2(1 - \alpha)^2, \quad B_1 = B, \quad C_1 = (1 - \beta)^2,
\]

and define \(\hat{A}, \hat{B}, \hat{C} \) and \(D \), similarly as (7). (Furthermore, correspondingly define \(\hat{A}_1, \hat{B}_1 \) and \(\hat{C}_1 \).) Then

\[
D = (1 + \alpha)(1 + \beta)(1 - \alpha)^2(1 - \beta)^2 \{(3 - \beta)\alpha - (1 + \beta)\}
\]

and

\[
\frac{ABC}{D} = \frac{\alpha^2(\alpha - \beta)^2}{(1 + \alpha)(1 + \beta)\{(3 - \beta)\alpha - (1 + \beta)\}}.
\]

Further assume that

\[
\beta \leq \alpha,
\]

and write

\[
\alpha = \frac{-1 + \sqrt{2 - \beta^2}}{1 - \beta} \quad \text{and} \quad \alpha = \frac{1 + \beta^2}{1 + 2\beta - \beta^2}.
\]

Then

\[
\beta \leq \underline{\alpha} \leq \overline{\alpha} < 1
\]

and the following results hold. (\(\lambda, \mu \) and \(\nu \) are defined similarly as (21) in Theorem 4.2).

(i) If \(\beta \leq \alpha \leq \underline{\alpha} \) then

\[
T(a, b, p) \leq M_1^2 M_2^2 C_1 \left(\frac{1}{4} - \nu^2 \right).
\]

(ii) If \(\underline{\alpha} < \alpha < \overline{\alpha} \), then \(D > 0 \) and

\[
T(a, b, p) \leq M_1^2 M_2^2 \max \left\{ \frac{ABC}{D} - C\mu^2 - \frac{D}{4C}, C_1 \left(\frac{1}{4} - \nu^2 \right) \right\}.
\]

(iii) If \(\overline{\alpha} \leq \alpha \leq 1 \), then

\[
T(a, b, p) \leq M_1^2 M_2^2 C_1 \left(\frac{1}{4} - \nu^2 \right).
\]

Proof. By Lemma 2.3, we have to compute the maximum or an upper bound of \(T_p(a, b) = T(a, b, p) \) at points \((a, b)\) such that

\[
a = (m_1, \ldots, m_1, M_1, \ldots, M_1), \quad \text{and} \quad b = (m_2, \ldots, m_2, M_2, \ldots, M_2),
\]

\[
a = (m_1, \ldots, m_1, M_1, \ldots, M_1), \quad \text{and} \quad b = (m_2, \ldots, m_2, M_2, \ldots, M_2),
\]
where \(s \) and \(t \) are integers in \(I_k \).

We may again assume that \(M_1 = M_2 = 1 \), so that \(m_1 = \alpha \) and \(m_2 = \beta \). It is essential to consider the problem when \(\beta < \alpha \). Now the first case is

Case 1: \(0 \leq t \leq s \leq n \).

\[
\begin{align*}
\phi(s) &= (\alpha, \ldots, \alpha, \frac{t}{s}, \frac{s-t}{n-s}, \frac{n-s}{n-s}) \quad \text{and} \quad \psi(t) = (\beta, \ldots, \beta, \frac{t}{s}, \frac{s-t}{n-s}, \frac{n-s}{n-s}).
\end{align*}
\]

Then by the similar argument as in Lemma 4.1 (cf. (17)), we have

\[
T(\phi(s), \psi(t); p) = \alpha^2 (1 - \beta)^2 P_s (P_t - P_s) + (\alpha - \beta)^2 P_s (1 - P_s) + (1 - \alpha)^2 (P_t - P_s)(1 - P_t) = AP_t (P_s - P_t) + BP_t (1 - P_s) + C (P_s - P_t) (1 - P_t).
\]

First note that \(A, B, C > 0 \) (cf. \(\beta < \alpha \)) and by definition

\[
\hat{A} = B + C - A = (\alpha - \beta)^2 + (1 - \alpha)^2 - \alpha^2 (1 - \beta)^2 = (1 - \alpha) \left\{ 1 + \beta^2 - (1 + 2 \beta - \beta^2) \alpha \right\},
\]

so that \(\hat{A} > 0 \) if (and only if) \(1 + \beta^2 - (1 + 2 \beta - \beta^2) \alpha > 0 \), or equivalently

\[
\alpha < \overline{\alpha} = \frac{1 + \beta^2}{1 + 2 \beta - \beta^2}.
\]

Here, it is not difficult to see \(\beta < \overline{\alpha} < 1 \). Next we have

\[
\hat{B} = C + A - B = (1 - \alpha)(1 - \beta) \{(1 + \alpha)\beta + 1 - \alpha \} > 0
\]

and

\[
\hat{C} = A + B - C = (1 - \beta) \{(1 - \beta)\alpha^2 + 2 \alpha - (1 + \beta) \},
\]

so that \(\hat{C} > 0 \) if (and only if) \((1 - \beta)\alpha^2 + 2 \alpha - (1 + \beta) > 0 \), or equivalently

\[
(1 >) \alpha > \underline{\alpha} = \frac{1 + \sqrt{2 - \beta^2}}{1 - \beta}.
\]

Here, by an elementary computation we can see \(\underline{\alpha} < \overline{\alpha} < 1 \), so that we have (23). Now from Lemma 2.4 we have the following three subcases.

I-(1): If \(\beta < \alpha \leq \underline{\alpha} \), then \(\hat{A}, \hat{B}, \hat{C} > 0 \), \(\hat{C} \leq 0 \), so that

\[
T(a, \phi, \psi; p) \leq C \left(\frac{1}{4} - \nu^2 \right) \leq C_1 \left(\frac{1}{4} - \nu^2 \right).
\]

I-(2): If \(\underline{\alpha} < \alpha < \overline{\alpha} \), then \(\hat{A}, \hat{B}, \hat{C} > 0 \), so that

\[
T(a, \phi, \psi; p) \leq \frac{ABC}{D} - C \nu^2 - \frac{D}{4C} \lambda^2.
\]

Here, by an elementary computation we can see that

\[
D = (1 + \alpha)(1 + \beta)(1 - \alpha)^2 (1 - \beta)^2 \left\{ (3 - \beta)\alpha - (1 + \beta) \right\}
\]
and
\[
\frac{ABC}{D} = \frac{\alpha^2(\alpha - \beta)^2}{(1 + \alpha)(1 + \beta)(3 - \beta)\alpha - (1 + \beta)}.
\]

I-(3): If \(\pi \leq \alpha < 1 \), then \(\hat{A} \leq 0 \), \(\hat{B} > 0 \) and \(\hat{C} > 0 \), so that
\[
T(a, b; p) \leq A \left(\frac{1}{4} - \nu^2 \right) \leq C_1 \left(\frac{1}{4} - \nu^2 \right).
\]

Case II: \(0 \leq s \leq t \leq n \). Let
\[
a^{(s)} = (\alpha, \ldots, \alpha, 1, \ldots, 1, \ldots, 1) \quad \text{and} \quad b^{(t)} = (\beta, \ldots, \beta, \beta, \ldots, \beta, 1, \ldots, 1).
\]

Then similarly as in Case I, we have
\[
T(a^{(s)}, b^{(t)}; p) = \beta^2(1 - \alpha)^2 P_0 + (\alpha - \beta)^2 P_1 + (1 - \beta)^2 (P_0 - P_1)(1 - P_i)
\]
\[
= A_1 P_0 + B_1 P_1 + C_1 (P_0 - P_1)(1 - P_i).
\]

For the signs of the constants \(\hat{A}_1 \), \(\hat{B}_1 \) and \(\hat{C}_1 \), we have
\[
\hat{A}_1 = B_1 + C_1 - A_1 = (1 - \beta) \left\{ 1 + \alpha^2 - \beta(1 + 2\alpha - \alpha^2) \right\}
\]
\[
\geq (1 - \beta) \left\{ 1 + \alpha^2 - \alpha(1 + 2\alpha - \alpha^2) \right\}
\]
\[
= (1 - \beta)(1 + \alpha)(1 - \alpha^2) > 0,
\]

\[
\hat{B}_1 = C_1 + A_1 - B_1 = (1 - \alpha)(1 - \beta)^2 > 0.
\]

and
\[
\hat{C}_1 = A_1 + B_1 - C_1 = (1 - \alpha) \left\{ -1 + 2\beta + \beta^2 - \alpha(1 + \beta^2) \right\}
\]
\[
\leq (1 - \alpha) \left\{ -1 + 2\beta + \beta^2 - \beta(1 + \beta^2) \right\}
\]
\[
= -(1 - \alpha)(1 - \beta)(1 - \beta^2) \leq 0.
\]

Hence by Lemma 2.4 we have
\[
T(a, b; p) \leq C_1 \left(\frac{1}{4} - \nu^2 \right).
\]

Summarizing Cases I and II, we obtain the desired facts in the theorem. \(\square \)

Theorem 5.2 With the same notations and the same assumptions as in Theorem 5.1,
\[
T(a, b; p) \leq \frac{M_1^2 M_2^2 C_1}{4} = \frac{M_1^2 M_2^2 (1 - \beta)^2}{4}.
\]

If there is an integer \(t = t_0 \) such that \(P_{t_0} = 1/2 \), then
\[
T_{\max}(= \text{the maximum of } T(a, b; p)) = \frac{M_1^2 M_2^2 C_1}{4},
\]

which is attained at \((a', b')\) such that
\[
a' = (M_1, \ldots, M_1) \quad \text{and} \quad b' = (m_2, \ldots, m_2, M_2, \ldots, M_2).
\]
Proof. By Theorem 5.1, we have only to show that if \(\alpha < \alpha < \pi \), (or if \(\tilde{A}, \tilde{B} \) and \(\tilde{C} > 0 \)) then

\[
\frac{ABC}{D} < \frac{C_1}{4},
\]

or \(\frac{ABC}{D} < \frac{B + C}{4} \) because

\[
B + C = (\alpha - \beta)^2 + (1 - \alpha)^2 < (1 - \beta)^2 = C_1.
\]

Since

\[
\frac{B + C}{4} - \frac{ABC}{D} = \frac{(B + C)(4BC - \tilde{A}^2) - 4(B + C - \tilde{A})BC}{4D},
\]

we have to show \((B + C)(4BC - \tilde{A}^2) - 4(B + C - \tilde{A})BC > 0 \). Note that \(D = 4BC - \tilde{A}^2 \) and \(A = B + C - \tilde{A} \), so that we have

\[
(B + C)(4BC - \tilde{A}^2) - 4(B + C - \tilde{A})BC = \tilde{A}\{A(B + C) - (B - C)^2\} \geq \tilde{A}\{A^2 - (B - C)^2\} \quad (\text{cf. } B + C > A)
\]

\[
= \tilde{A}\tilde{B}\tilde{C} > 0.
\]

\[\square\]

Remark 5.3 Related to Theorem 5.2 (and also Theorem 4.3), we ask if the value \(T_p(a'', b''; p) = T(a'', b''; p) = \frac{M^2M^2_{ABC}}{D} \) at the point \((a'', b'') \) with

\[
a'' = (m_1, \ldots, m_1, M_1, \ldots, M_1) \quad \text{and} \quad b'' = (m_2, \ldots, m_2, M_2, \ldots, M_2)
\]

is the maximum of \(T_p(a, b) \), whenever \(\tilde{A}, \tilde{B}, \tilde{C} > 0 \) and there are integers \(s = s_0, t = t_0 \) satisfying

\[
P_{s_0} = \frac{CC}{D} \quad \text{and} \quad P_{s_0} - P_{t_0} = \frac{B \tilde{B}}{D}.
\]

Unfortunately, this is not true. In fact, if \(P_{s_0} = \frac{CC}{D} \) is 'sufficiently near' to \(1/2 \), then for the point \((a', b') \) with

\[
a' = (M_1, \ldots, M_1) \quad \text{and} \quad b' = (m_2, \ldots, m_2, M_2, \ldots, M_2),
\]

we have

\[
T_p(a', b') = M^2_1 M^2_2 T(a^{(n)}_{1}, b^{(t_0)}; p) = C_1 P_{s_0} (1 - P_{t_0})
\]

\[
= C_1 \left\{ \frac{1}{4} - (\frac{1}{2} - P_{t_0})^2 \right\} = \frac{C_1}{4} - C_1 \epsilon^2 > \frac{ABC}{D} \quad \left(\epsilon = \frac{1}{2} - P_{t_0} \right)
\]

by the inequality (25).

Concerning the preceding remark, as a numerical example, let \(M_1 = M_2 = 1, \quad m_1 = \alpha = \frac{7}{16} \) and \(m_2 = \beta = \frac{1}{2} \), then \(A = \frac{48}{100}, \quad B = \frac{1}{25}, \quad C = \frac{8}{100}, \quad C_1 = \frac{1}{4}, \quad D = \frac{2295}{100}, \ldots \) If we put
A WEIGHTED VERSION OF OZEKI’S INEQUALITY

\[n = 3 \text{ and } p = (p_1, p_2, p_3) = \left(\frac{CC}{D}, \frac{BC}{D}, \frac{CB}{D} \right) = \left(\frac{1044}{2295}, \frac{1104}{2295}, \frac{1417}{2295} \right), \text{ then for } s_0 = 2, t_0 = 1, \]
that is, for \(a'' = (\frac{1}{3}, \frac{1}{3}, 1) \), \(b' = (\frac{1}{3}, 1, 1) \), we have
\[
T(a'', b''; p) = \frac{ABC}{D} = \frac{196}{6375} = 0.0307...
\]

On the other hand, for \(s_0 = 0, t_0 = 1 \), that is, for \(a' = (1, 1, 1) \), \(b' = (\frac{1}{3}, 1, 1) \), we have
\[
T(a', b'; p) = C_1 P_1 (1 - P_1) = \frac{4031}{65025} = 0.0619... > \frac{ABC}{D}.
\]

Corollary 5.4 With the same notations and the same assumptions as in Theorem 5.1, in particular, if the weight \(p = (p_1, \ldots, p_n) \) is uniform, that is, \(p_1 = \cdots = p_n = 1/n \), and if \(n \) is even, then
\[
T_{\text{max}} = \frac{M_1^2 M_2^2 (1 - \beta)^2}{4}
\]

6 A concluding remark
We can show corresponding continuous or measurable versions of all results in this paper. For example, corresponding to Theorem 3.2, we obtain the following:

Theorem 6.1 Let \(f \) and \(g \) be positive measurable functions on a finite measure space \((\Omega, \mu)\) with \(\mu(\Omega) = 1 \). Assume that \(m_1 \leq f \leq M_1, m_2 \leq g \leq M_2, 0 < m_1 < M_1 \) and \(0 < m_2 < M_2 \). Further assume that \(\alpha = m_1/M_1 \geq m_2/M_2 = \beta \). Then
\[
\int_{\Omega} f^2 d\mu \int_{\Omega} g^2 d\mu - \left(\int_{\Omega} fg d\mu \right)^2
\leq M_1^2 M_2^2 \sup_{X \subseteq \Omega} \left\{ \frac{(1 - \alpha\beta)^2}{4} (1 - \mu(X))^2 + (1 - \beta)^2 \mu(X) \left(1 - \mu(X) \right) \right\}
\leq \frac{(M_1 M_2 - m_1 m_2)^2}{3}.
\]

To sketch the proof, let \(\{X_1, \ldots, X_n\} \) be a decomposition of measurable sets in \(\Omega \) and let \(x \in X_k \) \((k = 1, \ldots, n) \). Then from Theorem 3.2 we have
\[
\sum_{k=1}^{n} f(x_k)^2 \mu(X_k) \sum_{k=1}^{n} g(x_k)^2 \mu(X_k) - \left(\sum_{k=1}^{n} f(x_k)g(x_k) \mu(X_k) \right)^2
\leq M_1^2 M_2^2 \sup_{X \subseteq \Omega} \left\{ \frac{(1 - \alpha\beta)^2}{4} (1 - \mu(X))^2 + (1 - \beta)^2 \mu(X) \left(1 - \mu(X) \right) \right\}.
\]

Taking the limit of the decomposition we obtain the desired inequality.

Acknowledgment. The authors would like to express their thanks to Professor M. Fujii and Professor J. I. Fujii for their valuable comments.
REFERENCES

* Faculty of Education, Toyama University, GoFuku, Toyama 930-8555, JAPAN
E-mail address: s-izumino@h5.dion.ne.jp

** Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, CROATIA
E-mail address: pecaric@element.hr