ON FUZZY QUOTIENT BCI-ALGEBRAS INDUCED BY FUZZY IDEALS

SUNG MIN HONG, SEON JEONG KIM AND YOUNG BAE JUN

Received March 1, 2002

Abstract. We define fuzzy quotient BCI-algebras induced by fuzzy ideals and study the relation between fuzzy quotient BCI-algebras and fuzzy ideals. We establish isomorphism theorem.

1. Introduction

For the general development of BCI-algebras, the (fuzzy) ideal theory plays an important role. Of course, the quotient structure by (fuzzy) ideal plays an important role also. In general, the relation "" in a BCI-algebra X defined by x y if and only if x y A and y x A is used, where x, y X and A is an ideal of X, to constructing quotient structure of BCI-algebra induced by an ideal. F. L. Zhang [8] gave an equivalent relation on a BCI-algebra by using a different method, and constructed the corresponding quotient structures. S. M. Hong and Y. B. Jun [1] fuzzified the equivalence relation obtained by Zhang's way, and established a quotient BCI-algebra which is induced by a fuzzy ideal. In this paper, we consider another fuzzification of the equivalence relation given by F. L. Zhang, and construct fuzzy quotient BCI-algebras induced by fuzzy ideals. We establish an isomorphism theorem, and give a characterization for a quotient BCI-algebra induced by a fuzzy ideal to be commutative (positive implicative).

2. Preliminaries

In this section we include some elementary aspects that are necessary for this paper.

Recall that a BCI-algebra is an algebra (X, *, 0) of type (2, 0) satisfying the following axioms for every x, y, z X,

(a1) ((x y) * (x z)) * (z y) = 0,
(a2) (x * (x y)) * y = 0,
(a3) x * x = 0,
(a4) x y = 0 and y x = 0 imply x = y.

A partial ordering ≤ on X can be defined by x y if and only if x y = 0. In a BCI-algebra X, the following hold:

(b1) x = 0 = x,
(b2) (x y) * z = (x z) * y,
(b3) 0 * (x y) = (0 x) * (0 y),
(b4) x y implies x z y z and z y ≤ z x.

2000 Mathematics Subject Classification. 06F35, 03G25, 03B52.

Keywords and phrases. Fuzzy (commutative, positive implicative) ideal, fuzzy quotient BCI-algebra induced by fuzzy ideal.
A mapping \(f : X \to Y \) of BCI-algebras is called a homomorphism if \(f(x \cdot y) = f(x) \cdot f(y) \) for all \(x, y \in X \). An ideal of a BCI-algebra \(X \) is defined to be a subset \(A \) of \(X \) containing \(0 \) such that if \(x \cdot y \in A \) and \(y \in A \) then \(x \in A \). If \(x \) is an element of an ideal \(A \) of a BCI-algebra \(X \) and \(y \leq x \), then \(y \in A \). For any elements \(x \) and \(y \) of a BCI-algebra \(X \) and \(n \in \mathbb{N} \), let us write \(x \cdot y^n \) instead of \((((x \cdot y) \cdot y) \cdot \cdots) \cdot y \) in which \(y \) occurs \(n \) times.

Proposition 2.1. (Huang [2]) For any elements \(x \) and \(y \) of a BCI-algebra \(X \) and \(n \in \mathbb{N} \), we have \(0 \cdot (x \cdot y)^n = (0 \cdot x^n) \cdot (0 \cdot y^n) \).

We now review some fuzzy logic concepts. Let \(X \) be a set. A fuzzy set in \(X \) is a mapping from \(X \) to \([0, 1]\). In the sequel, we place a bar over a symbol to denote a fuzzy set so \(\bar{A}, \bar{B}, \ldots \) all represent fuzzy sets in \(X \). A fuzzy ideal of a BCI-algebra \(X \) is defined to be a fuzzy set \(\bar{A} \) in \(X \) such that

(F1) \(\bar{A}(0) \geq \bar{A}(x) \) for all \(x \in X \),
(F2) \(\bar{A}(x) \geq \min\{\bar{A}(x \cdot y), \bar{A}(y)\} \) for all \(x, y \in X \).

Note that every fuzzy ideal \(\bar{A} \) of a BCI-algebra \(X \) is order reversing, i.e., if \(x \leq y \) then \(\bar{A}(x) \geq \bar{A}(y) \). A fuzzy ideal \(\bar{A} \) of a BCI-algebra \(X \) is said to be closed if \(\bar{A}(0 \cdot x) \geq \bar{A}(x) \) for all \(x \in X \). A fuzzy set \(\bar{A} \) in a BCI-algebra \(X \) is called a fuzzy commutative ideal if it satisfies (F1) and

(F3) \(\bar{A}(x \cdot ((y \cdot (y \cdot x)) \cdot (0 \cdot (0 \cdot (x \cdot y)))), \bar{A}(z)) \) for all \(x, y, z \in X \).

A fuzzy set \(\bar{A} \) in a BCI-algebra \(X \) is called a fuzzy positive implicative ideal if it satisfies (F1) and

(F4) \(\bar{A}(x \cdot z) \geq \min\{\bar{A}((x \cdot z) \cdot x) \cdot (y \cdot z), \bar{A}(y)\} \) for all \(x, y, z \in X \).

3. Quotient Structures

Let \(A \) be an ideal of a BCI-algebra \(X \) and let \(n \in \mathbb{N} \). We define a relation “\(\sim \)” on \(X \) as follows:

\[x \sim y(A) \text{ if and only if } 0 \cdot (x \cdot y)^n \in A \text{ and } 0 \cdot (y \cdot x)^n \in A. \]

Then “\(\sim \)” is a congruence relation on \(X \) (see [8] and [1]).

Let \(X \) be a BCI-algebra and denote by \(A_x \) the equivalence class containing \(x \in X \), and by \(X/A \) the set of all equivalence classes of \(X \) with respect to “\(\sim \)”, that is,

\[A_x := \{y \in X \mid x \sim y(A)\} \text{ and } X/A := \{A_x \mid x \in X\}. \]

Define a binary operation “\(\circ \)” on \(X/A \) by \(A_x \circ A_y = A_{x \cdot y} \) for all \(A_x, A_y \in X/A \). Then \((X/A; \circ, A_0) \) is a BCI-algebra (see [8]).

Theorem 3.1. If \(A \) is an ideal of a BCI-algebra \(X \), then the mapping \(\phi : X \to X/A \) given by \(\phi(x) = A_x \) is an epimorphism with kernel \(A \).

Proof. The map \(\phi : X \to X/A \) is clearly surjective and since

\[\phi(x \cdot y) = A_{x \cdot y} = A_x \circ A_y = \phi(x) \circ \phi(y), \]

\(\phi \) is an epimorphism. Now

\[\ker \phi = \{x \in X \mid \phi(x) = A_x = A_0\} = \{x \in X \mid x \in A\} = A. \]

This completes the proof.

Theorem 3.2. Let \(f : X \to Y \) be an epimorphism of BCI-algebras. If \(Y \) satisfies the implication \(0 \cdot x^n = 0 \cdot y^n \Rightarrow x = y \) for every \(x, y \in Y \) and \(n \in \mathbb{N} \), then the quotient algebra \(X/\ker f \) is isomorphic to \(Y \).
Proof. Obviously, \(\text{Ker} f \) is an ideal of \(X \). Let \(x, y \in X \) be such that \(f(x) = f(y) \). Then
\[
f(0 \ast (x \ast y)^n) = f(0) \ast f((x \ast y)^n) = 0 \ast f(x \ast y)^n = 0 \ast (f(x) \ast f(y))^n = 0.
\]
Similarly, \(f(0 \ast (y \ast x)^n) = 0 \) and so \(0 \ast (x \ast y)^n \in \text{Ker} f \) and \(0 \ast (y \ast x)^n \in \text{Ker} f \). Hence \(x \sim y(\text{Ker} f) \). This means that \(x \) and \(y \) belong to a class of \(X/\text{Ker} f \). Conversely if \(x \sim y(\text{Ker} f) \), then \(0 \ast (x \ast y)^n \in \text{Ker} f \) and \(0 \ast (y \ast x)^n \in \text{Ker} f \), which imply that
\[
0 = f(0 \ast (x \ast y)^n) = f((0 \ast x^n) \ast (0 \ast y^n)) = f(0 \ast x^n) \ast f(0 \ast y^n) = (0 \ast f(x^n)) \ast (0 \ast f(y^n))
\]
and \(0 \ast f(y^n) \ast 0 \ast f(x^n) = 0 \) by the similar way. It follows from (a4) that \(0 \ast f(x^n) = 0 \ast f(y^n) \) so from the hypothesis that \(f(x) = f(y) \). Therefore \(X/\text{Ker} f \cong (\text{Ker} f)_x \leftrightarrow f(x) \in Y \) is a one-to-one correspondence between \(X/\text{Ker} f \) and \(Y \). Moreover \((\text{Ker} f)_x \circ (\text{Ker} f)_y = (\text{Ker} f)_{x,y} \) implies \(f(x) \ast f(y) = f(x \ast y) \). Hence the above correspondence gives the required isomorphism.

Let \(\tilde{A} \) be a fuzzy ideal of a \(BCI \)-algebra \(X \). Define a binary relation "\(\tilde{A} \)" on \(X \) as follows:
\[
ex \sim y(\tilde{A}) \quad \text{if and only if} \quad \tilde{A}(0 \ast (x \ast y)^n) = \tilde{A}(0) = \tilde{A}(0 \ast (y \ast x)^n)
\]
for all \(x, y \in X \) and \(n \in \mathbb{N} \).

Lemma 3.3. The binary relation "\(\tilde{A} \)" is an equivalence relation on a \(BCI \)-algebra \(X \).

Proof. Obviously, "\(\tilde{A} \)" is reflexive and symmetric. Let \(x, y, z \in X \) be such that \(x \sim y(\tilde{A}) \) and \(y \sim z(\tilde{A}) \). Then
\[
\tilde{A}(0 \ast (x \ast y)^n) = \tilde{A}(0) = \tilde{A}(0 \ast (y \ast x)^n) \quad \text{and} \quad \tilde{A}(0 \ast (y \ast z)^n) = \tilde{A}(0) = \tilde{A}(0 \ast (z \ast y)^n)
\]
for every \(n \in \mathbb{N} \). On the other hand,
\[
(0 \ast (x \ast z)^n) \ast (0 \ast (x \ast y)^n) = ((0 \ast x^n) \ast (0 \ast z^n)) \ast ((0 \ast x^n) \ast (0 \ast y^n))
\]
\[
\leq (0 \ast y^n) \ast (0 \ast z^n) = 0 \ast (y \ast z)^n.
\]
Since \(\tilde{A} \) is order reversing, it follows that
\[
\tilde{A}((0 \ast (x \ast z)^n) \ast (0 \ast (x \ast y)^n)) \geq \tilde{A}(0 \ast (y \ast z)^n)
\]
so from (F2) that
\[
\tilde{A}(0 \ast (x \ast z)^n) \geq \min\{\tilde{A}(0 \ast (x \ast z)^n) \ast (0 \ast (x \ast y)^n)), \tilde{A}(0 \ast (y \ast z)^n))
\]
\[
\geq \min\{\tilde{A}(0 \ast (y \ast z)^n), \tilde{A}(0 \ast (x \ast y)^n))
\]
\[
= \tilde{A}(0).
\]
Clearly \(\tilde{A}(0 \ast (x \ast z)^n) \leq \tilde{A}(0) \) by (F1), and so \(\tilde{A}(0 \ast (x \ast z)^n) = \tilde{A}(0) \). Similarly, we obtain \(\tilde{A}(0 \ast (y \ast z)^n) = \tilde{A}(0) \). Hence \(x \sim z(\tilde{A}) \), which proves the transitivity of "\(\tilde{A} \). This completes the proof.

Lemma 3.4. For any elements \(x, y \) and \(z \) of a \(BCI \)-algebra \(X \), \(x \sim y(\tilde{A}) \) implies \(x \sim z(\tilde{A}) \) and \(z \sim x \sim z \sim z(\tilde{A}) \).

Proof. If \(x \sim y(\tilde{A}) \), then \(\tilde{A}(0 \ast (x \ast y)^n) = \tilde{A}(0) = \tilde{A}(0 \ast (y \ast x)^n) \) for every \(n \in \mathbb{N} \). Note that
\[
(0 \ast ((x \ast z) \ast (y \ast z))^n) \ast (0 \ast (x \ast y)^n)
\]
\[
= ((0 \ast (x \ast z)^n) \ast (0 \ast (y \ast z)^n)) \ast (0 \ast (x \ast y)^n)
\]
\[
= ((0 \ast x^n) \ast (0 \ast z^n)) \ast ((0 \ast y^n) \ast (0 \ast z^n)) \ast (0 \ast (x \ast y)^n)
\]
\[
\leq (0 \ast x^n) \ast (0 \ast y^n) \ast (0 \ast (x \ast z)^n)
\]
\[
= (0 \ast (x \ast y)^n) \ast (0 \ast (x \ast z)^n)
\]
\[
= 0.
\]
Since \(\tilde{A} \) is order reversing, it follows that
\[
\tilde{A}((0 \ast ((x \ast z) \ast (y \ast z))^n) \ast (0 \ast (x \ast y)^n)) \geq \tilde{A}(0)
\]
so from (F2) that

\[
\begin{align*}
\Delta(0 \ast ((x \ast z) \ast (y \ast z))^n) \\
\geq \min \{\Delta((0 \ast ((x \ast z) \ast (y \ast z))^n) \ast (0 \ast (x \ast y))^n), \Delta(0 \ast (x \ast y)^n)\}
\end{align*}
\]

Obviously, \(\Delta(0 \ast ((x \ast z) \ast (y \ast z))^n) \leq \Delta(0)\) by (F1). Hence

\[\Delta(0 \ast ((x \ast z) \ast (y \ast z))^n) = \Delta(0).\]

Similarly, we get \(\Delta(0 \ast ((y \ast z) \ast (x \ast z))^n) = \Delta(0)\), and therefore \(x \ast z \approx y \ast z(\Delta)\). Similar argument induces \(z \ast x \approx z \ast y(\Delta)\). This completes the proof. \(\square\)

Using Lemma 3.4 and the transitivity of \(\approx\), we have the following lemma.

Lemma 3.5. If \(x \approx u(\Delta)\) and \(y \approx v(\Delta)\) in a BCI-algebra \(X\), then \(x \ast y \approx u \ast v(\Delta)\).

Let \(X\) be a BCI-algebra and denote by \(\Delta_x\) the equivalence class containing \(x \in X\), and by \(X/\Delta\) the set of all equivalence classes of \(X\) with respect to \(\approx\), that is,

\[\Delta_x := \{y \in X \mid x \approx y(\Delta)\}\] and \(X/\Delta := \{\Delta_x \mid x \in X\}\).

Define a binary operation “\(\circ\)” on \(X/\Delta\) by \(\Delta_x \circ \Delta_y = \Delta_{x \ast y}\) for all \(\Delta_x, \Delta_y \in X/\Delta\). We first verify that the operation “\(\circ\)” is well defined. Let \(x, y, u, v \in X\) be such that \(\Delta_x = \Delta_u\) and \(\Delta_y = \Delta_v\). Then \(x \approx u(\Delta)\) and \(y \approx v(\Delta)\), which imply that \(x \ast y \approx u \ast v(\Delta)\) by Lemma 3.5. Let \(w \in \Delta_x \ast \Delta_y\). Then \(w \approx x \ast y \approx u \ast v(\Delta)\), and so \(w \in \Delta_{u \ast v} = \Delta_u \ast \Delta_v\). Now if \(z \in \Delta_u \ast \Delta_v\), then \(z \approx u \ast v \approx x \ast y(\Delta)\), and thus \(z \in \Delta_{x \ast y} = \Delta_x \ast \Delta_y\). Therefore \(\Delta_x \ast \Delta_y = \Delta_u \ast \Delta_v\), that is, “\(\circ\)” is well defined. Next we shall show that \((X/\Delta; \circ, \Delta_0)\) is a BCI-algebra. Let \(\Delta_x, \Delta_y, \Delta_z \in X/\Delta\). Then

\[
\begin{align*}
((\Delta_x \circ \Delta_y) \circ (\Delta_x \circ \Delta_z)) \circ (\Delta_z \circ \Delta_y) \\
= (\Delta_{x \ast y} \circ \Delta_{x \ast z}) \circ \Delta_{z \ast y} \\
= \Delta_{(x \ast y) \ast (x \ast z) \ast (z \ast y)} \\
= \Delta_{0},
\end{align*}
\]

which shows that \(X/\Delta\) satisfies the condition (a1). Similarly, we can deduce the conditions (a2) and (a3). Let \(x, y \in X\) be such that \(\Delta_x \circ \Delta_y = \Delta_0\) and \(\Delta_y \circ \Delta_x = \Delta_0\). Then \(\Delta_{x \ast y} = \Delta_0 = \Delta_{y \ast x}\), and so \(x \ast y \approx 0 \approx y \ast x(\Delta)\). It follows from (b1) that

\[\Delta(0 \ast ((x \ast y) \ast 0)^n) = \Delta(0)\]

and

\[\Delta(0 \ast ((y \ast x) \ast 0)^n) = \Delta(0)\]

so that \(x \approx y(\Delta)\). Hence \(\Delta_x = \Delta_y\). We shall state this as a theorem.

Theorem 3.6. If \(\Delta\) is a fuzzy ideal of a BCI-algebra \(X\), then \((X/\Delta; \circ, \Delta_0)\) is a BCI-algebra.

We then call \(X/\Delta\) fuzzy quotient BCI-algebra of \(X\) induced by the fuzzy ideal \(\Delta\).

Lemma 3.7. (Xi [7]) Let \(f : X \rightarrow Y\) be an epimorphism of BCI-algebras. If \(\Delta\) is a fuzzy ideal of \(Y\), then the homomorphic preimage of \(\Delta\) under \(f\), denoted by \(f^{-1}(\Delta)\), is a fuzzy ideal of \(X\).

Theorem 3.8. (Isomorphism theorem) Let \(f : X \rightarrow Y\) be an epimorphism of BCI-algebras and let \(\Delta\) be a fuzzy ideal of \(Y\). Then \(X/\Delta\) is isomorphic to \(Y/\Delta\), where \(\Delta = f^{-1}(\Delta)\).
ON FUZZY QUOTIENT BC1-ALGEBRAS INDUCED BY FUZZY IDEALS

329

Proof. Note that X/\bar{A} and Y/\bar{B} are BC1-algebras (see Theorem 3.6 and Lemma 3.7). Let
$\Phi : X/\bar{A} \rightarrow Y/\bar{B}$ be a mapping defined by $\Phi(\bar{A}_x) = \bar{B}_{f(x)}$, where $x \in X$. Let $x, y \in X$ be
such that $\bar{A}_x = \bar{A}_y$. Then
$$
\bar{B}(0) = \bar{B}(f(0)) = f^{-1}(\bar{B})(0) = \bar{A}(0) = \bar{A}(0 \ast (x \ast y)^n)
$$
$$
= f^{-1}(\bar{B})(0 \ast (x \ast y)^n) = \bar{B}(f(0 \ast (x \ast y)^n)) = \bar{B}(0 \ast (f(x) \ast f(y))^n).
$$
Similarly $\bar{B}(0 \ast (f(y) \ast f(x))^n) = \bar{B}(0)$. Hence $f(x) \approx f(y)(\bar{B})$, that is, $\bar{B}_{f(x)} = \bar{B}_{f(y)}$.
Therefore Φ is well defined. For any $\bar{A}_x, \bar{A}_y \in X/\bar{A}$, we have
$$
\Phi(\bar{A}_x \odot \bar{A}_y) = \Phi(\bar{A}_{x \ast y}) = \bar{B}_{f(x \ast y)} = \bar{B}_{f(x) \ast f(y)} = \bar{B}_{f(x) \odot f(y)} = \Phi(\bar{A}_x) \odot \Phi(\bar{A}_y).
$$
Hence Φ is a homomorphism. Now let $x, y \in X$ be such that $\bar{B}_{f(x)} = \bar{B}_{f(y)}$. Then $f(x) \approx f(y)(\bar{B})$, and so
$$
\bar{A}(0) = f^{-1}((\bar{B})(0) = f^{-1}(\bar{B})(0) = \bar{B}(0 \ast (x \ast y)^n)) = \bar{B}(f(0 \ast (x \ast y)^n)) = \bar{A}(0 \ast (x \ast y)^n),
$$
and $\bar{A}(0 \ast (y \ast x)^n) = \bar{A}(0)$ by the same way. Thus $x \approx y(\bar{A})$, that is, $\bar{A}_x = \bar{A}_y$. This shows
that Φ is injective. Clearly Φ is surjective, and the proof is complete. \qed

Lemma 3.9. (Meng and Xin [6]) A BC1-algebra X is positive implicative if and only if it satisfies $x \ast y = ((x \ast y) \ast y) \ast (0 \ast y)$ for all $x, y \in X$.

Lemma 3.10. (Liu and Meng [4]) A fuzzy ideal \bar{A} of a BC1-algebra X is fuzzy positive implicative if and only if it satisfies $\bar{A}(x \ast y) = \bar{A}(((x \ast y) \ast y) \ast (0 \ast y))$ for all $x, y \in X$.

Theorem 3.11. Let \bar{A} be a fuzzy ideal of a BC1-algebra X. Then the fuzzy quotient BC1-algebra X/\bar{A} of X induced by \bar{A} is positive implicative if and only if \bar{A} is a fuzzy positive implicative ideal of X.

Proof. Assume that the quotient algebra X/\bar{A} is positive implicative. Then
$$
\bar{A}_{x \ast y} = \bar{A}_x \odot \bar{A}_y = ((\bar{A}_x \odot \bar{A}_y) \odot \bar{A}_y) \odot (\bar{A}_0 \odot \bar{A}_y) = \bar{A}_{((x \ast y) \ast y) \ast (0 \ast y)},
$$
that is, $x \ast y \approx ((x \ast y) \ast y) \ast (0 \ast y)(\bar{A})$. It follows from (F1) and (F2) that
$$
\bar{A}(x \ast y) \geq \min\{\bar{A}(((x \ast y) \ast y) \ast (0 \ast y), \bar{A}(((x \ast y) \ast y) \ast (0 \ast y)) = \bar{A}(((x \ast y) \ast y) \ast (0 \ast y)).
$$
Obviously $\bar{A}(x \ast y) \leq \bar{A}(((x \ast y) \ast y) \ast (0 \ast y))$ because $((x \ast y) \ast y) \ast (0 \ast y) \leq x \ast y$ by (a1),
(b1) and (b2) and \bar{A} is order reversing. Hence $\bar{A}(x \ast y) = \bar{A}(((x \ast y) \ast y) \ast (0 \ast y))$, and thus
\bar{A} is a fuzzy positive implicative ideal of X. Conversely suppose that \bar{A} is a fuzzy positive
implicative ideal of X. Using (b2) and Lemma 3.10, we have
$$
\bar{A}(x \ast y) \ast ((x \ast y) \ast y) \ast (0 \ast y))
$$
$$
= \bar{A}(x \ast (((x \ast y) \ast y) \ast (0 \ast y))) \ast y
$$
$$
= \bar{A}((((x \ast y) \ast y) \ast (0 \ast y))) \ast y
$$
$$
= \bar{A}(0).
$$
Since $(((x \ast y) \ast y) \ast (0 \ast y)) \ast (x \ast y) = 0$, it follows that
$$
\bar{A}(((x \ast y) \ast y) \ast (0 \ast y)) \ast (x \ast y)) = \bar{A}(0).
$$
Hence $x \ast y \approx ((x \ast y) \ast y) \ast (0 \ast y)(\bar{A})$, and so
$$
\bar{A}_x \odot \bar{A}_y = \bar{A}_{x \ast y} = \bar{A}_{((x \ast y) \ast y) \ast (0 \ast y)} = ((\bar{A}_x \odot \bar{A}_y) \odot \bar{A}_y) \odot (\bar{A}_0 \odot \bar{A}_y).
$$
It follows from Lemma 3.9 that X/\bar{A} is a positive implicative BC1-algebra. \qed

Lemma 3.12. (Meng and Xin [5]) A BC1-algebra X is commutative if and only if it satisfies $x \ast (x \ast y) = y \ast (y \ast (x \ast y)))$ for all $x, y \in X$.

Lemma 3.13. (Jun and Meng [3]) Let \tilde{A} be a closed fuzzy ideal of a BCI-algebra X. Then
\tilde{A} is fuzzy commutative if and only if it satisfies $\tilde{A}(x * (y * (x * y))) \geq \tilde{A}(x * y)$ for all $x, y \in X$.

Theorem 3.14. Let \tilde{A} be a closed fuzzy ideal of a BCI-algebra X. Then the fuzzy quotient BCI-algebra X/\tilde{A} of X induced by \tilde{A} is commutative if and only if \tilde{A} is fuzzy commutative.

Proof. Assume that \tilde{A} is a closed fuzzy commutative ideal of X. Then, by Lemma 3.13, (b2) and (a3), we have
\[\tilde{A}((x * (x * y)) * (y * (x * (x * y)))) \geq \tilde{A}((x * (x * y)) * (x * y)) = \tilde{A}(0). \]
On the other hand, note that
\[\tilde{A}((y * (x * (x * y))) * (x * (x * y))) = \tilde{A}((y * (x * (x * y))) * (y * (x * (x * y)))) = \tilde{A}(0) \]
by (b2) and (a3). Hence $x * (x * y) \cong y * (x * (x * y))(\tilde{A})$, which implies that
\[\tilde{A}(x \odot (\tilde{A} x \odot \tilde{A} y)) = \tilde{A}(y \odot (\tilde{A} y \odot (\tilde{A} x \odot \tilde{A} y))). \]
It follows from Lemma 3.12 that X/\tilde{A} is commutative. Conversely let \tilde{A} be a closed fuzzy ideal of X such that X/\tilde{A} is commutative. Then
\[A_{x * (x y)} = A_x \odot (A_x \odot A_y) = A_y \odot (A_y \odot (A_x \odot A_y)) = A_{y * (x * (x y))}, \]
and hence $x * (x * y) \cong y * (x * (x * y))(\tilde{A})$. It follows from (b2) and (F1) that
\[\tilde{A}((y * (x * (x * y))) * (x * y)) = \tilde{A}((x * (x * y)) * (y * (x * (x * y)))) = \tilde{A}(0) \geq \tilde{A}(x * y), \]
so from (F2) that
\[A(x * (y * (x * (x * y)))) \geq \min\{ \tilde{A}(x * (y * (x * (x * y)))) \odot (x * y), \tilde{A}(x * y) \} \]
\[= \tilde{A}(x * y). \]
Using (a1), (b2) and (a3), we get
\[(x * (y * (x * y))) * (x * (y * (x * (x * y)))) \leq 0 * (x * y). \]
Since \tilde{A} is order reversing, it follows from (F2) and its closedness that
\[\tilde{A}(x * (y * (x * y))) \geq \min\{ \tilde{A}(x * (y * (x * y))) \odot (x * (y * (x * (x * y)))), \tilde{A}(x * (x * y)) \} \]
\[= \tilde{A}(x * y). \]
Hence, by Lemma 3.13, \tilde{A} is fuzzy commutative.

Acknowledgements. This work was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).

References:

Department of Mathematics (Education), Gyeongsang National University, Chinju (Jinju) 660-701, Korea

E-mail: mkong{skim, ybjun}@nongae.gsu.ac.kr