ON THE PARASPECTRUM AND THE CONTINUITY
OF THE SPECTRUM IN ALGEBRA OF OPERATORS

SLAVIŠA V. DJORDJEVIĆ

Received January 30, 2001; revised April 17, 2001

Abstract. In this paper some conditions are given for the continuity of the spectrum using the paraspectrum of operators. Also, Luecke’s theorem for G_1-operators is given as a simple consequence of those conditions.

1. Introduction

Let X be a complex infinite-dimensional Banach space and let $B(X)$ denotes a Banach algebra of all bounded operators on X. If $T \in B(X)$, then $\sigma(T)$ denotes the spectrum of T. For $A, B \in B(X)$ we define the $*$-prominance of A by B, $* \in \{\alpha, \beta, \gamma\}$, by

$$\text{prom}_a(A; B) = \{ \lambda \notin \sigma(A) : \|(A - \lambda)^{-1}\| : \|A - B\| \geq 1 \} ;$$
$$\text{prom}_\beta(A; B) = \{ \lambda \notin \sigma(A) : \|(A - \lambda)(A - B)\| \geq 1 \} ;$$
$$\text{prom}_\gamma(A; B) = \{ \lambda \notin \sigma(A) : \|A - B\| \geq d(\lambda, \sigma(A)) \} .$$

The $*$-paraspectrum of A by B is the set

$$\sigma_*(A; B) = \text{prom}_*(A; B) \cup \sigma(A) , \quad * \in \{\alpha, \beta, \gamma\} .$$

It has been introduced in [3] in the case where X is a Hilbert space.

An operator $A \in B(X)$ is a G_1-operator if A satisfies the growth condition [4]

$$\|(A - \lambda)^{-1}\| \leq \frac{1}{d(\lambda, \sigma(A))} , \quad \lambda \notin \sigma(A) .$$

The continuity of spectra for G_1-operators on a Hilbert space has been discussed by several authors [2,3,4,6]. To discuss it for arbitrary operators on a Banach space, we need the distances d_1 and d_2 among compact subsets in the complex plane. Let M and N be a compact subsets in the complex plane. We define the distances $d_1(M, N)$ and $d_2(M, N)$ between M and N by

$$d_1(M, N) = \sup_{n \in N} \inf_{m \in M} |m - n| = \sup_{n \in N} \text{dist } (n, M)$$
$$d_2(M, N) = \inf_{m \in M} \sup_{n \in N} |m - n| = \sup_{n \in N} \text{dist } (m, N) .$$

AMS Subject Classification (1991): 47A10, 47A53

Keywords and Phrases: Paraspectrum, continuity of the spectrum
It is well-known that the distance $d(M, N)$ define by

$$d(M, N) = \max\{d_1(M, N), d_2(M, N)\}$$

is the Hausdorff distance between compact subsets M and N.

A mapping p, defined on $B(X)$ whose values are compact subset of \mathbb{C}, is said to be upper (lower) semi-continuous at A, provided that if $A_n \to A$ then

$$d_1(p(A), p(A_n)) \to 0 \quad (d_2(p(A), p(A_n)) \to 0), \quad n \to \infty.$$

If p is both upper and lower semi-continuous at A, then it is said to be continuous at A and in this case $\lim p(A_n) = p(A)$.

In this paper we consider the spectral variation inequality

$$(1, i.) \quad d_i(\sigma(A), \sigma(B)) \leq \|A - B\|, \quad i = 1, 2$$

and we discuss a continuity of the spectrum of A using the $*$-paraspectrum of A by B.

2. Variation of spectrum

Directly from the definition of the $*$-paraspectrum follows that $\sigma(A) \subset \sigma_*(A; B)$, $* \in \{\alpha, \beta, \gamma\}$, for every $B \in B(X)$. Also, by [3] we get $\sigma(B) \subset \sigma_\alpha(A; B)$ and $\sigma_\gamma(A; B) \subset \sigma_\beta(A; B) \subset \sigma_\alpha(A; B)$ for every $A, B \in B(X)$.

If (τ_n) is a sequence of compact subsets of \mathbb{C}, then its limit inferior is

$$\lim\inf \tau_n = \{\lambda \in \mathbb{C} : \text{there are } \lambda_n \in \tau_n \text{ with } \lambda_n \to \lambda\}$$

and its limit superior is

$$\lim\sup \tau_n = \{\lambda \in \mathbb{C} : \text{there are } \lambda_{n_k} \in \tau_{n_k} \text{ with } \lambda_{n_k} \to \lambda\}.$$

It is well-known that a mapping p which maps $B(X)$ into the family of compact subset of \mathbb{C} is upper (lower) semi-continuous at A if for every sequence $\{A_n\}$ in $B(X)$ such that $A_n \to A$ holds

$$\lim\sup p(A_n) \subset p(A) \quad (p(A) \subset \lim\inf p(A_n)).$$

Theorem 1. Let $A \in B(X)$ and let $\{A_n\}$ be a sequence in $B(X)$ such that $A_n \to A$. Then the next conditions are equivalent:

1. $\lim \sigma(A_n) = \sigma(A)$;
2. $\bigcap_{n=1}^\infty \sigma_\alpha(A; A_n) \subset \lim\inf \sigma(A_n)$;
3. $\bigcap_{n=1}^\infty \sigma_\alpha(A_n; A) \subset \lim\inf \sigma(A_n)$.

Proof. (1) \Rightarrow (2) Let $\lim \sigma(A_n) = \sigma(A)$ and suppose that (2) is not true. Then there exists a $\lambda \in \left(\bigcap_{n=1}^\infty \sigma_\alpha(A; A_n)\right) \setminus (\lim\inf \sigma(A_n))$. For this λ we get:

(i) $\lambda \in \sigma_\alpha(A; A_n)$, for every $n \in \mathbb{N}$;
(ii) $\lambda \notin \lim\inf \sigma(A_n)$ and so $\lambda \notin \sigma(A)$ by (1);

By (i) and (ii) it follows $\lambda \in \text{proj}_0(A; A_n)$, i.e.

$$\|(A - \lambda)^{-1}\|^{-1} \leq \|A - A_n\|, \quad \text{for every } n \in \mathbb{N}.$$
If \(n \to \infty \), then \(\| (A - \lambda)^{-1} \| \to 0 \). Hence it is a contradiction.

(2) \(\Rightarrow \) (3) Let the condition (2) holds and suppose that (3) does not hold. Then there exists a \(\lambda \in \left(\bigcap_{n=1}^{\infty} \sigma_a(A_n; A) \right) \setminus (\lim \inf \sigma(A_n)) \). For this \(\lambda \) we get:

(i) \(\lambda \in \sigma_a(A_n; A) \), for every \(n \in \mathbb{N} \);
(ii) there exists a \(n_0 \in \mathbb{N} \) such that \(\lambda \notin \sigma(A_n) \) for every \(n \geq n_0 \).

From (i) and (ii) it follows that \(\lambda \in \text{pr}_{\alpha}(A_n, A) \), i.e.

\[(*) \quad \| (A_n - \lambda)^{-1} \|^{-1} \leq \| A_n - A \| \to 0, \quad n \to \infty. \]

Suppose that \(\lambda \in \sigma(A) \). Then \(\lambda \in \sigma_a(A; A_n) \), for every \(n \in \mathbb{N} \), i.e. \(\lambda \in \bigcap_{n=1}^{\infty} \sigma_a(A; A_n) \subset \lim \inf \sigma(A_n) \) and this is a contradiction. Hence \(\lambda \notin \sigma(A) \).

Since \(A_n - \lambda \to A - \lambda \) and \(\lambda \notin \sigma(A) \) it follows that \((A_n - \lambda)^{-1} \to (A - \lambda)^{-1} \) (by the continuity of the function \(T \mapsto T^{-1} \) [1, Theorem 50.7]). But, by (\(*\)), we get that \(\| (A_n - \lambda)^{-1} \| \to \infty, \quad n \to \infty \), i.e. \((A_n - \lambda)^{-1} \) converges to a noninvertible operator. Hence it is a contradiction.

(3) \(\Rightarrow \) (1) Suppose that \(\bigcap_{n=1}^{\infty} \sigma_a(A_n; A) \subset \lim \inf \sigma(A_n) \). Let \(\lambda \in \sigma(A) \). Then \(\lambda \in \sigma_a(A_n; A) \) for every \(n \in \mathbb{N} \) [3], i.e.

\[\lambda \in \bigcap_{n=1}^{\infty} \sigma_a(A_n; A) \subset \lim \inf \sigma(A_n). \]

Hence we have \(\sigma(A) \subset \lim \inf \sigma(A_n) \).

Now, since \(\sigma \) is always upper semi-continuous [5, Theorem 1], it follows
\[\lim \sigma(A_n) = \sigma(A). \quad \Box \]

Next necessary and sufficient conditions for the continuity of spectrum by means of \(\alpha \)-paraspectrum is an easy consequence of the previous theorem.

Corollary 2. Let \(A \in B(X) \). Then the spectrum is continuous at \(A \) if and only if for every sequence \(\{ A_n \} \) such that \(A_n \to A \) one of the following equivalent conditions is satisfied:

1. \(\bigcap_{n=1}^{\infty} \sigma_a(A_n; A) \subset \lim \inf \sigma(A_n); \)
2. \(\bigcap_{n=1}^{\infty} \sigma_a(A_n; A) \subset \lim \inf \sigma(A_n). \)

Theorem 3. If for \(A, B \in B(X) \) is \(\sigma_\gamma(A; B) = \sigma_a(A; B) \), then the spectral variation inequality (1.1) holds for \(A \) and \(B \).

Proof. Let \(\sigma_\gamma(A; B) = \sigma_a(A; B) \). Since
\[d_1(\sigma(A), \sigma(B)) = \sup_{\lambda \in \sigma(B) \mu \in \sigma(B)} \inf |\lambda - \mu| \]
and \(\sigma(B) \subset \sigma_a(A; B) = \sigma_\gamma(A; B) \) we have that
\[d_1(\sigma(A), \sigma(B)) \leq ||A - B||, \quad \text{for every} \quad \lambda \in \sigma(B), \]
we have that the spectral variation inequality (1.1) holds for \(A \) and \(B \). \(\Box \)
Corollary 4. If for $A \in B(X)$ $\sigma_n(B;A) = \sigma_n(B;A)$ holds that for every $B \in B(X)$, then
the spectrum is continuous at A.

Proof. Let $\{A_n\}$ be a sequence in $B(X)$ such that $A_n \to A$. Since $d_1(\sigma(A_n),\sigma(A)) = d_2(\sigma(A),\sigma(A_n))$, Theorem 3 implies

$$d_2(\sigma(A),\sigma(A_n)) \leq ||A - A_n|| \to 0,$$

i.e. the spectrum is lower semi-continuous at A. Then it follows from [5, Theorem 1] that the spectrum is continuous at A. \qed

Remark. Recall that $\sigma_n(A;B) = \sigma_n(A;B)$ for every $A \in B(X)$ is not a necessary condition for the continuity of the spectrum at B. An example can be constructed by using [3, Example 4 (1)].

Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ be the matrix acting on a two-dimensional Hilbert space and $B = 2A^*A^*$. Then by [3, Example 4] it follows $\sigma_n(A;B) \neq \sigma_n(A;B)$. Since $\sigma(B)$ is totally disconnected, the spectrum is continuous at B by [5, Theorem 3]. \[\square\]

It is well-known that the spectrum is a continuous function on the set of G_1-operators [3,4]. Now we can get it as an easy consequence of Theorem 3 and Corollary 4.

Corollary 5. If $A_n \in B(X)$ are G_1-operators and $A_n \to A$, then $\lim_n \sigma(A_n) = \sigma(A)$.

Proof. By [3, Theorem 3] we have $\sigma_n(A_n;A) = \sigma_n(A_n;A)$ for every $n \in \mathbb{N}$ and by Corollary 4 we have $\lim_n \sigma(A_n) = \sigma(A)$. \[\square\]

Acknowledgement. The author is grateful to the referee for helpful suggestions concerning the original version of the paper.

References

University of Niš, Faculty of Science, Department of Mathematics
Čirila i Metodija 2, 18000 Niš, Yugoslavia
E-mail: slavd@ptt.yu
slavd@pmf.pmf.ni.ac.yu