ESTIMATES FOR MODULI OF COEFFICIENTS OF POSITIVE TRIGONOMETRIC POLYNOMIALS

Dedicated to Professor Tsuyoshi Ando on his seventieth birthday

TAKATERU OKAYASU AND YASUNORI UETA

Received April 20, 2001; revised December 17, 2001

ABSTRACT. Suppose that a trigonometric polynomial

$$
\tau(e^{i\theta}) = \sum_{k=-N+1}^{N-1} \alpha_k e^{i k \theta}, \quad \theta \in [0, 2\pi],
$$

is positive, \(\alpha_{N-1} \neq 0\), \(N \geq 2\). Then a classical matter due to Fejér asserts that the estimate

$$
|\alpha_1| \leq \alpha_0 \cos \frac{\pi}{N+1}
$$

for the modulus \(|\alpha_1|\) of \(\alpha_1\) holds and that the equality occurs only for the polynomial

$$
\alpha_0 \tau_N(e^{i(\theta-\varphi)}),
$$

where

$$
\tau_N(e^{i\theta}) = \frac{2}{N+1} \sum_{k=0}^{N-1} \left(\sin \left(\frac{(k+1)\pi}{N+1} \right) \right) e^{i k \theta}, \quad \theta \in [0, 2\pi],
$$

and \(\varphi \in [0, 2\pi)\). In this paper, we will show that the corresponding estimate

$$
|\alpha_n| \leq \alpha_0 \cos \frac{\pi}{\lfloor N/n \rfloor + 1}
$$

for the modulus \(|\alpha_n|\) of \(\alpha_n\) is true, \(1 \leq n \leq N-1\), \(\lfloor N/n \rfloor\) the minimum integer not smaller than \(N/n\), and that the equality for \(n = n_0\) occurs only for the polynomial \(\tau\) of the form

$$
\tau(e^{i\theta}) = \sigma(e^{i\theta})\tau_{N/n_0}(e^{i(n_0\theta-\varphi)}), \quad \theta \in [0, 2\pi],
$$

where \(\sigma\) is a positive trigonometric polynomial and \(\varphi \in [0, 2\pi)\).

1. Introduction.

Let \(S_N\), where \(N \geq 2\), be the \(N \times N\) shift matrix, i.e.,

$$
S_N = \begin{pmatrix}
0 & 1 & 0 \\
1 & \ddots & 1 \\
0 & \ddots & 1 \\
1 & & 1
\end{pmatrix}.
$$

2000 Mathematics Subject Classification. Primary 47A12; Secondary 42A32, 15A60.

Key words and phrases. Positive trigonometric polynomial, numerical radius, shift matrix.
Then it is known by Davidson and Holbrook [1], Corollary 2, that for n with $1 \leq n \leq N - 1$, $\lfloor N/n \rfloor$ denoting the minimum integer not smaller than N/n (which in fact is $\lfloor (N - 1)/n \rfloor + 1$), the numerical radius

$$w((S_N)^n) = \sup_{\|\zeta\| = 1} |(S_N^n)^n \zeta, \zeta|$$

of the power $(S_N)^n$ of S_N coincides with $\cos \left(\frac{\pi}{\lfloor N/n \rfloor + 1} \right)$. But, in the case when $n = 1$, Haagerup and de la Harpe [3], Proposition 1 (and T. Yoshino [5], Lemmas 6 and 7, p.134, also) proves that, given a unit vector $\zeta \in C^N$, the equality

$$\langle S_N \zeta, \zeta \rangle = \cos \left(\frac{\pi}{N + 1} \right)$$

holds if and only if

$$\zeta = e^{i\varphi} \zeta_1 \quad \text{for some} \quad \varphi \in [0, 2\pi),$$

where ζ_1 is the vector in C^N of which mth coordinate is

$$\left(\frac{2}{N + 1} \right)^{1/2} \sin \frac{m\pi}{N + 1}, \quad 1 \leq m \leq N.$$

Haagerup and de la Harpe observed further that this serves to lead us to the classical matter due to Fejér ([2]; [4], 8.4) which asserts that if a trigonometric polynomial

$$\tau(e^{i\theta}) = \sum_{k=-N+1}^{N-1} \alpha_k e^{ik\theta}, \quad \theta \in [0, 2\pi),$$

is positive, namely

$$\tau(e^{i\theta}) \geq 0 \quad \text{for any} \quad \theta \in [0, 2\pi),$$

and not identically zero (or equivalently $\alpha_0 > 0$) with $\alpha_{N-1} \neq 0$, then one has the estimate

$$|\alpha_1| \leq \alpha_0 \cos \frac{\pi}{N + 1}$$

for the modulus of α_1, and the equality occurs only for the polynomial $\alpha_0 \tau_N(e^{i(\theta-\varphi)})$, where

$$\tau_N(e^{i\theta}) = \frac{2}{N + 1} \sum_{k=0}^{N-1} \left(\sin \frac{(k + 1)\pi}{N + 1} \right) e^{ik\theta}, \quad \theta \in [0, 2\pi).$$

It is easy for us to give the corresponding estimates for the moduli $|\alpha_n|$ of the nth coefficients α_n of τ, $-N + 1 \leq n \leq N - 1$ (but for the case $n = 0$ we give an appropriate understanding). In fact, By the Fejér-Riesz theorem (See [2], [4]), there exists a polynomial

$$\sigma(e^{i\theta}) = \sum_{k=0}^{N-1} \gamma_k e^{ik\theta}$$

such that

$$\tau(e^{i\theta}) = |\sigma(e^{i\theta})|^2 = \sum_{k,l=0}^{N-1} \gamma_k \gamma_l e^{i(k-l)\theta}.$$
(So it is immediate that $\alpha_{-n} = \bar{\alpha}_n$, $-N + 1 \leq n \leq N - 1$). Let ζ be the vector in C^N of which kth coordinate are γ_{k-1}, $1 \leq k \leq N$. Then we have

$$\alpha_0 = ||\zeta||^2 \quad \text{and} \quad \alpha_n = \langle (S_N)^n \zeta, \zeta \rangle, \quad 1 \leq n \leq N - 1.$$

Therefore, by [1], Corollary 2, it actually follows that

$$|\alpha_n| = ||\zeta||^2 \left| \left(\frac{(S_N)^n \zeta}{\| \zeta \|} \right) \right| \leq \alpha_0 \cos \frac{\pi}{|N/n| + 1}.$$

We will devote ourselves in the following two sections to determining the polynomial τ for which the equality

$$|\alpha_n| = \alpha_0 \cos \frac{\pi}{|N/n| + 1}, \quad 1 \leq n \leq N - 1,$$

occurs. In the last section, an application will be given to positive "operator-valued" trigonometric polynomials.

2. Unit vectors which attain the numerical radius of $(S_N)^n$.

For the sake of convenience, we identify, through the canonical manner, the space C^N with a subspace of the space $C^{[N/n]} \otimes C^n$, and accordingly the power $(S_N)^n$ of S_N with the operator $P_n(S_{[N/n]} \otimes I_n)\{C^N\}$ which restricts the operator $P_n(S_{[N/n]} \otimes I_n)$ on C^N, I_n the $n \times n$ unit matrix, P_n the orthogonal projection from $C^{[N/n]} \otimes C^n$ onto C^N.

Let $\xi_k \in C^{[N/n]}$ be the unit vector of which mth coordinate is

$$\left(\sum_{\nu=1}^{[N/n]} \sin^2 \frac{k \nu \pi}{|N/n| + 1} \right)^{-1/2} \sin \frac{k m \pi}{|N/n| + 1}, \quad 1 \leq m \leq [N/n],$$

and $\iota_l \in C^n$ the unit vector of which lth coordinate is 1 and others 0. Then the vectors $\xi_k \otimes \iota_l$, $1 \leq k \leq [N/n]$, $1 \leq l \leq n$, make an orthonormal basis for $C^{[N/n]} \otimes C^n$.

Lemma 1 Let $1 \leq n \leq N - 1$, and let $\zeta \in C^N$ be a unit vector. Then

$$\langle (S_N)^n \zeta, \zeta \rangle = \cos \frac{\pi}{|N/n| + 1}$$

occurs if and only if $\zeta \in C^N$ is of the form

$$\zeta = P_n(\xi_1 \otimes \eta),$$

where $\eta = \sum_{l=1}^{r} \beta_l \iota_l$ with $\sum_{l=1}^{r} |\beta_l|^2 = 1$, $r = N - ([N/n] - 1) n$.

Proof. First assume that n divides N, that $\zeta \in C^N$ is a unit vector and that

$$\langle (S_N)^n \zeta, \zeta \rangle = \cos \frac{\pi}{N/n + 1}.$$
Put
\[\zeta = \sum_{1 \leq k \leq N/n, \ 1 \leq t \leq n} \beta_{k,t} \xi_k \otimes \iota_t, \quad \text{with} \quad \sum_{1 \leq k \leq N/n, \ 1 \leq t \leq n} |\beta_{k,t}|^2 = 1. \]

Then, since
\[\text{Re}(S_{N/n})\xi_k = \left(\cos \frac{k\pi}{N/n + 1} \right) \xi_k, \ 1 \leq k \leq N/n, \]
we have
\[
\cos \frac{\pi}{N/n + 1} = \langle (S_{N/n} \otimes I_n)\zeta, \zeta \rangle = \sum_{k_l \leq t_l,} \beta_{k,t} \beta_{k',t'} \left(\text{Re}(S_{N/n})\xi_k, \xi_{k'} \right) \langle \iota_t, \iota_{t'} \rangle \\
= \sum_{k_l \leq t_l,} \beta_{k,t} \beta_{k',t'} \left(\cos \frac{k\pi}{N/n + 1} \right) \xi_k, \xi_{k'} \langle \iota_t, \iota_{t'} \rangle \\
= \sum_{k_l \leq t_l,} |\beta_{k,t}|^2 \cos \frac{k\pi}{N/n + 1}.
\]

This shows that \(\beta_{k,t} = 0 \) for \(k \geq 2 \). So, putting \(\beta_t = \beta_{1,t} \), we have
\[\eta = \sum_{t=1}^n \beta_{1,t} \quad \text{and} \quad \sum_{t=1}^n |\beta_t|^2 = 1. \]

Next assume that \(n \) does not divide \(N \), and that a unit vector \(\zeta \in C^N \) satisfies
\[\langle (S_N)^n \zeta, \zeta \rangle = \cos \frac{\pi}{N/n} \]
Then we have \(\langle (S_{N/n})^n \otimes I_n)\zeta, \zeta \rangle = \cos \frac{\pi}{N/n + 1} \). It follows that \(\zeta \) is of the form
\[\zeta = \xi_1 \otimes \sum_{t=1}^n \beta_{1,t} \]
with \(\sum_{t=1}^n |\beta_t|^2 = 1 \). But one has \(\beta_t = 0 \) if \(l > r \), since \(\zeta \) is in \(C^N \).

3. Positive polynomial for which the modulus of \(\alpha_n \) attains the bound.

Now we will show the aimed theorem in this paper:

Theorem 2 Suppose that a trigonometric polynomial
\[\tau(e^{i\theta}) = \sum_{k=-N+1}^{N-1} \alpha_k e^{ik\theta}, \quad \theta \in [0, 2\pi), \]
is positive and such that $\alpha_{N-1} \neq 0$, $N \geq 2$. If $1 \leq n_0 \leq N - 1$, and the equality

$$|\alpha_{n_0}| = \alpha_0 \cos \frac{\pi}{[N/n_0] + 1}$$

holds, then τ is of the form

$$\tau(e^{i\theta}) = \sigma(e^{i\theta})\tau_{[N/n_0]}(e^{in_0(\theta - \varphi)}), \quad \theta \in [0, 2\pi),$$

where σ is a positive trigonometric polynomial of degree $\tau_0 - 1$, $\tau_0 = N - ([N/n_0] - 1)n_0$, $\tau_{[N/n_0]}$ the trigonometric polynomial already introduced and $\varphi \in [0, 2\pi)$. Moreover, for any $n \neq n_0$, $1 \leq n \leq N - 1$, one has

$$|\alpha_n| < \alpha_0 \cos \frac{\pi}{[N/n] + 1}$$

Conversely, for the polynomial $\sigma(e^{i\theta})\tau_{[N/n_0]}(e^{in_0(\theta - \varphi)})$, the modulus $|\alpha_{n_0}|$ of α_{n_0} is equal to $\alpha_0 \cos \frac{\pi}{[N/n_0] + 1}$.

Proof. By the Fejér-Riesz theorem one has a polynomial

$$\sigma(e^{i\theta}) = \sum_{k=0}^{N-1} \gamma_k e^{ik\theta}$$

such that

$$\tau(e^{i\theta}) = |\sigma(e^{i\theta})|^2 = \sum_{k,l=0}^{N-1} \gamma_k \gamma_l e^{i(k-l)\theta}.$$

Assume that the equality

$$|\alpha_{n_0}| = \alpha_0 \cos \frac{\pi}{[N/n_0] + 1}$$

holds for $n_0, 1 \leq n_0 \leq N - 1$.

First we let $\alpha_0 = 1$ and $\alpha_{n_0} \geq 0$. The vector ζ of which kth coordinate is γ_{k-1} ($1 \leq k \leq N$) achieves the numerical radius $\nu((S_N)^{n_0})$ of the matrix $(S_N)^{n_0}$, so, by Lemma 1, ζ is of the form

$$\zeta = P_{n_0} \left(\xi_1 \oplus \sum_{l=1}^{n_0} \beta_l \iota_l \right), \quad \sum_{l=1}^{n_0} |\beta_l|^2 = 1,$$

where P_{n_0} is the orthogonal projection from $C^{[N/n_0]} \otimes C^{n_0}$ onto C^N, ξ_1 the unit vector in $C^{[N/n_0]}$ of which kth coordinate is

$$\left(\frac{2}{[N/n_0] + 1} \right)^{1/2} \sin \frac{k\pi}{[N/n_0] + 1}, \quad 1 \leq k \leq [N/n_0],$$

ι_l the unit vector in C^{n_0} of which lth coordinate is 1 and others 0, $1 \leq l \leq n_0$. Then we have

$$\gamma_k = \beta_l \left(\frac{2}{[N/n_0] + 1} \right)^{1/2} \sin \frac{(j + 1)\pi}{[N/n_0] + 1}$$
if \(k = l + n_0j - 1, \ 1 \leq l \leq r_0, \ 0 \leq j \leq \lceil N/n_0 \rceil - 1, \) and \(\gamma_k = 0 \) otherwise. Therefore, we have

\[
\tau(e^{i\theta}) = \left| \sum_{k=0}^{N-1} \gamma_k e^{ik\theta} \right|^2
\]

\[
= 2 \left(\frac{1}{n_0} \sum_{j=0}^{\lceil N/n_0 \rceil - 1} \sum_{l=1}^{r_0} \beta_l \sin \left(\frac{(j + 1)\pi}{n_0} \right) e^{i(l-1+n_0j)\theta} \right)^2
\]

\[
= \left(\sum_{l=1}^{r_0} \beta_l e^{i(l-1)\theta} \right)^2 \left(\frac{2}{n_0} \sum_{j=1}^{\lceil N/n_0 \rceil - 1} \sin \left(\frac{(j + 1)\pi}{n_0} \right) e^{in_0j\theta} \right)^2,
\]

and \(\beta_{r_0} \neq 0. \) Therefore, putting

\[
\sigma(e^{i\theta}) = \left| \sum_{l=1}^{r_0} \beta_l e^{i(l-1)\theta} \right|^2, \quad \theta \in [0, 2\pi),
\]

which in fact is positive, we have

\[
\tau(e^{i\theta}) = \sigma(e^{i\theta}) \tau_{\lceil N/n_0 \rceil}(e^{in_0\theta}), \quad \theta \in [0, 2\pi).
\]

Assume that

\[
|\alpha_{n_1}| = \cos \frac{\pi}{n_1 + 1}
\]

holds for \(n_1, 1 \leq n_1 \leq N - 1. \) Then \(\zeta \) is of the form

\[
\zeta = \Pi_{n_1}^\perp (\xi_1^1 \otimes \sum_{l=1}^{r_1} \beta_l^l),
\]

where \(\Pi_{n_1}^\perp \) the projection from \(C^{[N/n_1]} \circ C^{m_1} \) onto \(C^N, \) \(\xi_1^1 \) the vector in \(C^{[N/n_1]} \) of which \(k \)th coordinate is

\[
e^{i\psi_k} \left(\frac{2}{[N/n_1] + 1} \right)^{1/2} \sin \frac{k\pi}{[N/n_1] + 1}, \quad \psi_k \in [0, 2\pi), \ 1 \leq k \leq \lceil N/n_1 \rceil,
\]

\(\xi_1^l \) the vector in \(C^{n_1} \) of which \(l \)th coordinate is 1 and others 0 and \(r_1 = N - (\lceil N/n_1 \rceil - 1) n_1. \)

Therefore, we have

\[
\Pi_{n_1}^\perp (\xi_1^1 \otimes \sum_{l=1}^{r_1} \beta_l^l) = \Pi_{n_1}^\perp (\xi_1^1 \otimes \sum_{l=1}^{r_0} \beta_l^l).
\]

But it occurs only when \(r_1 = r_0 \) and \(n_1 = n_0. \)

Now we turn to the general case. We apply the foregoing argument to the positive trigonometric polynomial

\[
\tau(e^{i\theta}) = \tau(e^{i(\theta - \varphi)})/\alpha_0, \quad \theta \in [0, 2\pi),
\]

\(\varphi = \arg \alpha_{n_0}/n_0. \) Then we have the desired conclusion.

Conversely, let

\[
\tau(e^{i\theta}) = \sigma(e^{i\theta}) \tau_{\lceil N/n_0 \rceil}(e^{in_0(\theta - \varphi)}), \quad \theta \in [0, 2\pi),
\]
where σ is a positive trigonometric polynomial, then we can easily have the equality
\[|\alpha_{n_0}| = \alpha_0 \cos \frac{\pi}{|N/n_0| + 1}. \]

QED

4. An application to operator-valued trigonometric polynomials.

Theorem 2 yields the estimates for numerical radii of operators which are coefficients of positive operator-valued trigonometric polynomials:

Corollary 3 Let A_k be bounded operators on a Hilbert space H, $-N+1 \leq k \leq N-1$, $N \geq 2$. Suppose that
\[\tau(e^{i\theta}) = \sum_{k=-N+1}^{N-1} A_k e^{ik\theta} \geq O \]
for any $\theta \in [0,2\pi)$. Then, $A_0 \geq O$ and one has
\[\nu(A_n) \leq \|A_0\| \cos \frac{\pi}{|N/n| + 1}, \quad 1 \leq n \leq N-1. \]

Proof. Let $\zeta \in H$ and $||\zeta|| = 1$. Then
\[\tau(\zeta e^{i\theta}) = \sum_{k=-N+1}^{N-1} \langle A_k \zeta, \zeta \rangle e^{ik\theta}, \quad \theta \in [0,2\pi), \]
is a positive trigonometric polynomial. So it follows that $A_0 \geq O$. If $\langle A_0 \zeta, \zeta \rangle > 0$, then we know that the inequality
\[|\langle A_n \zeta, \zeta \rangle| \leq \langle A_0 \zeta, \zeta \rangle \cos \frac{\pi}{|N/n| + 1} \]
holds. If $\langle A_0 \zeta, \zeta \rangle = 0$, then we have $\langle A_n \zeta, \zeta \rangle = 0$, $1 \leq n \leq N-1$, and so, we know that the above inequality turns out to be trivial. Hence we have
\[\nu(A_n) \leq \|A_0\| \cos \frac{\pi}{|N/n| + 1}. \]

QED

References

Takateru Okayasu and Yasunori Ueta
Department of Mathematical Sciences
Faculty of Science
Yamagata University
Yamagata 980-8560, Japan