FUZZIFICATIONS OF a-\mathcal{I}-IDEALS IN IS-ALGEBRAS

YOUNG BAE JUN AND EUN HWAN ROH

Received August 7, 2001

Abstract. The fuzzification of a-\mathcal{I}-ideals in IS-algebras is considered. Relations between fuzzy p-\mathcal{I}-ideals and fuzzy a-\mathcal{I}-ideals are stated. Characterizations of fuzzy a-\mathcal{I}-ideals are given. Extension property for fuzzy a-\mathcal{I}-ideal is established.

1. Introduction

The notion of BCK-algebras was proposed by Y. Imai and K. Iséki in 1966. In the same year, K. Iséki [2] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. In 1993, Y. B. Jun et al. [5] introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup/BCI-monoid/BCI-group. In 1998, for the convenience of study, Y. B. Jun et al. [8] renamed the BCI-semigroup (resp. BCI-monoid and BCI-group) as the IS-algebra (resp. IM-algebra and IG-algebra) and studied further properties of these algebras (see [7] and [8]). In [9], E. H. Roh et al. introduced the concept of a p-\mathcal{I}-ideal in an IS-algebra, and gave necessary and sufficient conditions for an \mathcal{I}-ideal to be a p-\mathcal{I}-ideal, and also stated a characterization of PS-algebras by p-\mathcal{I}-ideals. Y. B. Jun and E. H. Roh [6] considered the fuzzification of a p-\mathcal{I}-ideal in an IS-algebra, and investigated some of their properties. E. H. Roh et al. [10] discussed the notion of a-\mathcal{I}-ideals in IS-algebras. In this paper, we consider the fuzzification of a-\mathcal{I}-ideals in IS-algebras. We give relations between fuzzy p-\mathcal{I}-ideals and fuzzy a-\mathcal{I}-ideals. We state characterizations of fuzzy a-\mathcal{I}-ideals. We finally establish the extension property for fuzzy a-\mathcal{I}-ideals.

2. Preliminaries

By a BCI-algebra we mean an algebra $(X, \ast, 0)$ of type $(2,0)$ satisfying the following conditions:

- $(x \ast y) \ast (x \ast z) = 0$,
- $(x \ast (x \ast y)) \ast y = 0$,
- $x \ast x = 0$,
- $x \ast y = 0$ and $y \ast x = 0$ imply $x = y$

for all $x, y, z \in X$. A BCI-algebra X satisfying $0 \leq x$ for all $x \in X$ is called a BCK-algebra. In any BCK/BCI-algebra X one can define a partial order "\leq" by putting $x \leq y$ if and only if $x \ast y = 0$.

A BCI-algebra X has the following properties:

(P1) $x \ast 0 = x$,
(P2) $(x \ast y) \ast z = (x \ast z) \ast y$.

\textbf{2000 Mathematics Subject Classification:} 06F35, 03G25, 08A72.

\textbf{Key words and phrases:} (fuzzy) \mathcal{I}-ideal, (fuzzy) p-\mathcal{I}-ideal, (fuzzy) a-\mathcal{I}-ideal.

The first author was supported by Korea Research Foundation Grant (KRF-99-005-D00003).
(P3) \((x \ast z) \ast (y \ast z) \leq x \ast y\)
for all \(x, y, z \in X\). A nonempty subset \(I\) of a BCK/BCI-algebra \(X\) is called an ideal of \(X\) if it satisfies
(i) \(0 \in I\),
(ii) \(x \ast y \in I\) and \(y \in I\) imply \(x \in I\) for all \(x, y \in X\).

Definition 2.1. (Jun et al. [8]) An IS-algebra is a non-empty set \(X\) with two binary operations “\(*\)” and “\(\cdot\)”, and constant 0 satisfying the axioms

- \(I(X) := (X, *, 0)\) is a BCI-algebra.
- \(S(X) := (X, \cdot)\) is a semigroup.
- The operation “\(\cdot\)” is distributive (on both sides) over the operation “\(*\)”, that is,
 \[x \cdot (y \ast z) = (x \cdot y) \ast (x \cdot z) \quad \text{and} \quad (x \ast y) \cdot z = (x \cdot z) \ast (y \cdot z), \quad \forall x, y, z \in X.\]

Example 2.2. Let \(X = \{0, a, b, c\}\) be a set with the following Cayley tables:

<table>
<thead>
<tr>
<th>(\ast)</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\cdot)</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
</tbody>
</table>

Then \(X\) is an IS-algebra (see [8]).

Definition 2.3. [1, Definition 2.3] A nonempty subset \(A\) of an IS-algebra \(X\) is said to be left (resp. right) stable if \(x \cdot a \in A\) (resp. \(a \cdot x \in A\)) whenever \(x \in S(X)\) and \(a \in A\).

In what follows, the terminology “stable” means “left stable”, and let \(X\) denote an IS-algebra unless otherwise specified.

Definition 2.4. [8, Definition 3] A nonempty subset \(A\) of \(X\) is called an \(I\)-ideal of \(X\) if it satisfies
(i) \(A\) is a stable subset of \(S(X)\),
(ii) for any \(x, y \in I(X), x \ast y \in A\) and \(y \in A\) imply that \(x \in A\).

Definition 2.5. [9, Definition 3.1] A nonempty subset \(A\) of \(X\) is called a \(p \& I\)-ideal of \(X\) if it satisfies
(i) \(A\) is a stable subset of \(S(X)\),
(ii) for any \(x, y, z \in I(X), (x \ast z) \ast (y \ast z) \in A\) and \(y \in A\) imply that \(x \in A\).

We place a bar over a symbol to denote a fuzzy set so \(\bar{p}, \bar{A}, \bar{X}, \cdots\) all represent fuzzy set in a set.

Definition 2.6. [3, Definition 4] A fuzzy set \(\bar{A}\) in \(X\) is called a fuzzy \(I\)-ideal of \(X\) if it satisfies
(i) \(\bar{A}\) is a fuzzy ideal of a \(BCI\)-algebra \(X\),
(ii) \(\bar{A}(x) \geq \bar{A}(y) \quad \forall x, y \in X.\)

Definition 2.7. [6, Definition 3.2] A fuzzy set \(\bar{A}\) in \(X\) is called a fuzzy \(p \& I\)-ideal of \(X\) if it satisfies
(i) \(\bar{A}\) is a fuzzy stable set in \(S(X)\),
(ii) \(\bar{A}(x) \geq \min\{\bar{A}((x \ast z) \ast (y \ast z)), \bar{A}(y)\} \quad \forall x, y, z \in X.\)
Note that every fuzzy p-\mathcal{I}-ideal is a fuzzy \mathcal{I}-ideal, but the converse is not true (see [6, Theorem 3.4 and Example 3.5]).

3. Fuzzy a-\mathcal{I}-ideals

Definition 3.1. [10, Definition 3.1] A non-empty subset A of an \textbf{IS}-algebra X is called an a-\mathcal{I}-ideal of X if it satisfies

(i) A is a stable subset of $S(X)$,
(ii) for any $x, y, z \in I(X)$, $(x \ast z) \ast (0 \ast y) \in A$ and $z \in A$ imply that $y \ast x \in A$.

Definition 3.2. A fuzzy set \tilde{A} in X is called a fuzzy a-\mathcal{I}-ideal of X if it satisfies

(i) \tilde{A} is a fuzzy stable set in $S(X)$,
(ii) $\tilde{A}(y \ast x) \geq \min \left\{ \tilde{A}((x \ast z) \ast (0 \ast y)), \tilde{A}(z) \right\}$ $\forall x, y, z \in I(X)$.

Example 3.3. Let $X = \{0, a, b, c\}$ be a set with the following Cayley tables:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>a</td>
<td>c</td>
<td>0</td>
</tr>
</tbody>
</table>

Then X is an \textbf{IS}-algebra (see [8]). We can easily check that a fuzzy set \tilde{A} in X given by $\tilde{A}(0) = \tilde{A}(a) = 0.6$ and $\tilde{A}(b) = \tilde{A}(c) = 0.2$ is a fuzzy a-\mathcal{I}-ideal of X.

Proposition 3.4. If \tilde{A} is a fuzzy a-\mathcal{I}-ideal of X, then $\tilde{A}(0 \ast x) \geq \tilde{A}(x) \geq \tilde{A}(0 \ast (0 \ast x))$ for all $x \in X$.

Proof. Since \tilde{A} is fuzzy stable, it follows that $\tilde{A}(0) = \tilde{A}(0x) \geq \tilde{A}(x)$ for all $x \in X$. Taking $z = y = 0$ in Definition 3.2(ii), we have

$$\tilde{A}(0 \ast x) \geq \min \left\{ \tilde{A}((x \ast z) \ast (0 \ast 0)), \tilde{A}(0) \right\} \tilde{A}(x)$$

for all $x \in X$. Now putting $y = x$ and $x = z = 0$ in Definition 3.2(ii), we have

$$\tilde{A}(x) \geq \min \left\{ \tilde{A}((0 \ast 0) \ast (0 \ast x)), \tilde{A}(0) \right\} \tilde{A}(0 \ast (0 \ast x))$$

for all $x \in X$. \hfill \Box

Theorem 3.5. Every fuzzy a-\mathcal{I}-ideal is a fuzzy \mathcal{I}-ideal.

Proof. Let \tilde{A} be a fuzzy a-\mathcal{I}-ideal of X. Taking $y = 0$ in Definition 3.2(ii) and using Proposition 3.4, we get

$$\tilde{A}(x) \geq \tilde{A}(0 \ast (0 \ast x)) \geq \tilde{A}(0 \ast x) \geq \min \left\{ \tilde{A}((x \ast z) \ast (0 \ast 0)), \tilde{A}(z) \right\} = \min \left\{ \tilde{A}(x \ast z), \tilde{A}(z) \right\}.$$

for all $x, z \in X$. Hence \tilde{A} is a fuzzy \mathcal{I}-ideal of X. \hfill \Box

The following example shows that the converse of Theorem 3.5 may not be true.
Example 3.6. Let X be an IS-algebra in Example 3.3 and let $	ilde{B}$ be a fuzzy set in X defined by $\tilde{B}(0) = \tilde{B}(b) = 0.8$ and $\tilde{B}(a) = \tilde{B}(c) = 0.5$. Then \tilde{B} is a fuzzy \mathcal{I}-ideal of X, but it is not a fuzzy $a\&\mathcal{I}$-ideal of X since
\[
\tilde{B}(a * b) = 0.5 < 0.8 = \min \left\{ \tilde{B} \left((b * b) * (0 * a) \right), \tilde{B}(b) \right\}.
\]

We provide conditions for a fuzzy \mathcal{I}-ideal to be a fuzzy $a\&\mathcal{I}$-ideal.

Theorem 3.7. Let \tilde{A} be a fuzzy \mathcal{I}-ideal of X. Then the following are equivalent.

(i) \tilde{A} is a fuzzy $a\&\mathcal{I}$-ideal of X.

(ii) $\tilde{A} \left(y * (x * z) \right) \geq \tilde{A} \left((x * z) * (0 * y) \right)$, $\forall x, y, z \in I(X)$,

(iii) $\tilde{A} \left(y * x \right) \geq \tilde{A} \left(x * (0 * y) \right)$, $\forall x, y \in I(X)$.

Proof. Assume that \tilde{A} is a fuzzy $a\&\mathcal{I}$-ideal of X. For every $x, y, z \in I(X)$, we have
\[
\tilde{A} \left(y * (x * z) \right) \geq \min \left\{ \tilde{A} \left(((x * z) * (x * z)) * (0 * y) \right), \tilde{A} \left((x * z) * (0 * y) \right) \right\}
= \min \left\{ \tilde{A} \left(((x * z) * (0 * y)) * (x * z) \right), \tilde{A} \left((x * z) * (0 * y) \right) \right\}
= \min \left\{ \tilde{A}(0), \tilde{A} \left((x * z) * (0 * y) \right) \right\}
= \tilde{A} \left((x * z) * (0 * y) \right).
\]

(iii) is by taking $z = 0$ in (ii) and using (P1). Suppose that (iii) holds. Note that
\[
(x * (0 * y)) * (x * z) \leq x * (x * z) \leq z
\]
for all $x, y, z \in I(X)$. Since \tilde{A} is order reversing, it follows that
\[
\tilde{A} \left(x * (0 * y) \right) * (x * z) \geq (x * z) * (0 * y)
\]
Hence
\[
\tilde{A} \left(y * x \right) \geq \tilde{A} \left(x * (0 * y) \right)
\geq \min \left\{ \tilde{A} \left(x * (0 * y) \right) * (x * z), \tilde{A} \left((x * z) * (0 * y) \right) \right\}
= \min \left\{ \tilde{A} \left(x * (0 * y) \right), \tilde{A} \left((x * z) * (0 * y) \right) \right\},
\]
and so \tilde{A} is a fuzzy $a\&\mathcal{I}$-ideal of X. \qed

Lemma 3.8. [6, Theorem 3.9] Let \tilde{A} be a fuzzy \mathcal{I}-ideal of X. Then \tilde{A} is a fuzzy $p\&\mathcal{I}$-ideal of X if and only if it satisfies
\[
\tilde{A}(x) \geq \tilde{A}(0 * (0 * x)), \forall x \in I(X).
\]

Combining Proposition 3.4 and Lemma 3.8, we have the following theorem.

Theorem 3.9. Every fuzzy $a\&\mathcal{I}$-ideal is a fuzzy $p\&\mathcal{I}$-ideal.
The converse of Theorem 3.9 is false, as is shown in the following example.

Example 3.10. Let X be an IS-algebra in Example 2.2 and let \tilde{A} be a fuzzy set in X defined by $\tilde{A}(0) = \tilde{A}(a) = 0.7$ and $\tilde{A}(b) = \tilde{A}(c) = 0.5$. Then \tilde{A} is a fuzzy p-ideal of X, but it is not a fuzzy a-ideal of X because

$$\tilde{A}(b * c) = 0.5 < 0.7 = \min \left\{ \tilde{A}(c * a * (0 * b)), \tilde{A}(a) \right\}.$$

Theorem 3.11. In an associative IS-algebra X, that is, the identity $(x * y) * z = x * (y * z)$ holds in X, every fuzzy I-ideal is a fuzzy a-ideal.

Proof. Let \tilde{A} be a fuzzy I-ideal of X. Note that

$$(y * x) * (x * (0 * y)) = (y * x) * (x * 0) * y = (y * x) * (x * y)$$

$$= (y * (x * y)) * x = (y * x) * y * x$$

$$= (y * y) * x = 0 * x = 0$$

for all $x, y \in X$. Hence

$$\tilde{A}(y * x) \geq \min \left\{ \tilde{A}(y * (x * (0 * y))), \tilde{A}(x * (0 * y)) \right\}$$

$$= \min \left\{ \tilde{A}(0), \tilde{A}(x * (0 * y)) \right\}$$

$$= \tilde{A}(x * (0 * y)).$$

It follows from Theorem 3.7 that \tilde{A} is a fuzzy a-ideal of X.

Theorem 3.12. (Extension property for fuzzy a-ideals) Let \tilde{A} and \tilde{B} be fuzzy I-ideal of X such that $\tilde{A}(0) = \tilde{B}(0)$ and $\tilde{A} \subseteq \tilde{B}$, that is, $\tilde{A}(x) \leq \tilde{B}(x)$ for all $x \in X$. If \tilde{A} is a fuzzy a-ideal of X, then so is \tilde{B}.

Proof. Let $x, y \in X$. Using Theorem 3.7(ii) and (P2), we have

$$\tilde{B}(y * (x * (0 * y))) \geq \tilde{A}(y * (x * (0 * y)))$$

$$\geq \tilde{A}(x * (0 * y)) * (0 * y)$$

$$= \tilde{A}(x * (0 * y)) * (x * (0 * y))$$

$$= \tilde{A}(0) = \tilde{B}(0).$$

Note that

$$\left((y * x) * (x * (0 * y)) \right) * (y * (x * (0 * y)))$$

$$\geq (y * (x * (0 * y))) * (x * (0 * y))$$

$$\geq x * (x * (0 * y)) * (0 * y)$$

$$= (x * (0 * y)) * (x * (0 * y)) = 0.$$
and so $\overline{B}\left((y \ast x) \ast (x \ast (0 \ast y))\right) \ast (y \ast (x \ast (0 \ast y))) \geq \overline{B}(0)$. It follows that

$$\overline{B}\left((y \ast x) \ast (x \ast (0 \ast y))\right)$$

$$\geq \min\left\{\overline{B}\left((y \ast x) \ast (x \ast (0 \ast y))\right) \ast (y \ast (x \ast (0 \ast y)))\right\}, \overline{B}\left(y \ast (x \ast (0 \ast y))\right)\}$$

$$\geq \min\left\{\overline{B}\left((y \ast x) \ast (x \ast (0 \ast y))\right) \ast (y \ast (x \ast (0 \ast y)))\right\}, \overline{B}(0)\right\}$$

$$= \overline{B}\left((y \ast x) \ast (x \ast (0 \ast y))\right) \ast (y \ast (x \ast (0 \ast y)))$$

$$\geq \overline{B}(0),$$

so that

$$\overline{B}(y \ast x) \geq \min\left\{\overline{B}\left((y \ast x) \ast (x \ast (0 \ast y))\right), \overline{B}\left(x \ast (0 \ast y)\right)\right\}$$

$$\geq \min\left\{\overline{B}(0), \overline{B}\left(x \ast (0 \ast y)\right)\right\}$$

$$= \overline{B}\left(x \ast (0 \ast y)\right).$$

Using Theorem 3.7, we know that \overline{B} is a fuzzy α-\mathcal{I}-ideal of X.

References

Y. B. Jun: Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea. \textit{E-mail: ybjun@nongae.gsnu.ac.kr}

E. H. Roh: Department of Mathematics Education, Chonju National University of Education, Chonju 660-756, Korea. \textit{E-mail: erhoh@us.chinju-e.ac.kr}