SOME RESULTS ON ALMOST BIIDEALS

YUAN-HONG LIN

Received February 20, 2001; revised May 1, 2001

Abstract. In this paper, we give some relations between biideals and almost biideals, and prove some properties on some special semigroups.

Definition 1 A nonempty subset T of a semigroup S is a subsemigroup of S if it is closed under the operation of S; i.e. if $a, b \in T$, then $ab \in T$.

Definition 2 A nonempty subset T of a semigroup S is a two-sided ideal (or simply a biideal or an ideal) if $x, y \in S, t \in T$ imply $xt, ty \in T$.

Definition 3 A nonempty subset T of a semigroup S is an almost biideal if for any $s \in S$, there exists $x, y \in T$ such that $xsy \in T$. It is clear that biideal are almost biideal.

Example 1. Let S be a cyclic group generated by a of order 4, e is the identity of S, $\{e, a\}$ is a almost biideal of S, but $\{e, a^2\}$ is not a subsemigroup of S, $\{e, a^2\}$ is a subsemigroup of S, but $\{e, a^2\}$ is not a almost biideal of S.

Definition 4 An element a of a semigroup S is regular if $a = axa$ for some $x \in S$. A semigroup S is regular if every element of S is regular. A nonempty subset I of a semigroup S is a regular set of S if every element of I is regular.

Definition 5 An element a of a semigroup S is quasi regular if $a^m = a^m x a^m$ for some positive integer m and some $x \in S$. A semigroup S is quasi regular if every element of S is quasi regular. A nonempty subset I of a semigroup S is a quasi regular set of S if every element of I is quasi regular.

Definition 6 An element A of a semigroup S is idempotent if $a^2 = a$. The set of all idempotent elements of semigroup S is denote by E.

Theorem 1 Let S be a quasi regular semigroup and $E = \{e\}$, then we have

1) for any $y \in S$, there exists some positive integer m and some $x \in S$ satisfy

\[xy^m = y^m x = e, y^m e = ey^m = y^m, ye = ey; \]

2) $Se = eS$ is a group.
Proof. By the definition 5, for any \(y \in S \), there exists some positive integer \(m \) and some \(x \in S \) satisfies \(y^m = y^m xy^m \), further we have \((y^m x)^2 = y^m x (xy^m)^2 = xy^m \). On the other hand, as \(E = \{ e \} \), so we have \(xy^m = y^m x = e \), moreover \(ey^m = y^m e = y^m ; ey = xy^my = \) \(xy^m e = xyy^m y^m x = xy^{2m+1} x, ye = yy^mx = y^mxy = ey^m yx = xyy^m yx = xy^{m+1} x \), therefore \(ey = ye \), and \(So = e S \).

For any \(u \in S e \), there exists \(s \in S \), satisfy \(u = se \). Therefore \(eu = ese = see = se^2 = se = u \), \(we = see = se^2 = se = u \), then \(e \) is the identity of \(S e \). On the other hand, there exists some positive integer \(n \) and some \(t \in S \) satisfies \(ts^n = s^n t = e, s^n e = es^n = s^n, se = es \).

Let \(v = s^{n-1} t e \). Thus \(uv = se s^{n-1} te = es s^{n-1} te = es^n te = ee e = e^2 e = ee = e^2 = e \). Similarly, we have \(vu = e \). So \(S e = e S \) is a group. \(\square \)

Corollary 1. \(S \) is a quasi regular semigroup and \(E = \{ e \} \) (Where \(e \) is the identity of \(S \)) if and only if \(S \) is a group.

Lemma 1. Let \(B \) be both a almost biideal and a subsemigroup of a semigroup \(S \), then for any \(x, y \in S \), we have \(x By \) is a almost biideal of a semigroup \(S \).

Proof. For any \(x, y \in S, s \in S \), we have \(ysx \in S \). Since \(B \) is a almost biideal of a semigroup \(S \), there exists \(u, v \in B \) such that \(uysxv \in B \). On the other hand, \(B \) is a subsemigroup of \(S \), so \(x(uy sx v)y = (x uy) y (s xv) \in x By \). Therefore \(x By \) is a almost biideal of a semigroup \(S \). Thus, the proof is completed. \(\square \)

Remark 1. Generally, for a semigroup \(S \), there uncertain exists a almost biideal \(M \) of \(S \) such that for any almost biideal \(B \) of \(S \), have \(x, y \in S \) satisfies \(B = x My \).

Example 2 Let \(S \) be a cyclic group group generated by \(a \) of order 4, \(e \) is the identity of \(S \), there not exists a almost biideal \(M \) of \(S \) such that for any almost biideal \(B \) of \(S \), have \(x, y \in S \) satisfies \(B = x My \).

Example 3. There a almost biideal \(B \) of a quasi regular semigroup \(S \) and \(E = \{ e \} \), but \(B \) is not a biideal of \(S \).

Proof. Let \(S \) be a infinitely cyclic group generated by \(a, e \) is the identity of \(S \), it is clear that \(S \) is also a quasi regular semi- group and \(E = \{ e \} \). Take \(B = \{ e, a, a^2, a^3, \cdots \} \), then \(B \) is a almost biideal of \(S \). Because for any \(a \in S \), there exists integer \(m \) such that \(a = a^m \), so there exists positive integer \(n = | m | + 1 \), \(a^n a^n \in B \), therefore \(B \) is a almost biideal of \(S \).

On the other hand, \(a^n = e a^{-1} e \not\in B \). In fact, if exists integer \(n \geq 0 \) satisfies \(a^{-1} = a^n \), then \(a^{n+1} = e \). It contradicts to the assumption \(S \) is a infinitely cyclic group. Thus, \(B \) is not a biideal of \(S \). Hence there exists a proper almost biideal \(B \) of a quasi regular semigroup \(S \) and \(E = \{ e \} \). \(\square \)

But we have the conclusions:
Theorem 2. Let B be a subgroup of semigroup S, and also is a almost biideal of semigroup S, then $B = S$.

Proof. As B is a almost biideal of semigroup S, then for any $s \in S$, exists $u, v \in B$ satisfies $usu \in B$. On the other hand, B is a subgroup of semigroup S, so $u^{-1}, v^{-1} \in B$, therefore $s = u^{-1}(usu)v^{-1}$

$= s \in B$, moreover, $S \subseteq B$. Since $B \subseteq S$, then $B = S$. \square

Corollary 1. For any a semigroup S, B is a nonempty proper subset of S. If B is a subgroup of S, then B is not a almost biideal of S.

Corollary 2. For any a semigroup S, B is a nonempty proper subset of S. If B is a almost biideal of S, then B is not a subgroup of S.

On the other hand, by the process of the proof of the theorem 2, we have the following conclusions:

Theorem 3. There exists a regular set B of a semigroup S, and B is a subsemigroup of S, but B is not a regular semigroup.

Similarly, there exists a quasi regular set B of a semigroup S, and B is a subsemigroup of S, but B is not a quasi regular semigroup.

Theorem 4. There exists a proper almost biideal B of a group S.

But we have the following conclusion:

Theorem 5. Let S be a monoid. If S have not exists proper almost biideal, then S is a group.

Proof. Assume contrary. Take e be the identity of S, S is not a group.

Order $B = S - \{e\}$, then exists $x \in S$, x is not inverse, i.e. for any $y \in S, xy \neq e$. Therefore for any $s \in S$, let $y = sx$, we have $xy = xsx \neq e$, i.e. $x \in B, xsx \in B$. So B is a proper almost biideal of S, it contradicts to the assumption S have not exists proper almost biideal and we have the conclusion. \square

Lemma 2[3]. Let S be a semigroup, then S is a group if and only if for any $a \in S$ satisfies $aSa = S$.

Example 4. There exists a regular semigroup S and $u, v \in S$ such that $uSv \neq S$.

Take $S = \{0, 1\}$ with the multiplication operation, then S is a regular semigroup, and $0S0 = \{0\} \neq S$. \square We have the following conclusion:

Theorem 6. Let B be both a minimal almost biideal and a subsemigroup of S, then B is a subgroup of S, moreover $B = S$.

Proof. For any $x \in B$, by the lemma 1, we have xBx is a almost biideal of S. Since $xBx \subseteq B, B$ is a minimal almost biideal of S, so $xBx = B$. On the other hand, B is
also a subsemigroup of S, by the lemma 2, then B is a group and B is a subgroup of S. Therefore, from the theorem 2, we have $B = S$. \(\square \)

Finally, I mention the following unsolved problem:

Let B be a minimal almost biideal of a semigroup S, for any $x, y \in S$, is xy a minimal almost biideal of S?

References

Department of Basic Courses, Jimei University, Xiamen 361021, China E-mail: Jim-lyh 2000 @ 21.cn.com