ON PRIME IDEALS OF GROUPOIDS-ORDERED GROUPOIDS

Niovi Kehayopulu and Michael Tsingelis

Received February 9, 2001

Abstract. In a groupoid (resp. ordered groupoid) G, the non-empty intersection of the elements of a chain of prime ideals, is a prime ideal of G. As a consequence, each prime ideal of a groupoid (resp. ordered groupoid) G containing a non-empty subset K of G, contains a prime ideal P^* of S having the property: If T is a prime ideal of G such that $K \subseteq T \subseteq P^*$, then $T = P^*$. As a result, in a groupoid (resp. ordered groupoid) G with zero, each prime ideal of G contains a minimal prime ideal of G. Some further results on prime ideals of groupoids (resp. ordered groupoids) are also given.

If (G, \cdot, \leq) is an ordered groupoid, a non-empty subset I of G is called an ideal of G if $1) G1 \subseteq I$ and $IG \subseteq I$ and $2) a \in I$, $G \ni b \leq a$ implies $b \in I$ [2]. If G is a groupoid, an ideal of G is a non-empty subset I of G such that $GI \subseteq I$ and $IG \subseteq I$. An ideal I of a groupoid (resp. ordered groupoid) G is called prime if $a, b \in G$ such that $ab \in I$ implies $a \in I$ or $b \in I$. Equivalent Definition: $A, B \subseteq G$ such that $AB \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$ [2]. If (G, \cdot, \leq) is an ordered groupoid, a zero of G is an element 0 of G such that $0x = x0 = 0$ and $0 \leq x$ for every $x \in G$ [1]. If G is a groupoid, a zero of G is an element 0 of G such that $0x = x0 = 0$ for every $x \in G$.

1. Each prime ideal of G contains a minimal prime ideal of G

Proposition 1. Let G be a groupoid (resp. ordered groupoid) and B a chain (under set inclusion) of prime ideals of G. If the intersection $\cap \{B \mid B \in B\}$ is non-empty, then it is a prime ideal of G.

Proof. Since $\cap \{B \mid B \in B\} \neq \emptyset$, the set $\cap \{B \mid B \in B\}$ is an ideal of G. Let $a, b \in G$, $ab \in \cap \{B \mid B \in B\}$, $a \notin \cap \{B \mid B \in B\}$ and $b \notin \cap \{B \mid B \in B\}$. Let $B_1, B_2 \in B$ such that $a \notin B_1$ and $b \notin B_2$. Since $ab \in B_1$, $a \notin B_1$ and $b \notin B_2$. Since $ab \in B_1$, $b \notin B_2$ and $b \notin B_2$ prime, we have $a \notin B_2$. Since $b \in B_1$ and $b \notin B_2$, we have $B_1 \not\subseteq B_2$. Then, since B is a chain, we have $B_2 \not\subseteq B_1$. Then $a \in B_1$. Impossible.

Proposition 2. Let G be a groupoid (resp. ordered groupoid), $\emptyset \neq K \subseteq G$ and P a prime ideal of G such that $K \subseteq P$. Then, there exists a prime ideal P^* of G having the properties:

1) $P^* \subseteq P$.

2) For each prime ideal T of G such that $K \subseteq T \subseteq P^*$, we have $T = P^*$.

Proof. Let $A := \{A \mid A$ prime ideal of $G, K \subseteq A \subseteq P\}$.

Since $P \in A$, we have $A \neq \emptyset$.

Then, the set A with the relation \leq on A defined by:

$\geq := \{(A, B) \in A \times A \mid B \subseteq A\}$

2000 Mathematics Subject Classification. 06F05, 20N02.

Key words and phrases. Prime (resp. minimal prime) ideals of groupoids-ordered groupoids.
is an ordered set.

Let (B, \subseteq) be a chain in \mathcal{A}. The set $\cap\{ B \mid B \in B \}$ is an upper bound of B in \mathcal{A}. In fact:

The set $\cap\{ B \mid B \in B \}$ is a prime ideal of G. Indeed:

B is a prime ideal of G for every $B \in \mathcal{A} \supseteq B$. Since $K \subseteq B$ for every $B \in \mathcal{A} \supseteq B$, we have $\emptyset \neq K \subseteq \cap\{ B \mid B \in B \}$, then $\{ B \mid B \in B \} \neq \emptyset$.

The set B is a chain of prime ideals of G and $\cap\{ B \mid B \in B \} \subseteq P$. By Proposition 1, the set $\cap\{ B \mid B \in B \}$ is a prime ideal of G.

Moreover, $K \subseteq \cap\{ B \mid B \in B \} \subseteq P$. Indeed: Since $K \subseteq B \subseteq P$ for every $B \in \mathcal{A} \supseteq B$, we have $K \subseteq \cap\{ B \mid B \in B \} \subseteq P$.

By Zorn’s Lemma, the set \mathcal{A} has a maximal element, say P^*. For the set P^*, we have the following:

1) $P^* \subseteq P$ (since $P^* \in \mathcal{A}$).

2) Let T be a prime ideal of G such that $K \subseteq T \subseteq P^*$ ($\Rightarrow T = P^*$?)

Since $K \subseteq T \subseteq P^*$, we have $K \subseteq T \subseteq P$ (by 1)). Then, since T is a prime ideal of G, we have $T \in \mathcal{A}$. Since $T, P^* \in \mathcal{A}, T \subseteq P^*$, we have $P^* \not\subseteq T$. Since $P^* \subseteq T \in \mathcal{A}$ and P^* is a maximal in \mathcal{A}, we have $P^* = T$. \hspace{1cm} \Box

Let G be a groupoid (resp. ordered groupoid). A prime ideal P of G is called a minimal prime ideal of G if

For every prime ideal T of G such that $T \subseteq P$, we have $T = P$.

Proposition 3. Let G be a groupoid (resp. ordered groupoid) with zero and P a prime ideal of G. Then there exists a minimal prime ideal P^* of G such that $P^* \subseteq P$.

Proof. The set P is a prime ideal of G and $\{0\} \subseteq P$. By Proposition 2, there exists a prime ideal P^* of G having the properties:

1) $P^* \subseteq P$.

2) For each prime ideal T of G such that $\{0\} \subseteq T \subseteq P^*$, we have $T = P^*$.

The set P^* is a minimal prime ideal of G. In fact: Let T be a prime ideal of G such that $T \subseteq P^*$. Since T is an ideal of G, we have $\{0\} \subseteq T$. Then $\{0\} \subseteq T \subseteq P^*$. Then, by 2), $T = P^*$.

2. Some further remarks on prime ideals

Let G be a groupoid (resp. ordered groupoid) with 0. We say that G does not contain divisors of zero if

$a, b \in G, \ ab = 0 \ implies \ a = 0 \ or \ b = 0$.

Remark 1. A groupoid (resp. ordered groupoid) G does not contain divisors of zero if and only if the set $\{0\}$ is a prime ideal of G.

Lemma 1. Let G be a groupoid (resp. ordered groupoid) and $\{I_i \mid i \in I\}$ a (non-empty) family of ideals of G. Then the set $\bigcup_{i \in I} I_i$ is an ideal of G. \hspace{1cm} \Box

When we speak about a family, we always consider that it is non-empty.

Proposition 4. Let G be a groupoid (resp. ordered groupoid) and $\{P_i \mid i \in I\}$ a family of prime ideals of G. Then the set $\bigcup_{i \in I} P_i$ is a prime ideal of G.

Proof. By Lemma 1, the set \(\bigcup_{i \in I} P_i \) is an ideal of \(G \). Let \(a, b \in G \), \(ab \in \bigcup_{i \in I} P_i \). Let \(j \in I \) such that \(ab \in P_j \). Since \(P_j \) is prime, we have \(a \in P_j \subseteq \bigcup_{i \in I} P_i \) or \(b \in P_j \subseteq \bigcup_{i \in I} P_i \).

Lemma 2. Let \(G \) be a groupoid (resp. ordered groupoid) and \(\{ I_i \mid i \in I \} \) a family of ideals of \(G \). If \(\bigcap_{i \in I} I_i \neq \emptyset \), then the set \(\bigcap_{i \in I} I_i \) is an ideal of \(G \).

Corollary 1. Let \(S \) be a semigroup (resp. ordered semigroup). If \(I_i \) is an ideal of \(S \) for every \(i = 1, 2, \ldots, n \), then the set \(\bigcap_{i=1}^n I_i \) is an ideal of \(S \).

Proof. By Lemma 2, it is enough to prove that \(\bigcap_{i=1}^n I_i \neq \emptyset \). We have \(\emptyset \neq I_i \subseteq S \) for every \(i = 1, 2, \ldots, n \), so \(I_1 I_2 \cdots I_n \neq \emptyset \). Since \(I_i \) is an ideal of \(S \), we have \(I_1 I_2 \cdots I_n \subseteq I_i \) for every \(i = 1, 2, \ldots, n \), then \(I_1 I_2 \cdots I_n \subseteq \bigcap_{i=1}^n I_i \). Hence we have \(\bigcap_{i=1}^n I_i \neq \emptyset \). \(\square \)

As in Corollary 1, we prove the

Corollary 2. Let \(G \) be a groupoid (resp. ordered groupoid). If \(I_1, I_2 \) are ideals of \(G \), then the set \(I_1 \cap I_2 \) is an ideal of \(G \).

Proposition 5. Let \(G \) be a groupoid (resp. ordered groupoid), \(P_1, P_2 \) ideals of \(G \) such that \(P_1 \cap P_2 \) be a prime ideal of \(G \). Then \(P_1 \subseteq P_2 \) or \(P_2 \subseteq P_1 \).

Proof. Let \(P_1 \nsubseteq P_2 \) and let \(a \in P_2 \). Let \(b \in P_1 \) and \(b \notin P_2 \). We have \(ab \in P_2 G \subseteq P_2 \), \(ab \in GP_1 \subseteq P_1 \). Then \(ab \in P_1 \cap P_2 \). Since \(P_1 \cap P_2 \) is prime, we have \(a \in P_1 \cap P_2 \) or \(b \in P_1 \cap P_2 \). Since \(b \notin P_2 \), we have \(b \notin P_1 \cap P_2 \). Then \(a \in P_1 \cap P_2 \) and \(a \in P_1 \).

Remark 2. Let \(G \) be a groupoid (resp. ordered groupoid), \(P_1 \) a prime ideal of \(G \) and \(P_2 \) an ideal of \(G \) such that \(P_1 \subseteq P_2 \). Then the set \(P_1 \cap P_2 \) is a prime ideal of \(G \). \(\square \)

By Proposition 5 and Remark 2, we have the following:

Proposition 6. Let \(G \) be a groupoid (resp. ordered groupoid), \(P_1, P_2 \) prime ideals of \(G \). The following are equivalent:
1) \(P_1 \subseteq P_2 \) or \(P_2 \subseteq P_1 \).
2) \(P_1 \cap P_2 \) is a prime ideal of \(G \).

Proposition 7. Let \(G \) be a groupoid (resp. ordered groupoid), \(\{ P_i \mid i \in I \} \) a family of prime ideals of \(G \) which is a chain. If \(\bigcap_{i \in I} P_i \neq \emptyset \), then the set \(\bigcap_{i \in I} P_i \) is a prime ideal of \(G \).

Proof. By Lemma 2, the set \(\bigcap_{i \in I} P_i \) is an ideal of \(G \). Let \(a, b \in G \), \(ab \in \bigcap_{i \in I} P_i \), \(a \notin \bigcap_{i \in I} P_i \) and \(b \notin \bigcap_{i \in I} P_i \). Let \(j, k \in I \) such that \(a \notin P_j \) and \(b \notin P_k \).
We have $P_j \subseteq P_k$ or $P_k \subseteq P_j$.
Let $P_j \subseteq P_k$. Since $ab \in P_j$, P_j prime and $a \not\in P_j$, we have $b \in P_j \subseteq P_k$.
Impossible.
The case $P_k \subseteq P_j$ is also impossible.

Proposition 8. Let (S, \cdot, \leq) be an ordered semigroup, I an ideal of S and P a prime ideal of I. Then P is an ideal of S.

Proof. First of all, $\emptyset \neq P \subseteq I \subseteq S$.
Let $a \in S$, $b \in P$. Since $b \in I$, we have $ab \in SI \subseteq I$, $aba \in IS \subseteq I$, $(ab)^2 = (aba)b \in IP \subseteq P$. Since P is prime, we have $ab \in P$. Similarly, $PS \subseteq P$.
Let $a \in P$, $S \ni b \leq a$. Since $S \ni b \leq a \in I$, I an ideal of S, we have $b \in I$. Since $I \ni b \leq a \in P$, P an ideal of I, we have $b \in P$. □

This research was supported by the Special Research Account (No. 70/3/4967) of the University of Athens.

References

University of Athens, Department of Mathematics,
Mailing (home) address: Niovi Kehayopulu, Nikomidas 18, 161 22 Kesariani, Greece
e-mail: nkehayop@cc.uoa.gr